

The LHCb Hostcard USB Interface

HUSBi
— Project Report —

Final Thesis for Engineering Studies at

IHA – Engineering College of Århus, Denmark

Technical Student: Sune Wolff

Supervisors:

Burkhard Schmidt, CERN – PH/DT2

Leif Munkøe, IHA

Submitted: December 20, 2006

C
E

R
N

-T
H

E
SI

S-
20

07
-0

09
20

/
12

/
20

06

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44165721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The LHCb hostcard USB interface (HUSBi) card is a High Speed USB2.0

communication card used for data interchange and control in high voltage distribution

systems for particle detectors at CERN, and particularly in the LHCb experiment. A

primary high voltage power supply provides power to the detectors through a network

of individual controllers. The HUSBi card is used to link the controllers with host

PCs, permitting individual control of all the channels used to supply the detector.

The project includes the development of a Linux kernel device driver for the HUSBi

communication card. This driver includes a security level that protects the hardware

from manipulation that could damage the expensive detector equipment if the high

voltage is incorrectly applied. This is done by monitoring each individual channel,

and slowly ramping the voltage to the desired level.

This thesis includes an overview of the project, with focus on the methods and tools

used throughout the course of the project. A description of the knowledge gained from

the project is also supplied. Finally, suggestions for improvements or further

developments are made.

 Page 1 of 25

Table of Contents

1. Introduction.. 2

1.1. The UF/PNPI High Voltage Distribution System.. 2

1.2. The HUSBi Project .. 4

1.3. Purpose of HUSBi.. 5

1.4. Glossary ... 6

2. Proof of Concept... 7

2.1. HUSBi Communication Test ... 7

2.2. Experience Gained from HUSBi Communication Test 9

2.3. Proof of Concept Results ... 10

3. HUSBi Linux USB Device Driver ... 11

3.1. Initial Analysis ... 11

3.2. Design Process ... 12

3.3. Implementation of the HUSBi Device Driver.. 13

3.4. Experience Gained from the HUSBi Device Driver 14

3.5. HUSBi Device Driver Results ... 16

3.6. Suggestions for Improvements... 17

4. USB Interface for the HUSBi Hostcard ... 18

4.1. Choice of USB Transceiver ... 18

4.2. The Design Process .. 19

4.3. VHDL Implementation .. 19

4.4. Experience Gained ... 20

4.5. Results .. 21

4.6. Suggestions for Improvements and Further Development 22

5. Conclusions ... 24

References ... 25

 Page 2 of 25

1. Introduction

Currently, four major experiments are being constructed at CERN - the “European

Organization for Nuclear Research”. One of these experiments, the LHCb1 experiment,

will use so called Multi-Wire Proportional Chambers (MWPC), in order to monitor a

specific type of particles called muons. A large number of high voltage channels are

needed in order to supply these MWPC. The channels are supplied by a high voltage

distribution system, which distribute the output voltage from a primary power supply to

several thousand individual channels. Companies such as CAEN have made a living

out of producing such systems. As a more economic alternative, the joint effort of

University of Florida (UF) and Saint Petersburg Nuclear Physics Institute (PNPI) has

resulted in such a system used for high voltage distribution. Both the UF/PNPI system

and a system from CAEN are used for the LHCb experiment, but the system of interest

for this thesis is that from UF/PNPI.

1.1. The UF/PNPI High Voltage Distribution System

Figure 1 illustrates how the distribution of the high voltage is made in the UF/PNPI

system:

Figure 1: The UF/PNPI high voltage distribution system

1 The “Large Hadron Collider beauty” experiment

 Page 3 of 25

The system consists of a Primary Power Supply (PPS), whose output voltage needs to

be distributed to the many channels. This is done in two stages: A Master Board (MB),

which has eight output channels, is connected to the output of the PPS. Each of these

channels is connected to a Remote Distribution Board (RDB), each of which has 36

channels.

The system also provides both regulation and monitoring of the output voltage of the

channels on the different modules. The MB can regulate the output voltage (MB_out)

on individual channels between 0V and the input voltage supplied by the PPS

(PPS_out). The RDB can set the output voltage (RDB_out) on individual channels to

the input voltage supplied by the MB ±1000V, with a maximum of the input voltage

(MB_out) and a minimum of 0V. The voltages set, the actual monitored voltage, and

many other parameters are being made available to a control system by the means of a

communication path:

Figure 2: Communication in the UF/PNPI system

Each module (MB or RDB) needs to be connected to a so called hostcard, which is

installed in a PC running Linux OS, providing the control functions. The hostcard

communicates with a device driver, installed on the PC, over the PCI bus. The PC is

also running a DIM [1] server which takes care of the monitoring and adjustment of the

channels. This server is controlled from another PC using the program “PVSS”

(Prozessvisualisierungs- und Steuerungs-System from ETM/Austria) which is the

chosen SCADA (Supervisory Control and Data Acquisition) system at CERN.

 Page 4 of 25

1.2. The HUSBi Project

The UF/PNPI system is at present time fully functional and has been successfully

tested. The fact that the existing hostcard uses the “old” PCI 5V bus for

communication, however, could cause problems in the future. The industry standard PC

platform is rapidly moving away from this bus towards high speed serial

communication instead. As USB2.0 is being more and more widely used, it was

decided to change the interface of the hostcard from PCI to High Speed2 USB2.0. The

abbreviation “HUSBi” is used to describe the project of creating a hostcard USB

interface throughout this document.

