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A. OUTPUT DISTRIBUTIONS OF LINEAR SYSTEMS

1. From the Viewpoint of Given Autocorrelation Functions

To obtain the probability distribution functions of the output of a linear system ana-

lytically, when the input to the system is an ergodic ensemble of strictly stationary time

series, it is necessary that we have all of the autocorrelation functions of the input.

In order to show this, an input time series is denoted by f(t,w), where w is a con-

tinuous parameter, and it is assumed (1) that

f(t, ) f (t + T 1 ,) f(t + T 2 , o) . . . f(t + TV,O) v > 0, TO = 0 (1)

is absolutely integrable with respect to c. Then the vth-order autocorrelation function

of the input

T

(T•T 1 ' ) = lim T f(t,w) f(t + T . . . f(t + Tv ( ) dt (2)
T- o -T

exists for almost all members of the ensemble. Since this ensemble is ergodic, Eq. 2

is equal to the integral of Eq. 1 with respect to w over the entire w space. Hereafter,

the right side of Eq. 2 is denoted by f (T1' T )''

The output of the linear system is strictly stationary and can be expressed as

g(t, w) = K(o-) f(t - -, W) do- (3)

0

where K(o-) is the impulse response of the system. We also assume that

g(t,W) g(t + T 1 , ) ... g(t + Tr,O ) (4)

is absolutely integrable with respect to w; therefore the vth-order autocorrelation func-

tion of the output exists for almost all members of the output ensemble. The vth-order

autocorrelation function of the output is

0 0(1 "v) =  K(o-1) do-1 ... K( o-v+) d - v+ 1

X (T 1 + T (T.... +0- T
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To determine the first-order probability distribution function of the output, the
moments

av +1 g(0...,0) = K(O 1 ) do- . K(o-+1) d v+1g :v+n v+
0 0

x (o- .. 1  + )  > 0 (6)

00 T
l = K(o-) do- lim f(t - -, w) dt

0 T-T

and

a =1

are required. These moments (2) determine the characteristic function 4(4) of the out-
put distribution function in a region about t = 0, for the Taylor expansion of ((4) about
. = 0 is

00 .v
1 v

V1 (7)
v=O0

If the infinite series in Eq. 7 converges to ( L) when I i < r, where r > 0, then the
characteristic function can be determined in a region about . # 0, 1I < r, for the
Taylor expansion of t(4) about # 0 is

S h h > 0 (8)
v=0 V!

This shows that by means of analytic continuation F(4) can be determined over the entire
range of L. Having determined )(4), the probability distribution function of the output
can be obtained by the Levy formula (3) in any continuity interval of the output distribu-
tion function.

The higher-order probability distribution functions of the output can be similarly
obtained from the information contained in Eq. 5.

This analysis applies not only to linear systems but to any system in which the out-
put autocorrelation functions can be expressed in terms of the input autocorrelation

functions.

J. Y. Hayase
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2. From the Viewpoint of Distribution Functions

A time-varying statistical input to a linear system produces a statistical output.

This report gives the formulas for calculating the output distributions from the statisti-

cal properties of the input.

The original work, done by F. Lee, dealt with
x (t) y (t) discrete approximations and stationary inputs.

h () Subsequent work avoids the discrete approxima-

tions, produces exact results for classes of trans-

Fig. VII-1. Transfer system. fer functions, and is applicable to time-varying

statistical inputs.

F. Lee considered the system of Fig. VII-1,

in which a step approximation was made of the input x(t) and the transfer function h(t).

The approximate output at time t is the linear sum

N

y(t) hn xn

n=O

where

h = h(nT) - T
n

xn = x(t - nT)

Thus the output distribution is given by the formula

oo

W(y) =
o0 :

N
.. •

N
y- X h x

n=lW
h

o

X1... XN dx1 '" dxN

where W(x o , x1 ... )XN) is the

of T into the past from time

outs.

joint magnitude distribution of the input x(t) at intervals

t. This formula is valid for time-varying statistical

00
-,0
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Reasonable step approximations cannot include effects far in the past and usually

must have N large in order to get fair approximations of continuous functions.

To avoid these disadvantages of step approximations, the system transfer function

can be approximated by a linear set of continuous functions

N

h(t) an hn(t) (5)
n=0

so that the output is the linear sum

N

y(t) an xn (6)

n=0

where

0

xn = hn(o-) x(t-a-) do- (7)

Then the output distribution is

N
00 00 y - Za x

1 N n=l
W(y). W , x 1 ... xN dx . . . dx N  (8)o -00 0 ao

where the distribution W(x o , xl 1 ... ,XN) is the joint magnitude distribution at time t of

the outputs of the set of networks (hn(t)} each with the input x(t). That is, the distribu-

tion is experimentally obtained as shown in Fig. VII-2.

This procedure calculates the output distribution for a statistically time-varying

input and avoids the step approximations by

placing all of the approximation in the selection

of the constants {a}. Notice that it is not

necessary to have the set hn(t) orthogonal.

The orthogonal property is only convenient in

hi(t) X, obtaining the constants an}. By proper selec-

x (t) tion of the set {hn(t)} the convergence of the

approximation is considerably improved as

compared with the step approximation.

h N(t) XN The output distribution is obtained exactly

when either the transfer function is limited to

Fig. VII-2. Joint distribution. a linear combination of the set {hn(t)I or the
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input contains only nonzero components x n , n = 0, 1. N.

A trivial case is one in which the transfer function is known within a multiplication

constant.

h(t) = a h (t) (9)

Then the output distribution is

W(y) = W (10)
a x a

0 0 0

This result shows that when the transfer function is known, the best method of meas-

uring the input and calculating the output distribution consists of building the network

and measuring the output distribution. This simple result is due to the fact that in all

cases a physical measurement must be made or assumed. The best measurement to

make is the one that measures the quantity desired.

When it is possible to measure the joint characteristic function of the distribution

W(xo,x . '' ,XN) , simplification can be obtained. The joint characteristic function is

defined as

N+n
(u o , u 1 ... uN) ... W(xx1 ... N) exp j un x dx dx1 . dxN

-c 0 n=

(11)

Then the characteristic function of the output distribution is

s(u) = (u o ,u l ,... u  au (12)
n n

so that the output magnitude distribution is

00

W(y) = (u) exp -ju y du (13)

Thus the output distribution of a linear network is conveniently calculated as a multiple

integral when the distribution is measured, and as a single integral when the charac-

teristic function is measured.

For independent components, the characteristic function is of the form

N

4(uo, ul ... . UN )= 4 n(un) (14)

n=0

in which each 4n is measured separately at the output of the network hn(t).
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The output magnitude distribution of the linear system that has a nonstationary input

can be calculated either by approximating the input and system function as step functions

or approximating the system function as a linear combination of continuous functions.

Extensions of this theory lead to methods of calculating correlation functions and non-

linear optimum filtering.

C. S. Lorens
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B. FORMULATION OF FLOW GRAPHS

Proper formulation of a flow graph for electrical networks makes it possible to

obtain network properties in more desirable forms. This report presents a method of

flow-graph formulation, based on Ohm's law, that provides a means of making the con-

ventional network approximations of shorting out or taking out elements.

