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A. THEORY OF THERMAL NOISE

This project is a continuation of work begun by L. Tisza and I. Manning in connection

with Manning's Ph.D. thesis submitted to the Department of Physics al the Massachu-

setts Institute of Technology in June 1955 (1). A paper is being prepared for publica-

tion. The present report summarizes the results that will be presented in that paper

and outlines briefly some problems that are now under consideration.

The phenomenological equations of irreversible thermodynamics connecting the

"fluxes" and "forces n represent only statistical averages. The time-dependent fluc-

tuations around the macroscopic force-flux distribution are called thermal noise. The

standard method of "saving" the validity of the phenomenological equations is to insert

a random function representing a noise generator. The spectral density of the latter

has to be ascertained from other considerations.

In this project the problem is considered from another point of view. We shall for-

mulate a variational principle having the following properties:

i. The solutions of the macroscopic kinetic equations render the variational func-

tional a minimum.

2. The manifold of trial functions corresponds to the actual fluctuation paths of the

system. The probability density in this manifold is determined by the variational func-

tional.

Let us consider a thermodynamic system in which an irreversible process is

described in terms of phenomenological kinetic equations:

n

Z Rik Jk = X i = 1 2, . n (1)

k=l

where the Jk' Xk are the fluxes and conjugate forces, and Rik is the resistance matrix.

The conditions for the Onsager symmetry relations Rik = Rki are assumed to be satis-

fied. The indices refer to n terminal pairs at which the system interacts with reser-

voir pairs (generators). The variables are so defined that the rate of entropy

production is

S = Ji X (2)

For instance, if J is the energy current, X = A(), when T is the absolute tem-

perature; but if J is the electric current, AV = -TX becomes the potential difference,

and 9 = TR the conventional resistance matrix.
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Following Onsager and Machlup (2) we define the functional

r = (RJ-X)t R (RJ - X) (3)

In this matrix equation tr means transpose, X is a column vector, and Xtr is a row

vector.

It is obvious that F > 0, and Fmi n is attained for the X, J values satisfying Eq. 1.

The functional F also determines the distribution of the fluctuation paths. In fact, the

following distribution function can be established for the relative probability of fluctu-

ation paths:

- f F dt

e (4)

where k is Boltzmann's constant, and 0 is a long interval of time.

Let us assume that the currents J are fixed (by constant-current generators) and

the fluctuations of the X. are
1

N

AX. = an ccos 2r+ n sin nt (5)

n=1

If we insert Eq. 5 in Eq. 4 and use Eq. 3, a gaussian distribution for the Fourier coef-

ficients an, n is obtained, and the Nyquist expression for the correlation in the fre-

quency band v, v + Av is easily derived:

AX.AX. = 4kR.. (6)

A number of other fluctuation formulas can be derived, including those for reactive

systems. In the latter case the variational functional is defined as

1 -1
r t =- (R( - )tr R (RQ- () (7)

where Q = J and

= x - (MQ + SQ) (8)

Here M and S are the "inertial" (inductive) and "potential" (capacitive) matrices.

Physically would correspond to the potential drop across the resistor in the meshes

of the network.

The subscript in r t indicates that the functional is in the time domain. It is con-

venient to consider also the functional in the frequency domain F, when, with Z the

impedance matrix, we obtain
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r =(Z -X)trR- (ZJ - X) (9)

The asterisk stands for conjugate complex. Then, we have

0 00

Ft dt= F dw (10)

0 -00

and the minimum principle for fr t dt implies that F is a minimum.

The functional F is fundamental to the entire theory, hence its properties are obvi-

ously of interest. We have found, in particular, two interesting results:

1. Io is a minimum for all sorts of boundary conditions. We can fix any linear

combinations of J and X and show that the minimization of r under these conditions

leads to the correct kinetic equations.

2. I' is an additive quantity. If n terminal components are connected in cascade

or in parallel, the r of the entire system is the sum of the r" of the components.

The last result is particularly significant, since propagation and space-time corre-

lation problems may be studied with such composite systems. This matter is now under

investigation.
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