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A. SOME LIMITATIONS OF LINEAR AMPLIFIERS

If a network is to be constructed by imbedding a linear device in a network of ideal

transformers, there are certain allowed natural frequencies for the resulting network.

They are readily determined by studying the properties of a linear amplifier that sup-

plies power to a complex load. A method of determining the allowed frequencies for a

linear amplifier will be discussed.

1. The Powerless Concept

If a linear device, described by a complex admittance matrix [Y], is imbedded in an

ideal transformer network and connected to a load, conservation of power enables us to

write

V]i [Y][Vl + P = 0 (1)

where V is the complex column matrix of voltages at the terminals of the device, P is

the total power delivered to the load, and [V]i is the conjugate transpose of [V].

Before continuing the discussion it is well to interpret the meaning of power for sig-

nals with exponentially increasing or decreasing amplitudes. If a voltage v, given by

v = 21/2 IV eat cos(wt + p), is applied to a one-ohm resistor, the instantaneous power

will be given by p = 2 V 2 2e -t cos2(wt + p). For convenience of notation, we speak of

the complex rms voltage amplitude as V = IV I e j and the complex average power

amplitude as P = IPI e j . Admittedly, the envelopes of the voltage and power will be

increasing or decreasing exponentially, but we can consider that V and P determine

the amplitudes at t = 0. Alternatively, we can neglect a- and assume that the sensitivity

of the voltmeter and wattmeter are exponential functions of time, so that a quasi-steady

state condition may be assumed. In reality, the entire analysis is purely mathematical

and depends upon analytic continuation for its justification. We cannot, in general,
measure waveforms that die away faster than the natural frequencies of the system.

With these thoughts in mind, we continue the analysis as though we were dealing with

pure sinusoids, except that the admittance of circuit components will be assumed to be

a function of a mystical parameter a .

With reference to Eq. 1, we can make the following statement:

If it is not possible to find a [V] with the property that

[V]i [Y(sl)][V] + P = 0, then it is not possible for the (2)

device described by Y(s) to deliver a power P at a com-

plex frequency sl.
Expression 2 establishes a necessary condition that must be satisfied if the
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amplifier is to be realizable. We must now show that this is also a sufficient condition.

The proof of sufficiency is best established by a direct synthesis procedure.

2. Synthesis of a Linear Amplifier

Assume that a V that satisfies Eq. 1 has been found, and consider the question of

how we might construct a circuit to supply the power P to a physical load. Since we

are interested in synthesizing an amplifier for an arbitrary complex frequency, we can

no longer use L's and C's as phase-shifting elements; we must use an artifice that is

equivalent to an ideal phase-shifting transformer. It appears that this can best be done

by interpreting a complex voltage Ve s t as the sum of two real voltages which, for con-

venience, will be called the even and odd components.

ve = IV eot cos(wt + p) v = V I e"t sin(wt + 8) (3)

If we interpret a single complex voltage as the sum of two real voltages which are 900

out of phase, we can synthesize all circuits in a symmetric form in such a manner that

all voltages appear as if they were on a two-phase transmission line. In terms of this

two-phase representation we can visualize the general amplifier, as shown in Fig. XVI-1.

We could, of course, use more than two phases but the redundancy is not necessary; in

fact, in many instances, the synthesis can be accomplished without resort to a multi-

phase system. For general synthesis, however, we must consider a complex voltage

as a mathematical representation of two real voltages so that a network of real trans-

formers can effect both amplitude and phase transformation.

With reference to Fig. XVI-1, let us choose

[V 1 ] = [Nr][Ve] + [Ni][V o ]  [I 1] = [Y][V1] (4)
[V 2] = -[Ni][Ve] + [Nr][V o ] [12 ] = [Y][V 2]

where [V 1 ] and [V 2 ] are the voltage matrices for devices 1 and 2 in Fig. XVI-1, and

[Nr] and [Ni] are arbitrary real transformations. It is then readily shown that for Ve = V'

[v,] DEVICE I

ve= JV'je'tcos((t+0) [y
BALANCED IDEAL

TWO-PHASE TRANSFORMER
LOAD NETWORK

P ]

X - - [V] [yt

Fig. XVI-1. Synthesis of linear amplifier in two-phase form.
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V = jV' (i. e., V e and Vo are two voltages 900 out of phase), the power dissipated in

the devices is given by

P 1 = V P= V I2 = Iv, 2 [Nit [YI[N]
(5)

N = [Nrl + j[Nil

Thus, by choosing V'[N] = V, we have ensured that the total power supplied by each

device is P = -[V]l [Y][V], and thus Eq. 1 is satisfied. Since the load is completely

arbitrary, we can think of it as a connection of ideal transformers plus a pair of load

devices described by a matrix [YL], and interconnected in a manner analogous to that

described in connection with the amplifier synthesis. (In reality, there is only an arbi-

trary distinction between which is called the amplifier and which the load.)

In light of our analysis, we can make the following statement.

If it is possible to find a V with the property that

[VI[YI[Vi + P = 0, then it is possible to build an amplifier

to supply a power P to an arbitrary load. The con-

struction of this amplifier will, in general, require the (6)

use of two devices plus ideal transformers, and the out-

put voltage will appear as if it were on a two-phase

transmission line.

