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RESEARCH OBJECTIVES

The work of the Microwave Tube laboratory will be concerned with the following
problems:

1. High-power tube research.
2. Noise in electron beams.
3. Plasma oscillation phenomena.
4. Microwave circuit theory and design techniques.
5. Parametric amplifiers.
The first four programs are a continuation of work that has long been in progress

here. The work on parametric amplifiers has been undertaken in response to two
diverse stimuli: interest in the basic theoretical problems and the promise of obtaining
virtually noiseless parametric amplifiers.

1. High-Power Tubes
We plan to complete assembly and tests for the hollow-beam, stagger-tuned, L-band

klystron. The future program will depend largely upon the test results. If the results
are encouraging, one of the next important problems will be that of the electron gun.

Electron gun. The present tube uses a confined-flow parallel-beam gun that imposes
very severe current-density problems on the cathode. Some means of obtaining a "con-
verging" hollow beam will have to be developed. We are making preliminary studies of
the Brillouin magnetron injection gun as a possible solution to this problem.

Transition between klystrons and traveling-wave tubes. A better understanding
of the relationship between these two types of amplifier is needed. We plan to work on
the problem of understanding what happens as the coupling between adjacent cavities is
increased from zero (klystron) to a value that is large enough to disturb their resonant
frequencies (traveling-wave tube).

2. Noise in Electron Beams
Present theoretical results indicate plainly that the ultimate noise performance of

traveling-wave amplifiers is established by conditions at the cathode and virtual cathode.
We propose to look into the problem of controlling the conditions at the virtual cathode
in order (for example) to increase the fl/S ratio. We also plan to study more carefully
what happens to noise at frequencies around the plasma frequency of the virtual cathode.
In this problem both experimental and theoretical work will be necessary. Many of the
techniques developed in this laboratory will be used in the experimental work for the
measurement of the noise constants II and S.

3. Plasma Oscillations
During the past year we have learned a good deal about the theoretical behavior of

some ideal plasma systems. Our experimental results, however, have shown only a
qualitative resemblance with theory. Thus, it seems clear that there must be some
basic difference between the idealized model on which the theory is based and the actual
experimental system. Our objective will be to bring the two together: (a) by making
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more realistic assumptions about the theoretical model; and (b) by making the experi-
mental model more like the ideal model.

4. Microwave Circuits and Slow-Wave Structures
A coupling-of-modes theory has been developed for the analysis of propagation along

periodic structures. This analysis was convenient for obtaining a good approximate
Brillouin diagram for periodic structures. It also provided a field-basis for the approxi-
mate equivalent circuit of a periodic structure. An attempt will be made to derive the
formalism from a variational principle. The variational principle will provide a check
on the accuracy of approximations.

5. Parametric Amplifiers
A general power theorem has been derived for parametric amplifiers that employ

longitudinal electron beams and ferrites. On the basis of such a power theorem we can
study the signal amplification and noise performance of parametric amplifiers. Para-
metric amplification will be studied along these lines.

L. D. Smullin, H. A. Haus

A. LOW-Q OUTPUT CAVITY FOR HOLLOW-BEAM KLYSTRONS

The problem of designing a suitable output cavity for a wideband klystron has given

us much trouble, but the present design seems to satisfy most of our requirements.

The principal requirements are:

1. The bandwidth of the output cavity should be sufficiently wide so that advantage

can be taken of the full electronic bandwidth of the tube.

2. The cavity should present an impedance to the beam that will allow the maximum

ac power to be extracted from the beam.

Since beam size and gap length are prescribed by other considerations, the second

requirement is usually the stronger and establishes the bandwidth. When low-impedance

(high-perveance) beams are used, the desired gap impedance is very low, and the

coupling to the load very strong. This leads to the next problem, that of distortion of

the gap electric field by the coupling system (loop or iris). It is relatively easy to

couple a cavity as tightly as desired; but most systems seriously distort the gap field,

and thus reduce the effective coupling to the beam. The coaxial probe system described

in the Quarterly Progress Report of April 15, 1957, page 46, has been studied further

with the aid of field plots made in an electrolytic tank. There was a considerable amount

of radial distortion caused by the probe.

