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A. SHAPING CORRELATION FUNCTIONS WITH NONLINEAR NO-MEMORY NETWORKS

Consider the time-invariant nonlinear no-memory network f of Fig. VIII-1, with

stationary input i(L) and output r(t). The output r(t) is given in terms of the input i(t) by

r(t) = f[i(t)]

The problem to be considered is: Given an input process i(t), does there exist a
nonlinear no-n-emory network f that will produce any prescribed output autocorrelation

function d(T)? If not, can we find a nonlinear no-memory network f that will give an

approximation to the desired correlation d(T)?

The first question can be answered in the negative by means of a specific counter-

exanple. Let us consider an input process i(t), of which the second-order probability

density function belongs to the density-function class A (1).

o0

Pi(Xlx 2,T) = Pi(X1) Pi(x 2 ) y an(T) n(x1) n (x 2 ) (1)
n=O

where Pi(x) is the first-order probability density function of the input process. The n th

order probability density function pi(x ..... Xn;T I ''. T n-) of the input is defined as

Pi(xl . .. n T1 ... ' Tn-l) dx 1 . . . dxn = Probability{xl < i(t) < xl + dxl;

. .. ;xn < i(t + Tn-) < Xn + dx n}

The actual output autocorrelation function o(T) is

o(r) = r(t) r(t+T)

(T) = YlY 2 Pr(yly2;T) dy 1 dy, (2)

= f[i(t)] f [i(t+T)

f f(x 1 ) f(x 2 ) pi(xl,xZ;T) dx 1 dx 2  (3)

(All integrals are over the whole range of the variables.) pr(Yl, y 2 ;T) is the second-order

probability density function of the output. Substituting Eq. 1 in Eq. 3, we obtain
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(T)Z 2(4)@o(T) = c 2 a n (T) (4)
n=O

where

Cn f(x) pi(x) 0n(x) dx

Thus, for Pi(x 1 ,XZ;T) in A, the output autocorrelation function (o(T) must be given

by Eq. 4. Note that all of the coefficients of {an(T)} in Eq. 4 are non-negative. But not

all autocorrelation functions can be expanded

in this form. This means that arbitrary
i(t) NONLINEAR r(t) correlation functions cannot be attained by

NO-MEMORY

INPUT NETWORK f OUTPUT nonlinear no-memory networks alone.

The following specific example will verify

Fig. VIII-1. Nonlinear no-memory the insufficiency of Eq. 4: Let the input
transformation. be a gaussian process (with zero mean

and unit variance, for the sake of con-

venience), and with autocorrelation

p(T) = al(T) = e-T

Then,

an(T) = [al (T)]n e-nT

Now let us choose

IT I  1 -ZIT
cPd(T) = e -- e (5)

Then d(T), as given in Eq. 5, may not be expanded as in Eq. 4, since

lim d(T) = 0
T 0+

and

lim c Z a' (T) = -im n c e < 0
T -0+ n n -0+

n=0 n=0

unless c n = 0 for all n; however, this restriction makes it useless. Thus the slopes
o

of Od(T) and c an(T) could never be matched at T = 0+. Therefore, it is impossible

n=0
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to produce arbitrary autocorrelation functions from a given input process by means of

nonlinear no-memory networks alone.

This result leads to another interesting conclusion: With only nonlinear no-memory

networks, it is impossible to produce arbitrary second-order probability density functions

from a given input process [with a given second-order probability density function

Pi(X, x2;T)]. For, if it were possible to do so, arbitrary autocorrelation functions

could be produced, since the autocorrelation of the output is given in terms of the output

second-order probability density function by Eq. 2.

Moreover, since the output second-order probability density function pr (y 1I 2 ;T) is

determined by the higher-order probability density functions of the output, it follows

that: With only nonlinear no-memory networks, it is impossible to produce arbitrary

n th-order probability density functions, n > 2, from a given input process. This con-

trasts with the case n = 1, in which a nonlinear no-memory network can always be

found to shape a given input first-order probability density function into a desired out-

put first-order probability density function (except when the input probability density

function contains impulses).

We shall now consider the second question posed at the beginning of the discussion.

