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A. OUTLINE OF PROJECT

In this project the term "statistical thermodynamics" will be used in a sense that is

distinct from "statistical mechanics." The random variables of statistical mechanics

are the specifications of the system in mechanical phase space. In statistical thermo-

dynamics the random variables are points in thermodynamic phase space spanned by

the extensive parameters: internal energy U, entropy S, volume V, and the mole

numbers N. of the independent components.

There are various physical models that are described in terms of these thermo-

dynamic random variables; for example, a system in contact with reservoir supplying

energy, mass, and so forth. Or, we may consider the open subsystem of a closed

thermodynamic system in equilibrium.

Statistical thermodynamics is meant to be a loose generic term which includes a

number of theories that can be classified partly according to the type of probability

distribution considered, and partly according to the detail in which the statistical

information is utilized.

We shall assume that either the values of the thermodynamic quantities observed at

successive instances of time are independent random variables or that they form Markov

chains. (The probability distribution at one instant determines the probability at later

instants.) We shall refer to these two theories by the symbols I and M.

From another point of view, we shall distinguish between theories which establish

relations involving the first, the second, or the higher moments of the distribution.

This is summarized in the following table.

First Moment Second Moment Higher Moments

I Il 12 Ic

M Ml M2

Establishing relations among the first moments of the probability distribution leads

to phenomenological theories: II is thermostatics, Ml irreversible thermodynamics.

The higher moments can be obtained from the canonical distributions; hence the nota-

tion Ic.
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We note that the canonical distributions form the connecting link between the present

method, and that of statistical mechanics. The reduction of the theory to molecular

quantities is within the purview of statistical mechanics.

The second moments of the distribution are already correctly given by means of

the gaussian approximation to the canonical distribution. Hence the special role of the

second column in our table.

In Section XIX-B we report on work that aims at the systematic development of Il.

Another work on Ic has been started. The Gaussian theory, 12, is a special case which

is of no great interest if a canonical theory is available.

Two papers which can be classified as M2 theories were completed before the

project started (1, 2).

The major goal of the project is to establish an Me theory, i.e., a canonical dis-

tribution within the realm of irreversible processes. It is believed that such a develop-

ment would open up the possibility of new applications.
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B. GENERALIZED PHASE RULE AND SUPERFLUIDITY

According to recent precision measurements (1) the specific heat of liquid helium

exhibits a logarithmic singularity at the X-point. This result does not fit into the well-

known Ehrenfest classification of phase transitions of higher order (2). Moreover,

viscosity measurements (3) seem to indicate a singularity that is inconsistent with the

assumption of a second-order transition.

Originally, Ehrenfest proposed the idea of higher-order transitions to describe an

experimental situation in conflict with the phase rule.

The purpose of this report is to attack the problem from a more fundamental point

of view. We shall show that Gibbs' theory of thermodynamic stability can be sharpened

and that it leads to a modified phase rule which includes the observed X-point singular-

ities (4).

The main point of the argument is the redefinition of the concept of phase so that it

will include a statement of its symmetry properties.
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A homogeneous phase can be formally defined by means of the fundamental equation

U = U (Q1, Q2' * Qc+2 )  (1)

where U is the internal energy, and the Qk represents the other extensive parameters:

the entropy S, the volume V, and the mole numbers of the c independent components.

The new feature is the subscript Y which specifies the symmetry of the phase. For a

crystal, identifies the space group. For an isotropic fluid, it refers to the full linear

group of translations and rotations.

One of the parameters in Eq. 1, say Qc+2' is taken to determine the size of the

system. The c + 1 variables, qk = Qk/Qc+2' specify the intrinsic properties. We say

that the system has variance 61 = c + 1.

Generally speaking, Eq. 1 does not always satisfy the requirements of stability,

and the system may break up into a number of homogeneous phases. The intensive

parameters (pressure P, temperature T, and chemical potentials [i) are constant

throughout the heterogeneous system.

If we compare two coexisting phases, the following situations may occur:

qk identical distinct

identical single phase liquid-vapor

distinct twin phases polymorphic phases

Of the three two-phase situations, the case of identical qk and distinct T is the new

feature added to the classical theory. It arises if two phases are energetically identi-

cal and transform into each other by means of an operation such as reflection or inver-

sion. Adapting well-known terminology from crystallography, we speak of twin phases.

Domains of opposite polarization in ferromagnetism and ferroelectricity can also be

considered as twin phases.

The occurrence of twin phases becomes important in connection with critical

phenomena. A critical point is defined as "a state in which two phases (the conjugate

phases) become identical."

It can be shown (4) that critical points have a singular character and that such

thermodynamic coefficients as C p, a, and KT (specific heat, expansion coefficient, and

compressibility) become infinite.

It can be shown, moreover, that the number of degrees of freedom of the critical

points is

6 =c - 1+ 0- (2)
2

where a- is a symmetry number that is equal to 1, if the conjugate phases are twin
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phases, and zero otherwise.

For the ordinary liquid-vapor critical point, c = 1, a- = 0, and 62 = 0; that is, we

have an isolated critical point.

The X-points of one-component systems are obtained for c = 1, a- = 1, 62 = 1. We

have a X-line; that is, a transition temperature T o is obtained for an entire range of

pressures.

It is easily seen that the ideas outlined provide a satisfactory scheme for the X-

transitions in crystals.

The case of liquid helium calls for some special remarks. Thermodynamically,

the helium k-point is in no way different from the X-transitions in solids. The fore-

going theory applies if we assume a- = 1 for helium. This means that the superfluid

state of helium should exist in two twin modifications which are energetically equivalent

(i.e., with the same qk) and which transform into each other by means of a symmetry

operation such as reflection or inversion.

This conclusion is surprising and not compatible with any of the microscopic models

suggested, thus far, for helium. The problem could be accepted as solved only if a

wave function with the lower symmetry were actually constructed. Obviously, this

calls for much more powerful methods than those used in the present phenomenological

argument.

A detailed presentation of this work is being prepared for publication.
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