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RESEARCH OBJECTIVES

The present program of this group follows two main lines. The first is a continu-
ation of the research on noise in electron beams and a more general study of the noise
in active devices. The second is a study of the problems involved in high-power beam
tube design.

I. Noise. Several experiments for measuring the value of H/S in the beams
originating from "low-noise guns" are in progress. Three methods for making such a
determination have been proposed, and it is hoped to try all of them by the end of the
year.

The theoretical work leading to the formulation of the minimum "noise measure"
for microwave beam tubes is being extended to cover all types of active devices (tran-
sistors, for example).

2. High-Power Beam Tubes. A study of the phenomena in dense, high-power beams,
both solid and hollow, has been started. Both theoretical and experimental work will
be carried out to determine the limits to the maximum practical beam perveances in
klystrons and traveling-wave tubes.

In order to understand better the family of beam tubes, a "distributed" klystron
consisting of eight closely spaced, uncoupled cavities is being built. A theoretical anal-
ysis of this kind of device is also under way.

During the coming year it is planned to make detailed studies of the efficiency
of a number of commercially available, pulsed klystron amplifiers.

L. D. Smullin, H. A. Haus

A. NOISE MEASUREMENTS

1. Minimum Noise Figure of Traveling-Wave Amplifiers

We have decided to investigate the conditions under which the minimum noise figure

of a traveling-wave amplifier can be realized. Previous theoretical investigations (1)

indicate that the minimum noise figure is given as

F . = I + 4w 4QC f f n1/2 (S - H)Fmin kT max fmin]

In this expression, the quantity (S - II) is most significant, since it is an inherent char-

acteristic of the electron gun, and is invariant to lossless beam transformations.

The measurement of these parameters required the construction of quite a bit of

new equipment. This construction was completed; it includes: a movable-cavity

demountable vacuum system, which does not require sliding seals; an electromagnet

thirty inches in length; a radiometer modulator; and a direct-reading noise-figure

indicator (2).

T. J. Connor
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2. Measurement of Noise Figure

In order to measure the noise parameters S and FI (introduced by H. A. Haus, of

this Laboratory) of a low-perveance electron beam, parts for the tube shown schemati-

cally in Fig. VII-1 have been built and are about to be assembled.

It is anticipated that S will be determined from the maximum and minimum readings

of noise power from the cavity nearest the gun, as it is moved along the beam, and that

I/S will be determined from the noise standing-wave-ratios measured by both cavities.

Appropriate formulas have been derived.

Calculated cavity parameters are as follows:

fo, resonant frequency, 3.0 kMc

Qo (cavity), 2000 (approximate)

Qw (window), 2000 (approximate)

M, gap coupling coefficient, 0.72

RSH/Qo, 145

Incomplete measurements on the cavities indicate that Qo is actually about 1200, so

that the loaded Q will probably be set to 830 or so by varying Qw. This value leads to

an expected maximum available gain for the two-cavity system of 3-4 db, which

should yield convenient beam noise standing-wave-ratios for measurement.

R. M. Bevensee
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Fig. VII-1. Low-perveance beam noise-measurement tube.
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3. Beam Noise Measurement

An analysis of a new measuring method of nI/S has been carried out (1, 2). This

method consists essentially of measuring the ratio of the slow wave component to the

fast wave component of the electron beam noise by using a "directional beam coupler"

that has the same characteristics as the conventional microwave directional coupler.

With the measurement of the standing-wave-ratio of the beam noise, the ratio of I/S

can be obtained directly, independent of the value of S. Details of the analysis will be

published later.

S. Saito
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4. Low-Noise Traveling-Wave Tubes at 500 Mc/sec

Design of low-noise traveling-wave tubes at 500 Mc/sec has been carried out.

Because of limiting the helix to a reasonable length (about one foot), the value of C had

to be made as large as possible. Two structures were investigated: one with a hollow-

beam gun; the other with a solid-beam gun, under the following design conditions.

