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1. Introduction

Lattice field theory provides the only known non-perturbative regularization of QCD where
computations can be carried out from first principles. At finite volume and lattice spacing the Eu-
clidean functional integrals can be computed non-perturbatively by numerical simulations. All the
systematics associated with those calculations can, at least in principle, be quantified and eventually
removed by exploiting the properties of the underlying quantum field theory, better numerical algo-
rithms, faster computers, etc., but without adding extra free parameters or dynamical assumptions
in the theory. For more than twenty years the available computer power confined lattice QCD to
the so-called quenched approximation, where the fermion determinant in the effective gluon action
is replaced by its average value. Even though the discrepancy of quenched results with experimen-
tal data is moderate for several simple physical observables, see for example Ref. [1], quenched
QCD is not a systematic approximation of the theory and estimates of the corresponding errors
are not reliable. Full QCD simulations are needed for first-principle results. Moreover many in-
teresting processes where quark-antiquark pair production and/or unitarity play a crucial rôle, such
as ρ → ππ decays, η–η ′ splitting, neutron electric dipole moment, etc., can only be addressed in
simulations with dynamical quarks.

The first large-scale full QCD simulations with interesting lattice spacings and volumes were
started in the second part of the 90s [2 – 6] by using various variants of the hybrid Monte Carlo
(HMC) algorithm [7]. The experience made with these algorithms was well summarized in a panel
discussion at the Lattice 2001 Conference in Berlin [8]. With Wilson-type fermions, major dif-
ficulties were encountered in trying to lower the fermion mass m to values significantly smaller
than half of the physical strange-quark mass ms. In particular the cost of the simulations, at these
masses and for those algorithms, increased by a power between 2 and 3 in 1/m. Simulations with
improved staggered fermions supplemented with the fourth-root trick were much faster, and much
lighter quarks were already being simulated at that time [9]. One of the main drawbacks of this
formulation is that no local action with this determinant is known. It is thus not clear how to im-
plement most of the usual quantum field theory machinery to properly define the continuum theory
and obtain first-principle results. Since then, an impressive numerical and theoretical amount of
work has been done with this formulation. The last developments are reviewed at this conference
by Sharpe [10].

Over the last couple of years the situation changed dramatically in this field, thanks to the
development of the DD-HMC [11 – 13] and of the Hasenbusch-accelerated HMC with multiple-
time scale integration [14, 15]. These algorithms allow for QCD simulations with light dynamical
quarks which are much faster than before. This year, for the first time, large-scale simulations of
two-flavour QCD with various actions, fine lattice spacings and quite large volumes have been per-
formed with quark masses as light as (ms/5)-(ms/4). Most of this talk is dedicated to summarizing
the conceptual and numerical progress made thanks to these computations, with particular empha-
sis on the results obtained and the difficulties encountered at significantly smaller quark masses
with respect to previous computations. I also review the first physical results for pseudoscalar pion
masses and decay constants and attempt to compare them with the corresponding expectations from
chiral perturbation theory (ChPT).

Full QCD simulation is a subject of very intense research in the lattice community. Reviewing
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all contributions made over the past year or so in a single talk is not possible. The material chosen
here reflects my personal taste and experience. I wish to apologize to those colleagues whose work
it is not reviewed here.

2. Cost of two-flavour simulations with Wilson-type fermions

Last year the authors of Refs. [16 – 18] extended the numerical experience with the DD-HMC
algorithm [11 – 13], so to span across a wide range of parameter values. They simulated two-
flavour QCD with quark masses as light as ms/4, lattice spacings a ∼ 0.05–0.08 fm and volumes
with linear extensions of L∼ 1.2–2.5 fm. A crude cost formula that fits quite well their experience
is [17]:

Nop ∼ k
(

#confs
100

)(
20MeV

m

)(
L

3fm

)5(0.1 fm
a

)6

Tflops×year , (2.1)

where a is the lattice spacing in fermi and m denotes the running sea-quark mass in the MS scheme
at the renormalization scale of 2 GeV. For a volume of 2L×L3 and for the Wilson gauge action, the
pre-factor k is∼ 0.03 for Wilson fermions, while it is∼ 0.05 for the Sheikholeslami–Wohlert (SW)
action [19], with the coefficient cSW fixed to the value determined non-perturbatively in Ref. [20].
When compared with analogous formulas presented at the Berlin 2001 Lattice Conference, for
instance the one proposed by Ukawa [21], the exponent of the quark mass is reduced from 3 to
1, that of the lattice spacing from 7 to 6, and the pre-factor k is roughly 100 times smaller. A
crucial ingredient in the DD-HMC algorithm, which allows for these performances, is the use of
the Sexton–Weingarten multiple-time integration scheme [22].

The Hasenbusch-accelerated HMC algorithm, with multiple-time scale integration [14, 15],
is being used in large-scale simulations of two-flavour QCD with SW [23] and twisted-mass
fermions [24]. Even though the simulations carried out so far still span a moderate range of pa-
rameter values, the fact that these groups can already present first results at quark masses as light
as (ms/5)–(ms/4) is very encouraging. In the last few months yet another algorithm, the rational
HMC with multiple pseudofermion fields, has been proposed for dynamical simulations with light
fermion masses [25]. This algorithm and first tests carried out with Wilson fermions are reviewed
at this conference by Clark [26].

