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We investigate the creation mechanism of quantum accelerator modes which are attributed to the existence
of the stability islands in an underlying pseudoclassical phase space of the quantum delta-kicked accelerator.
Quantum accelerator modes can be created by exposing a Bose-Einstein condensate to a pulsed standing light

wave. We show that constructive interference between momentum states populated by the pulsed light deter-
mines the stability island’s existence in the underlying pseudoclassical phase space. We generalize this inter-
ference model to incorporate higher-order accelerator modes, showing that they are generated if the rephasing
occurs after multiple pulses. The model is extended to predict the momentum structure of the quantum
accelerator modes close to higher-order quantum resonances. These predictions are in good agreement with our

experimental observations.
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I. INTRODUCTION

The delta-kicked accelerator has been widely used in
studying aspects of the transition to chaos in classical and
quantum systems [ 1]. The experimental study of the quantum
delta-kicked accelerator (QDKA) has been possible due to
the existence of atom cooling and trapping techniques. Ex-
perimentally, the QDKA was realized by exposing a sample
of laser-cooled atoms to a pulsed off-resonant standing wave
of light in the direction of gravity [2]. The most striking
feature of this experiment was the observation of quantum
accelerator modes (QAMs) which are characterized by a lin-
ear momentum gain with pulse number for a component of
the atomic ensemble. The modes appear close to quantum
resonance times which are integer multiples of the half-
Talbot time [2]. QAMs are important in the fields of quantum
chaos [3,4], atomic physics [5,6], and nonlinear dynamics
[7]. To more effectively use QAM modes for these studies it
is important to understand their creation mechanism.

To this end two theoretical models have been developed
to explain the observed behavior of the QDKA and particu-
larly to cast light on the creation mechanism of QAMs. Go-
dun er al. [5] developed a theory in which QAMs are created
by constructive interference between neighboring momen-
tum states (diffraction orders) populated by the standing-
wave potential (phase grating). According to this model, only
a few of the momentum states accumulate appropriate rela-
tive phases between each kick in order to maintain the con-
dition for constructive interference and give rise to the
QAMs. Although this theory’s prediction for the average mo-
mentum of the QAMs is in excellent agreement with experi-
ments, it was not possible to directly observe the QAM’s
momentum states structure due to the low-momentum reso-
lution of the experiments utilizing laser-cooled atoms.

In a different approach to understand QAMSs, Fishman,
Guarneri, and Rebuzzini (FGR) [8] developed a pseudoclas-
sical method to study the QDKA (henceforth referred to as
the e-classical model). They showed that a parameter which
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plays the role of Planck’s constant scales with the time de-
viation from a quantum resonance. Hence, for a time interval
between kicks close to a resonance, a classical treatment of
the QDKA can provide a good description. Using this ap-
proach, they attributed the QAMs to the stability islands that
appear in the underlying pseudo-classical phase space of the
QDKA. The most celebrated feature of this model was the
prediction of higher-order QAMs which was confirmed ex-
perimentally shortly thereafter [4]. This was a feature that the
interference model was unable to explain.

For experiments on cold atomic samples, the momentum
distribution was significantly wider than two recoil momen-
tum and therefore one could not observe the individual mo-
mentum states after applying standing waves. This experi-
mental limitation and the fact that the interference model
failed to predict higher-order QAMs has played in favor of
the e-classical theory such that it has become the theoretical
backbone of QDKA research.

The observation of QAMs using a Bose-Einstein conden-
sate (BEC) [9] (see Fig. 1 as an example of the QAM with
BEC) has circumvented many of these difficulties. The ad-
vantage of using a BEC over laser-cooled atoms is that the
BEC’s initial state is confined inside a minimum-uncertainty
box in the phase space. The very narrow momentum width of
a BEC allows us to observe the discreteness of the momen-
tum transferred to the atoms after each kick. These observa-
tions reveal that QAMs consist of a limited number of mo-
mentum states. Hence we are strongly motivated to revisit
the interference model and try to not only generalize it in
order to incorporate the higher-order QAMs but also estab-
lish a better understanding of the relation between the two
theoretical pictures.

The format of this paper is as follows. In Sec. II we
briefly review both of the theories. In Sec. Il A we lay out
the interference model of the QAMs. In Sec. II B we review
the e-classical theory followed by Sec. I C where we estab-
lish the relation to the interference model. This section ends
with the generalization of the interference model to the
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FIG. 1. Experimental data showing the linear momentum gain
of an accelerator mode with pulse number. The data shown were
created by horizontally stacking 40 time-of-flight images of the
condensate, each 8.9 ms after a certain number of kicks (horizontal
axis) applied to the BEC. The time interval between the kicks was
72 ps.

higher-order modes. The experimental setup and observa-
tions will be presented in Secs. III and IV.