We then see that the existence of a V that satisfies Eq. 1 is a necessary and suf-

ficient condition for the realization of an amplifier if we allow all networks to be con-

structed in symmetric two-phase form. There is no assurance that other natural

frequencies will not be present and, in general, an amplifier synthesized by the afore-

mentioned technique may have an infinity of natural frequencies. The merit of this

synthesis procedure is that it allows us to establish necessary and sufficient bounds on

the natural frequencies of a system.

3. Complex Power and Its Relation to the Gyrator

The canonic form of a balanced two-phase load, which is indicated in Fig. XVI-1,

can be thought of as a combination of two

equal conductances and an ideal gyrator,

as shown in Fig. XVI-2. For two-phase

Sexcitation with V =V V = jV, we see
[G ~: that P = 21V1 2 Gr + j2 2 G.. Thus the

G, real power 21V G r is dissipated in the

o °two conductances, while the "imaginary"

Fig. XVI-2. Canonic form of a bal- power is "dissipated" in the gyrator. The

anced two-phase load. term "dissipated" may appear strange,
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V, V0

va Vcos at Y= G+ jG2 /,/

vb V cos (wt-120')

GG, G G v, V cos (wt 240) y

Sb c vb

(a) (b)

Fig. XVI-3. Complex gyrator representation for a three-phase system.
(a) Gyrator circuit. (b) Equivalent complex representation.

since, by turning the network upside down, the sign of the imaginary power is reversed

and the gyrator becomes a generator of power. The important concept seems to be not

so much what happens to the imaginary power but rather that for equilibrium to exist

both the real and the imaginary power must be zero for the system as a whole. Note

that the gyrator is associated entirely with the imaginary power, while the conductances

are associated entirely with the real power.

In terms of the canonic form, we see that for a balanced multiphase transmission

system any balanced load can be realized by resistors and gyrators (at a single fre-

quency) without recourse to reactive elements. A simple example of a three-phase

delta-connected load is shown in Fig. XVI-3a. Note that this load, containing only

resistors and gyrators, can be analyzed exactly by use of the equivalent "reactive"

circuit of Fig. XVI-3b. Thus for a multiphase system "reactive" power need not be

associated with energy-storage elements, and hence the term "imaginary" power has

been used to avoid the implication of reactance. In terms of a picture such as

Fig. XVI-2, we see that imaginary power can be interpreted as "transmitted," or

"interchanged," power, since gyrators do not store energy but merely interchange the

power between the two phases of the excitation voltage. Thus a device such as a

"synchronous capacitor," which is commonly used for power-factor correction, is

more nearly a gyrator; ideally the machine would neither store nor dissipate energy.

4. Allowed Poles and Residues

The previous analysis enables us to determine some important bounds on network

behavior. As an example, suppose that we wish to determine the allowed poles and

residues of a driving-point impedance. In the vicinity of the pole the admittance is

approximately Y = (s - s l)/A, where s is the location of the pole, and A is the

residue. For s = sl, V I YV = 0, and we see that this is the special case of an oscil-

lator supplying zero power to an open circuit. If we deviate slightly from s = sl, the

conditions for oscillations become
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VtYV+P=0 or (s-sl)+PA/V1 2 = 0 (7)

In the immediate vicinity of s1 we can write

s - s 1 = e j a  A = A e j  P = IP e j  
(8)

and the oscillator synthesis question becomes

j PA j(p+e) ?5e + e ? 0 (9)

Equation 9 means: For all values of 6, a, and P will only the "allowed" values of 0

satisfy Eq. 9? If the driving-point impedance is constructed by imbedding a particular

device in an arbitrary transformer network, we know that there is only a certain

allowed range of values of 0, and therefore values of 0 that satisfy Eq. 9 must fall

within this range. As 6 becomes vanishingly small, the allowed 0 will generally become

independent of 6 and, since IVI may be any real number, Eq. 9 can be written:

a p + (10)

The allowed values of 0 must then include a - p ± Tr if the driving-point impedance is to

be realizable.

As an example, consider the problem of constructing an LC circuit with a pole of

impedance at s = jcl' W1 0. It can be shown that the allowed 0 for an LC circuit can

be determined by

sin 0 cos <
Wo 0 (11)

As 6 becomes vanishingly small, this equation can only be satisfied by

a >0, a -I0 -< +<-

w (12)
a < 0, a -0 4 -< 0 < r

Or, in terms of a = tan-1 [( -W 1 )/-], for 6 = s - sll - O, we have

IT< a < 7< + <
2 2 2 2

(13)
-< a + Tr <- -- 0<
2 2 2 2

This limitation on a immediately indicates that p = 0 is the only possible phase angle

that satisfies Eq. 10, and hence it is the only possible angle for the residue of the pole

at wl. This restriction of positive real residues is, of course, readily determined

from conventional methods of analysis. If we had attempted to place a pole at a
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frequency s = cr 1 + jco l , o-1 0, we would have found it impossible to satisfy Eq. 10 and

we would reach the correct conclusion that all the poles must be on the jw-axis and all

the residues must be positive real.

Thus we see that the limitations on poles and residues of driving-point impedances

can be determined as a special case of the general limitations of linear amplifiers.

Some of the other implications and consequences of the linear amplifier limitations will

be discussed in a later report.

R. D. Thornton
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