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RESEARCH OBJECTIVES

This group is interested in a variety of problems in statistical communication theory.
Current research work is primarily concerned with: a theory of nonlinear systems, a
unified theory of information, preparing an outline of Lebesgue theory for engineers,
Markoff processes and flow graphs, second-order correlation functions, probability
distribution analyzers, and experimental work on no-memory nonlinear systems.

1. The Wiener method of characterizing nonlinear systems is an effective tool for
attacking the problem of optimum nonlinear filtering and prediction. A theory of the
experimental determination of optimum nonlinear filters and predictors is being devel-
oped. Preliminary work on the extension of the theory to multiple nonlinear filtering
and prediction is reported in Section XI-A.

2. The probabilistic theory of information has been generalized in such a direction
that the discrete and continuous theories form special cases of a unified theory in which
the fundamental information process is regarded as a change of probability measure on
an abstract space. In this formulation it is found that the theory of optimum mean-
square prediction plays a central r6le in the evaluation of information rates. A study is
being made of the loss of information in linear systems.

3. A project is in progress to prepare a heuristic introduction for engineers to
measure theory and Lebesgue integration. Because of their importance in information
theory, probability theory, and ergodic theory, it seems desirable to prepare an intro-
duction of this kind for the communication engineer who is not a mathematician.

4. Discrete Markoff processes hold an important place in communication problems.
The properties of these processes are being investigated with the aid of flow graphs.

5. The project on second-order correlation functions continues with particular
emphasis on the properties of these functions.

6. In several phases of our work this group needs to have a means of measuring
probability distributions. A survey of existing techniques indicates that further develop-
ment in achieving greater bandwidth and minimum drift is necessary. Both digital and
analog machines are under development.

7. Along with the theoretical work on optimum nonlinear filtering and prediction an
experimental investigation on no-memory nonlinear systems will be conducted as a first
test of the theory.

Y. W. Lee

A. MULTIPLE NONLINEAR PREDICTION

The problem of multiple nonlinear prediction is that of predicting a time series from

a knowledge of the past of related time series. An example, cited by Wiener, is the

prediction of weather at one location from the knowledge of the past of the weather at

that and other surrounding locations. Wiener's approach to the multiple nonlinear pre-

diction problem is to form all possible nonlinear combinations of the given time func-

tions and then perform a multiple linear prediction on the resulting combinations. The

approach described below, on the other hand, first performs linear operations on the

given time functions and then performs a multiple no-memory prediction on the resulting
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time functions. This latter order of operations is the one used by Wiener in his theory

of nonlinear system classification.

As Wiener does in his theory of nonlinear system classification, we shall confine

our attention to nonlinear operators whose behavior depends less and less upon the

remote past as we push the past back in time. More precisely, we are concerned with

those nonlinear operators for which it is sufficient to represent the past of the functions

on which they operate by a complete set of orthogonal functions, such as the Laguerre

functions. In addition we shall, without further restriction in the practical case, con-

sider only bounded continuous time functions.

Let z(t+a) be the function that we desire to predict and let x (t) through x p(t) be the

functions on whose pasts we operate to form our prediction. The set of functions x 1 (t)
through x p(t) may, indeed, include z(t). Since our prediction is to be formed from the

knowledge of the past of the functions x 1 (t) through x p(t), it is convenient to characterize

the past of these functions by the coefficients of complete sets of orthogonal functions.

We choose Laguerre coefficients because they are realized by convenient circuitry. Let

Ulj u2j ... usj, be the Laguerre coefficients of x (t). For convenience in notation we

represent the past of each x(t) by the same number, s, of Laguerre coefficients.

Now let us think in terms of a function space (1) of the past of the inputs xl(t)
through x p(t). This function space will have ps dimensions and the points in the space

are uniquely determined by the Laguerre coefficients of the x.(t) functions. Hence the

problem of prediction becomes that of choosing the best output for each point in the

input function space. As we saw in the optimum filter problem (2), if we divide the

function space into nonoverlapping cells, and assign an output to each cell, we can

represent the output by a series of terms that are mutually orthogonal in time. The

orthogonality of the terms is independent of the input time functions and of any weighting

factor used in the minimum mean-square-error prediction.

Following the procedure and notation discussed in reference 2, we represent the

actual predictor output by y(t), which is given formally by the relation

y(t) = F(u 1 l, u 2 1  ... us ... .ulp'u2p ... , usp (1)

in which F is an arbitrary continuous real function of its arguments. Expanding F in

terms of gate functions whose arguments are the Laguerre coefficients we have

y(t) = Z ... ... ... h .. j ...1' 1l . . 1. . jp . hp
il l hl i p j p h P

x ul 11 )  j I(u 1 ' '" h(us 1 ''" . i p(ulp )  pj (U2p) . .. h p (usp) (2)
1~~ 1 1ppp
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Experimental setup for the determination of the
optimum multiple predictor.

Synthesis of the optimum multiple predictor.

If we associate a 4(a) with each product of 4's in Eq. 2 and let A be the corresponding

coefficient a .,. . , h Eq. 2 takes the simplified form

,Ip

y(t) = A a)

We adopt a weighted mean-square-error criterion and minimize the integral

= lim
T2T

T r
G(t)

-T

z(t+a) - Z A a  () dt

a

in which G(t) is a weighting function at our disposal. The 4(a) form a nonoverlapping

set of functions covering the input function space, hence they are orthogonal in time.

Fig. XI-1.

INPUT

INPUT

Fig. XI-2.
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The result of minimizing Eq. 4 and taking advantage of the time-domain orthogonality of

the 4(a) takes the form of the following relation for the optimum predictor coefficients.

Aa G(t) 1(a) = z(t+a) G(t) 1(a) (5)

The bars in this expression indicate time averages.

Equation 5 is recognized to have the same form as Eq. 12 in reference 2. In Eq. 5,

however, the 1(a) are products of gate functions of the Laguerre coefficients of more

than one input variable. The block diagram for the experimental determination of the

optimum coefficients is shown in Fig. XI-1. Having determined the coefficients, the

optimum multiple nonlinear predictor can be synthesized in accordance with Eq. 3, as

indicated in Fig. XI-2.