Formulation of a flow graph involves, essentially, the selection of a consistent set

of variables and the determination of the proper interrelationship. Within a given sec-

tion of an electrical network a consistent set of variables is the loop currents. The loop

current equations can be written in the form:

+ ilZ j + ... + i.Z.. + ... + i Z .= E. (1)- 1 J - n nj j

where E. is the effective independent voltage rise in the loop and the Z's are the mutual

and self-impedances. In flow-graph notation, Eq. 1 can be written in the form:

iZ iZ. E.1 ij n nj (+ - + ... + - + - = i. (2)
Z.. Z.. Z..

33 J3 33

The flow graph is then the set of nodes that represents the loop currents, each node

being multiplied by the mutual impedance and divided by the self-impedance. The flow

E E Z Zj Z + +Zj+Z

. Z Z nj

Z Zj

Z 

i

(a) (b)

Fig. VII-3. (a) General network. (b) Flow-graph formulation for i..J
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graph of the loop current i. in Fig. VII-3a is that of Fig. VII-3b.

This type of formulation is essentially Ohm's law

E.

i. - (3)
Z..

in which the effective voltage in each branch of the loop is the sum of the independent

voltage, plus the mutual impedance, multiplied by the mutual current. The formulation

places the flow graph nodes in the same geometrical relation as the corresponding loop

currents in the electrical network; therefore the flow graph retains some of the geo-

metrical properties of the network. A parallel formulation exists for node-pair voltages.

A more general formulation will be found in reference 1.

Many times there is interest in formulating the flow graph so that different electric

elements of the network can be shorted out or taken out. Then, it is convenient to have

the element appear alone in the flow graph and in such a form that the flow-graph branch

becomes zero when the electric element is shorted out or taken out.

In order to formulate a flow graph for shorting out an electric element, formulate

the element on the node-pair voltage basis and the rest of the surrounding network on

the loop-current basis, placing the datum voltage node at one end of the element. When

an element is to be taken out, formulate the element on the loop-current basis and the

surrounding network on the node-pair voltage basis.

As an example, take the flow graph of a tapped input vacuum-tube amplifier in which

the effect of shorting the cathode resistor is desired. The cathode resistor is formu-

lated with a node-pair voltage, while the remaining portion of the circuit is formulated

with loop currents (Fig. VII-4a, b, c). Note that when Rk = 0 the flow graph reduces to

a cascade graph that represents the conventional vacuum-tube amplifier.

This type of formulation, in which electric elements can be shorted out or taken out,

is important, since it leads to a solution of the flow graph in which the effect of these

elements can be separated from the rest of the solution. This separation is quite desir-

able in finding approximations, and the effect of approximations, without having to

reformulate mathematically in order to recognize the effect.

As an example of separating off the effect of Rk in the network of Fig. VII-4a, the

gain and input impedance are found directly from the flow graph in the following form:

-_R L  RKRL

e RL +rp R1(RL + rp) e.
o__ 1 1+__o = R +R + +e )1' 1 1 1 kR1 RL+r P

S1 1 k R L + rp
Rl 1 1+ L
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R R
L

-I

RL+r p

Fig. VII-4. (a) Tapped input vacuum-tube amplifier. (b) Equivalent circuit for
tapped input amplifier. (c) Flow graph of tapped input amplifier.

Application of Ohm's law, with interpretations, provides a means of formulating a

flow graph in such a way that the geometry of the network is preserved and approxima-

tions can be made in the solution without reformulation.

[The present study has been completed. It was submitted as a thesis in partial ful-

fillment of the requirements for the degree of Doctor of Science, Department of Electri-

cal Engineering, M. I. T., July 15, 1956, and will be presented in Technical Report 317.]

C. S. Lorens
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C. TIME-DOMAIN SYNTHESIS OF LINEAR SYSTEMS

A method will be presented whereby any desired impulse response, or, indeed, any

desired linear time-invariant operation, can be realized to any prescribed degree of

accuracy by a finite, lumped, active or passive network. The method seems practicable
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because it is very simple, both in conception and in the ease with which the necessary

computations and construction of apparatus can be accomplished. The method is also

useful in theoretical work, in that it provides illustrations for some concepts of signal

theory that are currently being studied. In fact, it was this theoretical work, rather

than a specific interest in network synthesis, that provided the motivation that led to the

present method.

Signal theory, per se, is the study of some of the consequences of realizing that in

all physical work we must inevitably accept a finite error. This comes about because,

ultimately, all of our measuring instruments have finite resolutions which prevent us

from distinguishing physically things that differ by less than some finite amount.

As a result, some mathematically exact concepts, as, for example, equality, do not

seem to have an operational meaning. Recognition of the existence of physical limita-

tions in accuracy should, ideally, be an integral part of the theoretical tools that we

use in studying physical phenomena. Accomplishing this recognition is a problem

studied in signal theory. For the purposes of this report, however, it is sufficient to

be willing to agree that with all physical systems we know, there is associated a finite

resolution, and that any error (i. e., difference between two things) smaller than that

resolution cannot be recognized as an error, and should, therefore, not be thought of

as one.

1. Reduction of the General Problem to an Equivalent Simpler One

We shall consider the problem of synthesizing an arbitrary given singular impulse

response, that is, an impulse response that consists only of a finite number of impulses

of finite area distributed over a finite time interval (see ref. 1). If, instead, the prob-

lem starts with the specification of an ordinary, smooth impulse response, reference 1

shows how an equivalent singular response may be obtained from the given smooth

response. Similarly, if a linear, time-invariant operation is prescribed, the methods

of reference 1 can be used to obtain the corresponding singular impulse response. As

a result, no loss of generality is incurred by considering only the synthesis of singular

impulse responses. (The reader will note that the reduction to singular responses

already involves an error. However, as is shown in reference 1, this error can be

made as small as desired; hence it can be made consistent with the resolution level of

the system.) A possible singular impulse response is shown in Fig. VII-5b.

In reference 2 it is shown in great detail that, provided the input to the sys-

tem is essentially constant within a time interval 6 seconds long (in effect, provided 5

is small compared with the period of the highest frequency of interest), the impulses of

Fig. VII-5b may be changed to the pulses of Fig. VII-5c without appreciable change in

the operation of the network, so long as the pulses have the same areas as the corre-

sponding impulses. In fact, if the width of the pulses, 6 , meets the stated requirements,



INPUT

(a) OI

(b)

(c)

(d)

(e)

AREA OF kth IMPULSE = a k

OUTPUT

= a k

Fig. VII-5. (a) Impulse response to be synthe-
sized; (b) equivalent singular impulse
response; (c,d) equivalent dispersed
responses; (e) step response corre-
sponding to (c) or (d).

Fig. VII-6. Active network whose step-function response is f(t).
(For derivation see Appendix, Sec. VII-C. 3.)

\ T t
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the pulses may have any shape whatever (so long as they have the correct net areas)

without changing the operation of the network by a distinguishable amount. Thus a

second network equivalent to that of Fig. VII-5a might have the response shown in

Fig. VII-5d. The reader will note that in choosing an appropriate finite 6 - in fact, in

admitting its existence - we again recognize and use our own limitations in the detection

of errors.

