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Abstract

We derive the complete supergravity description of the N = 2 scalar potential which

realizes a generic flux-compactification on a Calabi-Yau manifold (generalized geometry).

The effective potential Veff = V(∂ZV =0), obtained by integrating out the massive axionic

fields of the special quaternionic manifold, is manifestly mirror symmetric, i.e. invariant

with respect to Sp(2 h2 + 2) × Sp(2 h1 + 2) and their exchange, being h1, h2 the complex

dimensions of the underlying special geometries. Veff has a manifestly N = 1 form in terms

of a mirror symmetric superpotential W proposed, some time ago, by Berglund and Mayr.
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1. Introduction

Geometries which generalize Calabi-Yau manifolds in the presence of generic fluxes [1, 2, 3,

4, 5, 6] (for comprehensive reviews on flux compactifications see [7]), have received considerable

attention, as they realize schemes of compactification which incorporate supersymmetry breaking

and moduli stabilization.

On the other hand the scalar potential originating from a compactification on such gener-

alized geometries can be computed, from a supergravity point of view, as a deformation of an

N = 2 supergravity Lagrangian. This N = 2 theory contains hypermultiplets which define a

special quaternionic manifold MQ, obtained by c–map from the complex special geometry MKS

(of dimension h1) underlying a mirror Calabi-Yau manifold [8]. The deformation of the N = 2

theory is effected as an abelian gauging of the 2h1 + 3 dimensional Heisenberg algebra of isome-

tries of the special quaternionic manifold [9]. We denote by h2 +1 the number of vector fields in

the model, and by h1 +1 the number of hypermultiplets, so that h1 = h11, h2 = h12 in Type IIB

setting while h1 = h12, h2 = h11 in Type IIA. The resulting potential for generic fluxes eI
Λ, eI Λ

(I = 0, . . . h2, Λ = 0, . . . h1), was determined in [10]. The condition for an abelian gauging of

the Heisenberg algebra requires that

e[I
Λ eJ ] Λ = 0 . (1)

The generators of the Heisenberg algebra of quaternionic isometries [11] are denoted by XΛ, XΛ, Z .

It is convenient to group the first 2h1 + 2 generators in a symplectic vector XA ≡ (XΛ, XΛ) in

terms of which the commutation relations among the Heisenberg generators read

[XA, XB ] = 2 CAB Z , (2)

all the other commutators vanishing. We have denoted by C the symplectic invariant matrix

C =

(

0 11

−11 0

)

. (3)

The adjoint action of the remaining quaternionic isometries on the XA generators preserves this

symplectic structure. These isometries comprise those of the special Kähler submanifold MKS

of the quaternionic manifold, of complex dimension h1. The generators XA are parametrized

by (2h1 + 2)-dimensional Sp(2h1 + 2)-vector of axions ZA = (ζΛ, ζ̃Λ), originating from the ten

dimensional R-R forms, while the central charge Z is parametrized by the axion a dual to the

Kalb-Ramond antisymmetric 2-form Bµν . The electric fluxes eI
A = (eI

Λ, eI Λ), together with

an additional vector cI , can be viewed as the electric components of and embedding tensor [12]

which defines the gauge generators TI as linear combinations of XA, Z

TI = eI
ATA + cI Z . (4)

In what follows we shall suppose that h2 < h1 and moreover that the rectangular matrix eI
A

have maximal rank h2 + 1. The gauge transformation rules for the axionic fields read

δZA = ξI eI
A ; δa = ξI cI + ξI eI

Λ ζ̃Λ − ξI eI ΛζΛ = ξI cI + ξI eI
A

CAB ZB , (5)
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where ξI(x) are the gauge parameters: δAI
µ = ∂µξI . In the Type IIA framework the entries eI

A

with I > 0 can be characterized as geometric fluxes describing a deformation of the Calabi-Yau

cohomology and e0
A as the components of the NS-NS 3-form field strength H(3) along the basis

of 3-forms labelled by A [5, 9]. The parameters cI are interpreted as R-R fluxes associated with

the forms F (0), F (2), F (4), F (6) in the Type IIA setting, and with the 3-form F (3) in the Type

IIB setting.