First, we refer to Eq. 3. Then, let f be expanded in a series, in which the coefficients

{cn} are as yet undetermined:

0c

f(x) = > cnl(x) Qn(X) (6)

n=O

where Qn(x) is an n th-order polynomial and wl(x) is an arbitrary weighting function,
both of which are known. Then

00 00

Po(T ) = c cm on c mn (T) (7)
m=O n=O

where

gmn(T) (x1 w1 (x 2) Qm(x 1 ) Qn(x 2 ) i(x1 ,x 2 ; T ) dx1 dx2

is a known function. Thus, if cd(T) can be expressed approximately as a sum, as in

Eq. 7,

d(T) 7 d dm n gmn(T) (8)

m=O n=O

then we choose
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o0

f(x) = d l(x) Qn(x)

n=O

to obtain the approximation to tile desired correlation function d(T). The determination

of the constants for the approximation Eq. 8 is difficult, but the following procedure is

one possibility: Define an error EN

ENd() r- Y cn mn (T ) WZ (T) dT

L m=0 n=0

where w2 (T) is an arbitrary weighting function. Choose cN , after having chosen c o ....

cN- , to minimize EN. In other words, a progressive determination of the c n's leads

to an approximation of cd(T). The approximation can be checked for any number of

terms, and a judicious choice of gmn(T) could reduce the number of terms that is

necessary for a fair approximation of d (T).

A special case of Eq. 6 is

00

f(x) = c n (x)

n=0

where {0n(x)} is the sequence of polynomials (1) associated with the first-order proba-

bility density function of the input i(t). Then, we have

o

0 c a n

n=0

Therefore, if d(T) is given approximately by

N

d(T) Z Z dn a (T)

n=O

where d -0, we can construct

0o

f(x) = (±dnl/2) 0n(x)

n=O

to give the desired approximation. The plus or minus signs are arbitrary and can be

chosen for simplicity of synthesis of the nonlinear device.

Extensions to nonstationary inputs and time-varying devices are straightforward.

Similarly, the problem of shaping crosscorrelation functions of two input processes by
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means of two nonlinear no-memory networks can be solved.

A. H. Nuttall
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B. A THEORY OF SIGNALS

In the Quarterly Progress Report of April 15, 1957, page 73, we introduced the

linear vector space 6 whose elements are finite numerical operators of the form

S -t

S= an E n

n=l

-t
where E n is the shift operator defined by E nf(t) = f(t - tn).n We also showed that

6 is a unitary space, since it is possible to define a norm for the elements of the

space, as well as an inner, or dot, product that gives rise to this norm. With the

notation

sin Wt
a possible nor of an operator defined as in Eq. 1 was found to beWt

a possible norm JJPJJ of an operator Q defined as in Eq. I was found to be

-2 W [ 2w(t)] dt = QpgW(0 )
-- 00

where 2 is just 2 folded over, so as to sample forward instead of backward; i. e., if

Q = ia E , then =n

21 and 22 is defined by

1
[Q1502 2 1

00

-00

Za En

+t
n

The corresponding inner product of two operators

i1 w(t) g22 w(t) dt = 1 2 " w (0)

In this report we shall study and use some of the properties of these concepts.

1. Properties of the Norm

The interesting thing about the norm defined above is that it provides a physically

meaningful measure of distance between networks and it embodies some of our limitations

-t
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2I [,W]-CRO

SOURCE M 2
OF

MUSIC 3

N+1

Fig. VIII-2. Pure transmission kernels of various orders excited by music.
Beyond some sufficiently high order, outputs are indistinguish-
able on an [E, W]-oscilloscope.

in performing measurements, and hence in specifying signals. For example, consider

the following experiment, which was performed by Dr. M. V. Cerrillo and K. Joannou.

A set of M networks is prepared, with the impulse responses shown in Fig. VIII-2.

These responses are Cerrillo's pure transmission kernels of orders 0, 1, ... M, given

by

m

ak = (- 1)m F k = 0, 1 ... m
k, mp=0 k p

where ak, m is the area of the kth window in the response of order m, with k : m. The

window width, 2X, is chosen appropriately small. Suppose that (as was actually done in

the laboratory) these networks are all excited by an arbitrary band-limited source

(music was used in the experiment) and that the outputs of the networks are compared

with the input by placing them, one at a time, on the vertical and horizontal plates of a

laboratory oscilloscope. It turned out that, for all networks of order higher than a

sufficiently large N, the network outputs could not be distinguished from the input or

from each other. This result indicates, first, that Cerrillo kernels of sufficiently high

order are actually capable of producing pure transmission, as far as a CRO with finite

resolution can tell, and second, that as far as such an oscilloscope can tell, there is no

difference, in the operation performed, between any two networks of order greater than

N. (This number N can be as small as zero if the window width is small enough, or the
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oscilloscope crude enough.)