A. G. Bose
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B. AN APPLICATION OF PREDICTION THEORY TO INFORMATION RATES

An intimate relationship between information theory and prediction theory is reflec-

ted by the point of view (1) that regards a change of probability distribution as the

fundamental information process. In such a process, the a priori and a posteriori dis-

tributions for the random variable in question are, in effect, conditional distributions,

conditioned by our a priori and a posteriori knowledge concerning the variable. In

order to evaluate the information gained from such a process, it is necessary to know

these distributions, hence their determination is a first step in the evaluation procedure.

It is well known that the best estimation (in the mean-square sense) for a random

variable is its conditional expectation, that is, the mean value of that distribution for

the variable conditioned by our a priori knowledge. Conversely, that mean value is

given by the optimum mean-square predicted value of the variable; herein prediction

theory plays an important r^ile in the information process. In many instances in which

the distributions are not known, it may be possible to evaluate not only the best mean-

square prediction, but also the distribution for the error resulting from such a predic-

tion. The conditional distribution for the variable is then simply a translation of the

error distribution by an amount equal to the difference between the value of that pre-

diction and the mean value of the error. The resulting distribution has a mean equal
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to the best mean-square predicted value and a variance equal to the least mean-square-

error of prediction. In certain information processes, we may thus employ mean-

square a priori and a posteriori predictions to determine the distributions of the pro-

cess.

An interesting illustration of these ideas is the problem of evaluating the rate at

which one gaussian time sequence gives information about another similar sequence

correlated with it. These results will be extended to the case of random functions of

a continuous time by a process of sampling in the time domain.

1. Symmetry and Additivity Properties of Information

The information rate problem may be greatly simplified by the application of certain

symmetry and additivity properties of the average value of information. We shall state

these properties in the form of lemmas that are valid for general information proc-

esses, but proofs will be supplied only under the additional assumption that the proba-

bility measures of the process are absolutely continuous with respect to Lebesgue

measure. This restriction allows the proofs to be given in the common language of

probability, while the proofs for the general case require the application of concepts

concerning measures on product spaces.

Consider a random process consisting of a sequence {i} (i = . . . , -2, -1,0, 1, 2,...)

of real random variables such that for every finite subsequence xi of n elements of

{(i} there is defined a probability measure p. on an n-dimensional Euclidean product

space X. Let x = (x 1 ,x Z, . . . , x n ) and y = (yl'2'' . ym) be a pair of disjoint subse-

quences of {i taking values on n- and m-dimensional measure spaces (X, S , L) and

(Y, .7, v), respectively. Since the union of the sequences x and y represents another

subsequence of {i} containing m + n elements, there exist on X and Y for every fixed

value y and x, conditional measures py and vx , in addition to the absolute measures 4
and v.

Following the definition previously given (1), the information about the sequence x

provided by the specification of a particular value y is given by

I(y) = log dpY dPy (1)

while the average value of I(y) over all possible values of the subsequence y is given by

I(x; y) = log d dy dv (2)

which by Fubini's theorem becomes

which by Fubini's theorem becomes



(XI. STATISTICAL COMMUNICATION THEORY)

I(x; y) = log dX (3)

XXY

where X is a measure on the product space X X Y. We call I(x;y) the average informa-

tion about x provided by y.

Now let z = (zl,z ..... zl) be a subsequence of {i} disjoint with both x and y and

defined on a space (Z, ~, p). For a given fixed z, known a priori, the information

about x provided by a particular value y is

log dLy z

where ±z and yz are conditional measures on X for given values z and (y, z), respec-

tively. The average value of the information over all possible values y for a fixed z

becomes

log Z d yz dvz

Averaging this over the Z'-space, we then obtain the average information about x given

by y when z is known.

, i.y 'x lo d1  dv dp (4)I(x; Y) z) = log d z d v z dp (4)

LEMMA I: I(x;y) = I(y;x)

PROOF: With the assumption that all probability measures considered are absolutely

continuous with respect to Lebesgue measure, there exists a probability density dis-

tribution p(x, y) on the X x Y space, and the Radon-Nikodym derivative in Eq. 2 becomes

simply the ratio of the a posteriori to the a priori probability densities.

p(x y)
I(x, y) = p(x, y) log - dx dy

XY p(x)

p(x, y)
= p(x, y) log dx dy

Y p(x) p(y)

p(y x)
= p(x, y) log - dy dx

XY P(y)

= I(y; x)
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LEMMA II: I(x; ylz) = I(y; x z)

PROOF:

I(x; yI z) =:

XYZ

XYZ

p(x ly, z)
p(x, y, z) log dx dy dz

p(x z)

p(y x, z)
p(x, y, z) log dx dy dz

p(yl z)

= I(y; x I z)

LEMMA III: If w is a subsequence of {ij disjoint with x, y, and z, then I(x; y, z w) =

I(x; y w) + I(x; z

PROOF:

w, y)

p(w, x, y, z)

WXYZ

-= p(w, x, y, z)

WXYZ

=; p(w, x, y) log
WXY

p(x 1w, y, z)
log dw dx dy dz

p(x w)

p(x w, y, z) p(x Iw, y)
log dw dx dy dz

p(x jw)p(x w, y)

p(x Iw, y)
dw dx dy

p(xIw)

WXYZ

p(x w,y, z)
p(w, x, y, z) log dw dx dy dz

p(x Iw, y)

= I(x; yl w) + I(x; z jw, y)

Although the validity of these lemmas does not require that the spaces W, X, Y,

and Z be finite dimensional, the extension to the infinite case will be omitted in this

report.

Before turning to the information rate problem, let us review some results in the

spectral theory of a discrete stationary stochastic process.

