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RESEARCH OBJECTIVES

In the Quarterly Progress Report of January 15, 1957, page 50, we wrote, "The
distributions of electric charge and magnetism in an atomic nucleus are usually
described in terms of multipole moments limited in number by the magnitude of the
nuclear angular momentum. In this laboratory, atomic-beam techniques are used to
determine such electric and magnetic moments. In addition, information about the
radial distribution of nuclear magnetism can be obtained in cases in which more than
one isotope is available. These techniques lend themselves to such precision that they
were used in this laboratory for the development of the most accurate atomic clock.
In turn, these clocks are being used to make studies on the nature of time itself. Pre-
cision apparatus is under construction to observe not only the dependence of atomic
time on gravitational potential but also the epochal dependence of nuclear, gravita-
tional, and atomic time. Similar studies are being made on the velocity of light." This
is still a reasonable statement of our objectives. However, the past year has not been
very fruitful for the group.

Some experiments proved more complicated to construct than was originally hoped.
One major effort of observation proved intractable and was finally abandoned.

We pointed out earlier that we were going to try to eliminate one of the inher-
ent weaknesses of atomic-beam frequency standards that use the Ramsey two-cavity
method by using two antiparallel beams that pass simultaneously through the same
Ramsey cavities. The notion was that if the two cavities are not exactly in phase,
the average frequencies of the two beams would nonetheless average to the proper one.
R. F. C. Vessot's apparatus for demonstrating this is on the point of working, but the
need for making two beams work simultaneously at a high precision makes the experi-
ment difficult. The apparatus includes a device for selecting velocities in such a way
that the phases of the cavities can be set to equality with only one beam.

An experiment for trying to observe atomic cesium under free fall for time intervals
of a second or more has been underway for several years. The major obstacles in this
experiment were thought to be: (a) the general vacuum, and (b) scattering of atoms by
other atoms of the beam, especially in the neighborhood of the oven. In the beam tube,
which is 10 inches in diameter and 28 feet long, we can hold a pressure of 10-9 mm Hg
with the aid of a liquid-helium trap. We have tried two types of oven: one with canals,
and the other an open boat of liquid cesium. In neither case do we see atoms focused
onto a detector. R. Weiss has gone further, to try to find slow atoms at the top of the
28-foot tube. He finds slow atoms that live in the apparatus, in Maxwellian abundance,
for almost one-fifth of a second. We seem to run out of signal-to-noise ratio for atoms
that are slower than that. We have therefore given up this experiment as being too
difficult, at least for us.

Since we seek an absolute measurement of frequency that will stand the test of time
and be regarded as accurate within the limits of proposed error one hundred years from
now, we still feel that it is necessary to try experiments of this sort. Such experiments
are still in the thinking stage.

Results of the experiment for measuring the Stark effect on the hyperfine structure
of cesium will appear as Technical Report 322, by R. D. Haun. An experiment for
discovering any discrepancies in the application of the Breit-Rabi formula for atomic
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cesium has been completed but the data have not been entirely evaluated. The results
of this experiment will be reported later.

J. G. King, J. R. Zacharias

A. HYPERFINE STRUCTURE OF BROMINE

In our new laboratory we are constructing and re-erecting apparatus for the preci-

sion measurement of the hyperfine structure of the stable bromine isotopes. We expect

to obtain a precision that is a hundredfold greater that that attained by King and Jaccarino

in their early work on bromine (1). This will enable us to determine the octopole inter-

action. We are also planning to measure Av and gj in the Pl/2 state.

Klystrons that are phase-locked to harmonics of our standard frequency have been

prepared. The vacuum envelope (No. 2) has been overhauled and fitted with new pump

traps that should greatly reduce the amount of oil in the apparatus. As soon as a

vacuum is obtained, development of the detector mass spectrometer and the source of

atoms will begin.

