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A. IMPROVING THE PERFORMANCE OF A GIVEN FILTER

A theory for the experimental determination of optimum, time-invariant, nonlinear

filters was developed in the Quarterly Progress Report of October 15, 1955, pages

43-49. The present report develops methods of applying the theory given in the previous

report for the purpose of improving the performance of simple filters.

As we increase the complexity of the filter (i.e., we use more Laguerre coefficients

to characterize the past and more gate functions for each coefficient) the number of

parameters (A 's) necessary to specify the filter grows very rapidly. In particular,a

if we use s Laguerre coefficients and n gate functions, for each coefficient we have n s

parameters, (Aa's) to evaluate. After evaluating a large number of parameters, we

should like to have some guarantee that our filter would perform at least as well as,

say, a linear filter or a simple nonlinear filter that can be designed with less effort.

Two methods of obtaining this guarantee will now be described.

Let us, first of all, prove the existence of a property of our class of filters which

will be used in one of the methods. We want to show that the class of filters employing

s Laguerre coefficients of the past includes the class of filters that only uses any one

of the s Laguerre coefficients. Since we can always renumber the Laguerre coefficients,

it is sufficient to prove that the s-coefficient class includes the class that uses only the

first Laguerre coefficient ul. The series representation for the general system of this

one coefficient class is

n

y(t) = a i 6i(u 1) (1)

i= I

We can now make use of the fact that the sum of the n gate functions of any one coef-

ficient is unity in order to express the series representation, Eq. 1, in the form

n n n n n

y(t)= a a a i ,i(u1) Z ij(uj2 . k(u3) L ' h(us) (2)

i= 1 i= 1 j= 1 k= l h= l

which is recognized to be a special case of the expansion (Eq. 9, Quarterly Progress

Report, Oct. 15, 1955, p. 47) for the general s-coefficient system. In a similar way,

it can be easily shown that the class of filters using s Laguerre coefficients includes

all classes having less than s coefficients. Note that this property is independent of
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the nature of the u's; they may be Laguerre coefficients of the past of the filter input

x(t) or they may be obtained from x(t) by any linear or nonlinear operation.

We now return to the problem of designing a nonlinear filter which is guaranteed

to perform at least as well as a given filter. Let x(t) be the input and z(t) the desired

output time functions. Our problem is to design a filter that is equal or superior, with

respect to a weighted mean-square criterion of the type discussed, to a given filter F.

F may be linear or nonlinear. We augment the Laguerre coefficients with the output,

u o , of the given filter F, as shown in Fig. IX-1. Then, by the property demonstrated

above, the filter whose output is expressible as

n

y(t) = a i  i(Uo) (3)

i= 1

is a member of the class of filters which has s Laguerre coefficients augmented by u o0
If the number n of gate functions associated with the variable uo is sufficiently large,

then to any degree of approximation Eq. 3 represents the class of filters shown in

Fig. IX-2, consisting of F cascaded with a no-storage filter. Since the transfer

characteristic of the no-storage system can be linear, the latter class certainly con-

tains the filter F. Hence the filter determined by the procedure indicated in Fig. IX-l,

for any s, performs at least as well as the given filter F and, in fact, at least as well

as F cascaded with any no-storage filter. Having determined the A 's of the desired

filter by the experimental procedure indicated in Fig. IX-1, the filter synthesis proceeds

as indicated in Fig. IX-3.

We now turn our attention to another method of designing filters to improve the

performance of given filters. Let the output of the given filter F be u (t) when its

input is x(t). Our object is to improve (with respect to a weighted mean-square

criterion) the performance of F by paralleling it with a filter which will be determined.

The A 's of the desired filter are chosen to minimize
a

T r
T = lim 2T G(t) (t) - u(t ) + A '(a) dt (4)

which is equivalent to

T r
= lim 2T G(t) z(t) -u (t) ( dt (5)

T--c a

Comparing Eq. 5 with Eq. 11, Quarterly Progress Report, October 15, 1955, page 47,

we find that the optimum A 's are determined by an experimental procedure like that

indicated in Fig. VII-8, Quarterly Progress Report, October 15, 1955, with z(t)
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replaced by z(t) - u (t). The latter quantity is easily generated by applying x(t) to the
given filter F and subtracting its output from z(t), as shown in Fig. IX-4. The parallel
combination of F and the filter determined as we have just described will always per-
form at least as well as F, since that filter which has no transmission from input to
output is a member of the class of filters considered in our theory. In other words, the
solution in which all the A 's are equal to zero is a possible solution of Eqs. 4 and 5.

