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A. INVARIANCE OF CORRELATION FUNCTIONS UNDER

NONLINEAR TRANSFORMATIONS

In previous work on the invariance property (1), the output crosscorrelation func-

tion was required to be proportional to the input crosscorrelation function for all values

of the argument. This statement is

adequate if (a particular) one of the input

(t)  r(t) processes has a zero mean. However,
SYSTEM SYSTEM the statement must be revamped for

,(t)INPUTS r2(t) f [i 2(t)] OUTPUTS revamped
f arbitrary inputs, as follows. Consider

the system of Fig. IX-1, in which il(t)
Fig. IX- 1. Nonlinear transformation of e

one input process. and i (t) are stationary random proc-one input process. 2
esses, and f is a time-invariant non-

linear no-memory network. We define

the input and output crosscorrelation functions as

(T) = i(t) i2(t+T)

and

4f(-)= r l(t) r2(t+T)

= il(t) f[iZ(t+T)]

Now, if we require

qf(T) = Cf (T) for all T (1)

where Cf is a constant dependent only on f, then for f a constant, say k, we would have

1 k = Cf (T)

if we let ~ = i 1 (t). This requires 4(T) to be a constant, and is obviously much too

restrictive. We therefore define the ac input and output crosscorrelation functions as

ac (T) [i 1 (t) - l[i 2 (t+T) - 4] = 
2(T) - f 1 2

and

f (T) = [r(t)- 1] [r 2 (t+T) - 2 T) f(T) - K
ac f f
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where i 2 i 2 (t), and k = r 2 (t).

The invariance property is now stated as

4f (T) = Cf ac (T) for all - (2)
ac

This form is identical with Eq. 1, when 4l = 0, but does not suffer when f is a constant.

For then we have 0 = Cf ac(T), and, consequently, Cf = 0. This leaves ac(T) arbitrary.

As a result of requirement 2, some of the previous results (1) are slightly changed, as

follows.

Letting

g(x 2 , T)= (x 1 - ) p(x 1 ,x 2 ;T) dx 1  (3)

-00

where p(x 1, X2 ;T) is the joint probability density function of the two input processes, we

have

ac(T) x2 g(x2 , T) dx

and

f (T) = f(x 2 ) g(x 2 , ) dx 2ac

There follows then, if we assume that the invariance property holds, the separability

of g:

g(x 2 , T) = h(x 2 ) ac(T) almost everywhere in x 2  (4)

where h(x 2 ) is a function only of x2 .

If il(t) and i 2 (t) are the same process, il(t) = i 2 (t), assuming that Eq. 2, and there-

fore Eq. 4, holds, we have

x2 -g(x 2, T) - 2 P(x 2 ) (ac(T)

from which it follows that

x 2 -h(x 2 ) = 2 P(x 2)

It is seen that the essential change is to operate on the ac component of the input process

rather than on the input process directly. The extension to nonstationary inputs and

time-varying devices is straightforward.

A variation of the invariance property may be worth noting. Suppose that
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N

f (T) = Cf [ (v T)]k for all T, N >, 2

ac k=0k

where C .... Cf are constants dependent only on f, and y(T) is an arbitrary function.

o N

We can then show that g is separable as

N

g(x 2 , T) = hk(x) [y(T) ]k

k=O

where the functions ho(X2 ) .... hN(X2) depend only on x 2 . It also follows that

N

ac ( T) Z dk[-()]k

k=O

where d ,..., d are constants.
o N A. H. Nuttall
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B. OPTIMUM LINEAR FILTERS FOR FINITE TIME INTEGRATIONS

In some applications, a short-time estimate of the mean of a random process is

desired. One way to accomplish this is to pass the random process through a lowpass

filter for T seconds, and call the output divided by T the mean of the input process

(except for a known scaling constant). But, because of the limited time T of integra-

tion (filtering), the output at time T will be a random variable with fluctuations around

its mean value. It is of interest to reduce these fluctuations as much as possible, and

still restrict ourselves to finite time integrations. Since we are only integrating for