1. Hollow beam

Vo = 500 volts ya = 2.0 N = 11.5

I = 14 ma C = 0.14 Q = 0.4

0.60 inch OD
Beam Dimensions Gain > 20 db

0.55 inch ID

2. Solid beam

V0 = 500 volts ya = 0.3 N = 11.5

I = 300 la C = 0.07 Q = 0.3

Beam Diameter - 0. 03 inch Gain > 20 db

Construction of the hollow-beam gain is expected to start in the next quarter.

S. Saito, L. D. Smullin

B. NOISE THEORY

1. Invariants of Linear Noisy Networks

The most general linear n terminal-pair network with internal noise generators is

characterized by an impedance matrix Z and an open-circuit noise-voltage column
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Fig. VII-2. Network transformation.

matrix E, both of nth order. Introducing the terminal-voltage column matrix V and

the terminal-current column matrix I, we have for the equation of the network

V = ZI + E (1)

Since the Fourier amplitude of a noise process is meaningless in itself, the noise-

column matrix E cannot be used directly. When meaningful information about the noise

is desired, the self-power and cross-power spectra of the different noise voltages have

to be used. The matrix

EE+ (2)

is a convenient summary of the spectra. The superscript + indicates the operation

of the Hermitian conjugate (complex-conjugate transpose) of a matrix; E + is a row

matrix with the complex-conjugate elements of E as its elements; the bar indicates an

ensemble average.

The most general transformation of an n terminal-pair network into another n

terminal-pair network is shown in Fig. VII-2. The new n terminal-pair network obtained

under the transformation can be characterized by a new impedance matrix Z', and a new

open-circuit noise-voltage column matrix E'. If, in particular, the 2n terminal-pair

network used in the transformation is lossless, and therefore free of noise sources, the

eigenvalues of the following matrix are left invariant in the process

N = EE + (Z + Z) - 1 (3)

The proof proceeds as follows. If the voltages and currents on one side of the trans-

formation network are denoted by the subscript a, those on the other side by b (see

Fig. VII-2) the transforming network can be characterized by the matrix relations

c-1

=j
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Va Zaa Ia + Zab Ib

(4)
Vb Zba Ia Zbb Ib

The voltages V and the currents I of Eq. 1 are related to those of Eq. 4 (see Fig. VII-2)
by

V = V a  I= -Ia (5)

Introducing relation 5 and Eq. 1 into Eq. 4 and solving for V b in terms of Ib we find

V b = Z'I b + E' (6)

with

Z' = Zba(Z + Zaa)-I Zab + Zbb E' = Zba(Z Zaa)- I E (7)

Equation 6 represents the properties of the transformed network. If the transformation
is lossless, but not necessarily reciprocal, we must have

-Z = Z -Z = Z -Z z+  (8)aa aa' bb bb' ab ba

It is not hard to show that the general transformation of the impedance matrix and noise
matrix Eq. 7 can be broken down into three steps (ref. 1 gives a discussion that can
easily be generalized to the nonreciprocal case). The three basic steps, with the
assumption of a lossless transforming network, are:

1. Z' = Z + Zkk E' = E with Zkk = -Zkk

2. Z' =Z -1  E' = Z -1 E

3. Z' = TZT+ E' = TE with T arbitrary

Step 1 (with Zkk = Z aa), step 2, step 3 (with T interpreted as Zab), and step 1 (with
Zkk = Zbb),' performed in the succession indicated leads to the general transformation
Eq. 7. We shall now show that the matrix N defined by Eq. 3 undergoes a similarity

transformation when any one of the three transformations listed above is applied to it.

Step 1 leaves N unaffected, since Z' + Z '+ = Z + Z + and E = E'. Under step 2, we
obtain

N' = E'E' (Z' + Z' )-1 -Z- EE (Z) - 1 [Z- 1 + (Z+ - 1

= Z -1 EE+(Z+ Z+)- Z = Z-1 N Z (9)

Equation 9 shows that N' and N are related by a similarity transformation. Such a
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transformation leaves the eigenvalues of N invariant. Under step 3, we obtain

N' = T EE T (TZT + + TZ T) - 1 = T N T-1 (10)

Since the operation in Eq. 10 is also a similarity transformation, we have proved that

the transformation (Eq. 7) leaves the eigenvalues of N invariant. The number of invari-

ants of the N matrix is thus equal to, or less than, n.