The scheme that will be described arose from an attempt to use several weak

couplings to the cavity, disposed symmetrically about the gap, as far from the gap as

possible. Multiple-loop couplings with equal path-length interconnections, as shown in

Fig. VI-1, were used. It can be shown that if all corresponding arms are of equal

length and characteristic admittance, and if equal amplitude waves are excited at all

This work was supported in part by the Office of Naval Research under Contract
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4Yo loops, there will be no standing waves in the

2Yo 2 Y system. Figure VI-2 shows a schematic

drawing of the proposed design; Fig. VI-3 is

o Oo a cross section of the proposed mechanical

LOOP design. The system was tested with four loops

that were not interconnected, but with each
Fig. VI-1. Multiple-loop coupling connected to its own matched load. The loaded

system.
Q of the system was 6. The R/Q value of the

unloaded cavity had previously been measured

as 70. If this value of R/Q still applied to the loaded cavity, the impedance at the gap

should have been 420 ohms. The gap impedance was determined from a measurement

of the transmission loss with a known rf resistance shunted across the cavity gap, as

indicated schematically in Fig. VI-4. The resistance was made by putting a coating of

Aquadag on a thin polystyrene tape. Each loop and its associated load presents a trans-

formed conductance G' at the gap. The transmission of the cavity is

P 2
_ T 4G'

P2
available (4G' + G)

if we assume a lossless cavity. The measurement gave the following values:

G T 4G'

0 -7.5 db

1 1
-12. 9 db

500 600

Since the transmission for G = 0 was -7. 5 db instead of -6 db, it is evident that the

loops were not all of equal size. It is apparent, however, that the R/Q value stays

nearly constant in the whole range from QL Z 0 to QL = 6.

L. D. Smullin, K. W. Cooper, Jr., HI. W. Fock

B. PROPAGATION IN A CIRCULAR WAVEGUIDE LOADED WITH A

NONDRIFTING PLASMA

In our search for a theoretical explanation of electron-stimulated ion oscilla-

tions (1, 2) we studied the problem of propagation in a drift tube loaded with trapped

ions. The effects of the electron beam were completely ignored and we assumed that

the beam served only to neutralize the dc space charge. The model that was studied

consisted of an infinitely long circular pipe of radius a, concentric with a cylindrical

cloud of ions that has a radius b in the absence of an excitation (Fig. VI-5). The ion

cloud was assumed to have a uniform dc volume charge density po . The effect of a
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Fig. VI-2. A stage in the mechanical development of the four-loop coupled cavity.

Fig. VI-3. Proposed four-loop coupled output cavity for use with
hollow-beam klystron.
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Equivalent circuit and scheme for measuring R/Q of four-loop cavity.Fig. VI-4.
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longitudinal focusing magnetic field B -= i B was considered in the analysis.

The following equations describe rf excitation within the plasma:

VE + k I E jwJ + (V EI) (1)

J = pov (2)

j0mv = q E + vX B0 ) (3)

The superscript I refers to region I (the plasma). Equation 1 is the vector wave equa-

tion for electric field derived from Maxwell's equations; Eq. 2 is the small-signal

relation between rf particle motion and rf current density; and Eq. 3 is the small-signal

nonrelativistic force equation. We assumed that the electric-field configuration in the

plasma is independent of 0 and of the mathematical form:

-jpz
z

AJ ° (P r) e (4)

(5)
I -jp z

E =BJ 1 (Pr) e
Er

-jp zz

CJ l (pr) e

This assumed configuration is consistent with Eqs. 1, 2, and 3. By working Eqs. 4, 5,

and 6 through Eqs. 1, 2, and 3, we obtain the dispersion relation,
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-jpzr
A (9)
B 2

-p +k 1 -
r 2

where

2 qpo qBo 2

p E m' c oo

For reasonable values of w and c (approximately a few megacycles) and reasonable
p C 2

geometries (b and a, approximately a few centimeters), k z 0 over a frequency range

extending from zero to approximately one tenth the cutoff frequency of the empty wave-

guide (approximately a few kilomegacycles). Hence, relations 7, 8, and 9 can be

approximated in this range as follows:

22 2 2Z

P =  c (10)
p c

C=0 (11)
B

A Pz
A .z (12)

r

'II
Relations 11 and 12 suggest that in the plasma E -VV , where

VI -jpz
V = VoJ (r) e (13)

Therefore, we can reformulate the problem for the low-frequency range and describe

the fields by Eqs. 2 and 3 in conjunction with

= VVI (14)

and

V I = (15)

Relation 13 is consistent with Eqs. 2, 3, 14, and 15, and the dispersion relation