To us, the interesting thing about this experiment is that although the impulse

responses of the networks differ enormously, for m > N the networks are indistinguish-

able in their mode of operation on music. That this is possible is not surprising, since

the result obtains for a restricted (although large) class of sources and the oscilloscope

has finite resolution. But it raises the question: How can we describe or explicitly

exhibit in the time domain the fact that, in spite of their very different impulse responses,
these networks are so similar in their mode of operation that their outputs are indis-

tinguishable? The norm, as defined in Eq. 2, accomplishes this purpose.

To see how this comes about, we recall from the Quarterly Progress Report of

April 15, 1957, page 73, that when 2 operates on any band-limited, integrable square

function f(t), the output is bounded by

Sf(t) I< f2 dt (4)

which shows that, for all inputs whose energy into a one-ohm load is less than or equal

to some fixed number K o , the output of the network, 2f(t), is small whenever 101 is

small.

A sufficiently strong converse is also true: whenever the output Qf(t) is small for

all inputs with energy less than or equal to Ko, then QI is also small. This results

from the fact that Eq. 4 was obtained by means of the Schwartz inequality, and that it

can be shown that there always exists one specific function f(t), belonging to the class of

acceptable inputs, for which Eq. 4 becomes an equality for at least one value of t. This

function, clearly the one that gives the tallest output, turns out to be f(t) = Q2W(t).

Therefore, if the output 2f(t) I < E for all inputs, then, in particular, for the maximal

input, 2Q( w (t)) < E for all values of t. Therefore, at t = 0, fJ212 = iQQw(O)j < E.

(It is always possible to define the classes of acceptable inputs and operators in such a

way that ~ w(t) will indeed be contained in the class of acceptable inputs.)

If, now, 2 = 21 - 2, that is, if Q is the difference between two specified operators

21 and 22, then the discussion indicates that (a) if the distance Ill - 2~?1 is small, the

difference in the outputs from Q1 and 2Z, f 1 lf(t) - 2Zf(t) , will be small for all acceptable

inputs, and (b) if the difference in outputs is small for all acceptable inputs, then the

distance I l - 2Z I is small. Note that the impulse responses corresponding to 01 and

0Z2 can, at the same time, be entirely different.

To check these results with the specific experiment described above, let T denote
n

the vector corresponding to the pure transmission kernel of order n. Then it can

be shown that the vectors Tn satisfy the difference equationn
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T - T : E-XV n  (5)
n n-1

where V n is the n t h backward difference operator (1), and the sampling spacing is 2\.

Equation 5 shows, incidentally, that

n

T =E Vi  (6)

i=0

We need not go any farther than this to see, for example, that for n large enough (or

X small enough), the operation of two successive kernels can be made indistinguishable.

Using Eq. 4, we obtain

-1/F
(T - T 1 ) f(t) <  2 dt T - Tn - K T - T11 (7)

But

IT - T = E-XVn n

and it can be shown that

where W is the bandwidth of the input ensemble. As long as X < 1/2W, it is clearly

possible to choose n and X so as to make the bound in Eq. 7 smaller than the resolu-

tion of any preassigned oscilloscope.

In terms of the metric established by our norm, the property that is common to the

networks of Fig. VIII-2 (of order higher than some N) is that they are all contained

within a hypersphere (in 6-space) of radius E smaller than the resolution of the

oscilloscope that is used for measuring.

2. Approximation Properties of Singular Networks

The problem we wish to study now is the relationship between the singular networks

represented by the vectors 2 and smooth finite-memory networks, i.e., networks

whose impulse responses are smooth and of finite duration. We shall proceed as

follows: (a) determine what happens to the output when a singular response is shifted

slightly, as in Fig. VIII-3a; (b) determine what happens with a combination of such

shifts, as in Fig. VIII-3b; and (c) use this technique to build up pulses out of impulses,

thus obtaining smooth networks or simple-function approximations to smooth networks.
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Notice, at the start, that to shift an

impulse response by an amount X, all that

has to be done is to multiply the corre-

sponding vector

-t
2 a E n (8)n n

-X
by E ; thus

I-IX - (tn+X)
(b) E 2 = E = L a E (9)n n

is obtained. Denote E -2 by 21. We want

a bound on I2f(t) - 21 f(t) (2 - Q1) f(t) .