The second method for improving the performance of given filters offers the advan-
tage of not having gate functions associated with the output time function of the given
filter; therefore improvements can be made on the performance of F by very simple
systems involving as few as one Laguerre coefficient. The first method does require
a gate function expansion of the output of the given filter F but it has the advantage of
ensuring that the performance of the over-all filter will always be at least as good as
the performance of F cascaded with any no-storage system. In either method, the
resultant over-all filter approaches the most general filter (of the class considered

here) as the number of Laguerre coefficients is increased.

Since, in practice, the number of Laguerre coefficients will never be increased to
very large numbers, it is unnecessary - sometimes it is even undesirable - in applica-
tion of the theory, to confine our attention to a complete set of functions on the past of

the input, such as Laguerre functions. For example, suppose we are dealing with

binary signals. Then it is appropriate to replace the Laguerre network by a delay line
with taps so spaced that consecutive symbols appear at adjacent taps. There are many

choices we can make for our operators on the past of the input. Each choice of a finite
number of operators on the past of the input implies a restriction to a class of filters
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from which the test procedure, similar to that indicated in Fig. VII-8, Quarterly

Progress Report, October 15, 1955, will pick the optimum for our particular problem.

A. G. Bose

B. ON THE PROBLEM OF MULTIPLE LINEAR PREDICTION

The problem of optimum linear prediction of a single discrete stationary random

sequence consists in determining that linear operation to be applied to the past history

of the sequence in order to minimize the mean-square difference between some particu-

lar future element of the sequence and the resultant of the linear operation. It will be

shown that this problem has a unique solution that can be found by a perfectly straight-

forward procedure.

Multiple prediction is concerned not with a single sequence, but rather with a finite

set of n stationarily correlated sequences, whose elements can be regarded as the

coordinates of an n-dimensional vector sequence. The problem of prediction of the

future values of the n sequences consists in determining that matrix operation which,

when applied to the past history of the vector sequence, minimizes the mean-square

errors of prediction of each coordinate of the vector. It will be shown that the solution

to this latter problem does not share the uniqueness property enjoyed by the single pre-

diction problem. For this reason, the general multiple-prediction problem has not yet

been completely solved in closed form, although a scalar series solution suitable for

machine computation has been given by Wiener and Rankin (1).

We shall review the single prediction problem and formulate the multiple one, in

the hope that additional interest will be stimulated in this field of research. For sim-

plicity, however, we shall restrict our consideration to prediction one-element ahead.

1. The Wold-Kolmogorov Decomposition of a Single Sequence

Let {fi} (i = .... -1, 0, 1, ... ) be a discrete stationary regular sequence (2) with

spectral function Aff(z). Let {ai} (i = 0, 1, 2, ... ) be a set of coefficients and then con-

sider the error sequence

oo

k = fk - a. fk- (1)

i=O

It has been shown in (2) that those elements of the set {a} which minimize the mean-
2

square error ak are given by

1 1 ff(O)] dz
a1 1 - zl (2)i 2Ti z ff(z) zi+1
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where Xff(z) is that Szego factor of Aff(z) which is analytic and nonvanishing inside the

unit circle. If we examine the crosscorrelation coefficient between the error and the

sequence f, we find that

0

kf k+m k k+m - a fk-l-i k+m
i=0

A 1 1 A (1] dz
2ii i ff [' I z z m+1

ff(0) z dz(3
2ri ' ff'' m+l (3)

However, since kff(z) is analytic in z < 1, it follows that the integral vanishes for

negative values of m. We say that ( is orthogonal to the past of f in the sense that

kfk+m is zero when m < 0. Since the past elements of are linear combinations of

the past elements of f, it is clear that is orthogonal to its own past and is a purely

random sequence.