(Eq. 10) can be rederived by working Eq. 13 through these equations. For high fre-

quencies, w >> p and w , the plasma looks like a vacuum.
p c

In the low-frequency range, the fields in region II (the vacuum) are approximately

described by
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'II IIE =-7V

and by

V 2II = 0 (16)

Applicable solutions to Eq. 15 are of the form

II -jz z

V I  [AIo(Pzr) + BK o(P z r)] e

In the presence of an excitation the boundary between the plasma and the vacuum

ripples (Fig. VI-6). By using the method introduced by Hahn (3), this ripple can be

replaced by a charge sheet at r = b (Fig. VI-7), the surface charge being a = Po0 b, in

which Ab is the change in the radius b caused by an excitation. The change in radius

Ab is given by

V
Ab = r

jW r=b

Therefore we obtain

2

P I
EE

o2 2 r
2 - 0 r=b
c

(The expression for surface charge can be derived by considering the divergence of the

current in a small volume element of dimensions Ab, Az, bAO at the edge of the plasma

and by neglecting products of small-signal quantities.)

The boundary conditions that must be fulfilled are:

V I(a) 0

VI(b) = VII(b)

E E I + = E I
or or

From these boundary conditions, we find

I0 (Pr) - Ko(Pza)0_jZII (p-jz a) z

I (P b) K ° z K (p b)
and the deterinantalK (a) z
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Fig. VI-6. Ripple in plasma boundary.
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Fig. VI-8. Transverse potential for
lowest radial mode of
first configuration.
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2 2 2
W0 + 0 -c
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2 2
c

J i( rb)
r Jo 3rb )

It is also possible to have a

potential function

VI = VoIo (a rr) e

I0 (
3 a) K (3 b) + I1(Pzb) K (P a)

b(a) K b) -

Io(z a ) Ko(zb) - Io ( z b ) Ko(13a)

different field configuration inside the plasma. The

-j zz

is also a solution to Eqs. 2, 3, 14, and 15 and yields the dispersion relation

2W 2 2 2)
2 p c 2
z 2 2) (2 2c  r

When the boundary cnditions are matched, we obtain the determinanta equation,

When the boundary conditions are matched, we obtain the determinantal equation,

2 2 2
o + o - w

p c

2 2
c -
c

I1(Prb)

arb - = b
r Io( b)

10Or b

Io(0 a) K 1 (zb) + Ii(z b) Ko( za)

Io (% a) K o( b) - Io ( b) K o(Pa)

A sketch of a possible potential function of the first field configuration, i. e., the

potential with the plasma variation J o(rr), is shown in Fig. VI-8. A sketch of the

potential function of the second field configuration, i. e., the potential with the plasma

variation Io (a r), is shown in Fig. VI-9.

For the first configuration, plots of p z versus o can be obtained from Eqs. 10 and

18. For oc < wp propagation is obtained for 0 < w < and for <o< + 2]1/2

(Fig. VI- 10, solid curve). For o > wp, waves propagate for 0 < w < w and for

S<< + 2 1/2 (Fig. VI-11). An infinite number of 0-independent modes is
c because of the repetitive nature of the left-hand side of Eq. 17.

obtained because of the repetitive nature of the left-hand side of Eq. 17.

wc< p /
CONFIGURATION OF FIG E-8

CONFIGURATION OF FIG a-9

---------

0 WC f - (P
2 2
P_2

0 ap wc

Fig. VI-10. w-p diagrams for w < c ,
lowest radial mode

Fig. VI-11. w-P diagram for wo < c

lowest radial mode.

(18)

(19)

(20)
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From Eqs. 19 and 20, plots of pz versus c can be obtained for the second con-

figuration. For c < wp, propagation is obtained in the band wc < < WZ + W c)/2 1/2

(Fig. VI-10, dashed curve); there is only one such mode, since Eq. 20 is not repetitive.

This type of propagation is not predicted if the ripple is neglected in the analysis, where-

as the modes of the first configuration are predicted. For C > w , the second configura-
c p

tion does not propagate at all. [Calculated curves from R. Gould and A. W. Trivelpiece,

California Institute of Technology, aided in the sketching of Figs. VI- 10 and VI- 11.]
P. Chorney

References

1. L. D. Smullin, C. Fried, and R. Bevensee, Electron-stimulated ion oscillations,
Quarterly Progress Report, Research Laboratory of Electronics, M. I. T., April 15,
1957, pp. 51-53.