Using Eq. 4, we obtain

W) -1,/2

Fig. VIII-3. Alterations on singular im- )f(t) f
pulse responses: making -j
pulses out of impulses.

X Iln - 0 I11 (10)

so that our problem is to determine the distance Q2 - Q1 from the original vector to the

new (shifted) vector Q1.
In terms of the inner product (Eq. 3) the distance is given by

0 - 01 2 ' - - 1

- [, ] + [1, 1]-[+21 - [1, ] (11)

Since our norm is invariant under translations,

[Q1, 1 ] 1 1 2 = 2 = [2, ] 1

and, because of the symmetry of the inner product, the last two terms in Eq. 11 are

equal, so that

-i = 2 ( ,2I-2 [- 1] (12)

Now, it can be shown that

[Q, Q 1 ] = R (X) (13)

where R () is the autocorrelation of T4w(t) evaluated at X, and, therefore, that for
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the special case 21 = 2 (i. e., X = 0),

= R (0) (14)

Using these results in Eq. 12, we have

1 - Q1 2 = 2 [R (0) - R (X)] (15)

We have shown (Quarterly Progress Report, April 15, 1955, p. 38) that the auto-

correlation function R(T) of any bandlimited process satisfies the inequality, R(0) - R(T)

<kT , where k v<W"R(), and W is the radian bandwidth of the process. Substitution in

Eq. 15 yields

R (0) 2 = 2 £ WWX (16)

the last step being obtained by using Eq. 14.

Using Eq. 16 in Eq. 10, and denoting the energy term by Kf, we have, finally, that

the difference in output from an operator £2 and the same operator shifted by an amount

X is bounded by

I(£ - 01) f(t) -~ i Kf 11 W11 (17)

This is the desired first result. We shall use it now to build pulses out of impulses, at

the same time controlling the error.

Suppose that the desired pulse shape is p(X) (origin of X at each impulse) and that

the given singular response is £. Consider, instead, the response . = a.i (ai, a real
-X.

number) and shift 2. by an amount X.. Then, from Eq. 17, we have (£i - E 1.) f(t)

< K -f £LiJJ W hil = V KflJ2 ai.X , since 1i. = jai j£JJ . Suppose that this

is done several times (i. e., for a sequence of values of i) and that the results are

added:

2 i  ai f (t ) - aQf(t - Xi) 'Z Kf Q£[ W Z.i iai (18)

Since it is always true that I .ci. -<L i ci , Eq. 18 implies that

i a.O f(t) - i aiP f(t - x.hi)<,1-Kf Q W Z i I Xiai (19)

Now let a. = p(Xi ) AX, so that any impulse shifted to the position X has its area multi-

plied by a number a i which is proportional to the desired pulse height at that point.

Then Eq. 19 becomes

OPf(t) [Z i p(Xi) AX] - Q[Z i p(Xi) f(t - Xi) Ak] X<I 1' Kf IQI W f i  i p(i) I A

In the limit as z - O0, the sums tend to Riemann integrals and, since it can be shown
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that the inequality is preserved in the course of the limit process, we obtainr 4 p(X) dX j E2 f(t) - 2 p(X) f(t-X) dXJ 2/ Kf W w X p x) dx (20)

In Eq. 20, A is the base or support of the pulse p(X). This is the desired final result.

To interpret it, let us first normalize our pulses p(X) so that f p(0) dX = 1. Then

the first term on the left-hand side

singular network 2 (whose impulse

assumed, for graphical simplicity,

term

in Eq. 20 is just Pf(t), which is the output from the

response is shown in Fig. VIII-4a, in which it was

that the impulses are equally spaced). The second

£A p(X) f(t-k) dX

A
(21)

is just the output of the smooth network which is obtained from £ by replacing all its

impulses with pulses in such a way that corresponding pulses and impulses have the

same area, as in Fig. VIII-4b. To see this, let

N
N a akE tk

k=l

in which case the corresponding smooth response, denoted by h(t), can be written

h(t) = a k p(t - tk) = ak E p(t) = 2p(t)

k k

Comparing this with Eq. Z1, we see that

Q= T
2 p(X) f(t-X) dX = [2 p(X)] f(t-X) dX =

A A

h(X) f(t-X) dX

is just the output from the smooth network h(t).

