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RESEARCH OBJECTIVES

Under this heading we shall combine the noise work which heretofore has been
reported under the titles "Microwave Electronics" and "Semiconductor Noise." The
major reasons for the change stem from the unifying directions in which the research
has led us. The unifying concepts that we have thus far encountered originate from the
general terminal description of noisy linear networks, and the discovery of significant
invariant and minimal expressions combining noise and gain in such systems. The

properties of the eigenvalues of the characteristic noise matrix N = - EE(Z + Z )-

and their significance as regards available power, noise performance (noise measure),
and the canonic form of noisy linear networks (see Section XIV-B) suggest a connection
with irreversible thermodynamics. (See Quarterly Progress Reports, Jan. 15, 1956,
p. 124; April 15, 1956, p. 90; July 15, 1956, p. 6 1 .) However, the systems normally
described by active linear noisy network models may actually be far from thermal equi-
librium, and the present state of irreversible thermodynamics presumably does not
include such cases. Still, the similarity of the matrix formalism is inescapable, and
in the future we hope to establish the fact that our work is either a part of, or a logical
extension of, the area of nonequilibrium thermodynamics. Collaterally, in view of the
apparently nonequilibrium nature of the "gain" process, it is possible that intimate
relations between gain and noise will be forthcoming. This possibility is also suggested
by the noise measure concept itself, and by its specific interpretation in the microwave
tube case. The molecular amplifier class of devices, and possibly the transistor under
low bias conditions, may be particularly profitable examples which will later help to
clarify the foregoing ideas.

R. B. Adler

A. AN EXTENSION OF THE NOISE FIGURE DEFINITION

In the course of extending our previous general studies (1, 2) of noise performance

of linear amplifiers, we were led to generalize the definitions of "available gain" G and

"noise figure" F beyond their original meanings (3). The need arises from situations

involving negative resistance, and stems from difficulties in such cases with the usual

notion of available power. An extension of this concept is required.

Normally, the available power P of a source is defined as
s

Pav the greatest power which can be drawn from the source by (1)
s arbitrary variation of its terminal current (or voltage).

If the Th6venin representation of the source has rms open-circuit voltage E s and
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(1) (2) (2)
OUT IN OUT

I

Es F ,G F2 ,G2  RL

F, G

Fig. XIV-1. Two amplifiers in cascade. Rs, RL > 0.

internal impedance Z s , with R s = Re(Zs) > 0, definition 1 leads to

[ 2

P av s > O for R > 0 (2)

which is also a stationary value (extremum) of the power output regarded as a function

of the complex terminal current. Moreover, the available power (Eq. 2) can actually

be delivered to the (passive) load Z .

When Rs < 0, however, definition 1 leads to

Pavs o for R s <0 (3)

since this is indeed the greatest power obtainable from such a source, and is achievable

by loading it with the (passive) impedance, -Z s . Observe that result 3 is neither a

stationary value nor extremum of the power output as a function of terminal current.

The singular value and failure of the extremal property in Eq. 3 make definition 1

unsatisfactory in the negative resistance case. The following problem of noise figure

for a cascade of two amplifiers (Fig. XIV-1) focuses attention clearly upon some of the

details that support this statement.

In the neighborhood Af of some frequency f, the first stage in Fig. XIV-1 has a

noise figure F l and an available gain G 1 . The second stage has a noise figure F 2 and

an available gain G 2 . The noise figure of the cascade is, then, presumably given by

the well-known cascading formula

F -1
F = F 1 

+  G (4)
1

(1)Suppose, however, that the first amplifier has a negative output resistance Rout'

whereas the second amplifier has positive input and output resistances R ( 2) and R(2)
((2) 1i 

out

The closer the value of R2) to I R ( )  the higher the transducer gain of the first stage.in out t
(The transducer gain is defined as the ratio of the actual power delivered at the output

to the available power from the source.) Indeed, the condition R = R ( 1 )out would lead
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to infinite gain and instability, and, therefore, we assume R! 2 ) R ( ) I in Fig. XIV-1.