T seconds, the only part of the impulse response of the lowpass filter that accomplishes

any smoothing of the input process is that part for 0 <t < T, where we define h(t) as

the response at time t to a unit impulse applied at time 0. We therefore restrict our-

selves to impulse responses that are nonzero only for 0 < t < T, and attempt to distrib-

ute the area of h(t) over the interval (0, T) so as to accomplish an optimum smoothing

of the input process. Here we define smoothing as reduction of the ratio of the average

fluctuating power to the squared average component in the output process. That is, we

try to maximize the output signal-to-noise power ratio.

The solution for a special type of input process has been obtained by Davenport,
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Johnson, and Middleton (1). Their results show that (for their particular random proc-
ess) the impulse response of the optimum linear filter should be constant over the open
interval (0, T), with impulses at the end points 0 and T, and that the "flat" filter, in

which the impulse response is absolutely constant

over the closed interval (0, T) is not much worse than

Sit) h r(t) the optimum linear filter for any value of T. In this
report the flat filter will be compared with the opti-

Fig. IX-2. Linear network. mum linear filter for a broader class of input proc-

esses.

Consider the system of Fig. IX-2, in which i(t)
is a stationary random process, h(t) is the impulse response of the linear network, and
r(t) is the stationary output process. Then

h(u) i(t-u) du h(u) i(t-u) du

since

( 0 for t < 0, t > T

h arbitrary for 0 t T

[All integrals without limits are over the range (-oo, oo). ]
We define an error E as

[r(t) - r(t)]
E (=

[r (t)] 2

(2)

(3)

and attempt to minimize E subject to the constraint in definition 2. Substitution of
Eq. 1 in Eq. 3 gives

ffh(u) h(v) d(v-u) du dv

E = (4)

()2 fh(u) h(v) du dv

where 0(u) is the autocorrelation function of the ac component of the input process.

That is,

-2
(u) = _(u) = (u) - ( 1i)

i-i

It is obvious from Eq. 4 that if hl(t) is a solution to the minimization problem, then

r(t)

no
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chl(t) is also a solution, in which c is an arbitrary constant, since it gives the same

error E. Therefore, for convenience, we set

h(t) dt = 1 (5)

Applying standard variational techniques to Eq. 4, subject to the constraint in

Eq. 5, we obtain the following integral equation for h(t):

h(u) c(v-u) du = k for 0 v < T (6)

where X is a Lagrangian multiplier (arbitrary constant) to be determined later from

the constraint expressed in Eq. 5.

We now restrict ourselves to a special class of input processes, namely, those for

which the input power density spectrum for the ac component has only poles:

= (7)
N 2i

z ai c
i=0

where

( 1 = (u) e-jwu du

This power density spectrum approximates a number of practical spectra by proper

choice of the constants {ai}.

For this power spectrum (Eq. 7) the solution to Eq. 6 is of the form (see ref. 2)

h(t) = A + C16(t) + ... + CN(N- 1)(t) + D 1 6(t-T) + .. . DN (N-1)(t-T)

0 < t T (8)

where A, C1, ... C N , D 1 ... D N are 2N + 1 unknown constants, and 8()(t) is the vt h

derivative of the unit impulse function 8(t). These constants are determined by substi-

tuting Eq. 8 in Eq. 6 and requiring equality for 0 < v < T. This results in 2N equations.

Substitution of Eq. 8 in Eq. 5 yields one more equation. The composite 2N + 1 equa-

tions determine h(t). This is a straightforward but tedious procedure. In the present

case we are not greatly interested in the explicit form of the optimum impulse response,

but rather in the attendant error, defined in Eq. 3, as compared with the error caused

by the flat filter, for which

hf(t)= , 0< tT (9)
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From the forms of the optimum filter, expressed in Eq. 8, and the flat filter,
expressed in Eq. 9, we see that the flat filter would be much easier to synthesize.
Then, if the errors caused by the two filters are not widely different, the flat filter
can be used to perform the desired smoothing rather than the optimum filter. Accord-
ingly, only the errors for the flat and optimum filters will be evaluated, and not their
explicit forms. It will be shown that the evaluation of the error caused by the optimum
filter is easier to obtain than the exact impulse response of the optimum filter. Thus
the smoothing of the filter may be investigated without knowledge of the exact impulse
response, which entails a lengthy calculation.

