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A. HIGHLY IONIZED MICROWAVE PLASMA*

In an effort to determine the optimum conditions for the production of a highly ion-

ized hydrogen plasma, microwave breakdown experiments in hydrogen in the presence

of a magnetic field (1) are being extended to low pressures (10 - 3 to 10 - 5 mm Hg). A

quartz cylindrical tube, 1 cm in diameter and 6 cm in length, filled with hydrogen to a

desired pressure, is placed along the axis of a cylindrical cavity that is oscillating in

the TEll l mode at S-band. A variable, axial magnetic field of approximately 1000

gauss is provided by an electromagnet. The pole pieces of the magnet are shaped to

insure the uniformity of the magnetic field over the central portion of the quartz tube.

The purpose of the magnetic field is twofold. First, by adjusting the cyclotron fre-

quency wb so that it is equal to the operating frequency w, a very efficient means is

provided for the transfer of energy from the microwave field to the electron cloud.

Second, the strong magnetic field severely limits the loss of electrons by diffusion in the

radial direction. Thus far, no effort has been made to limit the loss in the axial direc-

tion, but a magnet with a specially shaped magnetic field that will also impede this loss

is being designed. The effect of the magnetic field on microwave breakdown is gener-

ally exhibited by plotting the breakdown field E b against the magnetic field for a con-

stant gas pressure. The plot usually exhibits a resonance minimum at w = wb. The

width of the resonance curve is characteristic of the process or processes that impede

the transfer of energy from the microwave field to the electron cloud. At pressures of

the order of millimeters of mercury, the width is the result of collisions of electrons

with neutral atoms or molecules. The relative width of the resonance curve at half-

power points is then given by v /w, where v is the collision frequency (for hydrogen,

v c = 5 X 109p, where p is the pressure in mm Hg) and o is the operating frequency. In

the present experiment, neither collisions with neutral atoms nor the much more fre-

quent collisions with the end walls of the quartz tube occur sufficiently often to ac-

count for the observed widths. The explanation lies partly in the inhomogeneity of the

magnetic field in the axial direction. The inhomogeneity, if it exists, limits the volume

in which electrons gain energy efficiently to only a fraction of that of the quartz tube.

To check this, the inhomogeneity of the magnetic field was varied by extending the

shims on the pole pieces of the electromagnet by increments of one-quarter inch. The

resultant breakdown curves for three such increments are plotted in Fig. II-1, which
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Fig. II-1.

MAGNETIC FIELD (RELATIVE UNITS)

Effect of inhomogeneity of magnetic field on microwave breakdown
-4

in hydrogen (pressure, 6 x 10 mm Hg).

shows distinctly the dependence of the breakdown field on the homogeneity of the mag-
netic field. In addition, the widest curve shown in Fig. II-1 is asymmetrical. The
asymmetry is thought to be the result of an inhomogeneity in the radial direction,
which must exist if there is a large inhomogeneity in the axial direction, but this is not
yet conclusively determined.

S. J. Buchsbaum, E. Gordon
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B. DIFFUSION DECAY IN NEON AFTERGLOWS

In the Quarterly Progress Report of Oct. 15, 1955, page 16, we discussed some of

our experimental results concerning the behavior of the diffusion coefficient in the
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afterglow of a microwave discharge in the transition region from free to ambipolar

diffusion, and our plans for investigating the decay of a discharge in neon contaminated

with argon (0. 1 per cent) in cavities that have very small diffusion lengths A. In this

case, we expect an electron density decay that is approximately exponential, with a

slowly varying time constant that decreases with increasing postdischarge times,

because in going to lower densities, we move from ambipolar to free diffusion condi-

tions. The decay was investigated for a cylindrical metal cavity with A = 0. 1 cm, and

the effect was found to be present, as shown in the typical curve of Fig. II-2. During

the investigation, we also found that, in our experiment, the value of the ambipolar

diffusion coefficient is not linearly related to pressure, as we expected; therefore we

decided to study this effect first.