Thus the available gain G of the over-all amplifier is perfectly well defined in terms of

the usual definition 1 of available power.

P
Pav outG = t (5)
Pav s

Similarly the noise figure F of the over-all amplifier is equally well defined by the gen-

eral relation

avl out
F = I + GkT (6)

GkTAf

where Nay I out is the noise power available at the output terminals in the frequency band

Af, when no noise is introduced by the source. It becomes clear, by visualizing the

noise voltages (not shown in Fig. XIV-1) which characterize the noise of each amplifier,

and by noting the condition R.Z ) iR ( 1) that N is finite. So also is GkTAf, which
in out av out

is the power available at the output caused only by the noise power kTAf available from

the source resistance at temperature T.

Now, if we try to apply the cascading formula 4, we find that we are in trouble.

Indeed, the available gain G 1 of the first stage is infinite by definitions 5, 3, and 2; and

thus, according to a cursory inspection of formula 4, the second stage does not seem to

contribute to the over-all noise figure. That this conclusion is incorrect physically

follows from a direct consideration of the contributions of the noise generators of the

individual amplifiers, in the manner which would be used to obtain the over-all system

noise figure (Eq. 6, and so on). A more careful examination of Eq. 4, in this case,

reveals the following additional difficulties connected with the fact that R1) < 0:

(a) Noise figure F 1 is indeterminate when calculated from Eq. 6, because Nay I out=

according to definitions 1 and 3, and G 1 = oo.

(b) Noise figure F 2 = co by Eq. 6. This occurs because G = 0, on the basis of def-

initions 3, 2, and 5. Thus the term (F 2 - 1)/G l in Eq. 4 is actually indeterminate also,

which makes F in Eq. 4 entirely indeterminate.

(c) The use of kTAf in Eq. 6 for computing F 2 , in this case, requires some com-

ment, because R ( 1) < 0 does not represent a resistance at thermal equilibrium temper-
out

ature T, and the "available thermal noise power" kTAf has no clear physical meaning

under the circumstances.

We shall now propose a new concept called the "exchangeable power," of a source, in

terms of which an"exchangeable power gain" and a new noise figure can be defined. These

new definitions remove all of the foregoing difficulties, and always reduce to the familiar
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ones whenever the latter apply.

The exchangeable power Pe of a source is defined as

P el the stationary value (extremum) of the power output from the source,
s  obtained by arbitrary variation of the terminal current (or voltage).

In terms of the Thevenin representation of the source (Es, Zs),

IE I2
Pes - 4Rs for R * 0 (7)

Observe that Pe s reduces to the conventional available power when Rs > 0. When

R s < 0, the exchangeable power is negative. As can be confirmed easily, the exchange-
able power is, in this case, the maximum power that can be pushed into the "source,"
achievable by connecting the (nonpassive) impedance Z to the source terminals. Thes
negative sign of the exchangeable power then conveniently underscores the fact that here
we are speaking about a power extremum corresponding to a flow of power into, rather
than from, the source.

The introduction of exchangeable power suggests the definition of a "ratio of exchange-
able powers," the exchangeable power gain G .e

Pel out
Ge Pe (8)

The exchangeable power gain is the ratio of the exchangeable power at the output ter-
minals of a network to the exchangeable power of the source connected to the input. It
reduces to the conventional available power gain if both the output resistance and the
source resistance are positive. If either one of these resistances is negative, G < 0.

e
If both source and output resistance are negative, Ge > 0.

We can now extend the definition of the noise figure on the basis of exchangeable
power. Let

Nelout

Fe G kTAf (9)

where Ne out is the exchangeable noise power at the output terminals with no noise from

the source, and Ge is the exchangeable power gain of the system. The magnitude of the
exchangeable noise power of the source is arbitrarily set equal to the standard kTAf,
simply for normalization purposes. It should be noted that (Fe - 1) < 0 only when the
source resistance is negative: (Fe - 1) > 0 in all other cases.