2. Spectral Theory

We consider an infinite random sequence ffi} (i = . ., -1,0, 1, .. .) of real numbers

which we assume to be stationary in the wide sense of Khintchine. Hence the correla-

tion coefficient

I(x; y, z Iw)
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m k k+m =-m (5)

exists and depends only on m. According to well-known results of Wiener (2) and
Khintchine (3), there exists a bounded nondecreasing spectral function W(O) defined on

(-~, rr) with W(-rr) = 0, so that

1 -im(
Rm 2 e dW(0) (6)

The function W(O) may be decomposed uniquely into the sum of two nondecreasing func-

tions

w(O) = W1 (0) + w 2 (0) (7)

where W 1 (o) is absolutely continuous (with respect to Lebesgue measure), and W 2 (0) is

a function whose derivative vanishes almost everywhere. This spectral decomposition

represents a corresponding decomposition of the random sequence into the sum of two
parts, one of which has an absolutely continuous spectrum, while the other has an

almost-everywhere vanishing spectral density. Wold (4) has shown that sequences with

the latter type of spectrum are deterministic; that is, their future elements are deter-

mined completely in terms of those of their past. Furthermore, Kolmogorov (5) has

shown that a sequence with an absolutely continuous spectrum is deterministic if and

only if the integral

1
1 log W'(0) 1 de

diverges. Sequences with absolutely continuous spectra for which the integral given

above is finite are termed "regular" by Kolmogorov, and only these sequences are use-

ful as information carriers. In the remainder of this report, we shall concern ourselves

only with regular sequences.

Since the spectrum of a regular sequence is absolutely continuous, it is completely

specified by its derivative, which exists almost everywhere in (-Tr, Tr) and is equivalent

to the Fourier series development of the correlation coefficients:

00

W'(Z)- z Rm eime (8)
m=-oo

The series on the right may be regarded as the boundary values on the unit circle of a
function A(z) of the complex variable z = rei. The Fourier coefficients R are

m
obtained from A(z) by
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1 i0 -imO 1 dz
R A(e ) e dO= A(z) dz (9)m 2T 2ri m+-1-(

where the contour integral is performed on the unit circle.

Since the sequence is assumed to be regular, the integral

1 log W'(6) I dO = log A(ei 0 )j dO

is finite. Furthermore, since the correlation coefficients are even, A(z) = A(1/z),

and we may apply a theorem of Szego (6) to factor A(z) into

A(z) = (z)X(1)

where X(z) is analytic and nonvanishing inside the unit circle. This is the discrete ana-

log of the well-known spectrum factorization technique employed by Wiener (7) for con-

tinuous stationary time functions.

3. The Information Rate of Random Sequences

We now consider a pair of regular sequences {fi and {gi} that are assumed to be

correlated and distributed according to a set of mnultivariate gaussian distribution func-

tions. It is of interest to determine the rate (per element) at which the sequence f con-

veys information about the sequence g. That is, given a priori the values of the

elements (..., fk-2 fk-1 )' how much additional information about the entire sequence g

is given on the average by the next element fk? Let us denote the past history of the

sequence f by the subsequence p = ( ... , fk-2 fk-1). According to Lemma III, the aver-

age information about the sequence g given by the pair of elements (fk' fk+l ) when p

is known is

I(g; fk' fk+ IP) =I(g; fk IP) + I(g; fk+1I P fk )  (10)

But the pair (p, fk) is the past of the sequence f k+1 ; thus the average information about

g given by (fk' fk+l ) when the past p is known is simply the information given by fk
when its past is known plus that given by fk+l when its own past is known. By iteration

of Lemma III, it is seen that the average information about g given by a block of N

successive elements of f when the past of the block is known is simply N times the

average information provided by each element of the block when the past of that element

is known. We thus need to determine the average information provided by only a single

element in order to obtain the average rate of the sequence.

In the gaussian case, this problem is simply one of linear prediction. We can
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determine the average information provided by fk about a particular element gk+p by
obtaining the a priori and a posteriori distribution functions for that element. These
distributions will be gaussian and will have means given by the optimum mean-square
predicted values of gk+p and variances given by the mean-square-errors of prediction.
However, in order to evaluate the information about the entire sequence g, the a priori
and a posteriori distributions become infinite dimensional, and if the autocorrelation
of the sequence g is taken into consideration, the problem becomes quite formidable.
Here we may use Lemma II to great advantage. For the problem at hand,

I(g;fkP) = I(fk;g P) (11)

From the right-hand side, we see that if we make predictions of fk by linear operations
on p and (g,p), the a priori and a posteriori distributions are one-dimensional. Thus
Lemmas II and III have reduced an infinite-dimensional problem to a single-dimensional
one.

The a priori distribution of fk, that is, its distribution conditioned by a knowledge
of its past, is obtained by finding the set of coefficients {ai} (i = 0, 1,. . . ) which mini-

mizes the mean-square-error

002

fk - ai fk-1-i (12)
i=0

The a priori distribution is gaussian and has density

I (x - ak 3
2

p'(x) = exp 2 (13)
2 r K 21 J

2
where a1 is the minimum value of the mean-square-error, and ak is the predicted value
of fk

ak = ai fk-1-i (14)
i=0

Similarly, the a posteriori density is given by

v(x) 1 exp - -Pk (15)

where

where
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2 = m fk - b fk--i - ci gk-i (16)
1 1 i=0 i=-0

and

00 00

Pk Z b f k-1-i + Ci gk-i (17)
i=O i=-00

Note that the a posteriori distribution for fk is that one conditioned by a knowledge of

the entire past of f, and the past, present, and future of g. Thus the index of the coef-

ficient c. runs over all positive and negative integers.
1

The average information given by a particular element fk is then

00 2 2 + (18)2

Ik = v'(x) log -- dx = log + (18)
p'(x) a-1 za-

Taking the average of this expression over all k, it is found that

2 2
(Pk -k ) =  - (19)

Hence the average information about the sequence g provided by each element of the

sequence f, which is, of course, the rate we have set out to evaluate, becomes

simply

2

R(g; f) = log- (20)
a-

2

The set of coefficients {ai} that minimizes expression 12 is found quite readily to

be the solutions of the relation

00

a. R (ff). R(ff) m 0 (21)1 m-i m+l
i=O

Letting

00

A(z) = a. z

i=O

we can express Eq. 21 in terms of the complex spectrum Aff(z) of the sequence f.