If p(X) is a unidirectional normalized pulse (i. e., a pulse that does not change sign),
and if it extends from -k to X , then Eq. 20 becomes just

0 O

0
£f(t) - £ p(X) f(t-k) dX /< .Kf 1Q1 W x

so that the bound on the error is independent of pulse shape.

(22)
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Since unidirectional pulses are

precisely what Cerrillo calls
X
o  

3x0 5X, T

(o) "windows," Eq. 22 shows that it is

possible to associate a singular

(b) response with every window function,

with a very clear estimate of the

Fig. VIII-4. Singular response and corre- error incurred by this procedure.
sponding smoothed response. Furthermore, since a singular

response is just a numerical oper-

ator, the procedure shows how to use the results of numerical analysis to obtain the

Cerrillo kernel appropriate to a given operation directly.

More generally, since the pulse p(X) may be chosen rectangular, Eq. 22 shows the

relationship between singular responses and simple-function, or staircase, responses.

Since it is known that the set of simple functions is uniformly dense in the set of time-

limited continuous functions, Eq. 22 also shows that it is possible to associate a singular

response with any continuous (time-limited) response, and that this can be done with

arbitrarily small error at the output, for all members of a specified ensemble of inputs.

Several other applications of these results, plus a study of the geometry of the space

of the Q's will be given in a future report.

R. E. Wernikoff

C. PROPERTIES OF SECOND-ORDER CORRELATION FUNCTIONS

The present study has been completed. It was submitted as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science and the degree of

Electrical Engineer, Department of Electrical Engineering, M.I.T., June 1957, and

will also be presented as Technical Report 330.

J. Y. Hayase

D. TIME-DOMAIN SYNTHESIS BY AREA APPROXIMATION

1. Introduction

a. Motivation for study of area approximation

In the formulation of time-domain synthesis problems, the singular impulse response

(an impulse response consisting of a finite set of impulses of finite area distributed over

a finite interval) is becoming increasingly important. For example, Wernikoff (1) and

Cerrillo (2) have suggested techniques for obtaining networks to perform specified linear

operations on a given class of inputs. These networks are specified by singular impulse
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responses. Also Ba Hli (3) has suggested a method for calculating an appropriate

singular impulse response when the design data are given in the form of two time

functions, one representing the output from the desired network when the other is applied

to the input. A limitation of the use of these techniques is that, presently, a singular

impulse response can be realized only by use of a tapped delay line. A feature of syn-

thesis by area approximation is that it permits the approximation of singular impulse

response characteristics by lumped, linear networks. A further advantage is that a

simple expression is available for the time-domain error.

b. Basis of synthesis by area approximation

A singular impulse response associates the area under the response curve with a

finite set of points. A first-order approximation by a smooth curve is achieved if the

integrals of the two curves, i. e., the step responses, are forced to coincide at a set of

points, although not necessarily at the set of points on which the singular response is

defined. This approximation technique is referred to as "area approximation." Unfor-

tunately, the shape of the smooth response does enter into the error calculations, but,
for the class of approximating functions considered in Section VIII-D3, a reasonable

extimate of the error is obtained by assuming straight-line connections between coinci-

dent points.

The synthesis of networks with smooth (nonsingular) impulse responses can also be
accomplished by area approximations, although a shift in the emphasis of the approxi-

mation step is required. Classically, the success of the approximation is judged by how

closely the output of the approximating network resembles the output of the desired net-

work for impulse excitation. No control is exercised over the outputs for other inputs,
and there is certainly no guarantee that small imperfections in the approximative

impulse response will not be exaggerated during convolution. If this situation is recog-

nized, and the criterion for success of the approximation step is shifted to reproduction

of outputs stimulated by inputs chosen from a specified class of possible inputs, syn-

thesis by area approximation becomes applicable. Ease of error calculation is slightly

less for smooth responses than for singular responses.

c. Error criterion

Wernikoff (1) has provided a simple proof that the output of a network with a

singular response converges uniformly to the output of a network with smooth

response as the number of coincident points is increased. This proof is directly

applicable to synthesis by area approximation, and allows a bound to be placed on

the approximation error. Therefore, a singular network can be made indistinguish-

able from a smooth network, for a given class of inputs, since all physical detectors

possess .finite resolution.
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2. Error Analysis of Synthesis by Area Approximation (3)

a. Derivation of error expression

Our object is to determine an expression for the maximum difference in output

between two networks that are excited by a common input, when the step responses of

the two networks agree at a finite set of points. The networks are assumed to have

impulse responses that are of finite duration, and the input is assumed to possess all

orders of derivatives.