Substituting Eq. 6 in Eq. 4 and using Eq. 5, we obtain the expression for the mini-
mum error:

Emin 2 (10)

We must evaluate, therefore, only X, which is obtained by substituting Eq. 8 in
Eq. 6 and by requiring that the left-hand side be independent of v for 0 < v < T:

T

A 4(v-u) du + C 1 (v) + ... + CN(N - 1)(v)

0

+ D 1 (T-v) + ... + DN (N-1)(T-v) = k for 0 < v < T

or

v

X = A (u) du + C 1,(v) + ... + C (N-1)(v)

T-v

+ A f (u) du + D 1 (T-v) + ... + DN (N-1)(T-v) for 0 v T

Now, let us write

X = gl(v) + g 2 (T-v) for 0 < v < T

where

v

gl(v) = A f (u) du + Cl1(v ) + + (N-1)(v) (11)

and
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T-v

gZ(T-v) = A ; (u) du + D 1 (T-v) + ... + DN (N-1)(T-v)

0

From the form of (co() given in Eq. 7 (for F(w) that contains only single-order poles),

it follows that

N

(u) = a. e i u  for u > 0 (12)1
i= 1

where ai a n d i are complex, and Re(P i> 0 for all i. Therefore gl(v) has terms
-P.v +p.v

only of the form e for v >, 0, and g 2 (T-v) has terms only of the form e for v < T.

Therefore, not only must gl(v) + g 2 (T-v) be independent of v for 0 < v < T, but

also gl(v) and g 2 (T-v) must each individually be independent of v for 0 - v < T, because

-Pi v  Pi v

e dependence cannot be cancelled by e dependence. (For (w) that contains

higher-order poles, the same conclusions hold for gl(v) and g2 (T-v).) Thus, gl(v) is

independent of v for 0 < v < T.

But, by looking at the form of gl(v) as given in Eq. 11, we see that, since (u) is a

well-behaved function (see Eq. 12), gl(v) must be independent of v for v b> 0. Similarly,

gz(T-v) must be independent of v for v < T. Therefore

gl(v) = k 1 for v a> 0 (13)

and

g 2 (T-v) = k 2 for v < T (14)

Therefore

A (u) du + C 1 (V) + ... + CN (N-1)(v) = k 1 , v > 0 (15)

W0

and

.T -v

A j c(u) du + D14(T-v) + ... + DN (N-1)(v) = k 2 , v < T (16)

If we let v = oo in Eq. 15, and v = -oo in Eq. 16, we obtain

A ; (u) du = k I = k (17)

Now, if we substitute Eq. 17 in Eq. 15, N equations result, from which
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C 1,' C 2 ... C N can be expressed in terms of A. Substitution of Eq. 17 in Eq. 16 results

in N equations for DI, D 2 . ... D N in terms of A. Since only one set of constants,

C 1 ... CN' will satisfy Eq. 15 for given A, it is obvious that D l = C 1 ... DN = CN'
since Eq. 16 can be obtained from Eq. 15, as far as v-dependence goes, by substituting

T - v for v. Thus, the optimum impulse response is symmetrical (even) about the

point T/2. Thus we have

g l(v) g(v) = k for 0 < v < T

and

gl(v)+ g 2 (T-v) = K for 0 < v < T

Therefore

gl(v) = g2(v) = for 0 < v < T

Also, by Eq. 13 and Eq. 14, we have

gl (v)2 k 1 for v > (18)

and

g2(T-v) - for v < T

Therefore, from Eqs. 10, 17, and 18, we obtain

A f 4(u) du
2r A @(0)

Emin  (19)
2 2

Thus, to evaluate the minimum error, we must evaluate only one constant, A, and not

the N + 1 constants, A, 1 .... C N (Dl = C ..... DN = CN) This will simplify our work

considerably, for higher values of N.