(XI. STATISTICAL COMMUNICATION THEORY)

1 ( z dz 1I - A(z) Af(z) m+l 2Tri f dz
Aff(z) m+2

z
mO 0 (22)

Using methods analogous to the solution of the Wiener-Hopf integral equation, we find

that the solution of Eq. 22 is

1 ._ 1
A(z) - z

ff (z) 0 ZW

1
z

1 Xff(0)

Xff(z) (23)

where Xff(z) is analytic and nonvanishing in I z < 1.

becomes

The minimum mean-square-error

2 2 ff 1(
(24)

The minimization in Eq. 16 yields coefficients (bi, ci) which satisfy simultaneously

the relations

00oo

b. R(ff). +1 m-1
i=O

c. R(fg) = R(ff )
1 m+1-i m+1 m> 0 (25)

b. R (gf) +
1 - -i

i=O

c. R(gg) = R(gf)1 mI-i m

where Eq. 26 must hold for all m. R(fg) is then crosscorrelation coefficient of f and g

R(fg) = fk = R (gf)
n k gk+n -n (27)

Since Eq. 26 holds for all m, we may write it in terms of the complex variable z as

z B(z) Agf(Z) + C(z) Agg(z) = Agf(z) (28)

Expressing Eq. 25 in spectral form, and making use of Eq. 28 to eliminate C(z), B(z)

must satisfy

2ri f B(z) Aff(z) -
2Tri ifz

dz
m+l

z

2Ti if (z)

Afg(Z) Agf(Z)

A (z) zm+
gg

(26)

m>O0 (29)

Aff(2) d(

Xff 1+2

ldzlog Aff( )

i=-00

00

i=- o
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Since the function

Afg(Z) Agf(Z)

A(z) = Aff(z)- A (z) (30)

A (z)gg

is non-negative and even on the unit circle, it satisfies necessary and sufficient condi-

tions for a spectrum; hence if Eqs. 29 and 22 are compared, the solution for B(z) will

be

B(z) = 1- X( (31)

where X(z) is the factor of A(z) that is analytic and nonvanishing in jz I < 1. The a pos-

teriori minimum mean-square-error of Eq. 16 becomes simply

r2 = x2 (o)
2

dz (32)
z

and the desired rate of Eq. 20 is given by

R(g; f) = 4fri

dz (33)
z

The symmetry of this equation reveals that g provides information about f at the same

rate as that provided by f about g.

4. The Information Rate of Random Time Functions

Let us consider a pair of random time functions f(t) and g(t) which are multivariate

gaussian and hence are described statistically by correlation functions cff(T), gg (T),

and 4~g(T). If we imagine the functions to be sampled in time at equal intervals T, the

values of the functions at sample points form discrete sequences with correlation coef-

ficients given by

Rfg) =  (m T) (34)

and spectra

00o

A fg(e i o)  z fg(m T) e i m o  (35)

m=-oo
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Letting 0 = wT, we note that as T - 0

00

lim T Afg(e i T ) = 

-00

cfg(T) e i0T dT = 4 g(W)

where Cfg(W) = 4gf(w) is the cross spectral density. The average information per sample

point is

iT

T

RT(g; f) = 4 log

T

A ff(eiwT
) A

(37)

A ff(e T)

Dividing by T and taking the limit as T - 0, we obtain the average time rate at which

the function f(t) gives information about g(t):

00

R(g; f) =
L- I ff(W ) 9gg(W) - I 4fg(w) Z

If we consider the special case treated by Shannon (8) in which g(t) = m(t) is a gaus-

sian message limited to a frequency band (0, W), and f(t) = m(t) + n(t) is that message

disturbed by an additive gaussian noise uncorrelated with the message, the rate of

Eq. 38 becomes

21TW

R(m; m+n) = 1

0

log 1 + mm (W) d

in complete agreement with the channel capacity given by Shannon for this case.

K. H. Powers
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C. AN OUTLINE OF LEBESGUE THEORY FOR ENGINEERS

The object of this project is to produce a motivated, heuristic introduction to the

principal concepts of the modern theory of measure and integration, with emphasis on

the interrelations between this theory and ordinary Riemann theory. The outline should

serve either as a source for meaningful definitions of terms most frequently encoun-

tered in statistical work or as a guide to nonmathematicians in interpreting the rather

concise modern presentations of measure and integration. The motivation for writing

the outline is the importance of measure theory and Lebesgue integration in rigorous

treatments of such subjects as ergodic theory, representation of functions by ortho-

normal series, Hilbert space, information theory, probability theory, and so forth.

The treatment is not restricted to Lebesgue measure of the real line. Instead, it

follows the contemporary trend (1, 2) of developing the theory in completely general

terms. The main reason for this choice is that it facilitates the application of the theory

to practical problems. For example, having developed measure theory in general

terms, it is very easy to specialize it to the case of probability measure, thus making

the whole body of theorems available for the study of information theory. On the other

hand, after a few initial complications, it is no more difficult to develop integration

theory in terms of general measures than it is to develop it for Lebesgue measure only.

The scope of the outline is summarized in the following list of section headings and

the accompanying short abstracts of the contents of each section.

Section 1. Introduction. The Riemann integral. Limitations of the Riemann defini-

tion. Preliminary sketch of the construction of a more general integral.

Section 2. Simple functions. Some useful notations. Simple functions and their

approximation properties. Integrals of simple functions and their use

in the definition of a general integral.

Section 3. Measure theory. I. Set theoretical concepts and notations. Set func-

tions. Rings and a-rings, with examples. Definition of measure on a

ring. Examples. Properties of measures.

Section 4. Measure theory. II. The search for a suitable domain for measure

functions. Measurable sets and measurable functions. Their relation

to integration theory. Properties of measurable functions. Extension

of measures to r-rings.

Section 5. Integration. Rigorous definition of integrals using measure theory. The
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determination of integrals and their use in theoretical work in engi-

neering. Properties of integrals. Equivalence classes of functions.

Section 6. Convergence. Sequences of functions. Pointwise and almost-everywhere

convergence. Examples. Convergence in measure and convergence in

the mean. Interrelations between various types of convergence. Limits

of convergent sequences and equivalence classes of functions.

Section 7. Limits and integration. Interchange of limits and integration. Term-

by-term integration of series. Requirements with Riemann integration.