Let the points of coincidence between the step responses be at times T', T' ....
0 1,

T' and let T. be the midpoint of the interval (T I , T! The length of the interval
m+l 1 +1 il

(T!, T ) is d.. The output of a linear network is related to the input and to the impulse
1 1+1 1

response by the convolution integral, which can be written as

M dm/2

g(t) = h(y ) f(t - Tm -
y ) dy, t > T (1)

m=0 -dm/z

where g(t) is the output; h(t) is the impulse response, and hm(t) = h(t + T ); f(t) is the

input, and T = T' is the duration of the impulse response.
m+

If we expand the input in a Taylor series, and let the area under the impulse response

in the interval (T!, T! ) be a., the convolution integral becomes
i' i+1 1

M (n d m/2
g(t) = a f(t - T) + f 2 y h (y) dy , t> T (2)

m=0 n=l dm/2

where f(n) is the nth derivative of the input evaluated at x = t - Tm m
The error is now defined as the difference in output between the desired network and

the approximative network, and, by use of Eq. 2 and an integration-by-parts, it can be

expressed as

M f (2n-1) d 2n-2
e(t) = 2(2n - 1) - )! Dme(y) dy

m=O n=l 0

f(2n) d m/2m m

(Zn)! moS (2n) y Zn-1 Dmo(Y) dy , t > T (3)
n=l 0

where if A(t) and A (t) are the step responses of the desired and of the approximative

networks, then D (t) and D (t) are the even and odd parts of the difference A(t) - A (t).
Th e subscript m refers, as before, to a translation in time, y = t + T

The subscript m refers, as before, to a translation in time, y = t + T
m



h(t) A(t)

t tI t
T." T Ti

I  T' T'I
I  

T

(b)

h(t) A(t)

0 To  * m Tm Tm, 0 To  °** T mTm.

(c)

Fig. VIII-5. Singular responses of three networks
equivalent under an approximation:
(a) network A; (b) network B; (c) net-
work C.

(t)

t

-d/2 0 +d/2

(a)

0/2
D e (t) Dt 2

-d/2
o/2 t

0 +d/2

-d/2 0 +d/2 -a/2

Fig. VIII-6. Difference functions for approximation between
networks A and B of Fig. VIII-5.
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For the input f(t) = E jw t , the summations on n can be expressed in closed form,

and Eq. 3 becomes

M (t dm/

e(t) = n2 sin oy Dmo(Y) dy

m=O 0

d m

+ j 2c cos wy Dme(y ) d , t > T (4)

The dependence of the error on the shape of the step response enters through the

difference functions, D me(t) and D mo(t).

b. Applications of the error expression

Figure VIII-5 illustrates the impulse and step responses of three networks that are

equivalent under area approxination. Networks B and C both have singular responses.

The necessary difference functions for an error calculation between the outputs of net-

works A and B and networks A and C are given in Figs. VIII-6 and VIII-7. The use

of Eq. 4 in the calculations is particularly straightforward, and the resulting errors are

plotted in Fig. VIII-9. For convenience,

the errors are normalized to the output of
D(t)a Do(t)

a/2 the singular networks.

SA second application of the error expres-

d/2 0 d/2 sion, Eq. 4, is in the calculation of the

-/2 error caused by sine- and cosine-like dif-

ferences between the step responses. The

difference functions are illustrated in
Fig. VIII-7. Difference function for

approximation between Fig. VIII-8, and the associated error is
networks A and C of plotted in Fig. VIII-10. Notice that the
Fig. VIII-5.

error becomes very large as the input

frequency approaches the perturbation fre-

quency. This illustrates the point made in Section VIII-Dlb, since large errors may

result if even a small periodicity is ignored in the approximation.

Equation 4 can also be applied to inputs with more complicated spectra than a single

frequency by the use of Fourier transform theory (2). An interesting result is that the

relative error in the outputs, for any input chosen from the class of inputs bandlimited

to a frequency W, is bounded by the error obtained for a sinusoidal input of frequency W.