The cost formula in Eq. (2.1) provides a simplified but clear summary of the progress made in
full QCD simulations. The reduced cost has allowed to simulate pion masses below the threshold
of mπ/mρ ∼ 0.5 at fine lattice spacings and large volumes. The most significant achievement
reflected in this formula, i.e. the reduced exponent in the quark-mass dependence, tears down the
“Berlin Wall” [9] and opens the way to simulations of lattices with pion masses as low as 250–
300 MeV. By inserting in Eq. (2.1) the values m = 15 MeV, a = 0.05 fm, L = 2.4 fm, I obtain
Nop ∼ 0.8 Tflops× years and 1.4 Tflops× years for 100 independent configurations with Wilson
and SW fermions, respectively. This means that a continuum extrapolation of simple observables
could already be attempted at this mass with a machine of 2–4 Tflops sustained!

3. Spectral gap for the Dirac operator

For a given γ5-Hermitian lattice Dirac operator Dm, it is convenient to consider the correspond-
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ing Hermitian operator
Qm = γ5Dm , (3.1)

since it has the same determinant but its spectrum is real. For any gauge configuration on a finite
lattice, the spectral gap and the spectral asymmetry of Qm are defined to be

µ = min
{
|λ |
∣∣ λ is an eigenvalue of Qm

}

η = 1
2

{
N+−N−

}
,

(3.2)

where N± are the numbers of positive and negative eigenvalues of Qm. The probability distributions
of µ and η are determined by the measure in the functional integral, and they are therefore proper-
ties of the regularized theory. Any decent simulation algorithm should reproduce them. Apart for
its own physical interest in some cases (see below), the gap µ plays a crucial rôle for the stability of
the simulations with HMC algorithms. In fact, if the probability for µ to be close to zero is not neg-
ligible, the HMC may run into molecular dynamics integration instabilities, ergodicity problems,
sampling inefficiencies, etc. [16]. In the large-volume regime and at large masses, physics consider-
ations suggest that the average value of the spectral gap 〈µ〉 is essentially proportional to the mass.
Naive thermodynamic arguments would also indicate that its squared width σ 2 = (〈µ2〉 − 〈µ〉2)

decreases proportionally with the inverse of the volume; see for example Ref. [16].
The exact chiral symmetry preserved with Ginsparg–Wilson fermions ensures that the gap is

bounded from below when the mass m is positive, i.e. µ ≥ m, and the asymmetry vanishes (see
for example [27]). Random matrix theory predicts the probability distributions of the low-lying
eigenvalues of the Dirac operator for arbitrary values of m [28]. They reproduce the Leutwyler–
Smilga sum rules derived within the effective chiral theory. Some of their properties have been
verified in quenched QCD with remarkable precision [29], and they are being verified in two-
flavour QCD with increasing accuracy [30]. By assuming the expressions derived in Ref. [28], it is
easy to show that for u ≡ mΣV � 1 the first and second moments of the spectral gap distribution
p(µ) are expected to go as

〈µ〉
m
−1→ 2

u2
√

πu
,

〈µ2〉−〈µ〉2
m2 → 8

u4
√

πu
. (3.3)

These equations make it clear that chiral symmetry is “freezing” the fluctuations of the spectral
gap, i.e. the width of its distribution decreases with a power of the volume much higher than that
expected from naive thermodynamic arguments. When simulating smaller quark masses, larger
volumes can quickly stabilize dynamical simulations. By inserting specific values in Eq. (3.3),
such as m = 15 MeV, L = 2.4 fm, V = 2L× L3, and by assuming Σ = (250 MeV)3 in the MS
scheme at the renormalization scale of 2 GeV, I obtain u = 10.33 and

〈µ〉
m
−1∼ 0.003 ,

√
〈µ2〉−〈µ〉2

m
∼ 0.011 . (3.4)

Also in twisted-mass QCD [31, 32] the particular structure of the Dirac operator guarantees that the
gap is bounded from below. In this case it may be interesting to study also the statistical distribution
of the twist angle as a function of the quark mass.
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Figure 1: Normalized histograms of the spectral gap µ . In the plot on the left they are obtained with the
Wilson gauge and fermion action at β = 5.6 on a 32× 243 lattice, and for bare current quark masses m as
reported in the plots [16]. The darker line labeled by C1 is obtained with the very same parameters, but with
a volume of 64× 243. The dotted vertical line is the median of the distribution. In the plot on the right
there are analogous histograms for the Wilson gauge action and SW non-perturbatively improved fermions
obtained at β = 5.3 on a lattice 48×243 [18].

The Wilson–Dirac operator (and related improved versions) breaks chiral symmetry explicitly.
The above properties are thus not expected to be valid. In particular the gap is not guaranteed to
be bounded from below, and it is conceivable that µ could be much smaller than the current quark
mass m for some gauge-field configurations. This year the progress in the algorithms allows for an
empirical study of the spectral gap distribution at light-quark masses by numerical simulations [16].
The normalized histograms for µ obtained in Refs. [16, 18] with the Wilson and with the SW-
improved actions are shown in Fig. 1. At the volumes and masses considered, the distribution
looks rather symmetric around the median µ , which is shifted toward smaller values when the
quark mass decreases. The plots of the median versus the current quark mass shown in Fig. 2
reveal that µ is compatible with a linear function of the mass, the slope being roughly a number of
order one at these lattice spacings.