Requirements with general integrals. Lebesgue monotone and bounded

convergence theorems.

Section 8. Absolute continuity and differentiation. The integral as a set function.

Lebesgue-Stieltjes measures. Which set functions are integrals? Abso-

lute continuity. The Radon-Nikodym theorem. Radon-Nikodym deriva-

tives.

The work on the outline is substantially completed. It will be published as a techni-

cal report.

R. E. Wernikoff
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D. SYNTHESIS FOR INTERFERENCE FILTERING

A design procedure for interference filtering was completed in a form that greatly

facilitates the synthesis of the networks involved. The procedure produces the mean-

square optimum under infinite-delay conditions without necessarily involving infinite

delay in the synthesis of physical networks. It is worked out in a form in which approxi-

mate methods of synthesis can be easily applied.

The term "interference filtering" applies to filtering problems involving the separa-

tion or generation of some desired signal from a set of signals. Wiener (1) went a long

way toward solving the problem. Costas (2) produced an infinite-delay solution and tried

to apply the theory to a physical system.

The formulation of the general interference filtering problem is shown in Fig. XI-3.

It is assumed that N statistically stationary signals (3) are passed through N linear

networks and added together to give one output signal. The networks are so designed

that the output signal is as close (in the mean-square sense) as possible with linear
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networks to some desired signal. It is assumed that the correlations among the N

signals and between the N signals and the desired signal are known.

The mean-square-error is

S=([fd(t) - fo(t)] ) (1)

th
Variation of the error with respect to the impulse response h (t) of the q network

q

gives the familiar Wiener-Hopf equation

N 00

qd (T) = ph () q ( ) d - T" >, 0 q = .... N (2)

p=l 0

The 4 terms are the standard correlation functions.

Following the standard techniques for solving the Wiener-Hopf equation, it can be

shown that the solution to this equation for any of the networks is

N
qd (X) -I Hp(X) 1qp(X)

p00 
00=l

H (W) 1 e t te dX

qq 0(C) Z -00 qq

q = 1,2,... N (3)

The 4 terms represent the Fourier transforms of the corresponding correlation func-

tion. The P+ and 4 - terms represent the separation of the 4 term into its upper-
qq qq qq

half and lower-half plane poles and zeros.

By permitting a delay a in the desired signal and a delay a in each of the channels

we have the situation of Fig. XI-4. As the delay a approaches infinity the solution may

be expressed:

N

SH p(W) qp (C) = (qd(w) q = 1, 2, ... N (4)

p=l

From this linear set of equations, we are able to solve for Hn(w) in terms of the

cross-power spectra without becoming involved in factoring the power spectra of the

N signals. Permitting the infinite delay a allows the linear networks to perform a

better minimization of the mean rms error. It is generally felt that this limiting mini-

mization is the best that can be attained with linear networks.

By defining the error as in Eq. 5 it is possible to calculate the minimum-error

power spectrum, Eq. 6, by using the solution of Eq. 4.



- fd (t)

Sfd (t -a)

Fig. XI-3. Interference filtering. Fig. XI-4. Interference filtering with
sufficient delay.

Fig. XI-5. A semidisjoint method of synthesis.

Fig. XI-6. Four-channel interference filtering.
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(t) = fd(t -a) - fo(t) (5)

N

E 6 (w) = dd(w) - Z H n() 1dn() (6)

n=l

Any system that produces this minimum-error power spectrum is equivalent to the

optimum linear infinite-delay system.

The general solution for H n() may be expressed in the form

H (w)= H(w) I e (7)

where the phase y n(w) may have little or no relation to the magnitude IHn(cO) .

"Brute-force" synthesis of the networks Hn(w) e-jaW is usually not very easy and

lacks an appreciation of the real purpose of the networks. The following discussion

presents some of the more practical methods of realizing these networks.

Assume the phase 6n(0) to be such that Hn(W) I e is a realizable minimum-

phase-transfer network. Then for sufficiently large a it is possible to construct the

network shown in Fig. XI-5. This is one way of realizing the system of networks. It

has the advantage of breaking up the synthesis into two semidisjoint parts: the realiza-

tion of the magnitude, and the phase. -jon ()

The synthesis of the transfer networks IHn(w) I e is usually quite straight-

forward with present-day synthesis techniques. The phase On(w) should be determined

from the synthesized IHn() I and not from the theoretical condition between the magni-

tude and the phase. The phase-network synthesis is much more critical and subse-

quently more difficult.

Once the correct spectral magnitudes are obtained, we are interested in phasing

sinusoids against each other in such a way that certain components are enhanced while

others are destroyed. An indication of this critical phase is shown by the fact that two

signals of equal amplitude must be within one degree out-of-phase in order to get a

35-db suppression by adding the signals. Thus, what is really important in the phase

synthesis is the difference in phase between the different channels. Making a suffi-

ciently large just makes it possible to realize the phase networks. An a that is larger

than actually needed only makes it harder to control the phase differences between the

networks.

Since careful phasing is so important, it becomes expedient to combine the channels

in pairs and then combine the pairs, pair-wise. In each combination a functional phase

term exp[-jpn()] is inserted instead of the linear phase exp(-jac w), the function pn(W)

being used to facilitate the synthesis of the phase difference. Usually this kind of phase

synthesis can be accomplished by simple cut-and-try (4). After the channels are all
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combined another phase network exp[-ja- W+jp(w)J may be used to restore the uniform

delay. If the delay distortion is of no consequence (as in speech and music) it may be

omitted. A possible four-channel synthesis is shown in Fig. XI-4.

The practical aspects of this synthesis are the realization of the magnitude of the

transfer function separate from the phase and the synthesis of the phase difference

rather than the attainment of some absolute value of phase dependent upon the constant

a. Only after all the networks are combined is it necessary to synthesize an abso-

lute phase, this synthesis being only to correct delay distortion in the output.

Calculation of the error spectrum of a network of the type shown in Fig. XI-6 pro-

duces an equation identical to Eq. 7. Thus this synthesis produces a system equivalent

to the optimum linear infinite-delay system.