On the other hand, in order to have a symplectic covariant formulation of this gauging we

need to dualize h2 + 1 axions, out of the h1 + 1 ZA, to antisymmetric tensor fields, along the

lines of [13]. This will allow us to introduce the magnetic counterpart mIA, cI to eI
A, cI . For an

interpretation of these parameters in terms of generalized Calabi-Yau geometry see [5]. An other

way for introducing magnetic fluxes would be to use the duality covariant formulation in [12]

which describes at the same time the scalar fields and their tensor duals, coupled to both electric

and magnetic vector fields. This procedure would eventually require a gauge fixing to be made

and to solve certain non-dynamic equations. In next section we shall choose a different approach

consisting in dualizing axions parametrizing abelian quaternionic isometries while keeping the

theory covariant with respect to both the symplectic structures on MSK (i.e. with respect to the

group Sp(2h2 + 2) of electric-magnetic duality transformations) and on MKS (i.e. with respect

to the group Sp(2h1 + 2) acting on ZA). It is convenient to group the electric and magnetic

fluxes eI
A, mIA into a single (2h2 + 2) × (2h1 + 2) rectangular flux matrix Q

Q ≡ (Qr
A) =

(

eI
A

mIA

)

(r = 1, . . . , 2h2 + 2) , (6)

and introduce the symplectic vector of R-R fluxes cr = (cI , cI). 1 These parameters define a

2h2 + 2 dimensional symplectic vector of gauge generators Tr = Qr
A XA + cr Z . The abelianity

condition [Tr, Ts] = 0 now implies

(Qr
AQs

B
CAB) = Q C QT = 0 , (7)

while consistency of the theory with electric and magnetic charges requires [12, 13, 14]

(Qr
AQs

B
C

rs) = QT
C Q = 0 ; (crC

rsQs
A) = cT

CQ = 0 . (8)

The above conditions were found in [5, 10, 15]. We shall also use the quantity Q̃ = C
T Q C =

(Qr
A). Let us anticipate the main result of the paper, namely the Sp(2h2 + 2) × Sp(2h1 + 2)-

invariant expression of the N = 2 scalar potential V . We shall denote by za (a = 1, . . . , h1) and

by wi (i = 1, . . . , h2) the complex scalars parametrizing MKS, submanifold of MQ, and MSK

respectively. Moreover let V A
1 (z, z̄) and V r

2 (w, w̄) denote the covariantly constant symplectic

1Here we shall use the same symbol C to denote the Sp(2h1 + 2)-invariant matrix CAB and the Sp(2h2 + 2)-

invariant matrix Crs, both having the form (3), though different dimensions. Which of the two matrices the

symbol C refers to will be clear from the context, in particular from the dimension of the object it multiplies.
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sections on MKS and MSK respectively. The scalar potential reads

V = −
1

8φ2
(c + 2Q C Z)T C

T
M (NSK) C (c + 2Q C Z) −

−
2

φ
V

T
1 Q̃T

M (NSK) Q̃V1 −
2

φ
V

T
2 QM (NKS)QT V2 −

−
8

φ
V1

T
C

T QT (V2 V
T

2 + V 2V
T
2 )Q C V1 , (9)

where M (N ) denotes the (negative definite) symplectic matrix constructed in terms of the

real and imaginary part of the period matrix N on a special Kähler manifold [16]. It then

follows that the terms in the first two lines of (9) are non-negative. Note that scalar potential

depends on ZA only through the combinations QCZ ≡ (Qr
A

CABZB) which do not contain

h2 +1 axions, since it is gauge invariant, provided the matrix Q satisfies (7). These are precisely

the axions that are dualized to antisymmetric tensor fields which acquire mass, in virtue of the

anti-Higgs mechanism, by eating the vector fields. The combinations QCZ turn out to depend

only on h2 + 1 of the undualized axions, which then acquire mass from the potential and can

be integrated out. The remaining 2(h1 − h2) R-R scalars are flat directions. They are absent

for a self-mirror manifold, characterized by having h1 = h2. In this case Q is a square matrix.

