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A. A PREDETECTION DIVERSITY COMBINER

Diversity reception has been used as a means of reducing the effect of fading in long-

range communication. Brennan (1) has shown that a diversity system in which the

various signals are combined as a weighted sum is generally superior to a switching

diversity system in which the strongest signal is chosen and the weaker signals are

discarded. The circuits devised by Kahn (Z) and by Mack (3) combine signals after

detection; these circuits fail to produce an optimum combined signal when the signal-to-

noise ratios before detection fall below unity. The predetection combiner of Altman

and Sichak (4) shifts the phases of the radiofrequency signals so that they add algebrai-

cally rather than vectorially, but their circuit does not weight the signals before com-

bination in such a way that the signal-to-noise ratio of the combined signal is maximized.

The circuit that has been investigated here (5) combines before detection, and the

signals are properly phased and weighted before combination. This circuit may be

designed to produce an optimum combined signal even if the signal-to-noise ratios of

the signals before combination are less than unity; it will fail only if the signal-to-

noise ratio of the resultant signal after combination falls below unity. Since the signal-

to-noise (power) ratio of the resultant signal is the sum of signal-to-noise ratios before

detection, this circuit will show marked improvement over existing combiners when

many weak signals are combined.

In describing the diversity combiner which is presently being investigated, we shall

assume that the bandwidth occupied by the modulated signal is small compared with the

reciprocal of the duration of the impulse response of any of the radio paths between the

transmitting antenna and the various diversity receiving antennas. Selective fading may

then be neglected. This condition is often encountered in scatter communication links

and is necessary for the proper functioning of the combiner.

In the absence of selective fading, the signal emerging from any one of the diversity

receiving antennas will be proportional to the transmitted signal, and we can regard

the proportionality constant as the gain of the space path from the transmitter to that

particular receiving antenna. Specifically, let the signal voltage applied to the trans-

mitting antenna be

e(t) = Re M(t) e o

in which the complex time function M(t) describes the modulation. The vector signal

received by the ith receiving antenna is M(t) Ki (t). The complex gain of the path to the
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Fig. XVIII- 1. Model of communication channel
from transmitter to receiver.

ith receiving antenna K (t) varies slowly in time as the received signal fades. Noise

will be received with the signal. If the vector Ni(t) represents the noise received on the
.th
i receiving antenna, the noisy received signal is

Ei(t) = M(t) Ki(t)+ Ni(t) (1)

Figure XVIII-1 is a model of the communication channel described by Eq. 1. For con-

venience, the radiofrequency amplifier gains have been lumped with the path gains. If

the amplifiers have identical gains, and if they are properly connected to the receiving

antennas, we can assume (5) that the output noises are uncorrelated and have the same

mean power:

N if k = i

NiN* (Nk(t) = (2)
1 0 otherwise

Let us consider a diversity combiner that produces as its output a weighted sum of

the received signals

E (t) = i(t) Ei(t) (3)

i

We require appropriate weights, ai(t), that maximize the signal-to-noise ratio of the

combined output. Such weights are found to be proportional to the conjugates of the

path gains:

ai(t) = A(t) K.(t)

The same complex multipliers A(t) must be used for each term in the sum in Eq. 3.

Thus, proper operation of the combiner hinges upon the ability of the circuit to obtain

accurate estimates of the path gains. These are obtained by taking short-time averages
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Fig. XVIII-Z. Multipath model of the combiner.

of the measured-path gains, and by using crystal filters that have bandwidths comparable

with the fading rate. The weights described by

ai A(t) v. E (t) e

are convenient. The notation Av.{ }describes the averaging performed by the crystal

filters. Thus, the weighted sum in Eq. 3 produced by the combiner is

Eo(t) = E(t) Av. E (t) eArg Eo(4)
i

A block diagram of the circuit described by Eq. 4 is shown in Fig. XVIII-2.

Circuitry for a two-path model of the combiner is being designed and constructed

in the laboratory. With this model we intend to investigate the behavior of the combiner

when weak signals are applied and when the noises received with the signals have slightly

different powers and are partially correlated. If the gains of the amplifiers connected

with the different diversity receiving antennas are unequal, the amplified noises will

have different powers; and, unless special precautions are taken (5), noise voltages

received on closely spaced antennas will be partially correlated.
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