To date, the width of the distributions σ has been studied at several volumes and masses with
Wilson fermions only. Data indicate that σ does not clearly depend on the quark mass and it scales
as

σ ' a√
V
, (3.5)

V being the volume in physical units1. The proportionality with a suggests that the width could
result from short-distance fluctuations. An important conclusion that can be drawn from these

1Data at only one volume are available so far for SW fermions; see Fig. 1. The width of the distribution shows a
small trend to decrease with the mass [18].
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Figure 2: The median µ of the spectral gap in MeV versus the bare current quark mass from the same
numerical data as reported in Fig. 1.

results is that the spectrum of the Wilson operator at a given mass and for fine lattice spacings
have, for practical purposes, a gap if the volume is large enough [16]. It would be more than
welcome to have an analytic control on the spectral gap distribution also in this case. A first step in
this direction has already been taken this year in Ref. [33]. By comparing the result in Eq. (3.5) with
the second formula in Eq. (3.3), it can be noticed that the width of the distribution is much larger
with Wilson fermions in the interesting ranges of parameter values. For example for a ∼ 0.072,
L = 2.4 fm and for a lattice volume 2L×L3, I get σ ∼ 1.7 MeV, which is roughly one order of
magnitude larger than the value reported in Eq. (3.4).

The existence of a gap in the spectrum of the Wilson–Dirac operator is also one of the reasons
why the new generation of algorithms can simulate these fermions so efficiently. The range of
stability where HMC algorithms can be safely applied can be defined, for instance, by requiring
that µ ≥ 3σ . By using the empirical fact that µ ' Zm and σ ' a/

√
V , the bound can be written as

m≥ 3σ
Z
' 3a

Z
√

V
, (3.6)

which clearly shows the dependence of the quark mass accessible to HMC simulations from the
lattice spacing and size. Since it turns out (see below) that the ratio B = M2

π/2m is practically
independent of m, the previous bound can be written as

Mπ L≥
√

3
√

2a
B
Z
. (3.7)

By inserting the numerical values, the condition MPL≥ 3 is sufficient for the bound to be satisfied
at a ≤ 0.09 fm [16, 18]. A lattice with linear extension L ' 2.4 fm is more than sufficient for
simulating a pion with 300 MeV mass. Failing to fulfill the bound in Eq. (3.6) could lead to
instabilities in the particular HMC algorithm used, which in turn could even fake the presence of a
phase transition in the theory.
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4. Two-flavour QCD results from the Schrödinger functional

The ALPHA collaboration is continuing the long-term program of non-perturbative renor-
malization of QCD [34 – 36]. The large-scale separation, which must be addressed, represents
a formidable challenge for numerical simulations. The concept of an intermediate finite-volume
renormalization scheme allows them to attack the problem on the lattice. The relation between a
hadronic quantity and a suitable observable defined in the finite-volume renormalization scheme is
computed at low energy [34]. The observable is then evolved non-perturbatively to higher scales
using a recursive procedure [35]. Eventually the perturbative regime is reached, and the match-
ing with perturbation theory is straightforward (for a review see Ref. [37]). The finite-volume
renormalization scheme adopted is based on the Schrödinger functional (SF) Z , i.e. the quantum
propagation amplitude for going from some field configuration C at time x0 = 0 to another field
configuration C′ at the time x0 = T :

Z [C′,C] = e−Γ =

∫
D[U,ψ , ψ̄ ]e−S[U,ψ ,ψ̄ ] , (4.1)

where C and C′ depend on some parameters η and ν ; see Ref. [38, 39] for more details. The
strong-coupling constant can, for instance, be defined as [39, 40]

∂Γ
∂η

∣∣∣
η=ν=0

=
k
ḡ2 , (4.2)

where the normalization k is chosen such that the tree-level value of ḡ2 equals its bare value for all
values of the lattice spacings.

The ALPHA collaboration has recently completed the computation of the running of the cou-
pling constant with two massless flavours [40]. They implemented the Schrödinger functional with
a simple plaquette gauge action and with SW fermions, fixing the coefficient cSW to the value de-
termined non-perturbatively in Ref. [20]. The small discretization errors allowed them to safely
extrapolate the results to the continuum limit with moderate errors, and to obtain for the parameter
Λ:

− log(ΛLmax) = 1.09(7) at umax = ḡ2(Lmax) = 5.5 . (4.3)

In the interval umax = 3.0–5.5 their results can be parametrized as

− log(ΛLmax) =
1

2b0 umax
+

b1

2b2
0

log(b0 umax)−0.1612 + 0.0379umax . (4.4)

The running of the coupling in the SF scheme as a function of µ/Λ is shown in the first plot of
Fig. 3. For α ≤ 0.2 they observe an excellent agreement with 3-loop perturbation theory, while at
larger couplings the perturbative approximation becomes inadequate quite rapidly. When compared
with the running in the pure Yang–Mills theory [34], a clear NF dependence is observed. Thanks to
their work, the energy dependence of the strong coupling in the SF scheme is now known over more
than two orders of magnitude in two-flavour QCD. The determination of Λ in units of a physical
hadronic scale requires the computation of Lmax in the same units. For lack of low-energy data, they
used the Sommer scale [41] r0/a computed in Ref. [42] and, by assigning to it the physical value
of r0 = 0.5 fm, they obtain Λ(2)

MS
= 245(16)(16) MeV. In full QCD, r0 tends to be a less convenient
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Figure 3: Running of the strong coupling constant and of the quark mass in two-flavour QCD in the
Schrödinger functional scheme.

reference scale with respect to the quenched approximation: it requires large statistics at fine lattice
spacing; it is not clear how to extrapolate its value from the simulated masses to the physical point;
its physical value is not well determined since it cannot be measured directly in experiments. An
important improvement in the determination of Λ can be achieved by computing Lmax in units of
the pion decay constant Fπ or the nucleon mass. Their most recent efforts in full QCD simulations
with two flavours is motivated also by this goal [43].