The condition which fixes the h2 + 1 axions at the extremum value is c+ 2Q C Z = 0. After the

massive axions ZA are integrated out we find the effective potential

Veff (φ,w, w̄, z, z̄) = V| ∂V

∂ZA
=0 =

−
2

φ
V

T
1 Q̃T

M (NSK) Q̃V1 −
2

φ
V

T
2 QM (NKS)QT V2 −

−
8

φ
V1

T
C

T QT (V2 V
T

2 + V 2V
T
2 )Q C V1 . (10)

This potential is manifestly mirror symmetric, namely symmetric if we exchange MSK with

MKS and replace Q by Q̃T . It is now possible to show, and we shall do it in the last section,

that Veff has an N = 1 form with superpotential given by

W = e−
KSK+KKS

2 V2(w, w̄)T Q C V1(z, z̄) , (11)

which coincides with the expression proposed in [17], and Kähler potential of the form

Ktot = KS + KSK + KKS ,

KS = − log(i(S − S̄)) ; KSK = − log(i V
T
1 CV1) ; KKS = − log(i V

T
2 CV2) , (12)

KSK and KKS being the Kähler potentials on MSK and MKS respectively.

The paper is organized as follows. In section 2. we perform the dualization of the axion a

and of those components of ZA which transform non trivially under the gauge group. We then

introduce the magnetic components of the embedding tensor in the resulting Lagrangian. In

section 3. we extend the results of [10], using the general formulae of [13, 12], to write the full

Sp(2h2 +2)×Sp(2h1 +2)-invariant scalar potential. Finally in section 4. we make contact with

the N = 1 potential proposed in [17]. We end with some conclusions.
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2. Dualization with electric and magnetic charges

Let us start by introducing the notations. We consider a special quaternionic manifold MQ

of real dimension 4 (h1 + 1), which is parametrized by the scalars

qu = {φ, a, ζΛ, ζ̃Λ, za} , (13)

where, from Type IIB point of view, a is the scalar dual to the 2–form NS tensor Bµν , ζ0 = C(0),

ζΛ = CΛ
(2), (Λ > 0), ζ̃0 is dual to Cµν , ζ̃Λ = C(4) Λ, (Λ > 0), φ describes the four–dimensional

dilaton and the complex scalars za are the Kähler moduli of the Calabi-Yau and span the special

Kähler submanifold MKS of complex dimension h1. In the Type IIA description the axions

ζΛ, ζ̃Λ arise as the components of the R-R 3-form along a basis αΛ, βΛ of the third chomology

group H(3) of the Calabi-Yau, while za describe its complex structure moduli. We can introduce

on MKS the projective coordinates XΛ which define the upper components of a holomorphic

symplectic section: X 0 = 1, X a = za. As anticipated in the introduction, there exists a subgroup

of the isometry group generated by a Heisenberg algebra (XA, Z ) ≡ (XΛ, XΛ,Z ), whose action

of the hyperscalars has the following form:

δζΛ = αΛ ,

δζ̃Λ = βΛ ,

δa = γ + αΛζ̃Λ − βΛζΛ , (14)

and which close the algebra (2). Using the notations of [11], we introduce the following one

forms

v = eK̃ [dφ − i (da + ζ̃T dζ − ζT dζ̃)] ,

u = 2i e
K̃+K̂

2 X T (dζ̃ − NKS dζ) ,

E = i e
K̃−K̂

2 P N−1 (dζ̃ − NKS dζ) ,

e = P dX , (15)

where

eK̃ =
1

2φ
=

e2 ϕ

2
, ; eK̂ =

1

2X
T
NX

=
eKKS

2
; (φ > 0) , (16)

where ϕ denotes the four dimensional dilaton and KKS is the Kähler potential on MKS defined

in (12).