We have, then, that the number of pulses and their width can be chosen in such a

way that the original network with the smooth response and the network with the response

shown in Fig. VII-5c or d are equivalent, in the sense that the difference between their

outputs (for any input whose highest frequency does not exceed that for which the system

is designed) will be smaller than the limit of resolution. Thus, from a physical point

of view, the synthesis of the network with the response shown in Fig. VII-Sc or d is

equivalent to the synthesis of the prescribed smooth response from which the singular

response of Fig. VII-5b was derived.

All arguments that require the acceptance of error have appeared in this section.

From now on, the discussion is again exact.

2. The Synthesis Procedure

We shall now synthesize the reduced response of Fig. VII-5c. The crux of the

method lies in noting that the only important parameters of the reduced response are

the areas of its pulses, and their location; the shapes of the pulses is irrelevant. Since

we cannot prevent ourselves from being conscious of pulse shapes so long as we look

at the impulse response itself, we shall instead consider its time integral, the step

function response of the reduced network. By this means, the only relevant data, the

pulse areas and positions, are placed in evidence as points such as those shown in

Fig. VII-5e. The curve between the points is shown dotted, since it is irrelevant, and

the step response is assumed to remain constant for t > T, since the impulse response

was assumed to last over only a finite time T. Our whole synthesis problem is now

reduced simply to finding a curve, any curve, which passes through the n specified

points for t < T, and becomes asymptotically constant thereafter.

This is a very simple problem, and the number of possible solutions is enormous.

Since so many functions will fit the requirements, we have the freedom of selecting only

those that meet the two following requirements:

1. The interpolating functions must be easily synthesizable as networks (for

example, choose functions that are step responses of known networks); and

2. the undetermined coefficients of the interpolating functions must be easy to cal-

culate.

Even with these requirements, the number of functions that can perform as desired

is extremely large, and we are still left with the choice of whether the resulting network
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shall be active or passive, or what form it shall have. In general, however, it is easier
to meet requirement 2 when active synthesis is employed, since, in that case, each
undetermined coefficient can be adjusted independently of all the others.

As an example, we shall derive an active network whose behavior will be equivalent
to that of the arbitrary impulse response shown in Fig. VII-5b. Our problem is to find
a function f(t), corresponding to the step response of a known active network, which will
pass through the chosen n points of s(t), and be substantially constant for t > T. A
possible function is

f(t) = A + (c + c 2 t + ... + cntn-1) e-at

where a is chosen so that f(t) A for t > T, for example, a = 5/T. Since the only
remaining requirement is that

f(t i ) = s(t i ) (i = 1,2 . . . n)

where the ti are the times at which the chosen points of s(t) occur, our problem reduces
to solving the set of simultaneous equations

at.
c 1 + c 2ti + c 3 t + ... +c tn-1 = [s(ti) - A]e 1n)

for the c's. These equations always have a solution, because the system determinant

is just the Van der Monde determinant that does not vanish so long as all the t. are dif-
1

ferent, as they are in this case. The network which realizes f(t) is shown in Fig. VII-6.
It is interesting to note that only two-element active networks are required to realize

a general impulse response. RL or RC networks will do, but not LC, since it is impos-
sible with a finite number of j-axis poles to produce an impulse response that vanishes
after a finite time. The particular procedure used in this example resembles ordinary
delay-line time-synthesis, with the significant difference that no delay line is involved.

A formal error analysis of these methods, though very important, has not yet been
made. However, because of the types of convergence involved, it is always possible to

trade number of elements for decrease in error in the final realization. The number of

elements would need to become infinite to make the error approach zero, but this

limiting situation is never necessary in practice, since zero error has no operational

meaning. There is a question, however, about the number of elements that is necessary

to attain just moderate accuracy. This has not yet been studied either in theory or in

practice, but experience with the Cerrillo delay-line synthesis indicates that excellent

results can be obtained with n of the order of 10 or less.

The simplicity of this synthesis procedure results from abandoning the attempt to

approximate whole curves, and considering, instead, a finite number of intelligently

chosen points which, by themselves, convey most of the distinguishable information
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contained in the curves.

3. Appendix

We shall show briefly how the network of Fig. VII-6 can be obtained from the step-

function response

n-1

f(t) = A + Z Ck
k=O

k -att e

Using the Laplace transform relations

ea] =sa

s +a

[tke-t] = (- 1 )k
kd k 1

ds

and the identity

dk

dsk
( 1s + aC

(_l)k k!

(s+a) k

we obtain

[f(t)] F(s) = A
Ckk!

(s+a)k+

n-I

k=O

ck

(s+a) k +

where we have written ck = k! c k.
F(s) is the desired step-function response in the frequency domain. Now the trans-

fer function H(s) of a network is defined by Eout (s) = H(s) Ein(s). When the input is a

unit step function, E. (s) = - Since the desired output is F(s), we havein s

H(s) = sF(s) = A + s +a

n-i *Sc k c s

O(s+a)k s + s + a
k=O

c)k

(s+a)k

n-1

k= 1

Clearly, the given network has this transfer function.

R. E. Wernikoff
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D. ON THE SYNTHESIS OF LINEAR SYSTEMS FOR PURE TRANSMISSION,

DELAYED TRANSMISSION, AND LINEAR PREDICTION OF SIGNALSt

0. 1 A BASIC PROBLEM IN TIME-DOMAIN SYNTHESIS OF LINEAR SYSTEMS

One of the important objectives in the synthesis of linear systems can be described

as follows:

Let (t) and y(t) be two single-valued real functions of the real variable t, such that

(t) - 0 for -oo < t < 0

f0 for 0 < t< 00
1(I-0. 1)

y(t) f 0 for -o < < t to = constant

00 for 0 4 t t< oc

Now, having prescribed two functions 4(t) and y(t) which satisfy these conditions but

are otherwise arbitrary, we ask:

Is it possible to construct a linear, passive, and finite system whose elements are

lumped or distributed but always finite in number, extension, and magnitude, and which

consists of two external terminal pairs, such that when the system is excited at one pair

of terminals by c(t), the output, at the other terminal pair will be of the form y(t)?

It should be noted that the condition of finiteness is postulated in the statement of

the problem. That is, the number of elements, their extension, and their values, must

be finite. Under these restrictions, the solution of the stated problem becomes

difficult.

0. 11 Various counterexamples can be found that indicate that the problem does not

always have a solution, at least not in the form required above. A simple counter-

example is the pure transmission problem, which is defined by the condition y(t) = (t)
for 0 < t < oo. Another one is the problem of delayed transmission, defined by

y(t) = p(t - to ) for 0 < to = constant < m, which also does not have a solution within

the restriction of finiteness of the linear system. For obvious physical reasons, the

problem of advanced transmission, or prediction, which is defined by y(t) = (t + t ) for

0 < t = constant < co, does not have a solution. The proof that the problem of trans-

mission does not have an exact solution with be given later.

}Translated by R. E. Wernikoff from the Spanish - with some corrections and additions that were made, particularly in the
sections dealing with error analysis, by Mr. Wernikoff in cooperation with Dr. Cerrillo.