This year the ALPHA collaboration completed the computation of the factor that relates the
running-quark mass in the Schrödinger functional scheme to the renormalization-group-invariant
(RGI) one in two-flavour QCD [44]. In a mass-independent renormalization scheme, the relation
between the RGI quark mass and the bare current mass is given by

M = ZM(g0)m(g0) . (4.5)

The computation of ZM(g0) can be split into two parts:

ZM(g0) =
M

m(µ)

ZA(g0)

ZP(g0,aµ)
. (4.6)

They computed the factor M/m(µ), which is clearly regularization-independent but scheme-dependent,
in the SF scheme over more than two orders of magnitude in energy, as shown in the right plot of
Fig. 3. The matching factor ZA(g0)/ZP(g0,aµ) can be computed at low energy, and therefore no
large energy differences are involved in the simulations. It is regularization- and scheme-dependent,
and clearly depends also on the bare coupling. The ALPHA collaboration computed this factor in
the SF scheme for the simple plaquette gauge action and for the SW non-perturbative improved
fermions for a range of bare couplings [45, 44]. At this point the goal of computing the renormal-
ized light-quark masses with controlled errors can be reached by matching these results with the
computation of the bare current quark masses in large-volume simulations at light quark masses.

5. Effects of dynamical quarks in meson correlation functions

One of the effects of quark–antiquark pair production is the coupling of multiparticle meson
states to fermion bilinears. If the sea-quark masses are light enough, the first higher state in two-
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point correlation functions is expected to be a three-meson system, with energy roughly equal to
(M0 +2Mπ), where M0 and Mπ are the masses of the associated meson and of the pion made of sea
quarks, respectively. It is clear that the lighter the sea-quark masses are, the smaller is the energy
gap. As a consequence, the effect of the excited states should be more visible in an effective mass
plot.

In Ref. [46] the UKQCD collaboration studied the stability of the effective mass fit with regard
to possible contaminations from higher states. In the range of quark masses simulated, the ground-
state energy that they determine with a two-exponential fit is quite stable with regard to the fit
details. For the higher-state energy they find indicative values that turns out to be consistent with
the expected three-meson state spectrum.

0.6 0.8 1.0 1.2 1.4 1.6 1.8

540

570

600

630 m̂val = 43 MeV

msea = 49 MeV

0.6 0.8 1.0 1.2 1.4 1.6 1.8

m̂val = 44 MeV

msea = 24 MeV

Figure 4: Results for effective pion masses Meff(t) in MeV as a function of the time t in units of fermi. They
are computed with the SW non-perturbative improved action at β = 5.3 on a volume of 48×243 [17].

This year, much more precise results at much lighter quark masses are available [17]. Ex-
amples of effective-mass plots from the two-point function of non-singlet pseudoscalar densities
are shown in Fig. 4. In the two plots the average valence-quark bare current masses m̂val and the
meson masses M0 (grey bands) are chosen to be nearly the same, while the bare sea-quark mass
msea changes by a factor of 2. The presence of higher-states contributions is clearly seen in the
data, and a statistically significant quark-mass dependence is observed [17]. The effect of higher
states becomes more pronounced when the sea-quark mass become lighter. The solid line is a fit of
the form

Meff(t) = M0 + ce−2Mπ t + · · · , (5.1)

where M0 and c are free parameters, and Mπ is extracted from the pseudoscalar correlation function
made of sea-quarks only. The χ 2/d.o.f. of the fits indicates that the two-state formula in Eq. (5.1)
is compatible with the data in the time range considered. In Ref. [17] analogous effects are also
observed in the vector channels.

Apart for its own physical interest, it is quite clear that at light-quark masses the presence of
multimeson states will complicate the extraction of ground-state energies from the simulated data.
The computation of hadron masses may require accurate data at larger time separations than was
the case in quenched QCD.
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Figure 5: Quark-mass dependence of the pion mass square and decay constant computed with domain-wall
fermions on a volume 32×163, with a lattice spacing of a∼ 0.12 fm [47].

6. Pseudoscalar meson masses and decay constants from two-flavour simulations

In the recent past, pion masses and decay constants were computed in two-flavour QCD at
quark masses m ≥ ms/2 by several collaborations [2, 5, 4, 6, 46, 47]. Data from Ref. [47] gener-
ated with domain-wall fermions on lattices of size 32× 163 with a lattice spacing of a ∼ 0.12 fm
are shown in Fig. 5. Be it for the pion mass square or for the decay constant, they find a remarkable
linear behaviour in the range (ms/2)–ms. Similar results have been obtained by the other collabo-
rations with different gluon and fermions actions. After this experience with two-flavour QCD, the
RBC and the UKQCD collaborations decided to move on and simulate 2+1 flavours with domain-
wall fermions. The first preliminary results have already been presented at this conference. The
reader can find details of these simulations in their talks [48 – 51]. The PACS-CS collaboration is
working hard to implement a combination of DD-HMC and PHMC algorithms to simulate QCD
with 2 + 1 flavours with the SW non-perturbative improved fermions and with light up and down
quark masses. The first experience of this remarkable effort have already been reported at this
conference in Refs. [52 – 54]