II. THEORY

Both interference and e-classical models are reviewed in
this section. Previous theoretical studies [10] have shown
that for trapping parameters such as those in our experiment
collisional interactions play a minor role in the evolution of
QAMs. As such, we do not consider the effect of interatomic
interactions in the following analysis. This agrees well with
our experimental observations that are well described with
theories that do not include any contribution from mean-field
effects.

A. Interference model

The following analysis is based on the interference model
presented in Ref. [5]. According to this theory the laser-
cooled atoms’ de Broglie wave packet is assumed to cover
many periods of the standing wave. Through the light shift
the standing-wave potential can be written as

ﬁz Um 1X

H=o—+mg=—2¢ [1+COS(Gx)]%5(f—NpT)’ (1)

with G=2k as the grating vector, k as the light wave vector,
m is the atomic mass, and 7T is the time between pulses. The
third term allows this potential to act as a thin phase grating
with the net effect being to populate different momentum
states according to the following relation:

©

= 2 i"(ba) P (2)
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where J,, is the nth-order Bessel function of the first kind and
¢y=U,.axAt/(2%), where At is the duration of each now fi-
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nite pulse. ¢, determines the relative populations in the dif-
fraction orders after each pulse is applied. The phase accu-
mulated in the momentum state |pq>, between the N,th and
(N,+1)th pulse with respect to the phase in the state |py) is
given by

hG* 5
¢y— bo=—7—Tq +v,GTq+gGT"N,q, (3)
2m

where v; is the initial velocity of atom and ¢ is the total
number of grating recoils, (AG) that the atoms have gained
up to and including the N, th pulse. The first term in Eq. (3)
is the phase evolution due to the extra momentum ¢g. The
second and third terms are the contributions of the initial
velocity and the gravitational acceleration to the phase evo-
lution. According to Eq. (3) the phase difference between
two adjacent momentum states from N,th pulse to N,+1th
pulse is given by
hG* >
by = Dyi :ET(ZCI— 1) +v,GT + gGT'N,,. (4)

We now impose the requirement that this phase difference be
an integer multiple of 27 for the constructive interference
that leads to the creation of a QAM. The above equation can
be separated into two parts: one which contains the terms ¢
and N, (which change with time) and another term which is
determined by the initial conditions. Thus,
hG? 5
7Tq+gGT N,=2mql, (5)

hG?
v,GT- —T=2ml', (6)
2m

where [ and [’ are integers. These equations can be rear-
ranged to find p,=muv; (the initial momentum) and ¢ (the
momentum gained by the atoms participating in the accelera-
tor modes),

N, o
—__P

where y=#>G?/2mwm?g. The parameter a is defined as «
=T/T,,, where Ty, as the half Talbot time, is given by

2mm

T1/2 = th . (9)

It can also be seen from Eq. (4) that
¢q+1 - ¢q = ¢q - ¢q—1 +27a, (10)

which implies that only a narrow range of diffraction orders
around ¢ can maintain the rephasing condition. This becomes
even more profound as « increases.

B. e-classical theory and higher-order modes

In the absence of gravity, the Hamiltonian of Eq. (1) re-
duces to the delta-kicked rotor (DKR); a planar rotor sub-
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jected to external periodic driving pulses. The spacial peri-
odicity of the DKRs Hamiltonian allows one to use Bloch
theory which states that the quasimomentum S of an atom
subjected to a spatially periodic potential is conserved in
time. Here B is the fractional part of the momentum ex-
pressed in units of ZG. The term B-rotor is frequently used to
refer to rotor state of a particular quasimomentum.

In the presence of gravity the Hamiltonian of Eq. (1) loses
its periodicity and quasimomentum is no longer conserved.
In order to reduce the Hamiltonian of Eq. (1) to a DKR form,
FGR used a gauge transformation and rewrote Eq. (1) in a
freely falling frame. The result was a Hamiltonian which was
periodic in space but not in time, once again reducing the
dynamics to the SB-rotor’s dynamics. They defined a small
parameter e=2(T/T,,,—1), where [ is an integer, and found
that |€| could be assigned the role of Planck’s constant.
Therefore, for pulse separations close to resonance times,
where €— 0, the Hamiltonian is a formal quantization of the
following classical maps:

Oy =06y =Jy,
Np+1 Np Np

In., =JNP+12 sin(fy, ) = 77, (11)

where k=|€|¢;, T=2ma, and p=mgT/HG. The dimension-
less 6 and J parameters are defined as

0= Gx mod(2),

Jszle+sgn(e)[7T€+7(,8+Np77+ 7/2)], (12)

where p/(hG)=I/|e|+B. The map of Eq. (11) can have
period-p fixed points. If these fixed points are stable they
will be surrounded by islands of stability. If the atomic wave
packet has a sizable overlap with one of these islands, its
momentum will grow linearly with the number of kicks ac-
cording to the relation,

qzqo—NI,(ﬂ+2—m>. (13)

€ pe

These QAMs are classified according to their order p and
jumping index j. A fixed point (p,j) occurs at Jy=2j/p and
0,=0,. Figure 2 depicts phase-space portraits of Eq. (11). A
(1,0) stable fixed point occurs at Jo,=0 in Fig. 2(a) where
stable points with indexes (10,1) appears in Fig. 2(b). As can
be seen a stability island surrounds these stable fixed points,
(a) giving rise to a primary QAM and (b) giving rise to a
higher-order QAM.

