
EGEE-PUB-2006-036

gLite Workload Management System
Performance Measurements

Svraka, N (IPB) et al

Revised on 02 February 2007

Proceedings of IV INDEL, Banjaluka

EGEE is a project funded by the European Commission
Contract number INFSO-RI-508833

The electronic version of this EGEE Publications is available
on the CERN Document Server at the following URL:

<http://cdsweb.cern.ch/search.py?p=EGEE-PUB-2006-036>

EGEE-PUB-2006-036

VI СИМПОЗИЈУМ ИНДУСТРИЈСКА ЕЛЕКТРОНИКА ИНДЕЛ 2006, БАЊА ЛУКА, 10- 11. НОВЕМБАР 2006.

GLITE WORKLOAD MANAGEMENT SYSTEM PERFORMANCE MEASUREMENTS
Neda Švraka, Antun Balaž, Aleksandar Belić, Aleksandar Bogojević

 Scientific Computing Laboratory, Institute of Physics, Belgrade, Serbia

Abstract – In this paper an introduction to the gLite
Grid middleware and one of its most important components,
Workload Management System (WMS), responsible for
management of user jobs is given.Useful performance
metrics of gLite WMS are defined from a Grid application
point of view, and preliminary results of performance
measurements are presented and briefly analyzed.

1. INTRODUCTION TO GRIDS

Many science experiments generate enormous
amounts of data. The processing of this data requires huge
computational and storage resources and associated human
resources for operation and support. Scientists also face
problems requiring vast computing power, i.e. number
crunching problems. We can roughly cathegorise these tasks
into: tasks with large amounts of distributed data; number
crunching tasks; tasks which require simultaneous work of a
group of researchers/developers, accessing the same
resources at the same time. Please note that typical problems
may consist of overlapping tasks from different identified
categories, i.e. they may contain computing-intensive
analysis of a large amount of distributed data etc. Often a
single computer, a cluster of computers or even a special-
purpose supercomputer, is not enough for solving
challenging science or development problems today.

In order to avoid these obstacles, middleware concept
is introduced – layer of software that is able to interconnect
distributed computing and storage resources, and make them
interoperate, providing users with the unified access to all
resources, even if the underlying software (e.g. batch system
on individual clusters) or hardware (e.g. different types of
storage elements, ranging from tape robots to generic PCs
with several HDDs attached) is different. Of course, this
middleware layer is built on top of the existing network
infrastructure, which is essential for the proper functioning of
Grids.

This approach is in some way similar to the World
Wide Web (WWW), and people expect that what WWW has
done for the information exchange and sharing, the Grids
will do for computing resources sharing. However, there are
some substantial differences between WWW and Grids:
while on the Internet the basic idea is to provide information
and we usually have client-server interaction, in Grids the
resources are valuable assets and their use should be
governed according to the policies of resource providers. In
addition, in order to have most efficient use of computing
resources available, complex algorithms and internal
information system need to be developed and deployed, and a
set of new services that will allow simple usage by the end
users provided.

There are many kinds of Grids with different
purposes, such as national Grid infrastructures (aiming to
couple high-end resources across a nation, e.g. AEGIS [1] in

Serbia, or the UK e-Science program), project Grids (funded
by certain funding agencies, goodwill Grid infrastructures
provided by individuals aiming to help in solving important
common problems (e.g. in finding drugs for diseases),
consumer Grids established by commercial companies, etc.

Project Grids are currently the main providers of
different middleware distributions, some of which are freely
available, thus enabling general public to join the Grid, or to
adapt it for their own needs. Project Grids are created to meet
the needs of a variety of multi-institutional research groups
and multi-company "virtual teams", to pursue short- or
medium-term projects (scientific collaborations, engineering
projects). Such a project is World Wide LHC Computing
Grid Project (WLCG)[3], which was created to prepare the
computing infrastructure for the simulation, processing and
analysis of the data of the Large Hadron Collider (LHC)
experiments. The LHC, which is being constructed at the
European Laboratory for Particle Physics (CERN), will be
the world’s largest and most powerful particle accelerator.

The WLCG project shares a large part of its
infrastructure and works in conjunction with the Enabling
Grids for E-Science (EGEE-II) project [4], large European E-
infrastructure project with the main goal is to provide
researchers with access to a geographically distributed
computing Grid infrastructure, available 24 hours a day.
SEE-GRID-2 [5] is the regional project aiming to provide
Grid infrastructure in the South East Europe region, incubate
new regional communities, and stimulate development of
new Grid-aware applications.