This year for the first time we have a quite large amount of results obtained in two-flavour
QCD at quark masses as low as (ms/5)–(ms/4). The richest set of data has been accumulated with
the DD-HMC algorithm in Refs. [17, 18]. Tables with the actions implemented, lattice parameters,
and number of configurations generated are shown in Fig. 6. The authors supplement the two-
flavour theory with a quenched strange quark. They define the reference point to be where the mass
of the π , K and K∗ mesons satisfy

MK,ref

MK∗,ref
= 0.554

Mπ,ref

MK,ref
= 0.85 . (6.1)

The lattice spacing a is then fixed by setting the value MK,ref = 495 MeV [17]. This procedure ex-
tends similar ideas already implemented in the quenched approximation [55, 56]. For the three sets
of lattices A, B and C (see table in Fig. 6) they obtain a = 0.0717(15), 0.0521(7) and 0.0784(10),
respectively. These values are significantly smaller that those reported in Ref. [57], determined by
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

2m/(mref+ms,ref)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
A1 − A3
B1 − B4
D1 − D5

(Mπ/MK, ref)2

0.6 0.8 1.0

0.6

0.8

1.0

Lat k Ntrj Nconf

W/W A1 0.15750 6400 64
V a−4 = 32×243 A2 0.15800 10900 109

β = 5.6 A3 0.15825 10000 100
W/W B1 0.15410 5000 100

V a−4 = 64×323 B2 0.15440 5050 101
β = 5.8 B3 0.15455 5200 104

B4 0.15462 5100 102

Lat k Ntrj Nconf

W/SW D1 0.13550 5200 104
V a−4 = 48×243 D2 0.13590 5130 171

β = 5.3 D3 0.13610 5040 168
D4 0.13620 5040 168
D5 0.13625 5040 169

Figure 6: Parameters of the lattices generated in Refs. [17, 18] with the Wilson gauge action and Wilson
(W/W ) and SW non-perturbative improved (W/SW ) fermions are given in the tables. k is the hopping
parameter, Ntrj is the number of HMC trajectories generated after thermalization, and Nconf is the number of
independent configurations selected to compute the observables. The dependence of the square of the pion
mass Mπ on the sea-quark current mass m in units of the same quantities at the reference point is shown in
the plots. The solid curve is a quadratic least-squares fit (with constant term) of all data points. The plot on
the right is a blow up of the region enclosed by the little box.

fixing a from the Sommer scale. As a consequence the pion and the quark masses in physical units
quoted here are significantly larger than in Ref. [57].

Once the lattice is calibrated, results from the various sets of simulations can be compared.
In Fig. 6 the ratio (Mπ/MK,ref)

2 is shown as a function of the corresponding ratio of current quark
masses. The plots reveal several remarkable properties of the results. Data generated with two
different discretizations and three lattice spacings lie on the same “universal” curve within the sta-
tistical fluctuations. This supports the fact that the discretization effects in the relation between
the pseudoscalar-meson-mass squared and the current quark mass are small. This fact could be
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aµ Ntrj

tlSym/tm 0.0150 5000
V a−4 = 48×243 0.0100 5000

β = 3.90 0.0064 5000
0.0040 5000

tlSym/tm 0.0060 500
V a−4 = 64×323 0.0030 2200

β = 4.05 β = 4.05

β = 3.9

(r0mPS)
2

r0µ

0.080.060.040.020

2.0

1.5

1.0

0.5

0.0

Figure 7: Current status of the simulations with the tree-level Symanzik improved gauge action (tlSym) and
twisted-mass fermions at maximal twist reported in Ref. [24]. The bare quark mass aµ and the number of
trajectories generated after thermalization are listed in the table. The dependence of the square of the pion
mass Mπ on the sea-quark twisted mass µ is shown in the plot. Masses are expressed in units of r0 computed
at the lightest simulation point.

explained with the observation that O(a) effects are absent at leading order in chiral perturbation
theory if the current quark mass is used [58]. The second remarkable property is the linear be-
haviour of the data over such a wide range of quark masses. There is a visible curvature towards
the larger masses, but the coefficient of the quadratic term in the empirical fit (solid line) is small.
Moreover in the range (Mπ/MK,ref)≤ 1.1, the results are well represented by a straight line through
the origin.

This year the QCDSF-UKQCD collaboration supplemented their set of data generated with
the SW non-perturbative improved action at β = 5.29 with two new points with quark masses well
below ms/2 [23, 59]. Even though they are based on a still limited statistics, their findings for M 2

π
are compatible with the previous observations. The ETM collaboration is simulating two-flavour
QCD with the tree-level Symanzik improved gauge action (tlSym) and twisted-mass fermions at
maximal twist. At this conference they presented data at fine lattices and small quark masses [24].
A summary of the parameters of their simulations and of their results for the pseudoscalar mass
square are reported and shown in Fig. 7. The value of r0 used to plot the data is the one obtained at
their lightest simulation point. Data collected so far are well compatible with a linear behaviour of
M2

π versus the quark mass.

