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A. STUDY OF THE MOTIONS OF TWO POLES IN THE COMPLEX FREQUENCY

PLANE BY A GRAPHICAL METHOD

In the Quarterly Progress Report of July 15, 1956, page 82, an interesting analogy

between the fixed points in the complex impedance plane (Z-plane) and two saddlepoints

in the complex frequency plane (s-plane, s = a- + jw) was pointed out. This analogy can

be extended to enclose the motions of two poles in the s-plane.

Let us study a simple example. The input impedance of a simple parallel resonance

circuit, which has an inductance L with a series resistance r, and a capacitance C

with a conductance G, is

1 s + r/L
Z(s) C (1)

s2 + (r/L + G/C) s + (I+rG)/LC

This equation can be written

1 1
Z(s) =1(2)Z(s) = sG/C + (I+rG)/LC

s + s + r/L

The positions of the poles, spl and s p , are obtained by making the denominator equal

to zero:

-s G/C - (I+rG)/LC
s = p (3)

ps + r/L
p

Equation 3 is analogous to the equation used in obtaining the fixed points Zfl and

Zf 2 in the Z-plane:

aZ +b
Z = cZf + d ad - bc = 1 (4)

To obtain an exact analogy, the coefficients in Eq. 3 have to obey the condition

ad - bc = 1. Equation 3 then transforms into

s G(L/C) 1/2 - (1+rG)/(LC)1/2

s = (5)
s p(LC)1/2 + r(C/L)1/2

In the Z-plane the positions of the fixed points are easily obtained from the posi-

tions of the isometric circles in the nonloxodromic case, when a + d is real (Quarterly

Progress Report, April 15, 1956, p. 123). Analogous conditions yield two circles with
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SFig. XIII-2. Example of pole
trajectories.

(c)

Fig. XIII-1. Graphical construction of
pole positions.

centers at -d/c = -r/L and a/c = -G/C, both having the radius I/ c = 1/(LC)l/2 = o'
that immediately specify the pole positions. See Fig. XIII-1. If the two circles intersect

(Fig. XIII-la), two complex conjugate poles are obtained, corresponding to the oscil-

lating case. If the two circles are tangent (Fig. XIII-lb), two coalescing real poles are

obtained, corresponding to the cutoff case. If, finally, the two circles are external

(Fig. XIII-1c), two real poles are obtained as the crossover points of a circle that is

orthogonal to the two circles, corresponding to the below-cutoff case. In every case, a
zero is situated in the center of one of the circles, at ro = -r/L.

In various textbooks one usually finds that the pole trajectories shown in Fig. XIII-2
are obtained from an rLC circuit by the variation of the resistance r. This figure is
immediately explained by the graphical method that has been described. With G = 0,
one circle is fixed with its center at the origin, and the other is moved along the nega-

tive cr -axis as r is varied. The trajectories are therefore the real axis and the fixed

circle.

E. F. Bolinder
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