2. P. Chorney, Theoretical investigation of electron-stimulated ion oscillations,
Quarterly Progress Report, Research Laboratory of Electronics, M. I. T., Oct. 15,
1957, pp. 30-35.

3. W. C. Hahn, Small signal theory of velocity modulated electron beams, Gen. Elec.
Rev. 42, 258-270 (1939).

C. POWER RELATIONS IN PARAMETRIC, NONLINEAR MEDIA

Amplifiers that employ nonlinear media excited at a pump frequency f so as to

provide gain at the signal frequency are called "parametric amplifiers." Manley and

Rowe (1) derived some general relations that are fulfilled by powers that pertain to

various frequencies and flow into a nonlinear capacitor. The small-signal form of the

relations derived by Manley and Rowe has been extended to include longitudinal electron

beams under nonlinear, parametric excitation. The small-signal form has also been

generalized to include lossless gyromagnetic media with a magnetization M that satis-

fies the equation

M = -y(M X H)

Both generalizations have been submitted for publication. Here, we shall only state

the general theorems and briefly indicate some of their applications. Consider a longi-

tudinal electron beam (confined by an infinite magnetic field) excited at a pump frequency,

f , and modulated by a small signal at the signal frequency fs. Denote the small-signal

sideband pertaining to the frequency mf i fs by the subscript mp ± s. Then, we have

0 nnE XH nV JSnEmp+ns Hmp+ns mp+ns mp+ns

mf + nf mf + nf
p s p s

where V and J are the complex small-signal amplitudes of the kinetic voltage and
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current density. Equation 1 may be considered as a generalization of the small-signal

kinetic-power theorem of Chu, to which Eq. i reduces if we disregard the pumping

excitation and set all terms equal to zero except those corresponding to m = 0. Note

that the electromagnetic and kinetic power of all lower sidebands enters into Eq. 1

with a negative sign. Thus, for example, the excitation of a fast wave at a lower side-

band frequency (which carries positive kinetic power in a conventional longitudinal

beam amplifier) acts upon an excitation at an upper sideband frequency in a manner

similar to a slow-wave excitation at an upper sideband frequency. This explains why

coupling produced by the pump excitation between two fast electron-beam waves, one

at an upper sideband, the other at a lower sideband, can lead to exponential growth, a

result that can be obtained from the small-signal analysis of a special case (2).

The small-signal power relations for lossless gyromagnetic materials are

co nE XHc n mp+ns X mpnsp+ns

Snmf + nf
m=-oo n=+l p s

These power relations are entirely analogous to the relations that were proved by

Manley and Rowe for lossless, nonlinear capacitors and inductors. It follows that

devices containing nonlinear gyromagnetic materials are subject to exactly the same

limitations as those contained in the original Manley-Rowe relations.

H. A. Haus
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D. MODE COUPLING IN A PERIODICALLY LOADED TRANSMISSION LINE

This work is an extension of the coupling-of-modes formalism applied to periodic

cavity chains that was presented by R. Bevensee in the Quarterly Progress Report of

October 15, 1957, page 25. In order to evaluate the accuracy of the approximations

that were used to make this formalism manageable, an actual periodic structure whose

exact solution is known was analyzed by mode coupling. The results indicate the valid-

ity and usefulness, in general, of the mode-coupling approach.

A transmission line that is periodically shunted by lumped capacitance is a simple

periodic structure for which the exact solution can be found. The structure is shown

in Fig. VI-12. One of its peculiarities is that it possesses an infinite number of pass-

bands and stopbands in which the free waves are either propagating or are attenuated.
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Fig. VI-Z12. Periodically loaded trans- Fig. VI-13. Periodic structure broken
mission line. down into sections.

Each passband is bounded by a resonance of a section of the structure like that shown

in Fig. VI-13. The lower cutoff of each passband occurs when the length (d) of the

section is some integral number of half wavelengths, or at the resonances of a section

with short-circuited terminals. Hereafter, these will be called "short-circuit modes."

The upper cutoff frequency is the resonant frequency of a section with open-circuited

terminals which is affected by the shunt capacitors. These modes will be referred to

as the open-circuit modes.

