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A. ATOMIC-BEAM LIGHT SOURCES

Studies of nuclear structure based on the nuclear perturbation of atomic energy

levels may be divided into two classes; one class employs microwave techniques to

measure the hyperfine structures directly, the other uses optical techniques in which

the desired structures are inferred from differences in radiated optical frequencies.

This report is concerned with possible improvements in the optical techniques which

give promise of becoming an important supplement to the currently popular microwave-

absorption experiments.

In conventional optical experiments, the detail of the hyperfine structure is limited

both by the Doppler broadening of the radiated line and the resolving power of the appa-

ratus. This note concerns the first problem: the reduction of the Doppler broadening

of spectral lines radiated from a vapor. It should be pointed out that even if it proves

difficult to push the resolving power of interferometers as far as might be desirable

for the analysis of some very sharp lines, nevertheless the magnetic-scanning tech-

niques developed in the M. I. T. Magnet Laboratory can be used to achieve a resolving

power which is limited only by the width of the lines that are radiated or absorbed by a

beam of atoms.

An atomic-beam light source is placed in a magnetic field, and the light which it

radiates is then passed through an atomic beam absorber. The value of the scanning

field for which the radiated frequencies are absorbed by the normal unperturbed atom

can be used to calculate the frequency differences not only between the hyperfine com-

ponents of a single atom, but also between lines radiated by various isotopes. An

apparatus for this purpose is being built and will be reported on later. For certain

lines, effective resolving powers of the order of 108 , or more, seem possible.

In Fig. V-1 the Doppler width of lines radiated at room temperature by atoms with

mass numbers in the range of 25 to 200 are plotted as a function of frequency or wave-

length. It will be seen that resolving powers in the vicinity of 106 are required to

match the Doppler widths. The ratio of the Doppler widths to the classical widths of

allowed electric dipole radiation is indicated by the straight lines and the scale on the

right. It will be seen that the Doppler widths range from 15 to 150 times the natural

widths, and therefore that resolving powers from 107 to 109 would be required to extract

all the information about nuclear structures contained in these lines. For some for-

bidden lines, even greater resolving powers would be needed. Since even this proce-

dure will not give the detail that can be obtained on ground states with microwave
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Fig. V-1. Chart showing Doppler and classical natural linewidths of spectral
lines radiated from atoms of mass number A at room temperature.

measurements, it seems important to extend the observations to other energy levels,

particularly to the study of isotope shift and nuclear-charge distribution.

While the use of atomic beams to reduce Doppler width is an old story (1), there

seems to be no thorough discussion of the main drawback of atomic-beam light sources,

that is , of their low intensity. To increase the light intensity coming from a given

surface area in a specified solid angle, we may either increase the depth to

which radiating atoms are present (up to the point where self-absorption of the center

of the line broadens it) or increase the density of atoms in a small depth. Both of these

methods are useful for different spectral lines and different optical instruments.

A system of beams for a deep source and for an absorption cell is shown in Fig. V-2

and Fig. V-3. In the lamp shown in Fig. V-2 a heated mercury container is thermally

insulated from the refrigerated walls of a system of flat narrow passages. Quartz

lamps illuminate the beam emerging from the slits. The absorbed and re-emitted

resonance radiation is observed perpendicular to the aperture at A. A 1/200 degree

of collimation is attempted. The construction of absorber and emitter are similar, in

that thin flat mica spacers 0. 001 inch by 1 inch by 1 inch are held apart by stainless



APERTURE FOR LIGHT BEAM WITH
REDUCED DOPPLER WIDTH

ATOMIC BEAM IS EXCITED BY RESONANCE
RADIATION FROM THE SIDES

REFRIGERATED
SECTION

HEATED MERCURY
CONTAINER -

PREVENT CLOGGING

STAINLESS STEEL

.OO001 MICA

0.005 STAINLESS STEEL

COPPER BAFFLE

" ALTERNATE MICA AND STAINLESS
STEEL -ONE STACK

,I REFRIGERATED SLITS "F"
THERMAL INSULATION FORM ATOMIC BEAMS

Fig. V-2. Schematic diagram and photograph of atomic-beam resonance lamp.
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Fig. V-3. Two views of the atomic -beam absorption cell, partly assembled.
Four intersecting beams are used. The light to be absorbed passes
axially through the central hole.

steel pieces 0. 005 inch by 0. 25 inch by 1 inch. Baffles sop up most of the transversely

moving mercury before it reaches the narrow collimating slots. It is hoped to attain

densities in the useful portions of the beams of the order of 109 and to keep the appa-

ratus in operation for many hours.