[Editor's note: This material, which was published under the title "Sobre la Sintesis de Sistemas Lineales para la Transmision
sin Retraso, Retrasada, y Prediccion Lineal de Seiales," in Revista Mexicana de Fisica (Vol. 4, No. 2, 1955), is an application
of the theory given in Technical Report 270, by Dr. Cerrillo, "On Basic Existence Theorems. Part V. Window Function Distribu-
tions and the Theory of Signal Transmission" (to be published). The direct connection of the present paper with work that is being
done by the Statistical Communication Theory group and other groups in the Laboratory led to its translation, by Mr. Wernikoff,
and its presentation here.]
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0. 12 The problem of pure transmission and the associated problems of delayed and

advanced transmission - the latter in a sense that is explained later - are of funda-

mental importance in the theory of communication. The nonexistence of exact solutions

that satisfy the basic problem described in section 0. 1 does not imply that it is

impossible to find approximate solutions which, within certain tolerances, represent

"acceptable" solutions. A suitable modification of the statement of the basic problem

allows us to find solutions, many of them of an approximate nature, to many problems

that would not have solutions under the original stipulations.

It should be noted that the condition of finiteness of the linear system will not be

removed in any case, since it is impossible to construct systems composed of an infi-

nite number of elements, or of elements with infinite extensions or values.

0. 13 The principal object of this paper is to discuss and give appropriate solutions to

the problem of transmission and its associated problems when the requirements of

section 0. 1 are suitably modified. Before introducing the modifications, we shall pre-

sent a few preparatory concepts that will be needed in the following sections.

0.2 THE CONVOLUTION INTEGRAL AS A BASIC TOOL

The operation of a linear system can be characterized by the convolution integral

as follows:

t t

y(t) = P(t-T) SC (T) dT = p(T) S c(t-T) dT 1(1-0. 2)

where Sc(t) represents the system function in the time domain. The function Sc(t) is

defined as the response of a linear system when the excitation is the unit impulse U (t)

applied at t = 0. Figure 1(I-0. 2) is a sketch of the situation represented by the con-

volution integral.

The integral 1(I-0. 2) will be understood to be taken in the sense of Riemann in order

to illustrate better some points that will demonstrate the nonexistence of solutions of

the transmission problem. Later on, the convolution integral will be considered in the

sense of Stieltjes.

0. 3 THE NONEXISTENCE OF SOLUTIONS OF THE PURE TRANSMISSION

PROBLEM IN FINITE SYSTEMS WITH CONTINUOUS KERNEL

It will be shown that the problem of transmission does not have an exact solution,

except a trivial one, when we require finiteness of the linear system in question.

0.31 It is well known that the response Sc(t) of a linear, finite, and passive system to

the unit impulse is a bounded, single-valued, and continuous function for t > 0. For
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the case of pure transmission, y(t) = p(t), we have

t

(t) = Sc(t-T) c(T) dT 1(I-0. 31)

which is a Volterra integral equation of the first type. The theory of integral equations

teaches us two things: First, that under the conditions that must be satisfied by the

excitation 4(t) and because of the continuity of the kernel Sc(t-T), the first member of

1(I-0. 31) is a continuous function. Therefore, there can only exist solutions for excita-

tions of the class C o , which limits the generality of the transmission problem; second,

that under these circumstances the Volterra equation admits as a unique solution

(t) = 0, which is a trivial solution of the transmission problem.

0. 32 There are other trivial solutions to the transmission problem. The first is that

in which the system reduces to a parallel resistance, for example. The second is that

in which the system is an ideal transmission line terminated in its characteristic

impedance (delayed transmission). The ideal transmission line is not realizable in the

strict sense of the word, because of the line dissipation.

0. 33 The basic method of attack in the pure transmission and associated problems

which will be employed in this paper is the convolution integral in the sense of Stieltjes:

t t

y(t) = ; (t-T) dK(T) = Sc(t-T) dY(T) 1(I-0. 33)

0 0

where the functions 4(t) and Sc(t) may be singular, but integrable in the sense of Stieltjes.

K(t) and Y(t) are distribution functions associated with #(t) and Sc(t), respectively.

0.4 TOLERANCE SETS AND APERTURE SETS

We shall now present some concepts that will allow us to reformulate the basic

problem of section 0. 1 in such a way that solutions to important problems will exist.

The new formulation will allow us to solve problems, such as the pure transmission

problem, that are insoluble under the original postulation of section 0. 1.

0.41 We here introduce the aperture set and the tolerance set. Let -y(t) be a function

of bounded variation which satisfies the requirement of section 0. 1. Figure 1(I-0. 41)

shows a possible y(t). Let us associate with y(t):

a. a countable set of open finite intervals [ak]' such that fl [ak] = 0. These inter-

vals may degenerate to points. The length of the intervals may be small, but not

necessarily. We shall suppose that a k , k = 0, 1, 2, .. . represents the length of each
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interval. This set, which is prescribed beforehand, will be called an aperture set.

The position and distribution of the intervals [ak] is not important now. Later their

positions will be determined by the points of discontinuity, singularity, and so forth

of the functions c(t) and y(t).

Let us associate with the graph of y(t):

b. a countable set of small positive numbers E., j = 1, 2,..... The values E. are

used to determine neighborhoods along the length of the graph of -y(t) in the intervals

of t that are contained in the complement of U[ak].

0. 5 Here we introduce the concept of acceptable functions - *(t) associated with -y(t).

There is a function, y (t), of bounded variation, real and single-valued, of the real

variable t such that:

i. The graph of y (t) is always within the interior of the neighborhood region defined

by the set E. when t is contained in the complement of U [ak '
ii. The graph of y (t) may run completely outside of the neighborhood regions of

y(t) when t is contained in Iak , k = 0, 1, 2,

iii. y~ (t) = 0 for -o < t < 0.

Condition (i) is equivalent to writing

y(t) - -*(t)l < Ej j = 1,2,

when t is not contained in U ak .
Condition (ii) indicates that the set of tolerances does not control the limits of varia-

tion of y*(t) within the apertures.

The regional numerical likeness between the functions y(t) and ,y*(t) is emphasized

by calling y (t) the "simile" of y(t). The function -yj(t) by itself is called an acceptable

function.

(In spite of the similarity between y(t) and -y*(t), we do not say that -9*(t) is an

approximation to y(t), in the usual sense of this word. The function y*(t) could, for

example, belong to the class L ( 0), while y(t) could be of class L(r), r < cc.)

Figure 1(I-0.5) shows an acceptable function associated with y(t), in the sense

already explained.

0. 51 We present here the class of functions (t), which will be considered acceptable

excitations for our system.

Consider, first, the class of functions (t) such that:

i. =(t) - 0 for -o < t < 0

A0 for 0 < t < c

and such that 4(t) is a real, single-valued function of the real variable t.
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ii. (t) is a regionally continuous function, class C', for almost all values of t,

0 < t < cc. The exceptional points are formed by

a. a countable number of isolated points tk, k = 1, 2,..., on which the function (t)

presents simple discontinuities with finite jump;

b. a countable number of isolated points t., i = 1, 2, ... , on which the function p(t)1

has singularities (impulses, doublets, and so forth) in such a way that condition (iii) is

satisfied.

iii. The function (t) must be integrable in the sense of Stieltjes in any finite sub-

interval of time that is contained in the interval 0 < t < co.