The metric on the quaternionic manifold reads:

ds2 = v̄ v + ū u + Ē E + ē e =

Kab̄ dza dz̄b̄ +
1

4φ2
(dφ)2 +

1

4φ2
(da + dZT

CZ)2 −
1

2φ
dZT

M (NKS) dZ , (17)
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where NKS is the period matrix on MKS
2, the symplectic matrix M (N ) is defined as follows:

M (N ) =

(

11 −ReN

0 11

)(

ImN 0

0 ImN −1

) (

11 0

−ReN 11

)

, (18)

and the axion vector ZA =

(

ζΛ

ζ̃Λ

)

was defined in the introduction.

The Killing vectors associated with the abelian gauge algebra generators TI defined in (4)

read:

kI = (cI + eI
Λ ζ̃Λ − eIΛ ζΛ)

∂

∂a
+ eI

Λ ∂

∂ζΛ
+ eIΛ

∂

∂ζ̃Λ

. (19)

Let us start with the deformation [9] of the quaternionic Lagrangian (17) which corresponds to

the chosen gauging of the Heisenberg isometry algebra:

L = −Kab̄ dza ∧ ⋆ dz̄b̄ −
1

4φ2
(Da − ZA

CAB DZB) ∧ ⋆(Da − ZA
CAB DZB) +

+
1

2φ
DZA

M (NKS)AB ∧ ⋆DZB ,

(20)

where the covariant derivatives are defined as follows:

Da = da − cI AI − eI
A

CAB ZB AI ,

DZA = dZA − eI
A AI , (21)

The electric charges eI
A satisfy the cocycle condition (1) corresponding to the requirement that

the gauge algebra be abelian:

eI
A eJ

B
CAB = 0 . (22)

As a consequence of the above condition the charges eI
A select an abelian “section” of the

Heisenberg algebra to be gauged. Using eI
A, we can split the RR scalar fields in two orthogonal

sets ZI , ẐA, as follows:

ZA = eI
A ZI + ẐA . (23)

It is also useful to define the scalars ZI ≡ eI
A

CABZB = eI
A

CABẐB. We may define the above

splitting in a more formal way by introducing a matrix ẽA
I satisfying the conditions

ẽA
I eI

B = P (+)
A

B ; ẽA
I eJ

A = δI
J , (24)

where P (+)
A

B is the projector on the h2 + 1 dimensional subspace corresponding to the non

vanishing minor of eI
A. We also define the orthogonal projector P (−)

A
B = δB

A −P (+)
A

B. Using

2In our conventions NKS = i Ns where Ns is the period matrix used in [11].
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these projectors we can define ZI = ẽA
I P (+)

B
A ZB and ẐA = P (−)

B
A ZB. Note that under

gauge transformations

δZI = ξI ; δẐA = 0 , (25)

namely the ẐA components are gauge invariant. In other words the embedding tensor eI
A, cI

defines an abelian subalgebra of the Heisenberg algebra spanned by the axions a, ZI . Our aim

is to dualize these scalars. We start from rewriting the vielbein along the Z direction on the

tangent space, in the following form

da + dZT
CZ = da + ZI dZI − ZI dZI − ẐA

CAB dẐB . (26)

From the above expression we see that, if we make the redefinition a → a + ZI ZI , all the

scalars ZI in eq. (26), and therefore also in (20), can be covered by derivatives and thus a

and ZI can be dualized into closed 3–forms H = dB, HI = dBI . To this end we introduce

a set of unconstrained 1–forms η, U I replacing the differentials da, dZI in the Lagrangian (20)

and add the 3–forms H, HI as Lagrange multipliers. Note that the HI can be expressed as

combinations of 2 (h1 + 1) 3-forms HA and similarly the corresponding antisymmetric tensors