One other practical technique is well worth consideration. Very often the desired

signal requires essentially zero power in certain frequency regions. The networks may

be carefully designed in frequency ranges of importance while paying little attention to

the frequency regions where the desired signal has little power. In order to compensate

for introduced errors in the synthesis, the network structure is followed by a filter

that substantially attenuates these undesired frequency regions and passes the desired

frequencies.

An excellent example of the use of this theory is in the design of the audio combining

networks for synchronous detection. Two audio signals are obtained in the process of

demodulation, one containing the audio signal and noise, the other containing essentially

just noise. The two noise signals are correlated but not identical. By properly com-

bining these two signals it is possible to obtain an increase in the signal-to-noise ratio

at the output.

For a given spectrum of the noise (as might arise from adjacent channels or from

jamming) it is possible to apply this theory and build combining networks that will handle

different types of interference (5).

In summary, this report has put forth some practical aspects that arise in inter-

ference filtering in the design of the linear networks. The synthesis is formulated in

such a way as to be performed in discrete steps, each step being performed in a simple,

straightforward manner. The magnitudes of the transfer functions are first synthesized,

then the phase differences are synthesized as the channels are combined in pairs. This

procedure produces a system of networks equivalent to the optimum linear infinite-delay

system.

C. S. Lorens
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3. It is important to note that the mathematics and ideas are just as applicable to

aperiodic signals as to statistically stationary signals. The only difference is that

the total integrated error is used instead of the time-average error.

4. The cut-and-try process adds all-pass sections alternately to the pair of channels
working out from zero frequencies.

5. In a forthcoming Technical Information Series report of the General Electric

Company, C. S. Lorens deals with this specific problem at greater length. The
networks were constructed and found to perform satisfactorily.

E. A PROOF OF THE NONINTERSECTING LOOP RULE FOR THE SOLUTION

OF LINEAR EQUATIONS BY FLOW GRAPHS

In the past few years a new method that makes use of flow graphs for the solution of

a linear set of equations has been evolved. With the use of flow graphs, solutions are

obtained almost miraculously from a geometric relation of the coefficients of the linear

set of equations.

In Technical Report 303 (to be published) S. J. Mason presents a rule for the

solution of a flow graph in one reduction step and includes a proof of the general validity

of the rule. His proof depends heavily upon previously derived properties of flow graphs.

The present report gives another proof of the general validity of the rule. The proof

is based on Cramer's well-known rule for the solution of a linear set of equations.

In matrix notation a linear set of equations may be expressed as

AX + C = 0 (1)

where A is an N x N coefficient matrix, X is the column matrix of unknown variables,

and C is the column matrix of known variables.

By Cramer's rule, Eq. 1 has the following solution

N IAnjI

x. = - C (2
n=l

where A . is the cofactor of the term a . of A.
nj nj

In flow-graph notation, Eq. 1 can be written

(A+I) X + C = X (3)

where I represents the unit matrix.

Nodes are associated with the nnknown variables (x 1 , . . ,XN) and the known vari-

ables (C 1 , .. ,CN), while coefficients are associated with the branches connecting the

nodes.
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ci

N ll+ I 12 022+1

Fig. XI-7. Flow-graph representation Fig. XI-8. Flow graph of the linear
of the equation: set of equations:
x = ajlx1 + ... +(a .+l)x. a l l x1 + a 1 2 x + C 1 = 0

+ ... + ajNxN + C . a 2 1 x1 + ax 2  C 2 = 0.

Figure XI-7 represents a particular equation from Eq. 3. Figure XI-8 represents

the flow graph for a second-order set of equations.

An important geometric property of a flow graph is the set of loops. A loop is

defined as an ordered sequence of the nodes corresponding to either known or unknown

variables, no variable appearing more than once in any one loop. The initial member

is immaterial as long as the order is preserved. Two nonintersecting loops are

sequences that have no common elements. A loop product is the product of the coef-

ficients associated with the branches that go from one member of the sequence to the

next as the loop (x 3 x 5 x 8 x 7 ) has the loop product L = a53 a85 a78 a37. The loop prod-

uct associated with the loop (x.i) is L = ai.. + 1.

The rule presented by Mason for the solution of the flow graph, and thus the linear

set of equations, is

Z Gk. k.
k. 1 1

x. = C 1 (4)

where Gk. is the k sequence product from the node Ci to the unknown variable node x..

A =1 - Lw + 2 - P3 + (5)
w w w

n ith
where Pw is the product of the w possible combination of n-nonintersecting loops. k.

is a modified A where the loops are restricted to those that do not intersect the loop

associated with the sequence product Gk.'
1

I

-



(XI. STATISTICAL COMMUNICATION THEORY)

To show that Mason's rule of nonintersecting loops is valid, it is sufficient to

have only C 1 nonzero. The other C's may be added by superposition, as is shown by

Eqs. 2 and 4.

In the evaluation of the determinant IAI the numbering is immaterial, since a

determinant permuted in the same order of column and row has the value of the

original determinant. In like manner the loop products are independent of the

numbering, since the product is only dependent upon the geometry of the flow

graphs.

A general term of the number A is made up of products of factors of the form a..

and loop products containing two or more coefficients. The coefficient of any term

which does not have N coefficients will be zero. That is, if there are q loop products

involving s variables (s = s + .. + s ) and t factors of the form a.. involved in the
a  q 11

term, then the coefficient of the term L ... L a..... will be
a q 11

0 s + t < N
(-1)q+t I1 - (N-s-t) + N- s -t ) - . + 1 0 s+t<N =

S2 (Nst \2 - I = (-1)N (-1)s-q s + t = N

For this general term it is possible tc renumber the flow graph so that the term

appears in the following form:

(-1)N ( 1 )sq als1 21 a 3 2 , . . .  a 5 1 1)

(a s  1 ... a +s s +s-1) . .. as+l s+l..... aNN (6)

If the determinant IA I is evaluated and renumbered, the same term appears as in

Eq. 6, except for the factor (-1) N . The sign (- 1 )s - q is correct, since there are s. - 1

permutations of the second index number associated with each loop, or a total of s - q

permutations associated with the term. Then each term of A appears in the evaluation

of Al1, being modified by the factor (-1) N

For a general term in the expansion of I AI the matrix can be renumbered so that

it appears as Eq. 6 except for the factor (-1) N . Thus each term of IA appears in A

modified by the factor (-1) N . Thus in general we have

A = ( 1)N IAI (7)

As stated before, it is sufficient to show the validity of Mason's rule for a single

C 1 , the rest being added by superposition.

