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A. THEORY OF PHASE EQUILIBRIUM

It was pointed out in the Quarterly Progress Report of April 15, 1957, page 167, that

the scope of Gibbs' phase theory can be significantly extended by including the specifi-

cation of symmetry in the definition of a homogeneous phase. However, the new defini-

tion cannot be used efficiently in conjunction with the traditional formulation of

thermodynamic postulates (1). Instead, a more appropriate set of definitions and postu-

lates has been found, which can be outlined as follows.

Isolated thermodynamic systems tend toward states of equilibrium that consist of a

small number of homogeneous regions in space called "phases." The systems are

described in terms of the independent variables Q1, . ., which are interpreted as

the energy, the volume, and the mole numbers of the independent components.

The precise definition of homogeneous phases in equilibrium is implicit in the

following postulates:

I. The independent variables Qi are additive:

Qi = 7Qi (1)
a a

where the index a refers to spatially separated subsystems, such as different phases

or volume elements. The Qi are also called "extensive parameters."

II. A homogeneous phase in equilibrium is formally represented by a primitive

fundamental equation

S =S a  (2
a a .... /

which is a first-order homogeneous function with continuous derivatives of at least the

second order. The superscript a denotes the symmetry character of the phase a.

III. The entropy S of the system is

S(Q .2,...) max LSaa (1 Q (3)

The maximum is taken under the constraints provided by Eq. 1 with the Qi as constants.
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DEFINITION:

aS 1 (4)
aU - T

where T is the temperature.
IV. The temperature varies over the range 0 < T < co.

V. For all phases in equilibrium near absolute zero,

lim = Sa-o
T -0

While the traditional formulation deals with quasi-static processes in order to arrive

eventually at state functions, the present version considers equilibrium states exclu-

sively. We have a postulational foundation of thermostatics, and the discussion of proc-

esses is relegated to irreversible thermodynamics. This splitting of classical thermo-

dynamics into more sharply delimited special theories can be carried even farther.

Thus, the five postulates imply that thermodynamic stability is independent of the size

of the system. This result is, indeed, a salient feature of phase equilibrium, although

it fails for very small systems (droplets) and also for very large ones (stars). For such

cases the present postulates have to be modified.

Within the clearly understood limits of validity, the postulates form the basis of a

rigorous phase theory. It is not necessary to introduce ad hoc assumptions which ren-

der the existing thermodynamic theories unreliable.

L. Tisza
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B. CANONICAL DISTRIBUTION FOR INDEPENDENT RANDOM VARIABLES

The purpose of the present report is to develop a statistical theory of fluctuations

which, in the limit of vanishing fluctuations, reduces to the phenomenological theory of

Section XIII-A. However, the theory is not confined to the Gaussian approximation,

which is valid for small fluctuations only. With the terminology introduced in the

Quarterly Progress Report of April 15, 1957, page 166, we shall derive an Ic theory

centered around the canonical distribution of independent random variables.

The standard procedure for the derivation of the canonical distribution involves the

introduction of statistical concepts into classical or quantum mechanics. Szilard (1)

followed an entirely different course. He developed a unified statistical thermodynamics

118



(XIII. STATISTICAL THERMODYNAMICS)

by formulating a statistical generalization of the classical thermodynamic postulates.

His fundamental results remained largely unnoticed in thernmodynamics literature.

Recently, the question was reopened and further developed by Mandelbrot (2), who

pointed out that Szilard's argument can be considered as an instance of estimation

theory of mathematical statistics.

The ideas of Szilard and Mandelbrot tie in particularly well with the new axiomati-

zation of thermostatics discussed in Section XIII-A. The objective of our program is to

develop a self-contained theory along these lines. The discussion is divided into a num-

ber of successive stages, the first of which can be outlined as follows.

Let us consider a thermodynamic system specified by the extensive paranmeters Q

introduced in Section XIII-A. All but one of these parameters are to be held fixed, while

the coupling with the surroundings produces fluctuations of the energy, which is now a

random variable U that takes on values denoted by u. The case of several random

variables will be discussed later.

As idealized surroundings we consider reservoirs H(t), where t denotes an arbi-

trary temperature scale defined by the following stipulation: if, on establishing a

coupling between R(t 1 ) and R(tZ), on the average, energy flows from the Ri(tl) to R(tZ)'

then tl > t .

We formulate the following postulates:

I. The values u of the random variable U are distributed according to some proba-

bility density function P(u/t) that depends parametrically on the temperature t and the

fixed parameters of the system.

II. Two closed systems with the same fixed parameters and the same energy u are

thermodynamically equivalent regardless of the temperatures of the reservoirs with

which they had been in contact.

III. Composition rule. The energy of a composite system is the sum of the energies

of its parts and the partial energies are statistically independent. Briefly, the energies

are additive random variables.

From these assumptions we can derive that

P(u/t) = g(u)e-P(t)U/z(p) (1)

where g(u) is a "structure function" that depends only on the properties of the system,

p = p(t) is a function of temperature only. The definition T = 1/k3 can be shown to lead

to the thermodynamic temperature T, and k is Boltzmann's constant. The partition

sum Z(P) is determined from the normalization of the probability.

The structure function g(u) can be identified with the degree of degeneracy of the

energy as obtained from the solution of the Schrodinger equation of the system. It is

noteworthy that the existence of the structure function can be inferred from the general

statistical postulates I, II, and III without any explicit reference to atomic structure.
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In addition to the canonical distribution we can also consider the microcanonical

distribution of systems with fixed values of all the extensive parameters, including the

energy. The foregoing definition of the temperature concept can be extended to micro-

canonical distribution by means of a "maximum likelihood estimate" (2).

The conditions of the equivalence of the canonical and microcanonical methods are

now being studied.

L. Tisza, P. M. Quay
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