In the afterglow of a discharge, in a Penning mixture like neon contaminated with

argon, we expect the diffusion to be controlled by the mobility of argon ions in neon;

consequently, from the known values of mobilities of -alkali ions in different gases (1)

we expect a Dap value of about 310 cm2 mm Hg/sec. In our experiment, the measured

values range from 260 to more than 400 when the pressure varies from 7 to 30 mm Hg.

We tentatively explain the values above 310 by assuming the formation of a neon-argon

ionized molecule, which, if it exists, is supposed to have a higher Dap value than the

argon ions in neon, and probably will also have a recombination coefficient of the same

order as the one for the ionized molecules of the rare gases. It can be shown (2) that

in our case we measure an apparent (DaP)a which is related to the true Dap by the

relation

(D p)a = Dp + A2p 3  (1)

where (C p2) is the frequency of formation of a molecule, according to the reaction,

A+ + 2Ne - (ANe) + Ne (2)

According to Eq. 1, the measured (DaP)a must be a linear function of p , and the inter-

cept at zero pressure gives the true DaP. Figure II-3 shows our experimental data

plotted in this way, and the graph seems to confirm, within the experimental error,

the p 3 dependence and the expected true Dap value, except for pressures less than 15

mm Hg. We explain the low Dap values in this low-pressure region by the hypothesis

that here the ions are not all argon but partially neon; the Dap value for neon molecular

ions in neon is, in fact, 250 cm2 mm Hg/sec (see ref. 3). This explanation is consis-

tent with breakdown measurements (4), which show that at low pressures a contamin-

ation of 0. 1 per cent of argon is not sufficient to produce minimum breakdown.
-1

From the data of Fig. 11-3, we obtain for the approximate value 0.5 sec

(mm Hg) - 2, which is about one-hundredth of the measured value for the conversion of
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Fig. II-3. Measured D p values versus p 3. As usual, the pressures are normalized
to 00 C and the diffusion coefficients to 300°K and 1 mm Hg.
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ionized atoms of helium into molecules (2); therefore the value seems reasonable.

In the next experiment, we hope to verify the correct dependence of Eq. 1 on A and

to increase the amount of argon contamination in order to show an increase in D a

values in the low-pressure region.

A. L. Gilardini
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C. MICROWAVE DETERMINATIONS OF FREQUENCY OF IONIZATION AND

COEFFICIENT OF FREE DIFFUSION

A direct method of determining the significant quantities, vi, the coefficient of

ionization, and D , the coefficient of free diffusion, was described in the Quarterly

Progress Report of July 15, 1956, page 8. The present report deals with the theory of

the method, necessary corrections to be applied to experimental data, and the results

obtained.

The equation for the build-up of the electron density, in the absence of space charge,

is written as

an= v.n + DV2n (1)at 1

where v.n is the production of electrons per second by ionization and D V n is the loss

of electrons per second by diffusion. For a cylindrical cavity of length L and radius R,

when v. and D- are independent of position, the solution of Eq. 1, for the case of a
1

single electron entering the cavity at t = 0, at the point Z = Z , r = 0, and the

boundary condition that n = 0 at the walls of the cavity, is

n(F, Z, t) sin Z sin ) exp (ym It)  m = 1, 3, 5...
co L j2 (om)

mf 1
(2)

where

D F 2 ( P

y = v. - =v.-D f +rj
mi A 2  i - L Rmk

and m, I are positive integers, and Bof is the root of the zeroth-order Bessel function.



(II. MICROWAVE GASEOUS DISCHARGES)

The fundamental mode is represented by k = 1, m = 1. It can be shown that higher modes

in the Z-direction are important only at very short times and thus can be neglected. The

contribution of higher modes in the radial direction is dependent on the radius of the

cavity, pressure, and time. By writing the ratio of the first two terms, it can be seen

that at large R and small t (of the order of a few microseconds in the present experi-

ment), many higher modes are present, and the electron density distribution that results

from all these modes is concentrated within a narrow central region. For this case, the

electron density does not have time enough to diffuse out of the narrow central region,

which can be seen by writing an alternative expression for n, obtained by the use of the

Born approximation.

