XIII. NETWORK SYNTHESIS

Prof. E. A. Guillemin	Dr.	Р.	М.	Lewis II	Е.	F.	Bolinder
Dr. M. V. Cerrillo					J.	С.	Pinson

A. STUDY OF THE MOTIONS OF TWO POLES IN THE COMPLEX FREQUENCY PLANE BY A GRAPHICAL METHOD

In the Quarterly Progress Report of July 15, 1956, page 82, an interesting analogy between the fixed points in the complex impedance plane (Z-plane) and two saddlepoints in the complex frequency plane (s-plane, $s = \sigma + j\omega$) was pointed out. This analogy can be extended to enclose the motions of two poles in the s-plane.

Let us study a simple example. The input impedance of a simple parallel resonance circuit, which has an inductance L with a series resistance r, and a capacitance C with a conductance G, is

$$Z(s) = \frac{1}{C} \frac{s + r/L}{s^2 + (r/L + G/C) s + (1+rG)/LC}$$
(1)

This equation can be written

$$Z(s) = \frac{1}{C} \frac{1}{s + \frac{sG/C + (1+rG)/LC}{s + r/L}}$$
(2)

The positions of the poles, s_{p1} and s_{p2} , are obtained by making the denominator equal to zero:

$$s_{p} = \frac{-s_{p}G/C - (1+rG)/LC}{s_{p} + r/L}$$
(3)

Equation 3 is analogous to the equation used in obtaining the fixed points $\bf Z_{f1}$ and $\bf Z_{f2}$ in the Z-plane:

$$Z_{f} = \frac{aZ_{f} + b}{cZ_{f} + d}$$
; ad - bc = 1 (4)

To obtain an exact analogy, the coefficients in Eq. 3 have to obey the condition ad - bc = 1. Equation 3 then transforms into

$$s_{p} = \frac{-s_{p}G(L/C)^{1/2} - (1+rG)/(LC)^{1/2}}{s_{p}(LC)^{1/2} + r(C/L)^{1/2}}$$
(5)

In the Z-plane the positions of the fixed points are easily obtained from the positions of the isometric circles in the nonloxodromic case, when a + d is real (Quarterly Progress Report, April 15, 1956, p. 123). Analogous conditions yield two circles with

Fig. XIII-1. Graphical construction of pole positions.

centers at -d/c = -r/L and a/c = -G/C, both having the radius $1/|c| = 1/(LC)^{1/2} = \omega_0$, that immediately specify the pole positions. See Fig. XIII-1. If the two circles intersect (Fig. XIII-1a), two complex conjugate poles are obtained, corresponding to the oscillating case. If the two circles are tangent (Fig. XIII-1b), two coalescing real poles are obtained, corresponding to the cutoff case. If, finally, the two circles are external (Fig. XIII-1c), two real poles are obtained as the crossover points of a circle that is orthogonal to the two circles, corresponding to the below-cutoff case. In every case, a zero is situated in the center of one of the circles, at $\sigma_0 = -r/L$.

In various textbooks one usually finds that the pole trajectories shown in Fig. XIII-2 are obtained from an rLC circuit by the variation of the resistance r. This figure is immediately explained by the graphical method that has been described. With G = 0, one circle is fixed with its center at the origin, and the other is moved along the negative σ -axis as r is varied. The trajectories are therefore the real axis and the fixed circle.

E. F. Bolinder