(Condition (iii) implies that the function c(t) is regionally of bounded variation. This

is a consequence of an elementary theorem of Stieltjes integrals. From now on it will

be supposed that the reader is familiar with the elementary properties of such

integrals.)

Figure 1(I-0. 51) shows an example of an acceptable function c(t), in which the

singularities are simply impulses. It is apparent that the function of Fig. 1(1-0. 51)

can be expressed as the sum of three component functions:

a. a function 1(t) continuous for all values of t in the interval 0 < t < co;

b. a discontinuous function 2Z(t), composed of steps, ascending and descending, on

the points of discontinuity of 4(t);

c. a singular function p3 (t) which is zero for almost all values of t, 0 . t < 0, the

III
IiII

1 p i

Fig. 1(1-0.51). Example of an excitation function (t).
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exceptional points being those where 4(t) has impulsive character.

0. 52 In general synthesis problems, the class of functions 4(t) is extended to include

random functions that are integrable in appropriate senses. In this paper we shall not

consider such functions, since we are not concerned with transmission in the presence

of noise, and so forth.

0. 6 FORMULATION OF THE GENERAL PROBLEM AND OF THE

TRANSMISSION PROBLEM

An adequate formulation of the general problem of the synthesis of linear systems,

described in section 0. 1, can now be presented in terms of the given concepts.

Given two functions c(t) and y(t) that satisfy the condition prescribed in sections 0. 5

and 0. 51, but are otherwise arbitrary, and given, also, the sets [Ej] and [ak], already

described, we ask:

"Is it possible to construct a linear, finite, passive system consisting of two exter-

nal terminal pairs, such that, when an excitation of the form 4(t) is applied to two of

the terminals, the response will be y * (t), y*(t) being a simile of y(t)?"

The object of this paper is to produce solutions to the problem of transmission,

delayed transmission, and linear prediction, of a signal 4(t). The response of the sys-

tem should be given by the similes 4 (t), *(t - to), *(t + to), with 0 < to = constant.

0.7 CLASSICAL SITUATION OF THE TRANSMISSION PROBLEM

The transmission of a signal through a communication channel is not a new thing,

either in theory or in the construction of systems that make it possible.

It is well known that, theoretically, a linear system whose response to a unit

impulse applied at t = 0 is the same impulse at t = 0, has the property of transmitting

without distortion or delay a signal of the form 4(t). If the response of the system is

a unit impulse delayed by to units of time with respect to the impulse, then the response

of such a system to a function 4(t) will be of the form 4(t - to). The transfer function
0 -st

of a system that transmits with delay, but without distortion, is simply e 0 in the

frequency domain. Classically, the transmission problem is solved by constructing
-st

systems whose transfer function approximates in some sense the function e 0. Note

that in the solutions given above, the kernel of the convolution integral is simply a

singular function and not a continuous function, whence there is no conflict with the

discussion of section 0. 3.

0.71 It is now convenient to clarify the situation in relation to the classical

solution of the transmission problem. In the process of this discussion, the
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following points are relevant.

1. There exist many singular kernels, in fact, an infinite number, which produce

transmission without delay, delayed transmission, or linear prediction. The classical

kernel, consisting of just one impulse, is a particular case of the kernels presented

herein.

2. Methods will be given that allow the transition from singular kernels to con-

tinuous kernels, in such a way that the intrinsic character of the transmission is not

changed, following the postulation of section 0. 6.

3. The concepts and results so obtained have a basic importance in the general

foundation of the theory of synthesis of linear systems.

4. The basic method for the construction of four-terminal systems that are poten-

tially capable of producing pure, delayed, and advanced transmission of signals is

given.

5. The solutions produced for linear prediction consist of kernels of finite dura-

tion, and simple relations are shown between the duration of a kernel and the time of

prediction.

6. As a by-product, kernels will be given which produce the successive derivatives

of a continuous function 4(t).

I. KERNELS AS DISTRIBUTIONS OF WINDOW FUNCTIONS

1.0 METHOD OF SOLUTION

The resultant of Stieltjes, or convolution integral, is the basic tool that is used to

attack the problem stated in section 0. 6. The method of solution consists of solving

the integral equation, expressed by the convolution integral, and determining the func-

tion Sc(t) which characterizes analytically the linear system. The complete solution

of the synthesis problem does not end with the determination of Sc(t). The following

step is to construct, or synthesize, the system itself, placing in evidence its elements,

their distribution, and their value. This step produces the linear network that satisfies

the condition of the problem.

In the solution of the two previous problems, a central place is occupied by certain

distributions of impulses on which the complete solution of the problem depends. To

prepare the ground for the solution of the problem proposed in section 0. 6, and in par-

ticular the problem of transmission and associated problems, we introduce and discuss

these distributions.

1. 1 WINDOW FUNCTIONS

We start by giving a few definitions. The term "pulse" will be used in its usual

connotation: The graph of a current or voltage wave, or its equivalents, when it is
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almost unidirectional and of short duration, is called a pulse.

By a "train of pulses" we understand a finite succession of consecutive pulses of

finite duration. The following definitions are motivated by the previous concepts.

DEFINITION. A symmetric pulse, in the form of a spearhead, which is of finite

duration, and is always positive, or always negative, is called a pulse in the form of a

"window." The function that represents this pulse, let us say v(t), is called a window

function, if, besides satisfying the above conditions, the function is integrable in the

sense of Stieltjes to a finite limit that is not zero and remains determinate even when

the duration of the pulse tends to zero. As a consequence of this definition, a window

necessarily becomes an impulse when its duration tends to zero. It follows also that

not all symmetric, unidirectional pulses are necessarily windows, since the definition

is not satisfied if the area contained under the graph of the pulse tends to zero when its

duration tends to zero. Figure 1(I-1. 1) shows a few possible forms of windows dis-

placed by a time to from the origin.

In the discussion that follows it will be seen that the specific form of each window

does not have a major influence on the fundamental results that will be obtained. The

form of the graph of a window has a secondary influence, modifying only the fine struc-

ture, but not the basic architecture, of the results. In the course of the discussion it

will be shown that the basic elements of a window function are: its aperture, its dis-

placement from the origin, and, principally, its integral.

1. 2 WINDOW DISTRIBUTIONS

The basic elements in this research are certain distribution functions formed by

means of window functions. We have the following definitions:

A distribution in time of a finite number of nonoverlapping, adjacent windows is

called a distribution density of windows. Figure 1(1-1.2) shows such a distribution

density. Note that in this array it is not necessary that successive windows have oppo-

site signs. The length of the interval occupied by the window array

m

I= Zak
k=l

is called the measure of the support of the array.