2 rZ 0 tZ exp ( -r2/4Dt) ( (3)
n(F, Z, t) = sin sin 4Dt exp - D 2 t (3)

Equation 3 satisfies the postulated initial and boundary conditions. In this expression, a
term of the order of

exp (-R2/4Dt)

4TrrDt

necessary to satisfy the boundary condition at r = R, is omitted, since R2/4Dt > p > 15

mm Hg.

Since the quantity obtained experimentally is essentially fv n(Y, Z, t) E 2 dv, let us
define

N = nE dv (4)

oV

where N is the total number of electrons in the cavity averaged over the electric energy.

The cavity oscillates in the TM 0 10 mode; therefore, if we write E = EoJ° (Poi r/R), we

obtain

2 iTZ exp (-r 2/4Dt) 2N = -sin - sin dz 2Tr dr 4TrDtL L L 0 't o oR

X exp v i - D( t (5)

Small error is made by allowing R to go to oo, since the exponential for r > R is less
-20

than e . This yields
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N =sin exp - - i j 0  )exp - DT
-L - e R 2 o 2 R 2  i L

2 24 0 o 4Dt of4Dts(6)
sin L 2 2 4 2 2

Experimentally, we seek the minimum time tm in order to achieve a given density N.

This corresponds to an initial electron appearing at Z 0  L/2, which makes sin rrZ /L

approximately unity. Furthermore, since the quantities of interest occur in the expo-

nential and

2
of 4Dt 1
2 2 10

and N is of the order of 10 9 , an error of less than 1 per cent is made by writing

Nb =exp - D( t m  
(7)

With the help of the method discussed in the Quarterly Progress Report of April 15,

1956, variation of the electric field E with the total electron density N can be computed

for the present case, with v /w as a parameter for the 1/8-inch cavity (see Fig. 11-4).
f(Vc/W)

This slight variation of N with v /w can be taken care of by writing Nb , taking

Nb = 5 X 10 8 . Since vi/p and D p are functions of E/p only, Eq. 6 can be written in the

form

f 1 (v i  Dp(8)
tmp - (In Nb)\P (p)(8)

where Nb is the total electron density at which the power begins to be reflected from

the cavity and corresponds to the minimum time tm.

Experimental measurements of the effective field Ee and t m , with po, the pres-

sure at O0C, as a parameter, are plotted in Fig. 11-5 for the 1/8-inch and 1/16-inch
-2

cavities. With the help of this plot, we can draw another curve of f/tp against (pA) - 2

with Ee/Po as a parameter. But before this can be done, tm should be corrected for

the effective diffusion coefficient D s , which includes the diffusion caused by space

charge. This is necessary because, until now, we have assumed that the controlling



Fig. 11-4. Variation of electric field with total electron density N.
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Fig. 11-5. Experimental measurements of effective electric field versus
minimum time t m , with p o the pressure at 0OC, as parameter.

(a) 1/8-inch cavity. (b) 1/16-inch cavity.
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to10
W-I~

10 15 20 25 30 35 40 45 50 60

Ee /Po VOLTS (CM-MM Hg)
-

'

Fig. 1-9. Comparison of experimentally determined vi/Po
with the theory of Allis and Brown.

factor over the period t is the free diffusion D .m
With the help of Eq. 6, this correction can be written as

pAt =

(pA) 2 V i Dp 2

(pA) /2)

dn
(D- D ) ds n

in order to yield the corrected values of tmP. In this equation, D s can be written in terms

of D , by fitting an analytical expression to the curves computed by Allis and Rose (1).

Figure II-6 is a plot of f/tm Po against (p A) - 2 , with Ee/Po as a parameter. Each
-2

E/p-value line intersects the abscissa at different values of (pA) - 2 , giving the pressure

to which that particular value of E/p will correspond for the case of steady-state break-

down. Steady-state breakdown voltages as a function of (poA) are plotted in Fig. 11-7.

The slope gives the value of D p, while the intercept with the ordinate gives vi/p. These

values are plotted in Figs. II-8 and 11-9 (see also ref. 2).

These experimentally determined vi/p-values require a correction, on account of

the radial variation of the applied field, and can be treated by solving the diffusion equa-

tion for the electron density distribution for the case of a nonuniform field. This will be

reported later.

M. P. Madan
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