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A. HEXAGONAL CLOSE-PACKED METALS

A lattice calculation was carried out for monatomic, hexagonal, close-packed metals

in connection with our experimental project on low-temperature elastic constants. This

calculation will form the basis for using the elastic constants at 0*K to obtain the fre-

quency spectrum of normal modes of vibration of the lattice, g(v). This frequency spec-

trum is of value in predicting and correlating such properties as specific heat, thermal

expansion, and transport phenomena.

The theory comprises two parts. Part 1 provides connections between the elastic

constants and a set of atomic force constants for the lattice. Part 2 utilizes these force

constants in a lattice dynamical computation of the normal modes. Part 1 will be dis-

cussed here in terms of the lattice model that was adopted and the results that were

obtained from room-temperature data. Part 2 has been completed to the point of finding

the 6 X 6 complex secular determinant for the normal modes. Calculation of the fre-

quency spectrum will be carried out on the Whirlwind computer when low-temperature

force constants are available.

The model is in terms of a general axial ratio, c/a. In obtaining the potential energy

of the lattice it is assumed that: (a) the displacements from equilibrium are small com-

pared with the interatomic distance, and only harmonic terms are considered; (b) compo-

nents of displacements normal to the line between equilibrium positions of the atoms do

not contribute to the restoring force; thus only central forces are used. Also, the lattice

forces are taken to be short range: only the interactions of an atom with the six nearest

neighbors in the basal plane (Hooke's Law force constant a), the six nearest neighbors

out of plane (force constant p), and the six next nearest neighbors out of plane (force

constant y) are included. The electron gas contribution to the elastic constants is

assumed to arise from an isotropic volume-dependent term in the energy. Thus, there

is an additive term corresponding to the bulk compressibility of the electron gas in c 1 1,

c 1 2 , c 1 3 , and c 3 3 , but not in c 4 4 . This bulk compressibility, called a-, is given by the

deviation from the Cauchy relation, a = c 1 3 - c 4 4 '
The method of homogeneous deformation is used to find the strain energy density as

a pure quadratic form in the external strain components. This permits identification of

the five independent elastic constants in terms of the four lattice parameters, a, P, y, 0.

If the expressions for c 1 1 + c 1 2' c 3 3 ' c 1 3' and c 4 4 are used to calculate these four

parameters, the accuracy with which c 1 1 or c 1 2 can be reproduced gives some indication

of the validity of the model. Values of the force constants (in dynes/cm) and r(in

dynes/cm ) are given below for magnesium and cobalt along with the calculated and

experimental values of c11'
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a P y T c 1 1 (calc.) c 1 1 (exp.)

Mg 9. 78 X 103 9. 54 X 103 0.47 X 103 0. 016 X 1012 0. 589 X 1012 0. 572 x 1012

Co 45. 61 X 103 46. 10 x 103 -3. 15 X 103 0. 272 X 1012 3. 197 X 1012 3. 071 X 101

The agreement is fairly good for magnesium and cobalt, which have close to an ideal

axial ratio and are essentially isotropic materials. The model works less well for cad-

mium, zinc, and beryllium, the other metals for which elastic data are available. For

cadmium and zinc, the model is probably inadequate, owing to their remarkable anisot-

ropy. A general tensor force model should be used rather than central forces.

Unfortunately, the tensor force model requires 7 force constants to describe just the 12

nearest neighbors and is intractable at present. In the case of beryllium, the difficulty

may come from poor elastic data.
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