The array of windows allows the introduction of the concept of "distribution function"

associated with a specific array. Since each window is, by definition, integrable in

the sense of Stieltjes, the integral of the array of windows also exists when the number

of windows is finite. The Stieltjes integral between t = t and t = t + f is called the
o o

measure of the distribution. When the distribution is formed by a finite number of

windows of duration greater than zero and of finite height, the array is also integrable
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in the sense of Riemann. We have, then,

to+£

a(t , ) = t P(t) dt

0

The transformation T = t - t allows us to write
0

=0) (T) dT

Let us now take a value of T in the interval 0 < T < I. The distribution is then defined

by the expression

a(T) = f (T) dT

0

The generalization of this expression to the integrals of Stieltjes is represented by the

well-known notation

T

a(T) = d a(u)

0

where u is an auxiliary variable that dispppears when the limits of the integral are

substituted.

The limit of a distribution density of windows when the aperture of the windows

tends to zero is an array of impulses. Two possible representations are shown in

Fig. 2(I-1. 2). In the first, the measure f collapses to zero. In the second, the meas-

ure I remains, by construction, constant. In this last case, the window function is

defined as an impulse and takes the value zero on both sides of the impulse.

1.3 DISTRIBUTIONS OF INFINITE DURATION

A distribution of windows can also be defined as an array of an infinite number of

windows that cover the interval 0 < t < 00. Distributions of this type appear in the solu-

tion of many problems of linear-system synthesis. For the purposes of this paper,

these infinite distributions have very little meaning. Therefore, we shall not consider

them in detail. We shall only refer to them in some limit processes.

1.4 SYSTEM FUNCTIONS IN THE TIME DOMAIN AND WINDOW ARRAYS

In this work we shall consider a system function Sc(t) of a four-terminal network as

being equivalent to a window array. Windows of finite duration will be our main interest.
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The system function of a four-terminal linear network is, as we have already stated,

the response of the system to the unit impulse. In general, this response does not have

impulsive character. Only in ideal cases that are not physically realizable is the

response of a system to an impulse also an impulse. In fact, the transmission of an

impulse through a finite transmission system is always attended by a dispersion or

opening of the pulse, sometimes accompanied by oscillations that may be small or neg-

ligible if the transmission system is properly designed. In this paper we show that

systems that convert an impulse into a series of strong oscillations are also capable

of transmitting with characteristics that are superior to those in which the impulse is

transmitted with small dispersion. Of course, this statement refers to finite, passive

systems.

Figure 1(1-1. 4) shows an example of the response of a finite, linear system. Each

oscillation is made equivalent to a window function and the complete oscillation is made

equivalent to an array of windows. In finite systems with lumped elements "tails"

appear after the principal oscillation. In this paper, the tails have a secondary effect

and can be ignored, so that the function S (t), indicated in Fig. 1(1-1.4), can be approxi-

mated by a window array with duration tl.

1. 5 SYNTHESIS OF A LINEAR SYSTEM WHOSE RESPONSE Sc(t) IS A

PRESCRIBED WINDOW FUNCTION OF FINITE DURATION

We shall produce a method of synthesis of a finite, linear system whose response

to a unit impulse is a window function of finite duration. We shall give a very simple

and effective method of synthesis that employs vacuum tubes. The necessary equip-

ment and concepts are well known and simple.

Sc (t)

Fig. 1(1-1.4). The function Sc(t) regarded as an array of window functions.
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The synthesis of such systems using passive elements - without vacuum tubes - can

be accomplished by a complicated design procedure which cannot be given within the

space allotted to this paper. A detailed discussion on this aspect of synthesis can be

found in reference 1.

1. 51 The basic synthesis elements employed here are: a finite artificial transmission

line, linear amplifiers, and phase inverters. The fundamental disposition of the appa-

ratus, and the basic operation of the system are illustrated in Fig. 1(1-1. 51).

The artificial transmission line is terminated in its characteristic impedance in

order to avoid reflections. The line is composed of a number N of equal sections con-

nected in cascade, each section producing a delay of t r units. Tapping at the k t h section

produces the delay tk = ktr unit. The maximum delay is tmax = Nt r. In addition, the

artificial line is designed to transmit a pulse of duration t = a with negligible disper-

sion and ringing.

We tap the k t h section and feed a linear amplifier of variable gain gk The

input impedance of the amplifier is practically infinite, to prevent appreciable

reflections being caused by its insertion. The output terminals of the amplifier

are connected to a device that allows us to invert the polarity of the received sig-

nal. Data on the design, construction, and operation of this system can be found

in reference 2.

The operation of the system is as follows. Suppose, for example, that we want to

synthesize a system whose response is a window of height H, negative, with aperture

a, and delayed tk units. It suffices to excite the system at the input terminals with a

pulse of duration a, height h, positive. We tap the artificial line at the k t h section

and insert the amplifier. We increase the gain of the amplifier until a pulse of height

H is obtained and we set the inverter to the negative position. At the output terminals

we shall then obtain the desired response.

To form the system whose response to a unit impulse is a prescribed array of

windows we have only to repeat the arrangement of amplifiers and inverters, connecting

them at the points of the delay line that are appropriate for producing the correct delay

for each window. It is clear that the aperture of the excitation pulse should be less

than, or equal to, the time tr of delay of each section of the artificial line. The func-

tioning of the system is obvious; we shall not give any more details. Figure 2(1-1.51)

shows a sketch of such a system.

This system is designed to form an array of windows of equal apertures. By

suitably selecting the aperture of the excitation pulse and the tap points on the delay

line we can easily produce window arrays of variable aperture.
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II. FORMAL SOLUTION IN TERMS OF SINGULAR FUNCTIONS

2. O0 PROCEDURE

We propose to solve the integral equation, given by the convolution integral, using

singular functions for the function Sc(t). That is to say, Sc(t) will be obtained as an

array of windows.

There are many ways of producing this kind of solution. The method used here was

chosen to facilitate the solution of problems of pure transmission, and delayed and

advanced transmission, which is our main objective. The formulation of the general

problem of synthesis stipulated in section 0. 6 allows the use of distributions of windows

of finite duration, as will be shown in the following discussion. The solution in terms

of distributions that have finite durations has an extremely important meaning in the

theory of prediction which has been developed in connection with the problem of advanced

transmission.

2. 01 We shall consider two methods of solution. The first leads to a system of linear

equations which, when solved, yield the solution to the problem. The second makes

use of the theory of moments in a finite interval. Strictly speaking, the two methods

are equivalent, but the forms of the solutions are better adapted to the solution of spe-

cific problems.

2. 1 FIRST METHOD: EXCITATION BY FUNCTIONS OF THE CLASS C'

Let us consider the case in which the excitation function is a continuous function.

This does not limit the generality of our discussion, since, from section 0. 51, the

acceptable functions contain, or can contain, a component of the class C 0 . Later, we

shall study the effect of the stepped component and the impulsive component. The solu-

tion for the continuous component has, besides, theoretical as well as practical impor-

tance.

The convolution integral can be written

t

0

where a(T) is the distribution function associated with the distribution density S c(t),

here supposed to be singular.

Let us consider a window array of finite duration.t The notation that we shall

tIn the theory of linear prediction, this distribution is said to have finite "life."
The reason for this terminology will be seen later.
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employ is indicated in Fig. 1(11-2. 1). Successive impulses are a distance 6 units of

time from each other. In a linear finite system these impulses will show dispersion.

We shall suppose that the aperture a of the dispersed pulse is equal to 6. Let us call

ak the measure, in the sense of Stieltjes, of the k t h impulse.