BI can be expressed as combinations of 2 (h1 + 1) 2-forms BA:

HI = eI
A HA ; BI = eI

A BA ; HA = dBA . (27)

The resulting first order Lagrangian reads:

LQ = −Kab̄ dza ∧ ⋆ dz̄b̄ −
1

4φ2
(η + 2ZI U I − R) ∧ ⋆ (η + 2ZI U I − R) +

+(U I − AI)∆IJ ∧ ⋆(UJ − AJ) + 2 (U I − AI) eI
A ∆AB ∧ ⋆ dẐB + dẐA ∆AB ∧ ⋆ dẐB +

+H ∧ (η − da) + HI ∧ (U I − dZI) , (28)

where we have used the following notation:

R = 2ZI AI + cI AI + ẐA
CAB dẐB ,

∆AB =
1

2φ
M (NKS)AB ; ∆IJ = eI

AeJ
B ∆AB . (29)

By varying the Lagrangian with respect to a and ZI we obtain H = dB, HI = dBI . The field

equations from the variations with respect to U I and η are:

δL

δη
= 0 ⇒ η + 2ZI U I − R = −2φ2 ⋆ H ,

δL

δU I
= 0 ⇒ ZI (η + 2ZJ UJ − R) = 2∆IJ φ2 (UJ − AJ ) + 2φ2 eI

A ∆AB dẐB −

−φ2 ⋆ HI . (30)

Solving the above equations with respect to η, UI and substituting in the first order Lagrangian

we obtain the dual Lagrangian:

LQD = −Kab̄ dza ∧ ⋆ dz̄b̄ − (φ2 − ∆IJ ZI ZJ)H ∧ ⋆H +
1

4
∆IJ HI ∧ ⋆HJ − ∆IJ H ∧ ⋆HI ZJ −

−(HI − 2H ZI)∆IJ eJ
A ∆AB ∧ dẐB + H ∧ ẐA

CAB dẐB + (HI + cI H) ∧ AI +

+dẐA ∆̃AB ∧ ⋆ dẐB , (31)
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where

∆IK ∆KJ = δI
J ; ∆̃AB = ∆AB − ∆IJ eJ

C ∆CA eI
D ∆DB (32)

The dual Lagrangian is invariant under the following gauge transformations:

δAI = dξI ; δBI = dΞI ; δB = dΞ , (33)

where the 1-forms ΞI , Ξ parametrize the tensor-gauge transformations. We can complete the

Lagrangian (28) by adding the kinetic and theta term of the vector fields:

Lvec = Im(NSK)IJ F I ∧ ⋆F J +
1

2
Re(NSK)IJ F I ∧ F J . (34)

It is straightforward to generalize the above construction by including magnetic charges mIA, cI ,

according to the following prescription [13]:

• In Lvec substitute F I by F̂ I ≡ F I + mIA BA + cI B.

• In LQD substitute the topological term HI ∧ AI = eI
A HA ∧ AI = −eI

A BA ∧ F I by

−eI
B BB ∧ (F̂ I − 1

2 mIA BA − 1
2 cI B). The same for the term −cI B ∧ F I .

In conclusion the final Lagrangian describing scalar, tensor and vector fields coupled to each

other by means of electric and magnetic charges reads:

LD = Im(NSK)IJ F̂ I ∧ ⋆ F̂ J +
1

2
Re(NSK)IJ F̂ I ∧ F̂ J −

−Kab̄ dza ∧ ⋆ dz̄b̄ − (φ2 − ∆IJ ZI ZJ)H ∧ ⋆H +
1

4
∆IJ HI ∧ ⋆HJ − ∆IJ H ∧ ⋆HI ZJ −

−(HI − 2H ZI)∆IJ eJ
A ∆AB ∧ dẐB + H ∧ ẐA

CAB dẐB −

−(BI + cI B) ∧ (F̂ I −
1

2
mIA BA −

1

2
cI B) + dẐA ∆̃AB ∧ ⋆ dẐB . (35)