We can now confirm that the cascading formula 4 has been extended to include all
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cases, provided F and G are reinterpreted as F e and G e . We have

N N(1) G +N2) (10)
eout e out e eout

G = G eG (11)

and thus

N N() G + N ( 2 )

F 1 out 1 + out out (12)
e Ge kTAf G e G kTAf

e el e2

or

F -1
e2

F =F +
e el G

el

The result (Eq. 12) differs from Eq. 4 only when the negative output resistance occurs

somewhere in the cascade. Aside from the use of the generalization in such situations,

we find it necessary for a careful treatment of the general noise theory of linear ampli-

fiers.

[This report is scheduled for publication in the Correspondence columns of the

Proceedings of the IRE.]

H. A. Haus, R. B. Adler
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B. CANONICAL FORM OF A NOISY LINEAR n TERMINAL-PAIR NETWORK

In previous work (1, 2) a characteristic noise matrix N was associated at a particular

frequency with a noisy linear network. If the network has the impedance matrix Z and

the column matrix of open-circuit noise voltages E, the characteristic noise matrix has

the form

N = EEf (Z + Z) -  (1)
2

where the dagger denotes conjugate transpose.

Consider a lossless imbedding (Fig. XIV-2) of the n terminal-pair network in a
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2n terminal-pair, lossless network, so that a new n terminal-pair network with the

column matrix E' and the impedance matrix Z' is formed. The transformations of

EE and (Z + Z ) obey the law

E'E'f = Q EE Qt (2)

(Z' + Z 't) = Q(Z + Zt)Qt (3)

where Q is a matrix of the nth order. Q can, in fact, be chosen quite arbitrarily by

making a proper choice of the lossless imbedding network (1, 2).

One consequence of transformations 2 and 3 is that the eigenvalues of N stay invar-

iant under lossless imbedding (1, 2), because

N' = 1 E'E' Z' + Zt)-1 = Q EE (Z + z) 1 Q-l (4)

represents a similarity transformation of N. Another consequence of transformations

2 and 3 will now be considered.

Choose Q, and accordingly the imbedding network, so that both EEt and Z + Zt are

diagonalized simultaneously. Since Q can be chosen arbitrarily, the simultaneous

diagonalization is possible by virtue of the positive definite character of EE and the

Hermitian character of Z + Z . One can, in addition, transform EEt into the identity

matrix I.

Once such a diagonalization is accomplished, we have

E'E = I

and

Z' = diag (R, R 2 .. , Rn + Zo

(I I I VOLT

LOSSLESS (1) R,
o(k) IMBEDDING NOISY

NETWORK NETWORK

I VOLT

-- (2) Rk

(k) LOSSLESS

SERIES

NETWORK IVOLT
-Z.

(n) (3) R,

Fig. XIV-2. Lossless imbedding Fig. XIV-3. Canonical form of a noisy network.
of a noisy network. Voltage sources are uncorrelated

and given in terms of rms values.
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where Z fulfills the condition

z +z =0
o o

This means that Z is the matrix of a lossless network.

A series connection of the network E', Z' with the lossless n terminal-pair network

Z 0 (Fig. XIV-2) leads to the network E", Z", where

E"E " t = E'E ' f = I

and

Z" = diag (R 1 , R 2 ... Rn)

Thus, the two operations shown in Fig. XIV-2 reduce every noisy n terminal-pair net-

work to the canonical form indicated in Fig. XIV-3. The resistances can be either

positive or negative, depending upon the original network. The noise generators are

all of unit rms voltage and uncorrelated. The resistances R 1 to Rn can be found directly

from the eigenvalues of the N matrix. Indeed, the transformed N' matrix has the eigen-

values 1/4R 1, 1/4R2, . . ., 1/4Rn , which are also the eigenvalues of N.

The preceding decomposition of a noisy network into its canonical form also proves

a converse theorem.

Theorem. Any linear noisy n terminal-pair network can be represented by a can-

onical network imbedded in an appropriate lossless network.

Indeed, we obtain the original network of Fig. XIV-2 by an imbedding of its canon-

ical form (Fig. XIV-3) in the inverse of the lossless network employed in Fig. XIV-Z.

The foregoing development gives a new network interpretation of the eigenvalues of N.

H. A. Haus, R. B. Adler
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