By Cramer's rule, consider the solution of the following set of equations corre-

sponding to Eq. 1.
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a l l x1 + ... + alj x + .. alN XN + C1 = 0

aNI1 x + ... + aNj x j + . + aNN xN

X.

In using Cramer's rule the known variable C

variable x. is considered known.

Solving for C 1 we obtain the following:

a ...
aN1 . ..

0 ...11 "'aN1 " . "
0°...•

alj

aNj

1

a j

aNj

1

= 0

Xj

is considered unknown, and the unknown

... aN 0

... aNN 0

... O x.

... alN 1

... aNN 0

... 0 0

This equation can

in terms of C 1 .

then be expanded into the following equation and then solved for x.
J

a1 1

X.

aN1 ...

.. alN 1

... aNN 0

... 0 -1

alN

aNN

all

aN1

x. AI

... alN IA'I + IAl

S. aNN

IA'I + JAl
x. = C

J 1 IAl

The matrix IAI is determined from the flow-graph loops by Eq. 7. In like manner

IA' I may be determined from a flow graph. This flow graph for the determination of

IA' I may be obtained by adding a branch from x. to C 1 with a coefficient +1. In this

case A' contains all the terms of A plus those terms added because of the formation

100

all

aN1

0

.. alj

. .. aNj

... 1

C =1
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of the new loops Lk through C 1. Then

x. =C + (9)j 1 A

The term -A' + A contains only those terms added by the formation of the new

loops through C 1 . Collecting all the terms that have Lk as a factor forms a term of

the form -LkAk, where A k is calculated on the basis of those loops that do not inter-

sect the loop L k . The loop product Lk is equal to the kth sequence product G k from

C1 to the unknown variable x..
1J

Thus, from Eq. 9 and the above discussion, the following equation is valid:

SLk A kk
x =C k (10)

Equation 10 is based on Cramer's rule. It is also Mason's rule. Thus the general

validity of the rule is established.

An interesting aspect of this proof is the general solution of a linear set of equations

by a flow graph. Starting with the set of equations it is possible to proceed to the flow

graph and then immediately to the solution.

In setting up the flow graph it is advisable to number the variables so that any (-1)

coefficients fall on the diagonal of the coefficient matrix. (In general, a (-1) can always

be made to appear on the diagonal by the use of division.) Each (-1) on the diagonal

reduces the number of loops and so reduces the amount of labor in evaluating the graph.

With Eq. 7 it is possible to calculate directly from a flow graph the characteristic

equation corresponding to the linear set of equations that the graph represents. A

self loop having the value -X is attached to each node corresponding to an unknown vari-

able. Solution of this equation for the eigenvalues X1 , x Z, ..... N permits the calcu-

lation of the right eigenvectors .: Xlj, x j. ... XNj'. G Aij
A particular member x.. of the eigenvector is obtained by evaluating k k k with

13 k
= X. from a fixed unknown variable to the particular member in question for each

member of the vector. The normalized member is then

Z Gi Aij
k kk

x.. = (11)FN 
i ij Z1

i=( k A k

Comparison of Eqs. 2, 4, and 7 shows that we are able to calculate generally a

determinant and any cofactor of the determinant directly from a flow graph.

101
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From this proof of Mason's rule we are able to formulate a simpler rule for

evaluating a flow graph containing N unknown variables. The coefficients of the flow

graph are represented by b... The value of any particular unknown variable is given by

N

x. = T. C (12)

r=l

where

Z Lk. k.k r jr(13)

th
and L is the k sequence product from the node C to the node x..k. r

A = (- 1 )q L 1 LZ ... L (1 - b.) .. ( - b ) (14)

where each term is composed of nonintersecting loops and contains N and only N coef-

ficients as factors. The summation is over all possible distinct combinations. L refers

to loops involving two or more coefficients; q is the number of nonintersecting loops of

two or more coefficients and Ak. is modified A where the loops are restricted to those
jr

which do not intersect the loop associated with the sequence product Lk.
The proof of this equation follows immediately from jr

BX + C = X B = [bji] (15)

which corresponds to Eq. 3, and from Eqs. 6 and 10.

The main advantage of this rule is that it substantially reduces the number of terms

in the calculation of A and Ak when there are self loops in the flow-graph system.

C. S. Lorens

F. PROPERTIES OF SECOND-ORDER AUTOCORRELATION FUNCTIONS

In the Quarterly Progress Report of October 15, 1955, page 52, the Fourier trans-

form of the second-order autocorrelation function of an aperiodic function, fl(t), was

found to be

4 (mlo 2) = 2T F(wl) F(w 2 ) F(w1 + w2 ) (1)

If P*(w , 2) is integrated with respect to one of the variables, let us say w2 , this inte-

gral is the cross-spectral-density function of the function fl(t) and the square of the
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original function fl(t).

00

-00
(l, 2) dw2

This can be shown by considering

= ZTr F(w 1 ) F(w 2 ) F(-l 1 - w2) dw2'00
If we denote the transform of fl(t) by G(cl), we obtain

00
2 jwl t

1 (t) e dt =

- 00

F(wo) F(-w 1 - 2) dw2

then Eq. 2 becomes

4*(l ' 2) dw2 = 2vT F(wl) G(wl)

In the case of a random function, fl(t), the transform of the second-order auto

correlation function, 1 1 1 (T 1, T 2 ), of fl(t) is

00 0I0 - TI 2TZ)

(2r) 2p 1 1 1 (1
' T 2 ) e

(20-o -00 -00

= lim
T--oo

dT1 dT2

S[FT () FT(2) FT(1 + W 2)]

where FT(w) is the transform of flT(t), and flT(t) = f 1 (t) when -T < t < T and zero else-

where. We can proceed as in the aperiodic case and obtain the same result, but we take

the product of * (wlW 2 ) and eJ2T 2 and integrate it with respect to w2.