The above Lagrangian enjoys the extra tensor–gauge invariance:

δBI = dΞI ; δB = dΞ ; δAI = −mIA ΞA − cI Ξ , (36)

provided the following conditions are met:

eI
A mIB − eI

B mIA = 0 ; cI mIB − eI
B cI = 0 , (37)

which are equivalent to (8). The form of Lagrangian (35) is consistent with the construction given

in [13]3 as far as the kinetic metric of the tensors and the tensor–scalar couplings are concerned.

This is the case since, although we introduce 2h1 + 2 tensors BA formally corresponding to all

of the symplectic scalars ZA, only the combination BI = eI
ABA and B are actually propagating

and they mirror the scalars ZI , a which parametrize an abelian subalgebra of the Heisenberg

algebra, due to condition (22). A related observation is the fact that in paper [13] the choice

3In [13] to role of the indices I, Λ is exchanged.
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of dualizing the parameters of an abelian algebra was made from the very beginning so that

condition (22) was not needed. Let us note that also the combination mIA BA can be expressed

in terms of the only propagating tensors BI . Indeed we can write

mIA BA = mJA eJ
B ẽB

I BA = mJB eJ
A ẽB

I BA = mJB ẽB
I BJ , (38)

where the first of conditions (37) has been used.

3. Scalar potential with electric and magnetic fluxes

The general form of the N = 2 scalar potential is [18]:

V = 4huvk
u
I kv

J LI L
J

+ grs̄ kr
Ik

s̄
J LI L

J
+ (U IJ − 3LIL

J
)Px

I P
x
J , (39)

where the second term does not contribute to the gauging we are considering, which involves

quaternionic isometries only since it is abelian. The vectors LI denote the upper part of the

covariantly holomorphic symplectic section V on the special Kähler manifold MSK parametrized

by the vector multiplet scalars wi, w̄ı̄. The expression for the momentum maps Px
J is:

P
x
I = ku

I ωx
u , (40)

where ωx is the SU(2) connection. This form is Heisenberg–invariant and so is therefore the

SU(2) curvature. This justifies the absence of a compensator on the right hand side of eq. (40).

It is useful to rewrite the scalar potential in two equivalent ways:

V = 4huv ku
I kv

J LI L
J

+ (U IJ − 3LIL
J
) ku

I kv
J ωx

u ωx
v , (41)

V = −
1

2
(ImNSK)−1IJ ku

I kv
J ωx

u ωx
v + 4 (huv − ωx

u ωx
v ) ku

I kv
J LI L

J
, (42)

where we have used the special geometry identity:

U IJ = −
1

2
(ImNSK)−1IJ − LLT . (43)

In order to evaluate the expression on the right hand side of eq. (42) it is useful to compute the

following quantity [11]:

GIJ = ku
I kv

J (huv − ωx
u ωx

v ) = ku
I kv

J [v̄ v + ū u + Ē E − (v̄ v + 4 ū u)]uv . (44)

Using the following notation:

rI = cI + 2 (eI
Λ ζ̃Λ − eIΛ ζΛ) ; sIΛ = eIΛ − eI

Σ (NKS)ΣΛ , (45)

we can express GIJ as follows:

GIJ = 2 eK̃ s̄IΛ sJΣ

(

U − 3LLT
)ΛΣ

; U = −
1

2
(ImNKS)−1 −LLT ; L = e

KKS

2 X .(46)
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In deriving the above expression for GIJ we made use of the following properties:

N−1P †PN−1 = eK (−N−1 + LL
T
) ,

−
1

2
(ImNKS)−1 = −N−1 + LL

T
+ LLT . (47)

Now we can evaluate the two equivalent expressions for the scalar potential given in eqs. (41)

and (42) [10]:

V = L
I
LJ

[

1

φ2
(cI + 2 eICZ) (cJ + 2 eJCZ)−

2

φ
eI M (NKS) eT

J

]

+

1

2φ
(U − 3 L̄LT )(IJ)

(

1

2φ
rI rJ + 8 s̄IΛ sJΣ L

Λ
LΣ

)

, (48)

V = −
1

4φ
(ImNSK)−1IJ

(

1

2φ
rI rJ + 8 s̄IΛ sJΣ L

Λ
LΣ

)

+

4

φ
L

I
LJ s̄(I|Λ sJ)Σ

(

U − 3 L̄ LT
)ΛΣ

, (49)

where we have introduced the following vectors: eI =

(

eI
Λ

eIΛ

)

. The first equation (48) is useful

for those gaugings which involve just the graviphoton A0
µ, e.g. Type IIA with NS flux or Type

IIB on a half–flat “mirror” manifold [1]. Indeed in these cases the term in the second line of

(48) does not contribute for cubic special geometries in the vector multiplet sector since:

(U − 3LLT )00 = 0 . (50)

Similarly the expression (49) is of particular use for those gaugings which involve only isometries

Λ = 0, like for instance Type IIA on a half–flat manifold or Type IIB on the “mirror” manifold

with NS flux since, for cubic special quaternionic geometries:

(

U − 3LLT
)00

= 0 ⇒ eKKS = −
1

8
(ImNKS)−1 00. (51)

Let us now rewrite the scalar potential V as a symplectic covariant form in terms of the elec-

tric and magnetic charge matrix Q ≡ (Qr
A) defined in the introduction. To this end we use

the covariantly holomorphic symplectic sections V2 and V1, associated with MSK and MKS

respectively:

V2 = (V r
2 ) =

(

LI

MI

)

; V1 = (V A
1 ) =

(

LΛ

MΛ

)

. (52)

Using the properties

s̄IΛ (ImNKS)−1ΛΣ sIΣ = eI
A

M (NKS)AB eI
B ,

sIΛ LΛ = −eI
A

CAB V B
1 , (53)

the scalar potential V in (48), or equivalently in (49), has the following Sp(2h2 + 2) invariant

extension

V = −
1

8φ2
(c + 2Q C Z)T C

T
M (NSK) C (c + 2Q C Z) −

9



−
2

φ
V

T
1 Q̃T

M (NSK) Q̃V1 −
2

φ
V

T
2 QM (NKS)QT V2 −

−
8

φ
V1

T
C

T QT (V2 V
T

2 + V 2V
T
2 )Q C V1 , (54)

where c denotes the symplectic vector of R-R electric and magnetic charges defined in the

introduction: c ≡ (cI , cI). Note that V depends only on the gauge invariant component ẐA of

ZA and not on the ZI which have been dualized to tensor fields, in virtue of the property (7)

Qr
A

CAB ZB = Qr
A

CAB eI
B ZI + Qr

A
CABẐA = Qr

A
CABẐA . (55)

The equation of motion for Ẑ imply the following condition

c + 2Q C Ẑ = 0 , (56)

which fixes part of the undualized Ẑ axions. To illustrate which of these axions are fixed and

which are flat directions let us choose a basis for ZA so that, if we split the upper index Λ in

Λ = (I, λ): det(eI
J) 6= 0, eI

λ = eI Λ = 0. Conditions QCQT = QT
CQ = 0 then imply that the

only non vanishing components of mI A are described by the non singular matrix mIJ satisfying

the condition mI[J eI
K] = 0. The combinations QCẐ then single out the only scalars ζ̃I , which

therefore are the only components of the vector ZA entering the potential, and thus fixed by

condition (56). Therefore in this case the fate of the original ZA scalars is summarized as follows

(h2 + 1) ZI ≡ ζI −→ dualized to tensor fields BµνI ,

(h2 + 1) ZI ≡ ζ̃I −→ fixed by (56) ,

2 (h1 − h2) ζ̃λ, ζλ −→ flat directions for V . (57)