Data generated in Refs. [17, 18] for pion decay constant Fπ are shown in Fig. 8. All data sets
are statistically compatible with a linear behaviour in the range of mass explored. The results of the
D lattices turn out to be quite different from those of the A and B lattices. Although the two lines
are visibly different, the fitted values of their slopes, 0.235(11) and 0.192(11), deviate from each
other by less than 3 times the combined statistical error. The statistical significance of the effect
is thus not conclusive. A similar linear behaviour in Fπ has been observed also in the data of the
ETM collaboration [24].
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

2m/(mref+ms,ref)

0.6

0.8

1.0

1.2

1.4

1.6

Fπ /FK,ref
A1 − A3
B1 − B4
D1 − D5

0.6 0.8 1.0 1.2

0.9

1.0

1.1

Figure 8: Dependence of the pion decay constant Fπ on the sea-quark mass m in units of the same quantities
at the reference point as obtained in Ref. [17, 18]. The solid curves are linear fits of the data points from the
A and B lattices (upper line) and of the points from the D lattices (lower line).The plot on the right is a blow
up of the region enclosed by the little box.

7. Finite-volume corrections for pseudoscalar meson masses

Finite-volume effects are expected to be negligible in hadron masses if the linear extension L
of the lattice is much larger than the cloud of virtual particles surrounding them. In this regime of
volumes, i.e. FL� 1 and Mπ L� 1, the leading finite-volume corrections to pion masses can be
estimated in ChPT. At the next-to-leading order (NLO) [60 – 62]

M2
π(L) = M2

π

{
1 +

1
2

M2

(4πF)2 g1(M)

}
(7.1)

where
g1(M) = 4 ∑

{nk}

′ 1
M|qn|

K1(|qn|M) . (7.2)

M2 = 2Bm is the pion mass at leading order, B and F are the leading-order low-energy con-
stants, ∑{nk}

′ denotes the sum over all three-dimensional vectors of integers with the exception
of n = (0,0,0), q2

n = ∑3
k=1(nkL)2, and K1 is a modified Bessel function. These corrections are

exponentially small in MπL, i.e. the leading exponential in Eq. (7.1) is given by

Mπ(L)−Mπ

Mπ
=

M2

(4πF)2
3
√

2π
(ML)3/2 e−ML . (7.3)

Once the (infinite) volume values of Fπ and Mπ are known, Eq. (7.1) gives a parameter-free and
model-independent estimate of the leading corrections at asymptotically large volumes. An analo-
gous formula can be written for the decay constant. Whether this regime has been reached for the
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β K T ×L3 aMπ(L) Mπ L Ref.
5.6 0.1575 32×123 0.3576(89) 3.31(2) [64]

32×143 0.3048(44) 3.86(3) [64]
32×163 0.2806(35) 4.41(3) [64]
40×243 0.2765(26) 6.61(4) [64]
32×243 0.2744(21) 6.61(4) [18]

5.6 0.1580 32×163 0.233(5) 3.15(3) [64]
32×163 0.242(4) 3.15(3) [13]
40×243 0.1991(33) 4.73(4) [64]
32×243 0.1969(16) 4.73(4) [18]

2 2.5 3 3.5 4 4.5 5

Mπ L

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Y

K=0.15750
K=0.15800

Figure 9: Meson masses computed with the simple plaquette gauge action and Wilson fermions at β = 5.6
for various lattice sizes. The value of (aMπ) is obtained by combining data at the largest spatial volume. In
the plot the quantity Y , defined in Eq. (7.4), is shown as a function of MπL. The dashed line is a linear fit to
the data points.

lattices currently simulated in two-flavour QCD still needs to be confirmed. Other effects such as
the squeezing of the meson wave function [63] cannot be taken into account in ChPT, where the
pion is a “point-like” particle, and therefore we do not have any analytic handle on them.

Thanks to their universality, finite-size effects can be estimated by simulating lattices with
different volumes at a single (fine) lattice spacing. Discretization effects add small corrections,
which can be neglected to a first approximation. A careful study for the pion mass has been carried
out in Ref. [64]. This year their data can be supplemented by the results from Refs. [13, 18],
generated with the same simple-plaquette gluon action and with Wilson fermions at the very same
mass. The values of pion masses at volumes that satisfy the stability bound in Section 3 are reported
in the table of Fig. 9. To compare the ChPT prediction in Eq. (7.1) with numerical data, I make the
working assumption that finite-volume corrections at the largest volumes are negligible within the
statistical errors. This assumption is compatible with Eq. (7.1). In Fig. 9 the quantity2

Y = log

[
Mπ(L)−Mπ

Mπ
× (Mπ L)3/2

3
√

2π(aMπ)2

]
(7.4)

is shown in logarithmic scale as a function of Mπ L. The linearity of the data agrees well with an
exponential behaviour of the form e−Mπ L. The NLO ChPT correction in Eq. (7.1), however, un-
derestimates the pre-factor by roughly one order of magnitude at these volumes and quark masses.
This means that a volume with a linear extension of L ∼ 1.2 fm is far too small for ChPT to ap-
ply. Even though we do not have a quantitative explanation for it, the mismatch between the data
and ChPT is not unexpected [63]. In such a small volume the pion wave-function is most likely
modified significantly, and treating the pion as a point-like particle is an approximation too crude.

2Comparable data from the two collaborations have been combined. It is reassuring that for two volumes and at
two different masses, the two groups obtain compatible results, within the statistical errors, by generating the gauge
configurations with two different algorithms.