In applications which do not require a great depth of beam it is necessary to raise

the atomic density to as high a value as possible. A simple argument, given below,

leads to a useful conclusion. The maximum density of atoms in a beam at a distance

r from an oven hole of radius R << r is proportional to the angle of collimation 4 = Ro/r,
and inversely proportional to r.

N (1)r 28 rrr r

Here w-2 is the atomic collision cross section. The density of atoms in the oven should

be such that the mean free path of atoms in the oven is comparable to R . This expres-

sion is only intended as an order-of-magnitude guide. For = 1/50, r = 3 X 108 cm,

r = 10 cm, we find that nr = 10 11/cm3 , a number slightly smaller than the vapor pressure

of mercury at -25*C. To prevent clogging in a single beam of the kind that is envisioned,

a construction like that shown in Fig. V-4 may be used.

_ - - -- de ~cr~r~- --_ _~ __~lfY
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Fig. V-5. Definition of symbols: R is that distance from the oven opening
at which LR = 10R; no is the number of atoms/cc in the oven;

L is the mean free path of atoms in the oven.

The argument leading to Eq. 1 is as follows. For a sufficiently small hole in an

oven, the number of atoms escaping per second is simply the number that would have

struck the area of the hole when it was closed.

N = n VTR2/4 atoms/sec (2)

no = number of atoms/cc in the oven

V = mean velocity of atoms in the oven

R = radius of the circular hole in the oven
o

Knudsen (2) has shown experimentally that Eq. 2 is satisfied for the range of pressures

in which the mean free path in the oven Lo is greater than 10 R . As the oven pressure0 0
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is increased, the rate of efflux increases by a factor of 2 over that predicted in Eq. 2

as Lo approaches Ro. Finally, as the pressure is further increased to values of

Lo = Ro/10, the rate of efflux is still approximately twice that predicted by Eq. 2. We

neglect this small variation, and assume that Eq. 2 is applicable to the ranges of oven

pressures and apertures that are of interest.

In the range of oven pressures required for high-intensity beams, we shall assume

Lo < Ro, and we define R as the distance from the aperture at which collisions may

be neglected, which is the point at which LR = 10 R. (See Fig. V-5.) The approximate

expressions for LR and Lo are

1
L R 2- 10R (3)

nR T

1 (4)
o 2 (4)

n 7wrG-
o

Assuming that for r = R we already have a transport velocity of the order of the mean

velocity in the oven, and a more or less uniform distribution over a hemisphere, we

may set

N =n V TR /4 = n 2wrZ
O O o r

n R 2

nr = (5)

and, therefore, from Eq. 3 and Eq. 4, we obtain

LR 10R no 0 R (
L L R

o o R

R
1=R 0' L0 (6)o= L

In order to check the validity of our assumptions (the assumption for r > R collisions

may be neglected), approximate calculations of the rate at which atoms leave a cylinder

of radius R and length r - R through the end face, and through the sides as the result

of collisions, were undertaken, These calculations indicate that if factors of the order

of 2 are not important, then the value for R given in Eq. 6 may be adopted.

The result follows immediately if we define an effective angle of collimation ' as

R/(r-R), or, since R << r, as $' = R/r. We have, from Eq. 5 and Eq. 6,
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(7)

For maximum beam intensity, r should be small, and, therefore, the pressure

should be low enough so that R R = L . Equation 7 then reduces to the desired

expression (Eq. 1).

An apparatus is being built to test this expression. It is hoped to extend the inves-

tigation presently to include the shaped nozzles suggested by Kantrowitz and Grey (3)

and tested by Kistiakowsky and Slichter (4).

F. Bitter
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B. MULTIPLE QUANTUM TRANSITIONS IN MAGNETIC-MOMENT INTERACTIONS

The following report is a summary of a paper that is being prepared for submission

for publication.

Transitions between two neighboring Zeeman levels induced upon a system by a

steady magnetic field are commonly produced with an additional rf field of a frequency

equal to this separation. Such transitions, however, have also been observed when the

radio frequency equals one-half, one-third, one-fourth, and so on, of this same energy

separation, and explanations for such observations have been made (1, 2, 3).

Among other things, our own investigations show the following: All of these reso-

nances are deduced from classical theory, which gives a very good approximation to

the complete time-dependent behavior of a Larmor system in a general rf field of

one frequency. The experimental effect of the higher-order resonances may be as

large as that of the first-order resonance. Moreover, once the classical behavior of
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the system is known, the quantum mechanical result can be written immediately, and

be easily evaluated.