Upon implementation of conditions (56), the first term in the scalar potential (54) vanishes, and

the resulting effective potential Veff , as a function of the remaining scalar fields, acquires the

following mirror symmetric expression

Veff (φ,w, w̄, z, z̄) = V| ∂V

∂ZA
=0 = −

2

φ
V

T
1 Q̃T

M (NSK) Q̃V1 −
2

φ
V

T
2 QM (NKS)QT V2 −

−
8

φ
V1

T
C

T QT (V2 V
T
2 + V 2V

T
2 )Q C V1 . (58)

The above formula for V is manifestly invariant if we exchange MSK with MKS and Q with

Q̃T .

4. Formulation in terms of an N = 1 superpotential

In this section we show that the expression for V in (54) can be described in terms of the

N = 1 superpotential proposed in [17]

W = e−
KSK+KKS

2 V T
2 Q C V1 , (59)
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where KSK(w, w̄) and KKS(z, z̄) are the Kähler potentials on MSK and MKS defined in (12) .

The scalars of the N = 1 theory are S, S̄, wi, w̄ı̄, za, z̄ā and span a Kähler manifold with Kähler

potential given in (12). The N = 1 scalar potential reads

VN=1 = eKtot

(

gab̄ DaW Db̄W + gi̄ DiW D̄W + gSS̄ DSW DS̄W − 3 |W |2
)

, (60)

where the covariant derivatives are defined as DxW = ∂xW +∂xKtot W , where x = i, a, S. Note

that W is S-independent and therefore

gSS̄ DSW DS̄W = gSS̄ DSKS DS̄KS |W |2 = |W |2 . (61)

Let us now use the following properties of special geometry

gab̄ DaV1Db̄V1 = −
1

2
C

T
M (NKS)C − V1 V T

1 ,

gi̄ DiV2D̄V 2 = −
1

2
C

T
M (NSK)C − V 2 V T

2 , (62)

and write the relevant terms in VN=1

gab̄ DaW Db̄W = e−
KSK+KKS

2

(

−
1

2
V T

2 QM (NKS)QT V 2 − V T
1 C

T QT V 2V
T
2 QCV 1

)

,

gi̄ DiW D̄W = e−
KSK+KKS

2

(

−
1

2
V T

1 Q̃T
M (NSK) Q̃ V 1 − V T

1 C
T QT V 2V

T
2 QCV 1

)

,

−2 |W |2 = −2 e−
KSK+KKS

2 V T
1 C

TQT V2V
T
2 QCV 1 . (63)

The scalar potential therefore can be recast in the following form

VN=1 = eKS

(

−
1

2
V

T
1 Q̃T

M (NSK) Q̃V1 −
1

2
V

T
2 QM (NKS)QT V2−

−2V1
T

C
T QT (V2 V

T
2 + V 2V

T
2 )Q C V1

)

, (64)

which coincides with the expression in (54) provided ImS = − exp(−KS)/2 = −φ/8.

5. Conclusions

We have derived the scalar potential for an N = 2 supergravity theory with general electric

and magnetic gauging of an abelian subalgebra of the Heisenberg isometry algebra of a special

quaternionic Kähler manifold. Although we have only discussed the bosonic action, by applying

the results of [13], the full Lagrangian, including fermionic terms and the transformation laws

are known.This Lagrangian is supposed to describe the effective theory for a compactification of

Type II superstring on a generalized Calabi-Yau manifold, which, in this context, is viewed as a

deformation of a Calabi-Yau manifold when general fluxes are turned on. One limitation of this

description is that classical c-map has been used to obtain a manifest Sp(2h2 +2)×Sp(2h1 +2)-

symmetric description. It would be interesting to describe a situation in which a quantum

c-map [19], encompassing both perturbative and non-perturbative effects for the quaternionic

geometry, is used in this context of generalized geometries.
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