14



P
o
S
(
L
A
T
2
0
0
6
)
0
0
9

Light dynamical fermions Leonardo Giusti

What is maybe more important in this regard is to find the lattice sizes where finite-volume effects
at the masses currently simulated match the asymptotic correction expected in the chiral effective
theory, or where these corrections are negligible with respect to the statistical errors. This is the
minimal requirement for the data to be useful, and eventually for being compared with ChPT. It is
most likely that this goal can be reached in the very near future. Similar considerations apply to
Fπ .

8. Two-flavour QCD at fixed topology

This year the JLQCD collaboration started an ambitious project of simulating two-flavour
QCD with Neuberger’s fermions at fixed topology [65 – 67, 30]. The global topological charge is
frozen by supplementing the Iwasaki gluon action with the extra Boltzmann weight in the func-
tional integral

det H2
W

det (H2
W + µ2)

, (8.1)

where HW is the Hermitian–Wilson operator with a large negative mass, and µ is a real parame-
ter [68]. This is equivalent to introducing two additional flavours of Wilson fermions with unphys-
ical large negative mass, and two additional twisted-mass ghosts with large mass µ . Since these
extra fields have masses of the order of the cut-off, they modify the theory in the ultraviolet only,
and thus become irrelevant in the continuum limit. For the light physical quarks, JLQCD chooses
to work with Neuberger fermions [69]. Earlier studies in the quenched approximation showed that
this modified gluon action prevents the near-zero modes of HW from reaching zero [68]. It thus
fixes the global topological charge as defined via the index of the corresponding Neuberger opera-
tor. In this way data at fixed topology can be generated efficiently: the topological charge does not
have to be computed for each configuration, and only those with the desired topology are produced.
An important technical advantage is that the discontinuities that appear in the HMC Hamiltonian
when a near-zero mode of HW passes through zero are avoided. Simulations with a plain HMC al-
gorithm are thus feasible. The cluster decomposition property of the underlying local quantum field
theory suggests that fixing the global topological charge should have harmless effects on physical
observables at asymptotically large volumes. However, unlike what happens in the full theory, the
suppression of finite-size effects should be power-like in L rather than exponential. At the volumes
accessible so far in numerical simulations, these effects can be relevant and a careful analysis of
them is needed.

The JLQCD collaboration generates the gauge configurations with the Hasenbusch-accelerated
HMC algorithm with multiple-time scale integration [66]. The lattice volume is 32×163, β = 2.30
and so far the topological charge is ν = 0. With this set-up they expect to have a lattice spacing of
roughly 0.12 fm and a linear size extent of L ∼ 1.9 fm. The list of bare quark masses considered
is given in the table of Fig. 10. They should be in the range (ms/6)–ms. The first preliminary
results that JLQCD has obtained for the pion mass squared are shown in the plot of Fig. 10 as
a function of the bare quark mass. Also in their data a remarkable linear behaviour is observed
with no statistically significant deviation from a simple linear fit (dashed line). Before drawing
any physics conclusions from these preliminary results, more simulations at several volumes and
topologies are needed for a careful study of finite-size effects [67].
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am Ntrj

0.100 3590
IW ∗/N 0.070 3500

β = 2.30 0.050 3500
Va−4 = 32×163 0.035 4150

µ = 0.2 0.025 4320
ν = 0 0.015 2150

0 0.05 0.1
am

0.0

0.1

0.2

aM
P

S
2

Figure 10: The table shows the lattice parameters of the main JLQCD simulations with the Iwasaki gluon
action, with the extra weight defined in Eq. (8.1), and Neuberger’s fermions (IW ∗/N): am is the bare quark
mass and Ntrj is the number of trajectories generated. The plot represents the quark-mass dependence of the
pion mass square; the dashed line is a linear fit of the data.

JLQCD performed also a test run in the ε-regime of QCD, on a lattice of 32×163 , β = 2.35
and am = 0.002. The statistics accumulated is still limited to 1400 trajectories, but preliminary
results for ratios of eigenvalues and pseudoscalar correlation functions were already presented in
Ref. [30]. A comparison with random-matrix-theory predictions is shown in Fig. 11. The NF

dependence of the data is compatible with the expectations of random-matrix theory within the
large statistical errors. Also in this case are needed larger statistical samples before drawing any
firm conclusion.

9. Chiral perturbation theory confronts lattice data

At the NLO in the chiral expansion of the two-flavour theory, the quark-mass dependence of
the pseudoscalar meson mass and decay constant is given by

M2
π = M2

{
1 +

M2

32π2F2 log
(

M2

Λ2
3

)
+ . . .

}

Fπ = F
{

1− M2

16π2F2 log
(

M2

Λ2
4

)
+ . . .

}
.

(9.1)

Following the convention introduced in Ref. [70], we can define the NLO low-energy constants as

l̄3 = log
(

Λ2
3

M2

)∣∣∣
M=139.6MeV

, l̄4 = log
(

Λ2
4

M2

)∣∣∣
M=139.6MeV

. (9.2)

They can be determined, at least in principle, by matching lattice QCD results with the formulas in
Eqs. (9.1).