For this calculation, the error is normalized with respect to the peak amplitude of the

output that results from that number of the input class whose output is a maximum (when

all members of the class have the same energy).



D(t) De, (t)

d/2

Fig. VIII-8.

D(t) Do(t)

-d/2

Cosine-like and sine-like
contributions to difference
function.

APPROXIMATION BETWEEN

NETWORKS A AND B

APPROXIMATION BETWEEN

NETWORKS A AND C

O 0.5 1.0 1.5 2.0 2.5

RATIO OF IMPULSE SPACING TO PERIOD OF INPUT
2T

Fig. VIII-9. Normalized error versus ratio of
impulse spacing to period of input
sinusoid for approximations between
networks of Fig. VIII-5.
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ERROR FROM SINUSOIDAL
PERTURBATION

RATIO OF INPUT FREQUENCY TO
PERTURBATION FREQUENCY w/p

ERROR FROM COSINUSOIDAL

PERTURBATION

Fig. VIII-10. Absolute error resulting from sinusoidal and cosinusoidal
perturbations on difference function versus ratio of input
frequency to perturbation frequency.

3. Solution of the Approximation Problem

To complete the approximation step of the synthesis procedure, it is necessary to

specify a function with a rational Laplace transform that can be passed through the

desired coincident points of the step response. The difficulty is enhanced by the restric-

tion that the function must maintain its last assigned value as t approaches infinity so that

the duration of the approximative response will equal that of the desired impulse response.

An approximative function that fulfills these requirements is

M

A (t) = K + 7 bm t m E-t/d + R* (t) E- t / d

m=O

The first two terms are passed through the coincident points by an appropriate choice

of the coefficients. The third term is used to cancel the response after time T. The

time constant in the exponential terms is chosen as d seconds, since this value causes

the mth term in the series to attain a maximum at time t = m X d. Thus, if the coinci-

dent points are equally spaced d seconds apart, the maxima fall on the coincident
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Fig. VIII-11. Approximative function for networks
of Fig. VIII-5, obtained with five
coincident points.

points, and the coefficients b are kept within the same order of magnitude.

The polynomial R"'(t) is chosen with zeros at each of the coincident points, and with

a multiple-order zero at a time T', when the second term is essentially zero. By

properly choosing the order of the multiple zero, the third term can be made to cancel

the overshoot of the second term. A systematic procedure for calculating the various

coefficients is given in reference 4. An approximative function for the networks of

Fig. VIII-5, utilizing five coincident points, is illustrated in Fig. VIII-11. A particu-

larly simple realization of the step response of Eq. 5 is given by Wernikoff (5).

4. Limitation on Synthesis by Area Approximation

Although synthesis by area approximation does allow the realization of networks

characterized by a singular impulse response, the number of coincident points required

to achieve, for example, a 1 per cent relative error, may be of the order of 20 or 30.

Therefore, the standard passive realization techniques are not practical, and the

stability problems in an active realization may be overly severe.

This work, which was submitted as a thesis in partial fulfillment of the requirements

for the degree of Master of Science, Department of Electrical Engineering, M.I. T.,
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June 1957, will be published as Technical Report 331.

I. M. Jacobs
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E. AN ANALOG PROBABILITY DENSITY ANALYZER

Experimental probability density distributions of both periodic and noise functions

were discussed in the Quarterly Progress Report of April 15, 1957, page 81. Additional

experimental work, which is related to the analysis of speech, is described in the present

report.

The analysis of speech requires longer integration times than those that were used

for the periodic and noise functions. The speech probability density function, shown in

Fig. VIII-12, was obtained with a 17-sec integrator time constant. The actual value of

the RC integrator product was 8. 5 sec, but the effective value of the time constant was

doubled by playing back the recorded speech sample with the recording speed doubled.

A one-minute sample of speech was continuously repeated to obtain the probability

Fig. VIII-12Z. Speech probability density function.
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density function. Since the length of the sample is much longer than the integration

time, the probability density function should approximate the stationary characteristics

of the speech source.

This report concludes a series of reports entitled "An Analog Probability Density

Analyzer." A complete description of the development and construction of the analog

probability density analyzer and experimental results will be published as Technical

Report 326. This work was submitted as a thesis in partial fulfillment of the require-

ments for the degree of Master of Science, Department of Electrical Engineering, M.I. T.,

June 1957.

H. E. White