2= lim -
T-00oo

T(I) 00

FToo

FT(2) FT(- - 2 ) e dw2j

If the transform of flT(t) flT(t + T2) is denoted by GT(Wl,T2) for a fixed T 2 ,

we have

GT(l, T2) =

00

-00

FT(2) FT(-l - 2) e 2 dw2

Equation 6 now becomes
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(W15W)
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(1,c2) e 22 dw2 = lim [FT() GT( T 2 ) (8)
So2 T-Too

Equation 8 shows that when T 2 = 0, the integral of ( 1)W 2) with respect to w2 is the

cross-spectral-density function of f2(t) and fl(t)

If the crosscorrelation function of gl(t, T2 ) = fl(t) fl(t + T2), where 72 is fixed, and

fl(t) is denoted by g 1(t, ),fl(t)(T) , then, since Eq. 8 gives the cross-spectral-

density function of g (t, T 2 ) and fl(t), we have,

S2 2 (t, T 1,00 
' 2 ) e d 2 gl (t, T , f 1 (t) 2 1T) e d 1

00

1 * , 1  1
(2 1 1 1 (T 1 r 2 ) e dT 1  (9)

-00

This relation shows that it may be convenient to interpret the second-order autocorrela-

tion function of f (t) as a crosscorrelation function of gl(t, T2 ) = f 1 (t) f 1(t + 72) and f 1 (t).

J. Y. Hayase

G. A COMPENSATOR FOR THE DIGITAL ELECTRONIC CORRELATOR

The pulse-comparing circuit used in the compensator scheme described in the

Quarterly Progress Report of July 15, 1955, pages 48-49, has been tested; constant-

width pulses were used. The circuit that will be used in the correlator, however, will

have random-width pulses as inputs. Figure XI-9 gives a plot of e as a function
cfinal

of the pulse difference (P-M) with (P+M) held constant; this will be the case in the

correlator. The slight difference between the experimental and theoretical curves can

probably be accounted for by leakage resistance in the capacitor and the input resistance

of the measuring instrument.

This circuit may be useful in many other applications for measuring pulse differ-

ences. For example, it might well be used as a pulse-length measuring device in which

a pulse can be compared with a standard pulse obtained from a laboratory instrument.

One arrangement for such a device is shown in Fig. XI-10. The input pulse A is fed

into the pulse comparator activating switch S . The signal B from the standard fre-

quency source is consecutively clipped and amplified into pulses C, which trigger a flip-

flop FF 2 to create the standard pulse D, which activates switch S . To avoid error, the

average repetition rate of the two pulses (A and D) must remain equal; in other words,

there must be one standard pulse for each input pulse. The gate pulse E, therefore,
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ec (VOLTS)

+ 100
THEORETICAL CURVE

-M
EC)

P+M = IOmSEC

E =150v

-100

Fig. XI-9. Voltage output versus pulse-length difference.

-- 1(A)
INPUT

(B) (C) (D)

Fig. XI-10. Block diagram for measuring pulse lengths.

allows only two pulses C per period of the input pulse to reach the flip-flop. The

normal states shown on the flip-flops are the states that they will assume with no

input pulse.

When this method is used there are two measurement procedures that can be fol-

lowed. One is to calibrate the voltmeter in time units for specified standard pulse

lengths. Another is to vary the standard pulse length for a null indication, thus finding

the pulse length from the period standard frequency source. In either case the standard

pulse may be effectively multiplied by a constant factor by changing the ratio of the

resistors in the pulse-comparing circuit.

K. L. Jordan
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A level selector tube.

ELECTRON]
GUN

eab x(t)

Fig. XI-12. Application of the level selector tube to the measurement
of the first probability density of a time function x(t).

Fig. XI-13. Application
of optimum

of the level selector tube to the determination
no-memory filters.

106

Fig. XI-11.



(XI. STATISTICAL COMMUNICATION THEORY)

H. A LEVEL SELECTOR TUBE

Figure XI-11 shows a level selector tube which, among its many uses, is of interest

in our work as a device for the measurement of probability densities and as a cir-

cuit element in the apparatus for the determination and synthesis of optimum nonlinear

filters in accordance with the theory stated in the Quarterly Progress Report of Octo-

ber 15, 1955.

The input time function is applied across the terminals a-b. The value of the input

at any instant of time determines which of the output terminals will collect the beam

current. The use of the tube for probability density measurements is indicated in

Fig. XI-12. The time function x(t) to be analyzed is fed to the deflection plates. The

amplitude probability density is proportional to the voltages at the output terminals 1

through n.

In Fig. XI-13 the level selector tube is used to determine the coefficients for an

optimum no-memory filter according to the theory previously discussed. In Fig. XI-13

x(t) is an ensemble member of the filter input and z(t) is the corresponding ensemble

member of the desired filter output. The voltages at the n output terminals are

measured with the tube inputs as shown. Then the voltage source z(t) is set to zero and
.th

the n output voltages are again measured. The j optimum filter coefficient is propor-

tional to the difference of the two measured voltages at output terminal j divided by the

second measured voltage.

With the cooperation of Mr. P. Youtz the first model of the level selector tube has

been constructed in the tube laboratory of the Barta Building. This model had only four

output terminals and enabled us to study the optimum output strip separation and struc-

ture. A study of the secondary emission and the maximum current attainable from the

output strips has led to the design of the second model, which will make use of the

secondary emission properties of beryllium-copper output strips.

The two suggestions for the use of the tube, illustrated by Figs. XI-12 and -13, do

not require a multiple-strip tube. The operations indicated could be carried out sequen-

tially with a single-strip tube. However, the multiple-strip tube is useful in general

nonlinear filter synthesis and, of course, it is more convenient in the examples cited

above. With the addition of another set of deflection plates and a masking aperture

between the two sets the tube can be conveniently used for the measurement of second-

probability densities.

We wish to acknowledge the helpful suggestions of Prof. L. D. Smullin, of this

Laboratory, and of Dr. C. W. Mueller, of the David Sarnoff Research Center, con-

cerning some problems associated with the tube.

A. G. Bose
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