B. DiBartolo, S. Ketudat, J. G. King, J. R. Zacharias
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B. LINEAR DECELERATOR FOR MOLECULES

The linear decelerator is a device that is intended to slow down molecules in a

given state so that when they enter a microwave cavity they will undergo transitions of

reduced natural width. The apparatus that we have constructed during the past year and

a half is designed to use the inversion line of NH 3 in the J=K=1 state, which occurs at

23, 694.48 mec. This apparatus consists of a cold (100 ° K) directional NH 3 source; the

decelerator, which is an array (1 meter long) of parallel-plate capacitors and drift

spaces of such lengths that the time of flight of the decelerated molecules through each

capacitor and drift space is constant; and a cylindrical cavity operating in the TE0, 3, 12

mode with appropriate input and output waveguides. The whole apparatus is operated

at a pressure of 10 - 8 mm Hg.

The decelerator is intended to operate as follows: Molecules in the upper inversion

state J=K= 1, 1 m = 1 lose energy when they enter a region of large electric field in one

of the capacitors in the decelerator. If the field is greatly reduced while the molecules

are in the uniform field of the capacitor, they will not, when they leave, regain the

energy that they lost on entering. While the molecules are in the drift space the voltage

across the capacitor is raised and the molecules once again lose energy upon entering
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the high field. For reasonable fields (e.g., 105 volts/cm) the molecules lose kinetic

energy at the rate of 10 K per stage. If the source temperature is 1000 K, molecules

of one-half of the most probable velocity will be brought to rest in the 25 stages of our

apparatus. These molecules, or rather their neighbors in the velocity spectrum, spend

a long time in the cavity, where they contribute to the inducing rf field by undergoing

induced emission, and are thus detected.

It is difficult to estimate the effective solid angle of the decelerator for the desired

molecules. Calculations indicate that there is a net focusing effect for molecules in

the desired state. Molecules in the lower inversion state would also be decelerated on

leaving the capacitor, but would be defocused. Phase stability is also of importance

and probably it will be necessary to use a triangular or sinusoidal voltage rather than

the square wave that was technically easier to achieve with a conventional thyratron

switch arrangement that delivers a 15-kv square wave at 6 kc into the 0. 001-If capaci-

tance of the decelerator unit. Some shaping of the square wave can, of course, be done.

The microwave receiver uses type 2K50 as a local oscillator for a balanced detec-

tor. The 2K50 is phase-locked to a harmonic of an S-band klystron which, in turn, is

phase-locked to a harmonic of a 1-mc crystal, with various balanced modulators and

mixers introduced to allow continuous tuning. A 200-kc i-f amplifier with a gain of

120 db and a bandwidth of 20 cps is used to detect the signal from the cavity.

All offset frequencies are derived from crystal oscillators. We are grateful to

Professor C. L. Searle and Mr. R. E. Lyon for the initial development of the micro-

wave receiver.

Tests of the completed system will soon be carried out, and further details will be

given in a later report.

J. R. Zacharias, J. G. King

C. MEASUREMENT OF THE VELOCITY OF LIGHT

1. Precision Cylindrical Cavity

What is probably the most precise cylindrical cavity in existence has now been

completed to microinch tolerances by an optical process out of General Electric Com-

pany well-annealed fused quartz by the Boston University Physical Research Labora-

tory under the direction of George Random in consultation with our Research Laboratory

of Electronics group. The silver coating of this cavity to optical uniformity and good

electric conductivity will also be undertaken by the Boston University laboratory.

The basic mechanical elements of the apparatus, which will be used, first, for

experimenting with mechanical guidance schemes for moving the end plate parallel to

itself at a reasonably uniform velocity with microinch precision, are being assembled

in our Laboratory. The experimental results described in the Quarterly Progress
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Fig. VII-1. Fused quartz cavity with diameter-measuring device.

Report of October 15, 1956, page 46, have determined the principle of having brass

shoes guide a moving glass (or quartz) cylindrical (2-inch diameter) rod to avoid stick-

slip effects. The shoes consist of two groups of three horizontal cylindrical (0. 25-inch

diameter) brass rods, two rods in each group forming a "vee" and the third pressing

the vertical quartz rod against them by gentle spring action. The quartz rod and the

moving end plate, which will be interferometrically servo-controlled in rotation with

respect to the rod so that they are normal to the cylinder axis, have not yet been

optically manufactured.