Work is in progress on the interpretation of the noise invariants. So far it has been

confined to two terminal-pair networks. It has been shown that the noise performance

of conventional amplifiers is intimately connected with one of the eigenvalues of N.

Consider, for example, the case when the matrix Z + Z + is neither positive nor negative

definite. This is the case for all but the negative resistance amplifiers (1). Since EE+

is a positive definite matrix, the two eigenvalues of the N matrix are of opposite sign.

When the amplifier is put into its unilateral form by a lossless feedback scheme (1), the

minimum value of the expression

M = (F- 1)/(1 - 1/G)

(where F is the noise figure, G is the available power gain) is given uniquely in terms

of the negative eigenvalue N_ of the matrix N and

Mop t = N_ /2kTAf (11)

In the case of a lossless, microwave, longitudinal-beam tube, N "is related to the

uncorrelated noise component in the slow-beam wave (2). In the notation of reference 3

N_I = 4rrAf(S - I)

An investigation is in progress as to whether the optimum value for M (see Eq. 11) is

an ultimate limit of the noise performance of the amplifier imbedded in an arbitrary

lossless network.

If the generators E are all perfectly correlated (signal process), the matrix EE+

is of rank unity. The matrix N is therefore of rank unity (or zero in a trivial case).

Thus the matrix N has only a single invariant. This invariant has a particularly simple

meaning, as will be shown now for a general n terminal-pair network.

If the network with the single-frequency signal generators E is fed with n current

generators characterized by the column matrix I, the power absorbed by the net-

work is

P =(VI + I+V)= I [+(Z + Z+) I + E+I + I+E] (12)

Equation 12 describes the power as a quadratic surface in the space of the currents I.

The linear terms in Eq. 12 can be eliminated by a proper translation of coordinates.

Setting I' = I + (Z + Z+) - E and introducing this transformation into Eq. 12, we obtain
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P = I'(Z + Z) I' - E (Z + Z) - 1 E (13)

A minimum, maximum, or saddlepoint of the surface Eq. 13 is reached when It = 0.
The remaining constant is the height of the extremum. If the network is passive,
-E +(Z + Z+) - E is negative and represents the maximum available power obtainable

from the internal generators of the network. If the network is capable of the generation

of power as well as the absorption of it in the absence of the internal generators, the
extremum is a saddlepoint of the surface. Furthermore, E (Z + Z+) - 1 E is the trace

of the matrix N = EE (Z + Z+) - 1 . Since N is of rank unity or less in the case of a signal

process, the trace of N is also equal to its single nonzero eigenvalue and thus it is equal
to the only invariant of the M matrix.

H. A. Haus, R. B. Adler
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2. Shot Noise in' Transistors

In the search for an interpretation of the noise parameters discussed in the pre-
ceding section a study has been started on shot noise in transistors. The recently
published theory of North gives us the fundamental principles (1). It is hoped that the
connection between the noise and gain mechanisms in a transistor will be clarified as
a result of this work.

A simple expression is obtained for the noise invariant N of Section VII-B. 1 by
using the equivalent noise generators of the transistor circuit in reference 1. Neglecting
the Early effect and disregarding the base resistance (Gec = bc = rb = 0), we have for N

1 k f) +4(l - ) ul+ (1 - 8(l - )1u12+16 1 -)IluI )

2 2

where u 2 = a2rc/4re. This result shows that in a transistor the gain and noise are
intimately related. Even under the stringent assumptions given above, N is finite
except for r c/re = 00. In this case, however, no current is required to achieve a finite
power gain, and thus no shot noise is introduced.