For the flat filter, the error becomes

T T

Ef - 2 (u-v) du dv

() T 0

T

Ef 2 2 (T-u) p(u) du

2 T - jeT - 1

2 e jWT_ jwT1
Ef 2 2 2 (20)

(0) (jW
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which can be compared with Eq. 19 for specific cases. We remark that the results for

Emi n hold only for the case in which the input power density spectrum has only poles;

that is, (o) is given by Eq. 7. Several interesting and practical examples follow.

EXAMPLE 1: N = 0.

Then, h(t) = A = 1/T, and hf(t) = 1/T.

Therefore, for white noise, the optimum filter is the flat filter.

EXAMPLE 2: N = 1.

Then, h(t) = A + C[5(t) + 6(t-T)].

If we use Eq. 5, AT + 2C = 1.

From Eqs. 11, 18, and 17,

gl(0) = C 4(0) = A Tr 1(0)

Therefore

1
A=

Z (0)T+

Then, from Eq. 19, we have

,(0) 1
E.=minin ( 2 ,(0)

1 + T -
2ir P(0)

Defining E _ (0) (the no-smoothing error), and an effective correlation time
o 2

T as (i)
c

f0 P(u) du = 4(0) Tc = r (0) (21)

we have

E

min Tm 1 +T
2T

c

Thus, in this case, only the ratio of integration time T to effective correlation

time T is of importance in determining the effective smoothing. We note thatc

T = I where w is the value of w for which (w) is one-half of its maximum
cw o

value (0).

For the flat filter, from Eq. 20, we have
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T
T

e T - l
T+- - - 1

Ef =E 2 c

(T/T)

In order to compare the two filters, the ratios Emin/E and Ef/E are plotted in

Fig. IX-3a. We see that the flat filter is almost as good as the optimum filter for all

values of integration time T. This process was studied by Davenport, Johnson, and

Middleton (1).

4 5 6
INTEGRATION TIME

EFFECTIVE CORRELATION TIME

(a)

I I I T
7 8 9 TC

INTEGRATION TIME

EFFECTIVE CORRELATION TIME

(b)

Fig. IX-3. Errors for flat and optimum filters: (a) for N = 1; (b) for N = 2.

1.0

r 08
0

0

O

0.8

w 0.60a

Z 0.4
0.2



(IX. STATISTICAL COMMUNICATION THEORY)

EXAMPLE 3: N = 2.

Then h(t) = A + C 1 [8(t) + 8(t-T)] + C 2 [6(1)(t) +

The use of Eq. 5 yields AT + 2C 1 = 1.

Also, from Eqs. 11,

5(1)(t-T)].

18, and 17, we have

g 1 (0) = C ( + C2 C(I)(o) = A T m(o)

But

j o (w) do = 0

since

2 1

j i

i=O

Therefore

1

21T i(0)
T+-

,(0)

and so

E
o

1 + T/2T

with T_ as defined in Eq. 21. Now,

1/a
2

(w+ a +jp)( +a -jp)(w- a+j+ jp)(c-a -jp)

Let a = KP, where K measures the degree of damping in the correlation func-

tion. Then

1/a
2

o(W) = (22)

4 + 21 2(1 - k2) w2 + P4(1 + k 2

From Eq. 20, we have

(1)(0) =
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1
Ef =E 2S2Kx L

2x

K(3 - K ) e 2
(IK

2Kx 2x
cos 2 2

1+K 1+K

2 2Kx
+(3K - 1) -ZKx e

1 + K 2

2x
2

1+K sin +Kx
sin 2 0 K <co

where x : T/T . We now plot in Fig. IX-3b the ratios Emin /E , and Ef/Ec ain o f o
for different values of K.