Figure VII-1 shows a photograph of the finished fused quartz cavity with the

mechanical-interferometric curvature -measuring device that was especially designed

for the testing of this cylinder. The cylinder is 11.5 inches long, with an inner diameter

of 6. 350 inches and an outer diameter of 9. 25 inches. The uniformity of the inner diam-

eter (with respect to both ellipticity and axial-diameter variations) was found from

measurement to be within +1. 5 X 10-6 inch, and the highly polished inner surface has

considerably less than one part in 10 of its area covered by residual bubbles. The

electromagnetic diameter of the silver-plated cavity will be determined to a good

approximation by microwave and interferometric guide wavelength measurements at

two frequencies in a simple, exactly known ratio. We are planning to determine the

absolute diameter more accurately by comparing the mechanical diameter values with

an adjustable Fabry-Perot interferometer system by means of a null-reading device,
such as a two-outlet (or possibly three-outlet) air gauge mounted on the moving end-

plate system. When the air-gauge detectors read "zero" in both the cavity and the

I

I i
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Fig. VII-Z. Fused quartz cavity in process of being ground.

Fabry-Perot interferometer, the diameter-measuring problem has been reduced to a

determination of the spacing of the two Fabry-Perot plates, which can easily be achieved

by classical "inspection" methods in terms of known light wavelengths.

Figure VII-2 shows the cavity in the process of being ground on an apparatus con-

structed for this purpose, in which the cylinder is rotated about its axis and the grinding

tool moved back and forth axially. The noteworthy feature of this procedure is that,

with the two movements originating at independently driven motors, the almost perfect

circularity has been achieved with comparative ease, while the axial uniformity in

diameter had to be carefully watched by varying the stroke length and the axial centering

of the tool in both the grinding and polishing processes.

J. R. Zacharias, G. W. Stroke

D. STABILIZATION IN KLYSTRON PHASE-LOCKED OSCILLATOR LOOPS

Further theoretical and experimental work on the problem of phase-locking S-, X-,

and K-band klystrons to 5-mec crystal oscillators (1, 2) has revealed several previously

neglected sources of phase shift which prove to be of considerable importance in the

design of stable feedback loops. A block diagram of a representative klystron stabili-

zation loop is shown in Fig. VII-3. The klystron has a transfer function of the form

K/s, with K varying from 106 radians/volt for an S-band klystron to 107 radians/volt

for a K-band tube. The essential problem in stabilizing such a system is to limit all

other phase shifts in the feedback loop to less than a total of 90* until I K/sI becomes

~3. L~- I __



(VII. ATOMIC BEAMS)

I F PHASE CORRECTIVE KLYSTRON
AMPLIFIER DETECTOR NETWORK

Fig. VII-3. Block diagram of klystron stabilization loop.

less than unity. The three principal sources of phase shift, other than the 900 shift

implied by the 1/s characteristic of the klystron, are tuned circuits in the phase detec-

tor, including any tuned element used to feed in the reference signal, the detection pro-

cess in the phase detector, the repeller input capacitance of the klystron, and the shunt

capacitance in the i-f amplifier.

1. Phase Detector

Any tuned circuit in the phase detector will cause phase shift in the device. A tuned

circuit used to obtain a balanced reference signal to drive the detector would not, at

first, appear to influence the input-signal phase, but the capacitance to ground of such

a tuned circuit does introduce substantial phase shift unless the tuned circuit is of very

low Q.
The "sampled-data" phase shift that is inherent in the detection process of the phase

detector was a major source of phase shift in early designs. The time delay involved

in any rectification-and-holding process, such as a peak detector, is inversely propor-

tional to the carrier frequency. If "box-car" holding is assumed for the sake of sim-

plicity, the phase shift corresponding to this time delay will be

modulating frequency
4 = X 360 0

2 X carrier frequency

2. Klystron

The klystron introduces a fixed, 900 phase shift, and a variable phase shift because

of repeller input capacitance. For an S-band klystron, this capacitance can be as

large as 100 tjif. There is also a possibility that some reactive component will be

introduced because of the interaction of the repeller and the electron stream inside the

tube. This effect has not been observed, probably because it occurs at a much higher

frequency than the frequencies that have been considered here.