If we write Eq. I in the form

00

fk= ai fk--i + k (4)
i=0

we see that each element of the sequence f is expressed as the sum of two parts: the

first is a linear combination of the past elements of f, while the second is orthogonal

to those past elements. This is the so-called Wold-Kolmogorov decomposition (3) of

the random sequence f. The sequence {-i} may be regarded as the "innovation" or new

information contained in each element of the sequence f fi

Denoting by U that transformation which converts each element of a sequence into

the next preceding one, that is

Ufk = fk-l (5)

we may express Eq. 1 in the operational form

k = B(U) fk (6)

where B(U) is a power-series expansion in positive powers of U. The coefficient Pi of
th

the i power of U becomes from Eq. 1, po = 1, pi = -ai-_ (i> 0), or from Eq. 2,

1 ff() dz (7)
i 2Tri X ff(z) zi+l (7)



(IX. STATISTICAL COMMUNICATION THEORY)

The function B(z) is thus the power-series expansion about the origin of the function

Xff(0)/Xff(z) which is analytic and nonvanishing inside jzj < 1. It follows that

the inverse B (z) has the same property, hence the elements of the sequence f can be

expressed in terms of the past and present elements of the innovation sequence.

fk = B- 1(U) k (8)

It may be shown quite readily from Eq. 1 that

A (z) = B(z) B() Af(z) (9)

However, since the sequence {~ is purely random, we have A (z) 2 = f(0).

The Wold-Kolmogorov decomposition of a regular sequence amounts, in effect, to

the determination of a function B(z), analytic and nonvanishing inside the unit circle,

satisfying the conditions

B(O) = 1

and

B(z) B ) Aff(z) (10)

The Szego factorization theorem may be employed to deduce uniquely that

Xff(O)
B(z) = Xff( (11)

This result constitutes the solution of the single-prediction problem.

2. The Vector Sequence

Let the set {fli fZi' ... fni} represent n stationarily correlated random sequences

with correlation coefficients

R(ij) = . f (i,j = 1, 2, n) (12)
m Ik j,k+m

and spectral functions

A. (eio) R(ij) eimo (13)
ij m

m=-oo

These spectral functions form the elements of an n X n Hermitian matrix /(ei6) whose

determinant

A(z) = 1 . (z)j (14)
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is real, nonnegative, and even on the unit circle.

The Wold-Kolmogorov decomposition in the multiple-sequence case consists of
finding the set of coefficients {rijk} and fyijk} with nijo = ijo = 5ij for which

n 00

im Tijk j,m-k (15)
j=1 k=O

n 00

zim Z Yijk fj,m-k (16)
j=1 k=0

ik jm = 6 km 5i 0j (17)

2.The variance a-. is the minimum mean-square error for prediction of the sequence

f ji one-element ahead and 6..ij is the Kroneker delta. The element ik is the part
of fik that is orthogonal to the pasts of all the sequences (fli' f2i' .. ' fni . If we let

fk = (flk'2k' ... nk ) and k = (lk' 2k' '.. "nk) represent the present elements of

n-dimensional vector random sequences, and let the transformation U be defined as

in Eq. 5, we may express Eqs. 15 and 16 in the form

fk = - (U) k (18)

ek =  - l ( U ) fk (19)

where 7f(U) is a matrix of operators whose elements are defined by

H ij(z) = Z ijk zk (20)

k=0

In order that i(U), as well as its inverse, contain only positive powers of U, its

determinant I f(z)j must be analytic and nonvanishing inside the unit circle. The

constraint on the coefficient 7iko imposes the additional condition I.(0)I = 1.

A straightforward calculation from Eqs. 15, 16, and 17 yields

n

A.(Z) = H .(z) H. <r2 (21)

r= 1

which, expressed in matrix form, becomes

where / is the transpose of V, and S is a diagonal matrix whose rth element is
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2
- . If we denote by
r

n

Z= T = ] (23)

r=l

the determinant of the diagonal matrix, we obtain from Eq. 22 the determinantal equation

I 'z) 9( ) j I I (Z) (24)

By the method of Szego, we set A(z) = 6(z) 6(1/z),where 6(z) is analytic and nonvanishing

in Izi < 1. From the analyticity requirements of the determinants of f(z) and its

inverse, and from the condition I'(0)I = 1, we obtain

) = (z) (25)
8(0)

and

2 = 62(0) = exp 1 log A(z) (26)

Since o-2 is the product of the prediction variances of each coordinate of the vector

process, the vanishing of 2- implies the perfect prediction of at least one member of

the set of random sequences from the past history of all the members of the set. Thus

a necessary condition that the vector process be regular of rank n is that the integral

Tr

2 I log IA(eio )! dO

be finite (4).