B. W. Faughnan
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C. DENSE BEAM STUDIES

1. High-Perveance, Cylindrical Electron Beams

At the present time, most high-power longitudinal beam tubes operate with per-

veances less than 3 X 10-6 amp/volt3/2. If tubes could be built to operate efficiently

with higher perveances an appreciable reduction in the voltage requirements would

become feasible. Several theoretical analyses of cylindrical beams will be found in

references 1-7. As an extension to the work of various authors a number of curves

have been calculated and plotted to alleviate some problems in future design. The nota-

tion used is as follows:

K = perveance in amp/volt3/2 V 4 = drift-tube potential

r 4 = drift-tube radius V 3 = beam potential at r3
r 3 = outside radius of the beam V 2 = beam potential at r 2
r 2 = inside radius of the beam Vm = minimum beam potential.

In confined-flow beams (2, 4, 5, 6) the maximum perveance occurs when V 2 /V 4

Vm/V 4 z 1/3. Figure VII-3 shows the variation of this limiting perveance as a function

of the drift-tube radius to beam radius ratio r 4 /r 3 . For hollow beams the ratio r3/r 2
is the parameter. At values of limiting perveance, longitudinal slip becomes excessive

in most applications. Therefore, the perveances were recalculated with Vm/V 4 as

parameter. Figure VII-4 shows curves for a solid beam and Fig. VII-5 for a hollow one

with r 3 /r 2 = 1.2214. Curves have also been plotted for other values of the r 3 /r 2 ratio.

The variations of Vm/V 3 when Vm/V 4 is the parameter have been calculated and

plotted to take into consideration the fact that the percentage of slip is proportional to

(Vm/V 3 )/2 rather than to (Vnm/V 4 ) /2 The unpublished calculations show that in a

confined-flow beam the perveance must be considerably less than the limiting value

whenever rigid slip specifications are imposed. The perveance can be considerably

larger in a tubular beam, provided that the beam is thin and the ratio of the drift-tube

radius to beam radius is close to unity.

In a Brillouin focused beam (1, 3, 7) all electrons have the same longitudinal-velocity

component, and the excess energy of the outer electrons is taken up by rotation about

the axis of the beam. In a solid Brillouin focused beam the charge distribution is

uniform across the beam, which rotates as a unit. Figure VII-6 shows the limiting

perveance of the solid Brillouin focused beam as a function of the ratio of drift-tube

radius to beam radius.
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In a hollow Brillouin focused beam a nonuniform charge distribution is required

for stable solutions. All of the focusing flux lines lying within the inner-beam diameter

in the uniform field region must thread through a hole in the cathode (7). The angular

velocity becomes a function of the radius in a hollow beam; its value is maximum

at the outer edge and zero at the inner edge. The maximum perveance occurs at

V 2 /V 3 = Vm/V 3 = 1/3, just as in confined-flow beams. Figure VII-7 shows the limiting

perveance for Brillouin focused beams as a function of the ratio of the drift-tube radius

to beam radius, with r 3 /r 2 as the parameter for tubular beams.

A demountable vacuum system has been designed for future studies of high-

perveance beams. The system is under construction.
C. Fried
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D. KLYSTRONS

1. Distributed Klystron Theory

Theoretical work has been started on the amplifying characteristics of longitudinal-

beam tubes in which an interaction structure is located periodically along the beam. The

first interaction structure to be treated was a klystron resonant cavity with associated

drift regions. Some of the results of this investigation are summarized below.

a. Electrons in quasi-static fields

The gaps of klystron cavities through which the electrons pass are usually "short"

in the sense that zgap << X/4 (X is the operating wavelength), and z gap<< X q/4 (Xq is

the plasma wavelength). The electric field in such a gap can be considered quasi-static,

and space-charge fields can be neglected in a first approximation. The effect of a cavity

upon a modulated electron beam that passes through its gap can be represented by a two

terminal-pair transformation (Fig. VII-8) as follows:

V2  (y5 + ay 4 )

12 (Y 3 + aY 2 )

S(1)
11

where V 1 and V2 are the kinetic voltages, and Ii and 12 are the currents in the beam at

the input and output of the gap, respectively. The gap parameters in this matrix are:

1 J -JO
el =  GoY Y 2 (1 - e - ) -- (1 + e-j)

el 2 2

1 - e - j)  + e - j o
2 2 GoY Y2 -

1 = j e-jO

3  2 Gy 3  
Y3j e

-jO// sin (6/2) 1 (yb)
Y4 

= -M e - j 6 / 2  M =
0/2 1 0 (ya)

I
-j0/2 G o. 0 is the transit angle

Y 5 e o V'

a = Y =  + Yel; Y is the cavity admittance at the gap

Y g el g
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Fig. VII- 10. Distributed klystron con-
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entrant-type resonators.

For an electron beam passing through a "short" drift region, with no applied rf field,

we have

V2) (Y 5

12 Y 3

O V

y5 I 1
(2)

where the parameters are functions of the "short" drift length.

b. Gain of amplifiers

Equations 1 and 2 describe the basic "short" klystron structure. We choose a cavity

gap and associated drifts to form a prototype of our structure. These structures, let

us say (N+2) of them, are placed successively along the electron beam. The first

structure excites the system. The N following structures can be considered to propa-

gate an exponentially growing wave, in the usual sense of wave analysis in periodic

structures. The last structure extracts power from the beam and delivers it to a load.
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The gain of such an amplifier can be written (if NF >> 1)

GAIN = NP + K + L db (3)

where N = number of intermediate structures, I = power gain of the growing wave per

structure (db), K = power gain in the first and last structure (db), and L = initial power

loss in the excitation of the growing wave (-db). The intermediate structures can be

described by general circuit parameters (ABCD) which follow from suitable products of

the matrices of Eqs. 1 and 2. For symmetrical structures (A = D), the power gain of

the growing wave per structure is

2y = A
2 1 + i - A2

4A 2  (4)

where A is the determinant of the structure matrix. A straightforward derivation of

the quantities corresponding to K and L can be taken from their definitions given above.

Two examples of practical importance are given below.

Prototype (a): Finite gap cavity, no drift regions.

The amplifier consists of a series of N + 2 uncoupled resonators as shown in

Fig. VII-9. For a matched input and output and operation at the resonant frequency of

the cavities, the gain is

ly 14 IY Z1 lZ  2
GAIN = 4 2 4 2 IeNYI (5)

4G

where

e Y  2A; A = (y5 
+ aY4) and F = 10 logl 0 leY

a = 1 - (- G 1/1 and L= 10 log 10 aK
Y22

1y4 12 JY212
G = G s + Gel K = 10 log 10  4G2

Prototype (b): Infinitesimal gap cavity, "short" drift regions before and after the

gap.

The amplifier then has N + 2 re-entrant-type cavities as shown in Fig. VII-10.
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Fig. VII-11. Distributed klystron.

Under the same operating conditions listed above, in prototype (a) the gain is

IY 31 2GAIN = Ia12 I2 (6)
4G

where

1 o
e' 2A; A = 1 - j6 o

a= 1 - p+-; p= l+j G2 G G
o

I
G V and 0 = the transit angle of the drift. r, L, and K can be identified as

0

before.

Considerations of space-charge, bandwidth, and response will be reported later.

A. Bers

2. Distributed Klystr -us

For the purpose of testing some of the analytical work described in Section VII-D. 1,
a short distributed klystron illustrated by Fig. VII-11 is being built. It will use a 10-kv

pulsed gun (perveance 10- 6 ) obtained from the General Electric Laboratories at Stanford,
California. The tube is under construction.

B. A. Highstrete, L. D. Smullin

E. PHASE BUNCHING FOR A SYNCHROTRON

Radial oscillations are set up in a synchrotron by phase variance and energy vari-

ance around the phase-stable particle at the input. In order to reduce the amplitude of

these oscillations we shall try to bunch the particles in phase with as little energy

spread as possible. The dynamics of phase bunching is being studied in the context of

the optimization of the performance of a complete injector system.

A. J. Lichtenberg


