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In our previous report (Quarterly Progress Report, July 15, 1957, p. 118) we out-

lined the statistical phenomenological postulates that are sufficient for a rigorous

derivation of the canonical distribution law of a thermodynamic system in which the

energy is the only extensive variable that is subject to random fluctuations.

The canonical probability density function of the distribution of the energy u is

P(u/p) = g(u) e-pu Z(p)- 1 (1)

where p = 1/kT, k is Boltzmann's constant, T is the absolute temperature, g(u) is a

structure function that depends only on the properties of the system, and Z(P) is the

partition sum determined from the normalization condition of the probability density

function as

cc

Z(p) = g(u) e-u du (2)

It is assumed that the energy spectrum has no upper bound, and its lower bound is

chosen as the zero of the energy.

By introducing the concept of entropy, it is, on the foregoing basis, possible to

develop a theory which is phenomenological in the sense that the probabilistic elements

are all implicit in the entropy definition. Otherwise, the theory is more general than

traditional thermostatics, since fluctuations are taken into account. In the terminology

of the Quarterly Progress Report, April 15, 1957, p. 166, we have an Ic theory instead

of the classical Il theory.

As a first step toward the definition of the entropy, we introduce the index of

probability,

g(u)
s(u, p) = k In - = k [pu + (p)] (3)

P(u/p)

Here

c( ) = In Z(P) = -A(T)/kT (4)
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is the Mathieu function, and A(T) is the Helmholtz free energy. Since the energy

u is a random variable, the same is true of s(u, P).

In order to define the thermodynamic phenomenological entropy, we have to distin-

guish two cases:

(i) the system is in contact with a reservoir of temperature T, hence p is constant.

(ii) the system is isolated and has a fixed energy u.

These two cases correspond to the canonical and microcanonical ensembles of

statistical mechanics. The discussion of the first case closely parallels the traditional

method, and we shall confine ourselves to a short summary of the relevant formulas.

The discussion of case ii has entirely novel features.

In case i the entropy is defined as the average of the random variable (see Eq. 3),

S(p) = s(u, P) = kpu + k O(P)
(5)

f" g(u)
P(u/P) In - du

P(u/p)

The thermodynamic properties of the system are contained in the fundamental equa-

tion

(P) = S(p) - pU = -A(T)/kT (6)

where

U = u = - (7)
ap

The energy fluctuation is

Au2 > 0 (8)
ap2

We turn now to case ii. The procedure most frequently applied is to define the

entropy for an isolated system as

S = k In g(u) (9)

The proper definition of the temperature is somewhat problematic in this case (1).

Following a suggestion of Mandelbrot (2), we have assigned a temperature to isolated

systems by using the maximum likelihood method of mathematical statistics (3). We

found that in the present context the use of this method can be made plausible on the

grounds of simple physical considerations.

Let us assume that before its isolation the system reached its state of energy uo
through contact with a reservoir of temperature T = i/kp. In classical thermostatics,
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an Ii theory, there is a unique functional relation between uo and P. This is not true

in the Ic theory, in which the energy is allowed to fluctuate within a canonical distri-

bution. However, it is still possible to estimate the temperature.

Following the method of maximum likelihood estimation, we require that the proba-

bility density function (1), or more conveniently its logarithm, should be maximum in

its dependence on P. Hence

a In P(u IP) 8
-- u = 0 (10)

P a3

<0 (11)ap2

if Po is the solution of Eq. 10.

If we compare Eq. 7 with Eq. 10, we see that 1/k is that temperature for which

the canonical average is i = u . This is consistent with the I1 theory, in which fluctu-

ations are altogether neglected. However, in the present case the determination of the

temperature from Eq. 10 is not sharp. Expanding In P(uI P) as a function of p around

Po, and breaking off at the quadratic terms, we find that the estimated reciprocal

temperatures have a standard deviation Ap that obeys the relation

Au ap = k (12)

where Au is the standard deviation (rms fluctuation) of the energy in the canonical dis-

tribution of the temperature 1/kp o
This relation has an interesting physical meaning. The transition from the present

Ic theory to the Il theory corresponds to a limiting process:

k-0, Au -0, A - 0 (13)

In the Ii theory there is no difference between an isolated system of energy uo and a

system that, is in contact with a reservoir, provided that u0 = i. Moreover, both u

and p = 1/kT have sharp values, i. e., the energy of a system uniquely determines the

temperature of the surroundings with which it might be in equilibrium, and, conversly,

the temperature of a reservoir uniquely determines the energy of the system with which

it is in contact.

The approximate validity of Eq. 13 assures us that the Il theory is approximately

correct. However, large values of Au or Ap are indications that in singular situations

the phenomenological theory is close to the limits of its usefulness.

At a critical point, the energy fluctuations are very great (Nu - oo), hence the

energy is not precisely determined by the reservoir temperature. The singularity at

absolute zero exhibits the opposite features: Au -0, A3 -oo. Physically, this means
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that with such low temperatures that the specifice heat very nearly vanishes, the know-

ledge of the energy of the system does not enable us to draw any reliable inferences

about the temperature of the surroundings. This means, in simple terms, that a sub-

stance with nearly vanishing specific heat is not an appropriate thermometric substance,

which is well known to low-temperature physicists.

While the Ic theory is a great improvement over the Il theory, as far as describing

the aforementioned singular situations is concerned, the difficulties connected with

these situations have not all been removed and call for further analysis.

L. Tisza, P. M. Quay
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