If we denote by (z) the inverse of the matrix (kz), we can write Eq. Z22 as

() ~1(z) /(Z)= 8 (27)

thus illustrating another interpretation of the multiple-prediction problem. The Wold-

Kolmogorov decomposition consists in the determination of that matrix (z) by which

the spectral matrix is pre- and post-multiplied in accordance with Eq. 27 in order that

the resultant be a diagonal matrix with constants along the diagonal. The matrix (z)

is constrained by the conditions that its elements be analytic in lz < 1 and that its

determinant be nonvanishing there as well. We shall show that even these constraints

are not sufficient to specify i(z) uniquely.

Let us suppose that, in a given case, a certain matrix ?/(z) is known to satisfy

the required conditions. Let that matrix produce from the vector sequence (fi) an
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innovation sequence fiQ in accordance with Eq. 19. Letting & be a matrix of n

numbers a. satisfying

n

Sakj j= 6 ik 2 (28)

j=1

we consider the vector sequence {} formed by the operation

k =  a  (29)

whose coordinates are given by

n

ik = Z aim amk (30)
m= 1

This operation represents a unitary transformation of the present value of the innovation

vector. It follows directly from Eqs. 28 and 30 that the correlation coefficients of the

sequence f5i} become

2
ik jm = 6km 6 ijj (31)

On comparing Eq. 31 with Eq. 17, we see that the vector sequence {i} is a perfectly

good innovation vector that has identical correlation coefficients with }i. If the

matrix 7 (z) satisfies Eq. 27, so also does the product matrix a (z). Thus, in the

multidimensional process, the Wold-Kolmogorov decomposition (hence the solution to

the mpitiple-prediction problem) is unique only up to a unitary transformation.

K. H. Powers
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C. STATIONARY STATE DISTRIBUTION OF DISCRETE MARKOV SYSTEMS

For some time, a number of people have felt that it should be possible to

obtain the properties of a Markov system directly from the graph that represents it.

R. W. Sittler has shown how to obtain the generating function of the transitional proba-

bilities (1).
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This report describes three methods for obtaining the stationary state distribution

for an aperiodic recurrent Markov system directly from representative graph. Flow

graphs similar to the Markov graph are used to solve the linear set of equations that is

involved in the calculations.

Discrete Markov systems are defined by a discrete set of states (s l , s 2 ... sm)

with an associated matrix of conditional probabilities P = pjk of going from state s to

state s k . These conditional probabilities from one state to another are restricted to

being functions of only the two states sj and s k.

The graph representing this system is a collection of nodes representing the states

(s l s2' .. . sm) and branches representing the conditional transitions between the states.

Branches representing zero probability are usually omitted. Along with the initial

starting probabilities, the system's statistical properties are completely determined

in the sense that they exist.

For the Markov systems composed of recurrent states, this report gives three

methods for obtaining the stationary state probabilities. These methods are based on

the well-known equations:

m

P(sr) Prk - P(sk) = 0 (1)

r=l

m

Z P(sk) = 1 
(2)

k=

m

Srk = 1 r = 1,2 . m (3)

k= I

where P(sk) is the stationary state probability, and Prk is the conditional probability.

In each of the methods the flow graph that was used to perform the calculations cor-

responds exactly to the Markov graph except for minor changes in structure.

In the first method, m - 1 equations of Eq. 1 are solved with the use of a flow graph

in terms of one state probability P(sj) in order to obtain the set of relations

P(sk) = Tk - P(sj) k = 1, 2 .. ., m (4)

With the help of Eq. 2, the desired solution is obtained:

Tk (5)
P(Sk) m (5)

Tk
k= 1
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Fig. IX-5. Markov diagram. Fig. IX-6. First method for the stationary
state distribution.

The second method uses m - 1 equations of Eq. 1, and Eq. 2, in flow-graph form.

The state probabilities are obtained directly from the flow graph.