Data available to date do not allow for a determination of these low-energy constants with a
reliable estimate of the errors. Nevertheless it is interesting to look in some detail into the anal-
ysis presented in Ref. [17], which is based on the richest set of data at light-quark masses in the
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The ratio <lambdai>/<lambdaj>

2/1

3/1

4/1

3/2
4/2

4/3

Nf=0, Q=0 Nf=2, Q=0 Nf=0, Q=2
(m=2MeV)

RMT

Figure 11: Ratios of low-lying eigenvalues λi/λ j (denoted by “i/ j”) of the Neuberger operator for (NF,Q) =

(0,0), (2,0), (0,2) (crosses). The random-matrix-theory predictions are also indicated (stars).

two-flavour theory. The reference point introduced in Section 6 is a useful idea in this context. The
dimensionful quantities expressed in units of the scales at the reference point are free from sys-
tematics coming from the determinations of the lattice spacing and of ultraviolet renormalization
constants. Following Ref. [17], we can introduce

x =
2m

mref + ms,ref
, C =

M2
K,ref

32π2F2
K,ref

, (9.3)

and if we define

F̂ =
F

FK,ref
, B̂ =

mref + ms,ref

M2
K,ref

B , l̂n = log

(
Λ2

n

M2
K,ref

)
, (9.4)

then l̂n = l̄n−2.53, and Eqs. (9.1) become

M2
π

M2
K,ref

= B̂x +C
B̂2x2

F̂2

{
log(B̂x)− l̂3

}
+ . . .

Fπ

FK,ref
= F̂−2C

B̂x
F̂

{
log(B̂x)− l̂4

}
+ . . .

(9.5)

In the range Mπ/MK,ref ≤ 1.1, the first formula in Eqs. (9.5) fits the data for the pion mass very
well, the fit parameters being B̂ = 1.11(6)(3) and l̂3 = 0.5(5)(1) (equivalently l̄3 = 3.0(5)(1)),
where the second errors are estimates of the systematic uncertainty arising from the inaccurately
known values of C and F̂ ; see Ref. [17] for details. The results of the fit superimposed on the
simulated data is shown in the first plot of Fig. 12. No attempt has been made to estimate the
systematics uncertainty coming from higher orders in ChPT, due to discretization effects or finite-
volume corrections. As described at length in Sections 6 and 7, discretization effects seems to be
moderate for this quantity, while a reliable check of finite-volume effects is still missing and will
require simulations at larger volumes. A phenomenological analysis of low-energy experimental
data gives l̄3 = 2.9± 2.4 [70, 71]. Strictly speaking, the comparison of this value with the one
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Figure 12: The pion mass Mπ (left) and the pion decay constant Fπ (right) as a function of the bare current
quark mass in units of the same quantities at the reference point from Ref. [17]. The solid lines are fits in
the range Mπ/MK,ref ≤ 1.1. using the one-loop formulas in Eqs. (9.5). The grey band on the right-hand plot
is from a fit where a hypothetical next-order term has been included (see text).

extracted from two-flavour lattice simulations only allows for an estimate of the contribution to this
low-energy constant due to dynamical strange and charm quarks, assuming that QCD reproduces
the experimental data. In practice, however, the comparison shows the potentiality of lattice QCD
for the determination of l̄3 in the two-flavour theory.

The fit of the data (solid line) for the pseudoscalar decay constant with the second of Eqs. (9.5)
is shown in the second plot of Fig. 12. The χ 2/d.o.f. turns out to be quite good, but the absence of
curvature in the data forces the extrapolated value to be quite lower than the simulated data. A more
realistic fit (dashed line) can be obtained by including a hypothetical two-loop term proportional to
B̂2x2/F̂3 in the second of Eqs. (9.5), with a reasonable value of the coefficient C ′ = 0.046. The fit
parameters F̂ and l̂4 change from 0.60(4) and 1.6(1) to 0.73(3) and 0.73(8), respectively, when the
two-loop term is added [17]. This analysis shows that data at significantly smaller quark masses,
with small systematic and statistical errors, will be required for a reliable determination of the
parameters in the chiral Lagrangian.

10. Conclusions

Thanks to algorithmic and technical progress achieved over the last couple of years, it is now
possible to simulate QCD with dynamical quarks much more efficiently than was possible before.
As a result lattices with pions as light as 250–300 MeV can be simulated with the present generation
of computers.

Two-flavour QCD is already being simulated with quark masses as light as (ms/5)–(ms/4)

with several gluon and fermion discretizations, on quite large volumes and fine lattice spacings.
Unquenched effects are clearly seen in various correlation functions. Maybe to date the most strik-
ing result is the observed linearity of the pion mass squared as a function of the current quark mass
in the range (ms/4)–ms. Data at several (fine) lattice spacings and with several gluon and fermion
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actions are consistent with this picture. Finite-volume effects are still a concern. A matching of the
chiral pertubation theory prediction with the finite-size effects observed in Mπ is still missing. In
this respect simulations at several volumes are still needed. JLQCD started an ambitious project of
simulating two-flavour QCD at fixed topology with exact chiral symmetry. First preliminary results
of these efforts have been already presented at this conference.

Several collaborations are already simulating QCD with 2 + 1 flavours. The RBC and the
UKQCD collaborations are attacking the problem with domain-wall fermions, while the PACS-CS
collaboration is working hard to implement a combination of DD-HMC and PHMC algorithms to
simulate SW non-perturbative improved fermions.

Thanks to all this work, our community has now the possibility to perform many computations
which we were dreaming about only few years ago.
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