1. Classical Formulation of the Problem

Consider a Larmor system, which is governed by the familiar equations of motion:

d - .

dtdt J =y J XX= J X H

where J is the total angular momentum; M is the total magnetic field, which may be

time-dependent; y is the gyromagnetic ratio; and H = y M.
It is convenient to employ the well-known procedure (4) of viewing J in a rotating

coordinate system specified by w(t). The equations of motion become

[dJ]
o= JX(H+w)= JXH

dt e

[dJ]
where - o is the rate of change of J relative to the rotating system, and H (the

dt

effective magnetic field in the rotating frame) = H + w.

2. Classical Solution of Particular Problems

a. Stationary magnetic field: H = H k, - H 0o dt o

For w = -H k, J is at rest, or J precesses counterclockwise about the z-axis

viewed from positive z to negative z. This motion may be written symbolically in

terms of a classical rotation operator, Rz(0), which, acting on a space vector, rotates

that space vector about the z-axis by an angle, 0. Thus,

J(t) = Rz(-Hot) J(0)

b. Stationary magnetic field along the z -axis and rotating field

in the xy-plane: H = H k + R (-2't) H 2 i (See ref. 4.)

By setting o = -w' k, or, equivalently, by applying R (C't) to all vectors, we find

H e = (H - ') k + H2 i

Since the effective field is now stationary, the results of section a can be applied

directly, to give

J(t) = Rz(-w't) RH (-H't) (O)
e
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where

H' = [(Ho w) 2 + H] 1/

tanO - H -
0

0 = angle between He and k.

In other words, there is precession of J about He and precession of He about the

z-axis. When w' = Ho, Jz changes rapidly to give a resonance. The time, T, for a

complete cycle in Jz is

S2Tr
T =

H 2

c. Stationary field plus sinusoidal field along the z -axis and rotating field

in the xy-plane: H = Ho0 k - H 1 cos(w't) k + Rz(-w't) H2 i

By suitable rotation about the z-axis, the term -H 1 cos(w't)k can be eliminated

from the effective magnetic field. In the new frame, the field in the xy-plane rotates

with an angular velocity that is not uniform. This field can be decomposed by Fourier

analysis into an infinite sum of fields, each rotating with a different angular velocity

that is always an integral multiple of w'. Thus there will appear fields rotating at the

frequencies w', 2w', 30', 4w', and so forth. Each field can produce a resonance if its

frequency of rotation is near the Larmor frequency, H o . Thus there will be resonances

for w' = H ', 2 ' = H , 3w' = H , and so forth.

First let w = H 1 cos(w't)k, or, equivalently, apply to all vectors Rz(a), where

-H
a -= sin(w't)

Then

He = Hok + R (a) R (-o't) H 2 i

oo

= H k + DR Rz(nw' t) H i

n=-oo

It can be shown that

S(H (n+l) (n+1)

n \Z'/ (n+l)!
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D (n-) >+1-n 2W' (n-1)!

Section b shows that the effect of a rotating field is appreciable if and only if the
frequency of that rotation is near the Larmor frequency, H . Thus, if we now assume

0
that n' = Ho, then He can be written approximately as

H = Hok + R z(-nw't) D_n H i

This magnetic field has the same form as that with which section b begins, with
w't replaced by nw't, and Hz replaced by D_nH2. Thus the results of that section can
be taken over directly, if the effect of the rotation Rz(a) is included. Hence,

J(t)= R (-nw't) R (-a) R - (-H' t) J(0)
z z H nee

where

H' = (Ho - nw) 2 + (D H 2 )2
n -n

H
tanO = Dn -n H - w'

0

on = angle between Hee and k

As before, the time for a complete cycle in Jz near a resonance of order n is

2Tr

n D H 2-n 2

Thus for this special case, the classical theory predicts resonances for nw' = Ho,
where n is any positive integer.

Many magnetic-resonance experiments measure the extent to which magnetic-
moment orientation is destroyed. Such destruction occurs in the first-order resonance
when To becomes smaller than the relaxation time of the system. Larger values of
H2 do not increase the height of the resonance. Accordingly, if T becomes smaller
than the relaxation time of the system, the first n resonances should appear with equal
heights.

d. General case: steady field and arbitrary rf fields of one frequency

The general case exhibits multiple resonances classically, but it will not be dis-
cussed here.



(V. NUCLEAR MAGNETIC RESONANCE)

3. Quantum Mechanical Formulation of the Problem

Once a classical solution is obtained, as in the examples above, the quantum mechan-

ical solution can be written immediately, and yields the same behavior as the classical.

R. H. Kohler
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