2. INTRODUCTION TO MIDDLEWARE

The essence of the Grid is the software that enables
the user to access computers distributed over the network.
This software is called “middleware”, because it is distinct
from the operating systems software that makes the
computers run (e.g. Linux) and also different from the
applications software that solves a particular problem for a
user (e.g. a computer visualization programme). The term
“middleware” reffers to the fact that it is conceptually in
between these two types of software.

The middleware's task is to organize and integrate the
distributed computational resources of the Grid into a
coherent structure. This means the objective of the
middleware is to get the applications to run on the right
computers, wherever they may be on the Grid, in an efficient
and reliable way. It also provides users with a single interface
to the Grid.

Different distributions of middleware exist today –
Globus, LCG, gLite, UNICORE, GAT. The gLite [6] is
successor of the LCG-2 middleware, and is most widely
used.

The EGEE-II project focuses on maintaining the gLite
middleware and on operating a large computing

infrastructure for the benefit of a vast and diverse research
community. The gLite middleware hides much of the
complexity of this environment from the user, giving the
impression that all of these resources are available in a
coherent virtual computer centre.

We will now in brief describe basic entities (“building
blocks”) and available interfaces which allow user to run jobs
and manage data [7].

The access point to the WLCG/EGEE-II/SEE-GRID-2
Grid is the User Interface (UI). This can be any machine
where users have a personal account and where their user
digital certificate is installed. From a UI, a user can be
authenticated and authorized to use the WLCG/EGEE/SEE-
GRID-2 resources, and can access the functionalities offered
by the Information, Workload and Data management
systems.

A Computing Element (CE) is a set of computing
resources localized at a site (often referred to as a cluster, or
a computing farm).

A Storage Element (SE) provides uniform access to
storage resources at a certain site. The Storage Element may
control simple disk servers, large disk arrays or tape-based
Mass Storage Systems (MSS). Most WLCG/EGEE/SEE-
GRID-2 sites provide at least one SE. Storage Elements can
support different data access protocols and interfaces.

The Information Service (IS) provides information
about the Grid resources and their status.

In a Grid environment, files can have replicas at many
different sites. Ideally, the users do not need to know where a
file is located, as they use logical names for the files that the
Data Management services will use to locate and access
them.

The Workload Management System (WMS) [4]
accepts user jobs, assigns them to the most appropriate
Computing Element, records their status and retrieve their
output. The Resource Broker (RB) is the machine where the
WMS services run.

Finally, the Logging and Bookkeeping service (LB)
tracks jobs managed by the WMS. It collects events from
many WMS components and records the status and history of
the job.

3. HOW DOES THE WMS WORK?

This paper is devoted to the measurement of the
performance of the WMS [8]. As mentioned before, the
purpose of WMS is to accept requests for job submission
and management coming from its clients and take the
appropriate actions to satisfy them. The complexity of the
management of applications and resources in the grid is
hidden by the WMS to the users. Their interaction with the
WMS is limited to the description of the characteristics and
requirements of the request via a high-level, user-oriented
specification language, the Job Description Language (JDL)
and to the submission of it through the provided interfaces.
The WMS is responsible for translation these abstract
resource requirements into a set of actual resources, taken
from the overall grid resource pool, to which the user has
access permission.

The JDL allows the description of the following
request types supported by the WMS:

• Job: a simple application

• DAG: a direct acyclic graph of dependent jobs
• Collection/Bulk: a set of independent jobs
There is a set of client tools, referred to as WMS-UI,

which allows the user to access the main services (job
management services). These client tools include a command
line interface, a graphical interface and an API, providing
both C++ and Java bindings, which allow the requests to be
submitted and managed programmatically. Through the
WMS UI user can find the list of resources suitable to run a
specific job, submit a job/DAG for execution on a remote
Computing Element, check the status of a submitted
job/DAG, cancel one or more submitted jobs/DAGs, retrieve
the output files of a completed job/DAG (output sandbox),
retrieve and display logging and bookkeeping information
about submitted jobs/DAGs.

After submission, the request passes through several
components of the WMS, before it completes its execution.
The internal architecture of the WMS is given in Fig. 1.
There are two approaches for acceptance of incoming
requests, one is based on a generic daemon and the other on
the Web Services based interface. These two modules are the
key subject of measurements performed in this paper.

The Network Server (NS) is a generic network
daemon that provides support for the job control
functionality. It is responsible for accepting incoming
requests from the WMS-UI (e.g. job submission, job
removal), which, if valid, are then passed to the Workload
Manager.