The third method consists essentially of calculating the diagonal cofactors Ak of the

transition matrix minus the unit matrix and uses Eq. 6 to calculate the desired proba-

bilities.

Ak

P(Sk) = m (6)

k= 1

Calculation of the cofactor Ak is performed directly from the Markov graph using either

Mason's rule (2) or the author's rule of nonintersecting loops (3). As an example, con-

sider finding the stationary state probabilities of the Markov system of Fig. IX-5.

In using the first method, all branches converging on a single state node s. are

removed so that the m - 1 equations of Eq. 1 are represented as in Fig. IX-6. The

equivalence relations Tk from sj to sk are then calculated for k 1, 2, . . ., m. Sta-

tionary state probabilities result from the application of Eq. 5. In this example,

7 33
T 'TZ 3 • I 8' 32

Thus the stationary state probabilities are

32 28 33
P(s l)' P(s2)' P(s3) 93' 93 ' 93

The second method uses the m - 1 equations of Eq. 1, and Eq. 2, in flow-graph form.

All branches converging on a single state node s. are first removed so that the Markov

diagram represents Eq. 1. Equation 2 is represented by attaching a branch with a

coefficient of -1I from each state node to state node s. and driving state node s. by a

unit source, as is done in Fig. IX-7. The value of each state node, as determined by

flow-graph manipulation, is the state probability. From Fig. IX-7 the following cal-

culations are made.

32 28 33
P(sl), P(s)', P(s3) 93' 93' 93
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The third method is based on properties of singular determinants that have an eigen-

value equal to +1. Normally, the solution to Eq. 1 is the cofactor of a row multiplied

by an arbitrary constant of the matrix (P - I).

P(sl),P(s ) . . ., P(s ) : A .C, A .C, .. .,A .C

However, in the calculation it is found that the row cofactors are. equal to the diagonal

cofactors. This is a result of Eq. 3.

The cofactor and minor are related by Eq. 7.

A1 . = (-1)1i -  M.. (7)

where M.. is the matrix (P - I) with the ith column and jth row removed. In the minor .. ,
th U

the i row is reconstructed as the sum of all the rows in the minor. The new coefficient
.th th

of the th row and r column will then be

m

(Prk - 8rk) r =1,2, .. , m

k=l r i

k*j

which is equal to

-(Prj - rj)

th th .th
Changing the sign of the i t h row and permuting the i t h row into the j row produces the

result:

A.. = (-1) i -  M.. = M.. = A.. (8)

The cofactor Aii of the matrix (P - I) is then related to the nonintersecting determinant

of the node s i by the relation

Aii = (- 1)m- 1 Ai (9)

Methods for calculating A i are described in references 2, 3, and 4. Subsequent use of

Eq. 2 then gives the desired result of Eq. 6.

From Fig. IX-5 the cofactors are determined,

A A2' A3  : 0.32,0.28,0.33

Applying Eq. 6 to these results then gives the state probabilities:

32 28 33
P(sl), P(sZ)' P(s3) : 93' 93' 93
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s, s2  A comparison of the three methods

shows that each method has its advantages.0.3

0.3 04 0.6 The first method simplifies the diagram.

ss, The second requires only one calculation

to obtain a single stationary probability.

Fig. IX-7. Second method for the sta- The third requires no modification of the
tionary state distribution. diagram. Of course, each method also

has its disadvantages. The first and third

require essentially a solution for the whole

set of probabilities before any one can be found. The second method is practical only

when a great number of the states have a finite probability of moving to one state. It is

hard to say that one method is better than another without specifying the system under

study. Each method has its own particular field of application wherein it works best.

There is a fourth method which involves the mean duration of a recurrent event.

Calculations of the fourth method correspond to those of the first method.

C. S. Lorens
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D. BASIC THEORY OF FLOW GRAPHS - INVERSION

Inversion plays an important part in the setting up and reduction of flow graphs.

This report presents three essentially different methods of inverting the dependency in

a flow graph. The first two methods are general; the third is limited to linear graphs.

Flow graphs represent a means of making postive statements and interrelating

these statements with functional dependency. The statement

g(x) - ay + h(z) = z (1)

x g( )

-a ( Fig. IX-8. Positive statement.

h( )
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is represented in Fig. IX-8.

Inversion changes the independent variable to a dependent variable and vice versa.