C. Generalized interference model

In this section we show that the stability of a fixed point
in the e-classical theory is equivalent to the constructive in-
terference condition between two neighboring diffraction
states in the interference model. We start with Eq. (12) and
rewrite it in the following form:
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FIG. 2. (Color online) Phase space for the map of Eq. (11) with
(a) py=1.4 and T=29.5 us. A stable fixed point with (p,j)=(1,0)
exists at J=0 and 6=0.0887. (b) ¢,=1.4 and T=66.3 us. A stable
fixed point with (p,j)=(10,1) exists in the cell which gives rise to
a higher-order QAM.

J
|—:|E=5P+7T€+T(,8+Np7;+ 7/2), (14)
where P is the integer part of the momentum in units of #G
after the N,th pulse is applied.

As mentioned earlier the j=0 stable fixed point of this
map is at J=0 and does not change after applying any num-
ber of kicks. By definition, P in Eq. (14) is the total momen-
tum acquired by the fixed point from the pulses. This is
equivalent to the definition of g in the interference model
allowing us to replace g with P in the following discussion.
Also, since B is conserved, its value is determined by the
initial velocity via B=muv,;/hG. Substituting these results and
definitions of 7, 7, and e=AG>T/m-27l into Eq. (14) we
have,

hG? I S
—T12q - 2mgl + wl + TGvi+gGTNP+§GgT =0,

2m
(15)

Where the last term is introduced into the equation because it
is written in the freely falling frame. Hence it vanishes in the
laboratory frame, with the result that Eq. (15) in the labora-
tory frame reduces to Eq. (4) up to a constant phase factor of
wl-HG2T/2m. In other words, the existence of a stable fixed
point in the e-classical theory produces the same equation for
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FIG. 3. Schematic of the experiment. The retroreflected kicking
beam propagates in 41° relative to the vertical direction. The CO,
beams was directed into a vacuum chamber in horizontal direction
and passed through a 2X beam expander where the second lens was
mounted on a translational stage.

the formation of a QAM as the interference theory. Now
consider a general (p,j) fixed point with Jy=2j/p. Such a
point gains 277j/p momentum units for each kick, so at the
N,th pulse the total momentum of the fixed point becomes
(27 /p)N,,. This is npw the right hand side of Eq. (15). Split-
ting this equation in a similar manner to Egs. (5) and (6) of
the interference model for the time-dependent equation we
have

hG? > 27
ETZq+gGTNp=27qu+TNP. (16)

Therefore, for a QAM with indexes (p,j) the phase differ-
ence between two neighboring momentum states can only be
an integer multiple of 277 when lN[, is an integer. Hence N,
is an integer multiple of p. This concept can be generalized
even more to explain the QAMs at higher-order quantum
resonances where 7=27(a/b) with a and b as positive inte-
ger numbers. For QAMs at these resonant times the rephas-
ing happens between momentum diffraction orders that are
separated by bAG. Hence rewriting Eq. (4) for the momen-
tum states of ¢ and g—b we have

ﬁGz 2 2
= by-p=" T(2gb+b%) +0,GTb+gGTN,b. (17)

Once again separating Eq. (17) into two time dependent and
independent parts, the momentum gain of a QAM and the
initial condition required for a QAM to exist at higher-order
resonances are given by the following:
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FIG. 4. Experimental data showing the quantum accelerator
modes near quarter-Talbot time where the time interval between the
kicks was 15.8 ws. The data shown were created by horizontally
stacking 47 time-of-flight images of the condensate, each 8.9 ms
after a certain number of kicks (horizontal axis) applied to the BEC.