3. I-F Amplifier

The slope of the phase characteristic of the i-f amplifier is a direct measure of the

amount of phase shift imparted to a phase-modulated wave passing through the amplifier.

Since an RLC circuit has twice the phase-characteristic slope of an RC circuit, for a
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given RC product, it is desirable, whenever it is possible, to use a video i-f amplifier

rather than a tuned amplifier.

4. Design Criteria

The following design criteria are suggested by the preceding discussion:

1. Use an untuned (video) i-f amplifier with either a broadband input transformer

or a vacuum-tube inverter circuit to convert the balanced i-f input signals to a single-

ended output.

2. Use a low-impedance phase detector to minimize klystron input capacitance

effects.

3. Choose an i-f frequency that is as high as possible to minimize "sample-data"

phase shift.

Obviously, these criteria are not necessarily compatible. Specifically, some com-

promise must be made in the selection of the i-f amplifier center frequency in accord-

ance with items 1 and 3.

5. Experimental Verification

An S-band klystron stabilization loop that was designed in accordance with two of

the criteria has proved to be very successful. The specific departure from the design

was the use of a 3. 7-mec tuned i-f amplifier. In effect, increased phase shift in the

i-f amplifier was traded for decreased sampled-data phase shift in the detector. The

performance of the loop was outstanding in that the klystron tube could be struck with

a screwdriver without loss of lock. Notwithstanding, we feel that system performance

can be improved by striking a different balance between criteria 1 and 3, namely, by

the use of a 1-mc untuned i-f amplifier. Such a system is now being constructed.

C. L. Searle
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E. RESONANCE DETECTOR: VELOCITY OF LIGHT EXPERIMENT

1. System Design

A system has been constructed to detect cavity resonance. This system uses the

amplitude variation of the cavity's output signal, but provisions have been made for
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phase comparison of input and output if
PSEUDO 92 KMC DAVITY IVE
CLOCK CAVITY ... MOTOR the accuracy requirements demand it.

PHASE- The cavity that is being used is the inter-
LOCKED

KLYSTRONS mediate cavity that was constructed a

year and a half ago. It is mounted on a

OSCILLATOR BFO lathe bed with one end plate on the tool

AUDIO carriage. The carriage is driven with
TONE

a reciprocating motion by a small motor

RECORDER DETECTOR through a distance of 0. 030 inch, which

takes the cavity through one of its reso-

Fig. VII-4. Resonance detection system. nances. The microwaves are passed

through two small holes in the fixed plate.

Two phase-locked klystrons are used in the system shown in Fig. VII-4, one to

simulate the final frequency source, an atomic clock, and the other as a local oscillator.

The output signal is mixed with the local-oscillator signal, and the difference signal of

3.5 mc is amplified by a communication receiver. Since the output signal is of low

frequency, the beat frequency oscillator of the receiver is used, and the modulated

tone is rectified by a peak detector. This provides a signal that is proportional to the

output amplitude of the cavity even though it has a de component. The peak detector

voltage is recorded on a pen recorder.

2. Results

Preliminary results are shown in Fig. VII-5. A succession of cavity resonances

is plotted, and the recorder sensitivity is increased by factors of 10 and 100. The

7 - - I . ....-

Li

Fig. VII-5. Signal-to-noise measurement for resonance detector.

signal-to-noise ratio, as determined from these curves, is 300 to 1. This ratio can

be improved by a factor of 2 or 3 by eliminating the obvious dissymetry in the base
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line, which is caused by signal leakage around the cavity.

The pen recorder does not have the accuracy that is required for this measurement.

It will be replaced by better detection equipment.

E. P. Hilar