The Workload Manager Proxy (WMProxy) is a
service providing access to WMS functionality through a
Web Services based interface. Besides being the natural
replacement of the NS in the passage to the SOA approach
for the WMS architecture, it provides additional features
such as bulk submission and the support for shared and
compressed sandboxes for compound jobs.

Fig, 1: Overview of the WMS architecture.

The Workload Manager (WM) is the core component

of the Workload Management System. Given a valid request,
it has to take the appropriate actions to satisfy it. It
coordinates other modules that provide a matchmaking

service (Resource Broker), the actual job management
operations (CondorC), preparation of the CondorC
submission file and creation the appropriate execution
environment in the CE worker node (Job Adapter).

The Logging and Bookkeeping (LB) service provides
support for job monitoring functionality: it stores all
information concerning events generated by the various
components of the WMS.

For a generic job there are two main types of request:
submission and cancellation. The submission request passes
the responsibility of the job to the WM. The WM will then
pass the job to an appropriate CE for execution, taking into
account the requirements and the job preferences expressed
in the job description file. The decision on which resource is
to be used is the outcome of the matchmaking process
between the submission requests and the available resources.
The job can also be cancelled by the user at any time after it
is submitted using the job ID that uniquely identifies each
job.

4. WMS PERFORMANCE

In order to assess performance of the WMS, especially
the process of submitting a long series of jobs (which is a
typical use-case scenario for an application that requires vast
computing resources and is for this reason ported to the
Grid), we developed a series of WMS tests. In our test
environment long series of jobs with different requirements
have been submitted and timing of critical job events has
been recorded and analyzed.

The testbed environment included a single User
Interface, and a single WMS collocated with a top-level
BDII, which provides database on available resources, used
in the matchmaking process by WMS. User Interface was a
laptop machine (Pentium M, 1.8 GHz, 512 MB RAM, 100
Mbps network card), while the WMS/BDII node was double
Xeon 2.8 GHz with hyperthreading enabled, 2 GB of RAM,
1 Gbps network card. Both machines were connected to the
same high-quality 3Com Gigabit network switch. The latest
gLite 3.0.2 middleware was installed on both nodes.

In the first series of tests, jobs have been sent via a
Network Server, and in the second one via Workload
Manager Proxy. Information associated with each job status
was obtained from Logging and Bookkeeping service for
both cases. The Logging and Bookkeeping service is
collocated with the WMS service. We were interested to find
out how the typical submission time per job changes with the
change of type of submission: sequential (thread) submission
of jobs to both NS and WMProxy, as well as for bulk
submission to WMProxy. We also investigated if changing
the overall number of submitted jobs will influence the
frequency of submission, and the dependence of the
submission frequency on the size of job Input Sandboxes
(files associated with each job that need to be uploaded to the
WMS during the job submission). The client performs action
running scripts based on the Command Line Interface (CLI)
commands from the User Interface.

For the first measurement, client instantiates a number
of threads and each thread executes sequentially a given
number of job submission commands. The jobs were just self
contained JDLs (no sandboxes). Numbers of jobs used in
such submissions were 100, 500 and 1000. The second type

of measurements assumes the same approach, but jobs were
described with JDLs containing small Input Sandboxes, with
the size of approximately 8 kB.

Also, it was interesting to examine a new feature,
introduced by WMProxy, bulk submission of jobs, i.e.
parallel submission of a collection of jobs using a single
command line. Tests were performed with different number
of jobs in collection (100, 500 and 1000) and different size of
sandbox (no sandbox, as well as a sandbox of 8 kB). Results
of measurements are shown in Fig. 1.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

NS, IS
NS

WMP, IS
WMP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400 450 500

NS, IS
WMP, IS

NS
WMP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

NS, IS
NS

WMP, IS
WMP

Fig.2: Time (in seconds, on y-axis) needed for a submission
of a large number of jobs (on x-axis) for 100, 500, and 1000
jobs. The jobs were submitted through the Network Server
interface, without (NS) and with a small Input Sandbox (NS,
IS), and through the WMProxy interface without (WMP) and
with a small Input Sandbox (WMP, IS).