There is also a case (for N = 2) in which all the poles of 4((w) lie on the

j-axis in the w-plane. Thus

1/a
2

( + r )( W + r2)

r 2 >' rl> 0

is a special case of Eq. 22 if we let

r - r1
K = j r + r : jK' (r 2 > rl)

and

r2 + r

2

Then we obtain

Ef 1 2 2x 2K'x 2x
E '2 K'(3 + K') exp K cosh 2

o 2K' x 1 - K 1 - K '  1 K'

2  2K' x 2x . 2K' x

- (3KK +' x 2 - exp - s inh 2K

I- K - K' 1 - K'

where 0 < K' _ 1, and x = T/T c '
The curves for Ef/Eo for 0 - K' < 1 all lie between the curve Ef/Eo for K = K' = 0

and the curve E min/E . This follows from the fact that the average output fluctuating

power is given by the infinite integral of the squared modulus of the transfer function

multiplied by the power density function of the alternating component of the input proc-

ess, i. e., the numerator of Eq. 4. As K' varies from 0 to 1, the input power density

function approaches more closely the power density spectrum for N = 1. The poles at
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±jr2 have less effect on the shape of 4(w) near w = 0. Therefore we should expect that

as K' approaches 1, the error will approach the error for N = 1. This (dotted) curve

is shown in Fig. IX-3b as K' = 1.

Notice that for K _< i, the error for the optimum filter (Emin/E o ) and the error for

the flat filter (Ef/E o ) are not widely different for any T. However, for larger values

of K (say, K 3> 5), a marked improvement can be achieved, for certain ranges of T, by

using the optimum filter rather than the flat filter. For example, for T/Tc = 10, the

ratio of errors is 4. 38 for K i10. This behavior for large K is to be expected, since

t(1) has a peak at -= B(K- - i)1 / 2 (for K > 1) of value 1/4 a2 K , which may be signifi-

cantly different from b(w) at w = 0, namely 1/ (1 + K') . Consequently, since the

(squared modulus of the) flat filter pays no attention to the location of the peaks of the

input power density function, we can expect the optimum network, which does take into

account the relative location of the peaks of the input power density function, to reduce

-he fluctuation power more effectively. Although the improvement with the optimum

filter is expected, it is not obvious how great it will be; the exact amount of improve-

ment is given in Fig. IX-3b (for N - 2).

For N -, 3, the solution for A will not be as simple as it is for N = 1 or N = 2,

because, now, o(2)(0) will not be zero. However, the same remarks hold as before,

namely, we need solve only for the constant A and not for the N + 1 constants
th

A, C 1 .. , CN, (D 1 = C 1 ... D N  CN). We can solve an N -order determinant that

is obtained by substituting Eq. 8 in Eq. 6. In this manner, we never need bother with

C 1 ... CN•

We notice that these results, in particular Eq. 19, hold only for the case in which

the alternating-component input power density spectrum has no zeros, but only poles.

Inclusion of zeros will force the optimum linear filter to be non-constant over the open

interval (0, T). This complicates error evaluation.

The form of the density spectrum in Eq. 7 can approximate a number of practical

cases by proper choice of the {ai}. If N = 2 can be made to approximate a given density

spectrum, reference to Fig. IX-3b shows the relative advantage that will be gained with

an optimum filter compared with the flat filter. If it is necessary to resort to the opti-

mum filter, then, of course, the constants C1 and C 2 will have to be evaluated. C 1 is

easily evaluated from the results shown in Example 3; but C 2 must be evaluated from

Eq. 6.
A. H. Nuttall
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C. A VIEWPOINT FOR NONLINEAR SYSTEM ANALYSIS

A function, broadly but rigorously defined, is a relationship between two sets of

objects, called the domain and the range of the function, which assigns to each element

of the domain a corresponding element of the range, with each element of the range

assigned to at least one element of the domain. A function, according to this definition,
is itself an object.