N, a%b
g=—"Lt-——, (18)
vyl —ab
[ 1
=|—-—1hG. 19
b <ab 2b> (19)

III. EXPERIMENTAL SETUP

A schematic of the setup for this experiment is shown in
Fig. 3 [11,12]. A standard six-beam magneto-optical trap
(MOT) configuration with 24 mW power was used to trap
about 50 X 10° atoms. These atoms were then loaded into an
optical trap created by focusing a 36 W CO, laser beam.
Forced evaporative cooling was carried out by reducing the
CO, laser beam’s power in order to created a pure conden-
sate with 45000 atoms in the 5S,,F=1, mp=0 state. The
CO, laser was then turned off to release the BEC from the
optical trap. To make the pulsing standing beam the light
used to create the MOT beams was deflected using an
acousto-optic modulator into another optical path. This light
was 6.7 GHz red detuned from 5S,,F=1—5P;,F=2 tran-
sition line of the Rb87 and was directed into the chamber at

TABLE I. Theoretical parameters for the interference model for different kicking time intervals. The
predicted and observed periodicity of the QAMs with initial momentum are given in the last two columns.

Kicking period a= alb b Ap; theory Ap; observed
Talbot 2 2 1 i i
Half-Talbot 1 1 1 hG nG
Quarter-Talbot % % 2 hG hG
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41° relative to the vertical direction. The momentum distri-
bution was measured by expanding the condensate for a con-
trolled duration, typically 9 ms, and then destructively im-
aged using an absorptive technique.

IV. EXPERIMENTAL RESULTS

As mentioned earlier the main advantage of using a BEC
to realize the QDKA is the improved momentum resolution
which allows the observation of the individual momentum
states produced by the pulses of the standing wave. There-
fore such experiments provide a direct method to examine
the validity of the interference model. Figure 1 shows a
QAM observed near the Talbot time where the time interval
between the kicks was 72 us. This figure shows that mainly
three neighboring momentum states comprise the QAM and
almost maintain their population while gaining momentum
from the kicks. According to the interference model, these
are the momentum states that can rephase at the next kick
with a higher momentum. At pulse separations near to the
quarter-Talbot time where b=2 the rephasing should happen
between momentum states with separation of bAG=2%G. In
other words momentum states with 24G separations should
be populated in the QAM. Recently we have been able to
observe QAMs near the quarter-Talbot time. Figure 4 shows
an example of such data in which the QAM appeared when
the time interval between the kicks was 15.8 us. As is
shown by the dotted lines in this figure, the rephasing hap-
pens between states with 24 G separation, in good agreement
with the prediction of the model.

Another aspect of the theory is given by Eq. (19) which
indicates a ladder structure for the initial momentum re-
quired for observing QAMs. Existence of this structure has
been observed with cold atoms [3] and BEC [9] but only for
kicking separations close to Talbot and half-Talbot times.
According to Eq. (19) this periodicity in the initial momen-
tum depends on the kicking period as Ap;,=AG/ab. To ob-
serve this periodicity a series of data were taken at Talbot,
half-Talbot and quarter Talbot times with a constant number
of kicks but variable initial momentum. The initial momen-
tum of the condensate was changed by turning off the CO,
laser and applying the kicking potential after a variable time
interval during which the BEC gained momentum under the
influence of gravity. Figure 5 shows three data sets taken at
(a) T=15.8 us, (b) T=37.1 ws, and (c) T=61 us pulse
separations for different values of the BEC’s initial momen-
tum.

The data in Fig. 5 was created by horizontally stacking 60
time-of-flight images of the condensate, each for a different
initial momentum. The theoretical predictions and the ob-
served periodicity of the momentum deduced from Fig. 5 are
summarized in Table I which indicates good agreement be-
tween the predictions of the model and experiments. The
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FIG. 5. Experimental data showing the periodicity of quantum
accelerator modes with initial momentum. The data were taken after
applying 50 kicks with a pulse interval of (a) 15.8 us, (b) 30 kicks
with 37.1 us, and (c) 10 kicks with 61 us which are close to near
quarter-Talbot, half-Talbot, and Talbot time. The larger number of
kicks at the half-Talbot and Talbot time was necessary due to the
smaller momentum transfer per pulse.

periodicity of the QAMs was deduced from the separation
between the QAMs as shown in Fig. 5.

V. SUMMARY

To summarize, we have generalized the interference
model to explain the higher-order QAMs. We have shown
that the higher-order accelerator modes are generated by the
rephasing of neighboring diffraction momentum states of the
matter wave off a standing beam after multiple pulses. Fur-
thermore, the model was extended to the QAMs at higher-
order quantum resonances by showing that they are gener-
ated by rephasing between momentum states with certain
separations set by the quantum resonance time. The relation
between this model and the pseudoclassical model was es-
tablished. This was accomplished by showing that the con-
structive interference between momentum states populated
by the pulsed light determines the stability island’s existence
in the e-classical phase space. Experimentally, quantum ac-
celerator modes were created by exposing a Bose-Einstein
condensate to a pulsed standing light wave. Using this sys-
tem quantum accelerator modes near quarter-Talbot time
were observed. These observations allowed us to validate the
interference model and its predictions for the periodicity of
the QAMSs with initial momentum of the BEC at Talbot, half-
Talbot, and quarter-Talbot time.
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