The three graphs in Fig. 2 represent the dependence of the
submission time on the number of jobs. The overall number
of submitted jobs is 100 on the top plot, 500 on the mid one,
and 1000 on the bottom one. Comparing the performance of
Network Server and WMProxy, we see that WMProxy
outperforms the corresponding Network Server
measurements in both cases considered (no sandbox, small
sandbox). The fact that each of these curves is actually a
linear function shows that there is no saturation in WMS
performance, and that it can accept large number of jobs
without having its performance reduced. The slope of each
curve in Fig. 2 represents typical submission time per job.
 Therefore, we see that the usage of WMProxy
consumes much less time for submission of a single job then
the usage of Network Server. For the thread of 100 jobs the
submission with WMProxy takes about 2.2 seconds per job
with no sandbox, and about 4.5 seconds per job with small
sandbox. On the other hand, Network Server needs 4.9
seconds in the first case, and 6.5 seconds in the second one.
We also see that the presence of even a small sandbox affects
performance of WMProxy service drastically (two times
longer submission time), while the increase in the submission
time is not so prominent with the Network Server (1.3 longer
submission time). The submission of longer threads of jobs
(500, 1000) does not give substantially different average job
submission times.

The other interesting quantity we investigated is the
average frequency with which jobs can be submitted using
either service. This is the inverse value of slopes for Fig. 2.
This way we can compare performance of NS and WMProxy
services with the performance of a bulk (collection) jobs
submission. The results are presented in Fig. 3.

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 500 1000

B
B, IS

WMP
WMP, IS

NS
NS, IS

Fig. 3: The average job submission frequency (on the y-axis)
achieved during submission of different numbers of jobs (on
the x-axis). The jobs were submitted through the Network
Server interface, without (NS) and with a small Input
Sandbox (NS, IS), and through the WMProxy interface
without (WMP) and with a small Input Sandbox (WMP, IS),
as well as using the Bulk submission without (B) and with a
small Input Sandbox (B, IS).

While the average frequency of non-bulk submission ranges
from approximately 0.20 jobs per second (no sandbox) to
0.16 jobs per second (small sandbox) for NS, or 0.46 jobs
per second (no sandbox) to 0.20 jobs per second (small
sandbox) for WMProxy, the bulk submission has much

better performance. As we see from Fig. 3, bulk submission
frequency ranges from approximately 2.5 jobs per second (no
sandbox) to around 1 job per second (small sandbox).
 The performed measurements represent just the
preliminary results, and we are planning to do a more
complex investigation of WMS performance and stability,
such as parallel submission of threads of jobs from two or
more User Interfaces, transferring large Input Sandboxes
(~MB), etc. Insights gained from such measurements can be
very useful not only to the middleware developers aiming to
improve the performance of Grid services, but also to the
most important group of people – Grid users – which must
take into account these results when planning gridification of
their applications. Such knowledge enable them to choose the
most efficient approach fоr porting applications to Grids.

5. CONCLUSIONS

We presented preliminary results of gLite Workload
Management System performance measurements. For job
thread of different sizes (100, 500, 1000) we measured the
average submission time per job and frequency of job
submissions for Network Server, WMProxy, and bulk
submission. We found that WMProxy outperforms Network
Server service in all considered cases (2 to 1.5 times,
depending on the size of sandbox), with WMProxy
performance being more sensitive to the size of the sandbox.
We also found that the bulk submission of jobs is far superior
service, giving consistently 10 times faster response than the
NS, and 5 times faster response than the WMProxy.

6. ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Science
and Environmental Protection of the Republic of Serbia
under project no. OI141035. The presented numerical results
were obtained on the AEGIS GRID e-infrastructure[5] whose
operation is supported in part by EC FP6 projects EGEE-II
(INFSO-RI-031688) and SEE-GRID-2 (INFSO-RI-031775).

7. REFERENCES

[1]http://aegis.phy.bg.ac.yu/
[2]http://lcg.web.cern.ch/LCG/
[3]http://www.eu-egee.org/
[4]http://www.see-grid.eu/
[5]http://glite.web.cern.ch/
[6]gLite 3.0 User Guide,

 https://edms.cern.ch/document/722398/1/
[7]WMS Guide, https://edms.cern.ch/document/572489/1

Сажетак – Описан је gLite Grid middleware и једна
од његових најважнијих компоненти - Workload
Management System (WMS), одговорна за управљање
корисничким пословима и подацима. Приказани су и
укратко анализирани прелиминарни резултати мерења
перформанси WMS-а, дефинисани са тачке гледишта
оптимизовања Grid апликације

МЕРЕЊЕ ПЕРФОРМАНСИ GLITE WORKLOAD

MANAGEMENT СИСТЕМА
Неда Шврака, Антун Балаж,

Александар Белић, Александар Богојевић

	../egee-pub-2006-036-cover.pdf
	Microsoft Word - NedaSvraka-INDEL2006.doc
	page 2
	page 3
	page 4
	page 5

