Prof. E. A. Guillemin
Dr. P. M. Lewis II
E. F. Bolinder Dr. M. V. Cerrillo
J. C. Pinson

A. STUDY OF THE MOTIONS OF TWO POLES IN THE COMPLEX FREQUENCY PLANE BY A GRAPHICAL METHOD

In the Quarterly Progress Report of July 15, 1956, page 82, an interesting analogy between the fixed points in the complex impedance plane (Z-plane) and two saddlepoints in the complex frequency plane (s-plane, $s=\sigma+j \omega$) was pointed out. This analogy can be extended to enclose the motions of two poles in the s-plane.

Let us study a simple example. The input impedance of a simple parallel resonance circuit, which has an inductance L with a series resistance r, and a capacitance C with a conductance G, is

$$
\begin{equation*}
Z(s)=\frac{1}{C} \frac{s+r / L}{s^{2}+(r / L+G / C) s+(1+r G) / L C} \tag{1}
\end{equation*}
$$

This equation can be written

$$
\begin{equation*}
Z(s)=\frac{1}{C} \frac{1}{s+\frac{s G / C+(1+r G) / L C}{s+r / L}} \tag{2}
\end{equation*}
$$

The positions of the poles, $s_{p 1}$ and $s_{p 2}$, are obtained by making the denominator equal to zero:

$$
\begin{equation*}
s_{p}=\frac{-s_{p} G / C-(1+r G) / L C}{s_{p}+r / L} \tag{3}
\end{equation*}
$$

Equation 3 is analogous to the equation used in obtaining the fixed points $Z_{f 1}$ and $Z_{f 2}$ in the Z-plane:

$$
\begin{equation*}
Z_{f}=\frac{a Z_{f}+b}{c Z_{f}+d} ; \quad a d-b c=1 \tag{4}
\end{equation*}
$$

To obtain an exact analogy, the coefficients in Eq. 3 have to obey the condition $a d-b c=1$. Equation 3 then transforms into

$$
\begin{equation*}
s_{p}=\frac{-s_{p} G(L / C)^{1 / 2}-(1+r G) /(L C)^{1 / 2}}{s_{p}(L C)^{1 / 2}+r(C / L)^{1 / 2}} \tag{5}
\end{equation*}
$$

In the Z-plane the positions of the fixed points are easily obtained from the positions of the isometric circles in the nonloxodromic case, when a +d is real (Quarterly Progress Report, April 15, 1956, p. 123). Analogous conditions yield two circles with

(XIII. NETWORK SYNTHESIS)

Fig. XIII-1. Graphical construction of pole positions.
centers at $-\mathrm{d} / \mathrm{c}=-\mathrm{r} / \mathrm{L}$ and $\mathrm{a} / \mathrm{c}=-\mathrm{G} / \mathrm{C}$, both having the radius $1 /|\mathrm{c}|=1 /(\mathrm{LC})^{1 / 2}=\omega_{\mathrm{O}}$, that immediately specify the pole positions. See Fig. XIII-1. If the two circles intersect (Fig. XIII-la), two complex conjugate poles are obtained, corresponding to the oscillating case. If the two circles are tangent (Fig. XIII-lb), two coalescing real poles are obtained, corresponding to the cutoff case. If, finally, the two circles are external (Fig. XIII-lc), two real poles are obtained as the crossover points of a circle that is orthogonal to the two circles, corresponding to the below-cutoff case. In every case, a zero is situated in the center of one of the circles, at $\sigma_{o}=-r / L$.

In various textbooks one usually finds that the pole trajectories shown in Fig. XIII-2 are obtained from an rLC circuit by the variation of the resistance r. This figure is immediately explained by the graphical method that has been described. With $G=0$, one circle is fixed with its center at the origin, and the other is moved along the negative σ-axis as r is varied. The trajectories are therefore the real axis and the fixed circle.

E. F. Bolinder