A typical section of the periodic structure could be solved as a Sturm-Liouville

problem with the boundary condition that the voltage at the ends is zero, which will

give a complete set of orthogonal short-circuit modes. The section could also be solved

for the boundary conditions that current is zero at the ends, which will give a complete

set of orthogonal open-circuit modes. Either of these mode expansions is complete

and can be used to represent an arbitrary voltage and current distribution over the

section. Suppose that the voltage and current of the (0) section are written in terms of

the short-circuit expansions:

V (z) = Z VE (z), Io (z) = InH(z) (1)
n n

th

where En(z) and Hn(z) are the voltage and current distributions of the n mode, and

V and I their complex amplitudes. The voltage and current of the preceding (-1)n n
section are:

Ve(z) = V e ' E (z), I (z) I e j  H (z) (2)
n n

by Floquet's theorem for a wave propagating from left to right on the structure.

In order to obtain the solution for a general voltage and current distribution in the

(0) section of the periodic structure at a certain applied frequency, it is necessary to

evaluate the mode amplitudes V and I . To do this, the effects of the adjacent (-1)n n
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and (+1) sections are represented in the transmission line equations as driving terms.

Then those equations can be solved for the (0) section. The individual sections are thus

coupled together to form the periodic structure, and the driving effects of the adjacent

sections can be represented by voltage or current generators at both ends of the (0)

section.

If the driving terms are expressed as short-circuit mode expansions, we find that

these modes do not couple to the short-circuit expansions of the (0) section, since they

both satisfy the same boundary conditions. Therefore the open-circuit mode expansions

are used for the driving terms of the short-circuit expansion and an infinite set of

coupling equations results. Another set of coupling equations can be found by expressing

the voltage and current of the (0) section in open-circuit expansions and the driving

terms in short-circuit expansions. There are enough equations to evaluate all ampli-

tudes in all mode expansions and thus to solve the problem formally.

Having both kinds of expansions for the voltage and current is advantageous, since

the short-circuit expansion for voltage is not uniformly convergent at the ends of a

section; nor is the open-circuit expansion for current uniformly convergent at the ends.

Hence, if the infinite summations are to be truncated with a finite number of terms, the

short-circuit expansion for current would be used for rapid convergence everywhere,

and the open-circuit expansion for voltage would be chosen. These expansions converge

rapidly, even at the extreme ends of the section, which, in general, have a finite voltage

and current.

If the shunt loading is very heavy, the passbands are very narrow and the voltage

and current distributions closely resemble those of the short-circuit and/or open-

circuit resonant modes that mark the cutoff frequencies of that passband. The simplest

approximation, then, is to postulate that all other modes except these two affect the

solution to a negligible extent, and so they are omitted. All of the infinite summations

reduce to single terms, and a first-order approximation for the propagation character-

istics can be found. This approximation (called the single-mode-pair approximation)

leads to a simple relation for 4, the phase shift per section of a propagating wave, in

terms of the frequency w. This is called the "frequency equation," and it is written

2 2 2 2
2 s +o o -w

2 sn on sn on0 = 2 2 cos

where w and o are, respectively, the short-circuit and open-circuit resonantsn on th
frequencies of the n passband. The plus sign of the plus-and-minus combination is

used if the voltage distributions of the modes are antisymmetric in the section; the

minus sign is used for symmetric voltage modes.

The next better approximation would be to acknowledge the existence of modes

associated with the nearby passbands and write the coupling equations for two-mode
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Fig. VI-14. Brillouin (w versus p) diagram for the periodically loaded trans-
mission line; wCs2 is the half-wave resonant frequency of a section.

pairs or even three-mode pairs. That is, in studying the nth passband, the coupling

equations would be written to include the modes of the n - 1 and n+ I passbands.

Such approximations were carried out for the periodically loaded transmission line

of Fig. VI-12, and the results for one-, two-, and three-mode-pair approximations are

plotted, together with the exact solution found by other methods. The propagation char-

acteristics of the low passband, which begin at dc, and of the second passband are

plotted in Fig. VI-14. The results indicate that the higher-order approximations con-

verge to the exact solution rapidly, even when the shunt loading is not very heavy. (The

bandwidth of the second passband is approximately 22 per cent.)
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Note that the two-mode-pair approximations for the second passband are poorer

than the single-mode-pair approximation. In analyzing the nth passband of a periodic

structure, the n - 1 and n + 1 passbands contribute comparative effects; thus the next

higher approximation that should be used after the single-mode-pair case would be the

three-mode-pair approximation. The two-mode-pair approximation destroys the sym-

metry of the problem. For the passband beginning at dc, any additional modes coupled

into the system give more accurate results, since there is no symmetry to preserve.

T. Goblick