The Stieltjes integral 1(11-2. 1) can be determined immediately and is given by

m

y(t) CLk  t - (k+l)6]; t >t

k=O

2(11-2. 1)

We see that the response of the system at time t is a linear combination with coeffi-

cients ak, k = 0, 1, 2, ... , m of the values of the excitation function that lie between the

times t and t - tj, where t is the life of the distribution of windows. It is also worth

while to interpret Eq. 2(11-2. 1) as the result of sampling with weights ak the part of the

excitation function that lies between the times t and t - t .

2. 11 Let t be the life of the distribution density that represents the function Sc(t) .

Let us suppose that the excitation function c(t) is regionally of the class C (m ) in an

interval t . This condition is realized practically in an infinite variety of actual excita-

tion functions. The discussion of the situation that corresponds to the exceptional points

will be left to the end of this section. Under the previous assumptions, the excitation

@® 0® 0 @
4II I I I +I II

- (m+l)
oi

II II II II

Fig. 1(11-2. i). Symbolic sketch of the singular functions which form Sc(t).
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function can be expanded:

(k+1) m
k m 5 (m)(t

) + 6m+1(t)
m.

t - (k+1)6]= 4(t) - (k+1)6 '(t) + ... + (-1) m

where 0m+l(t) is the appropriate remainder.

rearranging terms, we obtain

1(11-2. 11)

Substituting in expression 2(II-2. 1) and

m y

y(t) - (P)(t) + Em+l(t)
p:0 p.

m

y k= p
k= 1

2(1I-2. 11)

k (I+k)6

Finally let us introduce the notation

m y

~(t)= , (t)

p=0 p.

as the function associated with -y(t).

remainder 0m+ 1 (t) is small.

3(II-2. 11)

It is clear that (t) is a simile of y(t) when the

2.2 SOLUTION OF THE SYSTEM FOR a k , k = 0 ... , m

The relation 3(11-2. 11) shows us that the function y*(t) is a linear combination, with

constant coefficients yp, of the function c(t) and its first m derivatives. By the nature

of the synthesis problem that we are considering, the functions y (t), and c(t) and its

derivatives, are known. Therefore, the m + 1 constants yo y1'' ... Yn must be deter-

mined in such a way that the expression 3(11-2. 11) is satisfied.

Introduction of the tolerance set E. (section 0.4) gives us some freedom in the

choice of the function y (t). For example, we can choose a function y~(t) which has

closure in terms of the excitation functions. Under these conditions, the determination

of the constant yp becomes very easy if a set of orthogonal functions is introduced.

In this paper, our principal interest is in the problem of transmission, and its

associated problems, in which the determination of the constants yp, p = 0, 1,2, ... m

is immediate. For example, the solution of the problem of pure transmission is

obtained simply by setting

Yo = 1; Y 1 
= Y2 

= "' = Ym = 0

as can be seen by substituting these values in the expression 3(II-2. 11), from which

we obtain
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*(Ot) = (t)

In the synthesis problems that are considered in this paper the yp are easily deter-

mined. They will be determined later for special cases. The important thing now is

to calculate the measures o, al, ... am that are associated with and define the function

Sc(t ) , which determines the desired linear system.

Consequently, we shall calculate the constants a a, 1 .. . , a m as functions of the

yp and Lp. We shall solve the system of m + 1 equations

m

Yp (-1)P k ak; p = 0, 1,..., m 1(II-2.2)

k= 0

which contains m + 1 unknowns a o , al, .... am.

2.21 The determinant of the system is the well-known Van der Monde determinant.

This determinant is not zero when the elements .o' 1' ..... m are all different. This

is our case, since

4k 
= (k+ 1)6

Therefore, the homogeneous system 2(11-2. 2) always has a solution. This establishes

the existence of solutions to the synthesis problems considered in this paper.

2. 22 It is convenient to introduce certain symmetric functions which simplify the solu-

tion of the system 2(11-2. 2). We shall introduce the set of m + 1 symmetric function,

associated with the unknown a., defined as follows

s=1m

s(j) =(% + +_ +j + + [m)m-1 0 1 " j-1 j+1 " m

S(j)- = ( - ) 2 ( b o b
I  + o [ 1 .... + +oP -  +11o j+] + + 11o11 +

. . . . . . . . . +

+ - 1(11-2. 22)

sm-3 (-1)3 p0 1 2 + 2 ol3 + "+ 4j - I + 1+ "'

+ 4m_21m 1 m )

S (- 1 )m o 1 2 ... 4j -l 1j+1I .. m .
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Note that the coefficient [ij does not enter into the formation of the symmetric functions

associated with the unknown a.. These symmetric functions have the same structure
J

as that of the coefficients of a polynomial of the degree m whose roots are

F1o' 1,l - lj-1' lj+l . m

In fact, the polynomial

Gj() = m + s W  m - 1
i M-1 4

+ s ()
m-2

m-2 j)
+... +s 1

admits as roots the values k' k = 0, 1, ... , j-l, j+1, ... , m. But IiJ is not a root, that is
to say, G .([i) 0. The solution of the system of equations is given by the formula (see
refs. 1 and 3):

Yo S - 1 s1 2 + ... ( - l) m ym m
0 0 1 2 2 in

. -
j (L - L)(4 - ) (j - j- )(j - j+ 1 . . . ( Lj - Lm)

j=0, 1, . . . m

The prime on the product symbol, 1', shows that the factor Fj Fj has been omitted.
J

2.3 APPLICATION TO PURE TRANSMISSION

The case of pure transmission is given by the condition

y (t) = p(t)

which implies, by virtue of expression 3(11-2. 11), that

Yo = 1; yl = Y2 
= "'" = Ym = 0

Therefore, the measures ao, ... , a m of the window distribution that correspond to pure

transmission are given by the formula

j m

p=0

1(11-2. 3)

+ s ()
o 1(11-2. 22)

m

p=0
(-1)p y s p

m

p=0

2(11-2. 22)

11p (Fj - Lp)
p=0



(VII. STATISTICAL COMMUNICATION THEORY)

A detailed study of the window array associated with these measures will be given in a

later section.

2.4 APPLICATION TO DELAYED TRANSMISSION

This transmission is determined by the condition

y(t) = (t - t );

where t
0

the class

0 < t = constant < oo 1(11-2.4)

is the delay time. On the assumption that 4(t) is regionally at least of

C(m , we have

S 2

y(t) = 4(t) - to '(t) + "(t) - ...

Let us take as our simile function

m k

t) k o )k (k)(t)

k=1

Comparing this expression with

yo' .... Ym Their expression is

Y (-1)P tP
0

tm

+ (1 )m (m)(t) + m+(t)

we obtain immediately the

Substituting this expression in formula 2(II-2. 22), we obtain the measures of the win-

dows associated with the distribution corresponding to delayed transmission:

tm + t m - s(j) + t m - 2 s(j) + + t s!j ) + s
o o m-1 o m-2 o 1 o

.jj
(j - o) j - 1 ( j j- j - j+1 j - m

m

G(t o )

m

p=' ( - t )
p=0 J p

il' (t o  - p)p=O

m

p=0' (j - pp=O0 J

A detailed study of the window array associated with these measures a o ,

be given in a later section.