It is essentially a process of turning around and it is so represented in manipulating the

flow graph.

Inversion has meaning only for two types of paths: a path from a strictly independ-

ent variable to a strictly dependent variable, and a path that forms a loop.

1. First Inversion Method

Consider the general node "z" shown in Fig. IX-9a, where we are interested in

inverting the path from yl through z to xl. It is assumed that the inverse exists. If

it did not, the inversion could not be performed. Figure IX-9a is the representation of

the equations

f l (Y 1) + f 2 (Y2 ) + h(z) = z

gl(z) = x 1  
(2)

g 2 (z) = x 2

One method of inverting Eqs. 2 gives

f- (u) = 1

z - h(z) - f 2 (y 2 ) = u

(3)

g (x 1) = z

g2 (z) = x 2

The set of Eqs. 3 is represented in Figs. IX-9b and c.

Thus the general inversion rule is formulated:

1. Invert the direction of the path, splitting all nodes along the way and inserting

the inverse function on the inverted branches.

2. At each split node attach all of the outgoing branches (except for the inverted

branch) to the first node that represents the original variable. Attach all of the

incoming branches (except for the inverted branch) to the second node, multiplying each

function by -1.

The first rule simplifies in the special case of either one branch, leaving a node or

one branch entering a node. These degenerate conditions with their inverse are shown

in Fig. IX-10. Note that only in the case of "one branch entering the node before or

after inversion" does the inverted node still remain the former variable.
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Fig. IX-9.
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2. Second Inversion Method

The second general method involves another type of inversion that superficially

avoids the inverse functions of the inverted branches. The method is quite important

in linear graphs wherein it avoids the introduction of fractions.

Consider again the set of Eqs. 2 and their graphical representation, Fig. IX-9a.

An inversion is indicated by Eqs. 4, which are represented in Fig. IX-ll.

Yl - fl(Yl) - fZ(Y 2 ) + z - h(z) = Yl

z - gl(z) + X 1 = z (4)

g 2 (z) = x 2

From this type of inversion we are able to formulate the following general rule:

1. Take the nose of each branch which is to be inverted and place it with its tail,

changing the branch function to 1 minus the former branch function.

2. Take the nose of all incoming branches along with the nose of the inverted branch,

changing the sign of the incoming branch functions. The former self-loop function is

changed to 1 minus the former function.

It should be noted that all nodes have a self-loop. Some of them are zero.

3. Third Inversion Method

If we restrict ourselves to linear portions of a graph, a third type of inversion is

possible. We need the linear property so that superposition will be valid. This method

was originally developed by S. J. Mason and can be found in reference 1.

I
i + + h + 0 2

Y h 22 Z

i 

+ h2 +

Sb+ h, 1
+ + + h + + +

1 i + h, h 2 2  Z

+ he + (b)

Fig. IX-13. Loaded transistor and 'i I 2

flow graph. X hZl a

Fig. IX-14. (a) First inversion method.
(b) Second inversion method.
(c) Third inversion method.
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-012
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2
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022

(d)

Fig. IX-15. (a) Second-order set of equations. (b) First
inversion method. (c) Second inversion method.
(d) Third inversion method.

Consider the linear graph of Fig. IX-12a, which represents Eqs. 5.

ay 1 + bY2 + cz = z

dz = x1

ez = x2

A method of inversion

(see Figs. IX-12b and c):

of the path yl to xl through z is represented by Eqs. 6

1 c b-z -- --ZY2 = Ya a a2 l

x 1 = z (6)

ez = x 2

Thus we are led to the following rule for the inversion of linear graphs:

1. Invert the path, changing the branch function to its reciprocal.

2. Move the nose of each incoming branch along with the nose of the inverted branch,

multiplying the branch function by minus the value of the inverted branch function.

4. Comparison

As a means of comparison, consider inverting the main forward path of the flow

graph which represents the loaded transistor, Fig. IX-13. The three inversion methods

are illustrated in Figs. IX-14a, b, and c.

(5)

l-a22
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Another example of inversion is the inversion of the two main paths (x C l) and

(x 2 C 2 ) of Fig. IX-15a, which represents a second-order set of linear equations. For

comparison, the three methods are shown in Figs. IX-15b, c, and d.