A nonlinear system, from a restricted but useful point of view, is a device that

accepts a function of time (e.g., a voltage waveform) as an input, and, for each such

function, generates a function of time as the output. The correspondence that is thus

established meets the conditions of the definition of a function, and the behavior of a

nonlinear system can therefore be thought of as being represented by a function.

Two different classes of functions figure in this description. On the one hand, the

input and output are relations between sets of real numbers; their domain is an interval

of the real numbers, representing values of time, and their range is another interval

of the real numbers (representing, e. g., values of voltage). Such functions are con-

veniently called real functions; they are the kind of functions we are most used to dealing

with. On the other hand, the system is represented as a relation between sets of real

functions: a function whose domain is the set of all possible inputs and whose range is

the set of all possible outputs. Such a function will be called a "hyperfunction." The

problem of the representation of nonlinear systems is the problem of the representation

of hyperfunctions.

If a nonlinear system is time-invariant, there is a different, and in some respects

simpler, way to represent it. In this case the value of the output at any time t is

determined if, without specifying t, we specify, for every x, the value of the input at

time t - x. Thus, a real number is assigned to each real function, and a function is

defined whose domain is a set of real functions and whose range is a set of real numbers.

Such a function is called a "functional." The hyperfunction representing the system can

be determined from this functional, and the problem of representing the system is

reduced to the problem of the representation of functionals.

Because these functionals are functions, methods for their representation can be

derived from known methods for the representation of real functions. Except for func-

tions that can be computed by algebraic operations, or can be defined geometrically or

by other special means, these methods are methods of approximation. (We include

series expansions as approximation methods, because it is impossible to evaluate and

sum an infinity of terms; the best that we can do is to compute a partial sum.) Three

important methods of approximate representation are: tables of values, power series,

and series expansions in orthogonal functions. These three methods all have fairly good

generalizations to the approximate representation of functionals.
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A rough analog of a table of values is found in the finite-state transducers

discussed by Singleton (1). The easiest way to use a table of values is to assign

to each number that is not in the table the value corresponding to the nearest

number to it that is in the table. This amounts to dividing the domain of the func-

tion into a finite number of subsets, and assigning an element of the range to each

subset. If we carry this idea over from real functions to functionals, we obtain

the finite-state transducer.

The analog of the power series is the analytic functional, which is associated with

systems that the author has called "analytic systems." Analytic functionals have been

described by Volterra (2), used in a specific problem by Wiener (3) and by Ikehara (4),

and further discussed by the author (5).

The method of orthogonal expansions requires the ability to integrate over the

domain of the function that is being expanded. Therefore, to expand a functional we

must integrate over a set of real functions. How do we define an integral over a set of

real functions? The answer is a convenient one for communication theory: If the

domain of the functional is a statistical ensemble of functions, then a probability meas-

ure is defined on it, and an ensemble average is equivalent to an integral over the set

of functions. Methods based on this idea, including a method due to Wiener, have been

discussed by Booton (6) and by Bose (7).

Combinations of these methods are possible. Bose used expansion in orthogonal

functionals to obtain a finite-state representation. It should also be possible to expand

in orthogonal functionals that are themselves defined as analytic functionals.

In applying any method of approximate representation there arises the question

of whether or not the function that is to be represented can be approximated arbi-

trarily closely by the method that is chosen. If it can, and only if it can, we may

say that the method is capable of representing the function. But the question itself

depends on how we define closeness of approximation, or, in mathematical terms,

what topology we define on the hyperfunctions; this, in turn, can be made to depend

on topology and measure in the domain and range of the hyperfunction. We can,

for example, require the error in the output to be always less than some given

number for every input in a certain set; the appropriate mathematical concept, in

this case, seems to be the uniform convergence of continuous functions on a com-

pact set. Alternatively, we can require the mean square error in the output, for

a certain ensemble of inputs, to be less than a certain amount; the appropriate

idea here is convergence in the mean.

The theory of such approximations requires more study. An indication of its

importance is that it appears to be connected in some way with the phenomenon of

hysteresis.

M. B. Brilliant
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