4(11-2.4)

... , am willm

2.5 APPLICATION TO ADVANCED TRANSMISSION

This transmission is characterized by the condition

0 < t = constant < ooo

LINEAR PREDICTION

1(11-2. 5)

2(11-2.4)

values of

3(11-2.4)

3(11-2. 11),

y(t) = (t + to);



(VII. STATISTICAL COMMUNICATION THEORY)

Expanding in a Taylor series and putting

m k
* 0 o (k)(t)(t) = O (t) 2(II-2. 5)

k=O

we obtain

Y = tp 3(11-2.5)

The measures of the windows now turn out to be

m

G(-t ) 1' (t + Lp)
G(-to) p= 0

a (-1)m 4(11-2.5)
m m
1I' (41 - 1p) 11' ([j - 4p)
p=O p=O 0

It should be noted that expression 1(11-2. 5) is valid only for t > tf, where tQ is the life

of the kernel, since relations 2(II-2. 1) are valid only for t > tp. What happens for the

values 0 < t < tQ will be discussed later.

A detailed study of the problem of linear prediction, and of the form of the system

function S (t) associated with prediction, will also be given later.

2.6 A COLLATERAL PROBLEM. CIRCUITS WHOSE RESPONSE IS THE jth

DERIVATIVE OF THE EXCITATION FUNCTION

Equations 2(11-2. 11) and Z(II-2. ZZ) allow the immediate determination of the meas-

ures of the window distributions associated with the system function S (t) whose response
th cis some given derivative, let us say the j (0 < j < m), of the excitation function.

In expression 3(1I-2. 11) let us set

0 for p = 0, 1,...,k-l,k+l,..., m
y = 1(11-2. 6)S p. for p = k

We have

(t) = P(t)

The measures of the windows will now be

k (j)
(-1) Yk skka. = 2(11-2. 6)I m
p' (4j - p)

p=O
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A detailed study of the distribution corresponding to these measures will be given in a

later chapter.

2. 7 DETERMINATION OF THE ERROR INCURRED BY

USING THE FUNCTION -y (t)

The error committed by replacing the exact response function y(t) by the simile

function y (t) is given by the expression

(m) =  Y(t) - y *(t) 1(II-2.7)

Using 2(II-2. 1) and the abbreviation

Ik = (k+1)6

we have

m m m (k)
y(t) = Z k 4(t - c k) = k  (t) +m+ 1

k=0 k=0 j=0

where Om+i(t) is the remainder of the Taylor series after the mth term, and the super-

script (k) indicates that the remainder in question is the one that corresponds to the

Taylor series for b(t - 4k ) . Using definitions 2(II-2. 11) and 3(II-2. 11), we have

m

y(t) = <(t) + Z k (k)

k=O

so that, substituting in 1(11-2. 7), the error is given by

m

(m) = ak m+(t) 2(II-2.7)
k=0

From Taylor's theorem, the kth remainder (k ) (t) is given bym+l

m+ 1

(k) k (m+ 1)6 (m+1(t) k- )(t + kk)
(m+l).

where Tik is some constant between zero and one which, in general, is different for dif-

ferent values of k. Therefore, finally, the general expression for the error is

(m+1)
SakLk

(m) )  ( (t + k k )  
3(11-2. 7)

k =  (m+l)'k=O
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Clearly, the value of the sum depends very strongly on the behavior of the (m+l) - st

derivative of the excitation function 4(t). The sum extends over a time interval bounded,

at most, by lo = 0 and m l[ = (m+1)6, so that the largest time span involved
i h Monds. (m+ 1)in the sum is tf seconds. If (m (t) varies slowly, so that it is essentially constant

over any interval of length tf, the expression for the error can be simplified to

(m+1)(t) m + (m+1)(t) 5m+1 m

(m) (m+ 1k k (+k) l a k  4(11-2. 7)
) (m+1)k=0 (m+1)

k=O k=0

It is desirable to express the error in terms of the modulus of oscillation of 4(m)(t).

Since we have assumed that C (m+1)(t) is almost constant within an interval tf, it is

certainly reasonable to assume that it is constant over an interval of length 6 = m
(mm+Therefore, within any interval of length 6, m)(t) is approximately linear, and its total

change is given by (m+1)(t) 6. Thus, the modulus of oscillation of (m)(t) in an interval

6, Q(m)( 6 ), is given, approximately, by

5(m)(6) ; m(m+l)(t)6

Substituting in the expression for the error, we obtain

(m)() 5m m+1

le (m) (1+k)m+l ak 5(11-2.7)

(m+1)k=0
When the function (m+1)(t) oscillates rapidly within the duration tf of the kernel,

formula 5(11-2. 7) may not be used. However, the formula is more generally valid than

is realized at first sight. The reason is simple: nothing has been said about the length

t of the life of the kernel. It is clear that if we take tk smaller and smaller, we shall

eventually reach a value of tj sufficiently small so that, within that interval, the oscilla-

tion of 0(m)(t) will be as small as desired, when t is within one of the regions of con-

tinuity of (m)(t). This is a consequence of the hypothesis of regional continuity of
(m)(t)

2. 71 Two important conclusions can be obtained from the error expression, 5(11-2. 7):

1. For a window distribution of sufficiently small life, the regional error committed

in the described synthesis process is proportional to the oscillation of the mth deriva-

tive of the excitation.

2. In the regions of continuity of c(m)(t), the error committed decreases with a

decrease in the life of the distribution of windows.
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2.8 CONNECTION BETWEEN THE TOLERANCE SET E. AND THE ERROR

We have the first elements that allow us to establish relations between the elements

of the tolerance set [Ej and the error g(m) Let us consider the interval 0 < t < co. We

shall omit the following sets of measure zero:

a. the countable set of isolated points at which the function 4(t), considered here in

its general form, exhibits impulsive behavior;

b. the similar set of points at which the function 4(t) exhibits simple discontinu-

ities;

c. the set of points, here supposed to be isolated and countable, at which the deriva-

tives WP(t), p = 1, ... , m exhibit a discontinuity.

The function 4(t) is of class C(m) on the countable set of open subintervals which

form the complement of the sets indicated in a, b, and c. By construction, we know
th (m)

that a tolerance E k corresponds to the k interval. Let us designate by k (6) the
(m) th

modulus of oscillation of the function m) (t) in the k subinterval. Then to this sub-

interval let us associate the error given by the expression

Q (m) (P 5lMmM
(= (6 ) 6 m 1 m a 1(11-2.8)

(m),k (m+1). P
p= 0

If we now take a distribution of windows of sufficiently short life, we shall have

Ek>/ I(m),k 2(II-2.8)

Relations 2(II-2. 8) are important in the process of synthesis that is being studied

because they establish simple relations between the separation of the impulses that

form the distribution, the number m + 1 of impulses, and the oscillation of the mth

derivative of the excitation function. In the sections that treat the problems of pure,

delayed, and advanced transmission specifically we shall calculate the error associated

with each one of those problems.

Manuel V. Cerrillo

[Chapters 3, 4, and 5 will be published in the Quarterly Progress Report, Jan. 15, 1957.]
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