The first method has the advantage of leaving the form unchanged. The second

method seems more complicated than the other two but it has the advantage of not being

involved with inverse functions or fractions. The third method retains the original set

of variables.

Inversion represents a convenient method of manipulating the dependency of a flow

graph. Its two main uses are: it is an aid in reducing a graph to the desired relations

and it is an aid in setting up the graph.

C. S. Lorens
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E. DIGITAL PROBABILITY DENSITY ANALYZER

A digital probability density analyzer has been devised for operation in conjunction

with the M.I.T. digital correlator. This combination enables the measurement of the

first-order probability density of a voltage signal, x(t), simultaneously with the corre-

lation function. In addition, means have been incorporated in the analyzer for extending

the method to second-order densities.

In the process of correlation, the correlator produces, for each sample of x(t), a

pair of time-modulated pulses separated by a time proportional to the amplitude of the

signal sample. If time, measured from the first pulse as reference, is divided into

equal intervals and the number of times that the second pulse appears in a certain

interval is counted for a large number of samples, we have an approximate measure of

the amplitude probability density of x(t).

Error in the probability measurement is minimized by a correlator circuit (1, 2)

that compensates for drift in the sections generating the time-modulated pulses from

the samples of x(t).

The analyzer has been designed for fifty intervals; in other words, the amplitude

variation of x(t) has been divided into fifty levels.

A block diagram of the analyzer is shown in Fig. IX-16. The first pulse "1" of the

pulse pair initiates a gate pulse "2" which allows counter C l to count the interval pulses

"3." The circuitry of the counter allows a positive pulse to appear at the output j during

the interval between interval pulses j - 1 and j. Gate G 2 then opens during a specific

interval, depending on what position switch S is in; if the second pulse "4" of the

pair appears during that interval, then the count in counter C 2 is increased by one.
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Fig. IX-16. Digital probability density analyzer.

By leaving S in the first position for a large number of samples and then consecutively

stepping it through the other positions for the same number of samples, a histogram

plot is obtained. This approximates the probability density of x(t).

The analyzer is now under construction.

A. G. Bose, K. L. Jordan
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F. ANALOG PROBABILITY DENSITY ANALYZER

The amplitude distribution analyzer using a diode level selector, introduced by

A. G. Bose in the Quarterly Progress Report of October 15, 1955, page 58, was experi-

mentally tested in a slightly modified form.

The original diode level selector in the analyzer used two diodes in a shunt circuit

to bypass the radiofrequency carrier to ground except when the input signal, x(t), is
within the amplitude range E - AE/2 to E + AE/2. A modified version of this level

selector is shown in Fig. IX-17. It incorporates a series combination of two diodes
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Fig. IX-17. Amplitude distribution analyzer with series diode level selector.

both of which conduct when x(t) is within the amplitude channel under observation.

Although the two circuits appear to furnish an equivalent means of obtaining the same

result, the series circuit has produced better experimental results because it avoids

the difficulty of obtaining a low 60-mec impedance to shunt the carrier frequency to

ground.

The width of the amplitude slice of the series slicer circuit is dependent on the value

of the diode bias potential, AE, and also on the voltage drop that results from diode

current flowing through the impedance of the cathode-follower signal and bias sources.

Cathode-follower amplifiers are used for both the signal and bias sources for the pur-

pose of minimizing the source impedances and the resulting voltage drops in these

impedances from the diode current. It is desirable to have the slice width principally

determined by the battery bias, AE, because it is not influenced by changes of tube

characteristics or supply voltages.

The pulse-recovery time of the level selector diodes seemed to be a possible limita-

tion on the system frequency response that could not be accurately calculated. For

this reason, the first experimental work was the measurement and optimization of the

pulse response of the system. A rise time of 0. 1 Lsec was obtained from the detector

output by using a 60-mec amplifier with a bandpass of 20 mc. The calculated value for

the minimum output pulsewidth that results from analyzing a 32-kc sine wave through

50 amplitude levels is 0.2 sec. Since the sine wave is an extreme case of slope

amplitude correlation (the maximum slope of a sine wave always occurs in the amplitude

region near the axis), the analyzer should give satisfactory operation with uncorrelated

signal inputs that contain frequency components somewhat larger than 32 kc.

H. E. White