The HUSBi project is split into two phases: an initial analysis phase called the “Proof

of Concept” phase, and the development phase called the “Prototype Hostcard” phase.

The objective of the first phase was to measure the achievable data rate of the USB2.0

communication. This result was to be compared with a calculated theoretical minimum

required transfer rate for the UF/PNPI system. The result of this comparison would

decide how to proceed in the following phase.

In the “Prototype Hostcard” phase, the development of the High Speed USB2.0

interface to the hostcard was implemented. This interface includes a USB2.0 device

driver of the Linux PC, as well as hardware interface on the hostcard. The development

of the device driver was the biggest challenge by far, and throughout this thesis the

focus will be set on this part of the project.

2 USB2.0 High Speed: 480Mbps

 Page 5 of 25

1.3. Purpose of HUSBi

Since the objective of the HUSBi project was to change only the interface of the

hostcard, precautions were taken in order to make sure that the remaining parts of the

system could be kept unchanged if at all possible. A lot of work was already put into

the development of the PVSS controls system, the DIM server, and the production of

the modules of course. These existing parts of the system define the boundary

conditions of the HUSBi project, since the new USB2.0 device driver interfaces with

these parts. The driver also needed to interface to a developer’s board3 which was used

instead of the hostcard for the development of HUSBi. The purposes of the project are

listed below:

• Change the interface of the hostcard to High Speed USB2.0;

• Keep the remaining parts of the UF/PNPI system unchanged if possible;

• Perform initial analysis of the data rate required by the system, and compare

with the achievable data rate for USB2.0 communication;

• Implement changes to the architecture of the device driver, in order to increase

the achievable data rate, or to reduce the required data rate;

• The USB2.0 device driver must have the same functionality as the existing PCI

driver. This includes the interface to the DIM server along with the internal

functionality of the driver; and

• In order to demonstrate the USB communication between the driver and

hostcard, simple read and write procedures must be implemented in the FPGA

on the developer’s board.

As can be seen in the above list, the production of a new hostcard with USB2.0

interface is outside the scope of this project. This would include PCB design along with

redesigning the code for the FPGA in order to make use of the new USB interface.

With the manpower available, it was impossible to fit these additions into the timescale

of the project.

3 XEM3010 from Opal Kelly (www.opalkelly.com)

 Page 6 of 25

1.4. Glossary

The following terms are used throughout this report:

• Altera: FPGA manufacturer

• API: Application Programming Interface

• Cypress: Semiconductor manufacturer: cy7c68013a / cy7c68001

• DIM: Distributed Information Management system

• EEPROM: Electronically Erasable Programmable Read-Only Memory

• Endpoint: Unidirectional data pipe used for USB communication.

• FIFO: First In, First Out

• FPGA: Field Programmable Gate Array

• FX2LP: USB Transceiver cy7c68013a

• GUI: Graphic User Interface

• HDL: Hardware Description Language

• ISE: Integrated Software Environment

• MB: Master Board – part of the UF/PNPI system

• Opal Kelly: Small company from Oregon USA. Creators of the XEM3010

developer’s Board and FrontPanel API

• OS: Operating System

• PCB: Printed Circuit Board

• PNPI: St. Petersburg Nuclear Physics Institute

• PVSS: Prozessvisualisierungs- und Steuerungs-System from ETM/Austria

• RDB: Remote Distribution Board – part of the UF/PNPI system

• SCADA: Supervisory Control and Data Acquisition

• Spartan: Low cost medium density FPGA family from Xilinx

• SX2: USB Transceiver cy7c68001

• UF: University of Florida

• VHDL: Very high speed integrated circuit HDL

• wxWidgets: Cross platform API for writing GUI applications

• XEM3010: Developer’s board used for the HUSBi project

• Xilinx: FPGA manufacturer

 Page 7 of 25

2. Proof of Concept

Since the project description was not very detailed, some initial analysis of both the

UF/PNPI system and the USB2.0 protocol was needed in order to create the

requirements for HUSBi. It was also decided to implement a small demo project called

“HUSBi ComTest”, which could be used in order to test different methods to transfer

data between the host PC and the hostcard.

Since the USB2.0 Specification [2] is an enormous and complex document, only a few

key elements were analyzed in order to find the most suitable way to transfer the data.

USB communication is done through “endpoints” which are unidirectional data pipes.

Of the four different types available, HUSBi utilizes Bulk transfers which are

commonly used for devices that need to transfer a lot of data, and which does not

tolerate any data loss.

A calculation of the required data rate in the UF/PNPI system was completed. It was

assumed that each read- or write execution would introduce a delay of a few

milliseconds to the system [3], and that all data for one channel will be transferred in a

single package. The required data rate has been calculated to 156.7Mbps. This result is

based on a worst case scenario, so the actual required data rate might be lower, but it is

still a very important boundary condition of the project.

2.1. HUSBi Communication Test

In order to increase development speed of this initial demo project, an XEM3010

developer’s board from the company Opal Kelly was used as the hardware platform. It

comes with an API to ease the access to the board from the host PC, and another API

which is used in order to setup the endpoints in the FPGA on the XEM3010 in a simple

way.

 Page 8 of 25

The objective of “HUSBi ComTest” was to test the maximum data rate by using

different data transfer strategies. The main interest was to test the difference in data rate

achieved by sending a curtain amount of data in one package, and sending the same

data in several smaller packages. It was also of great interest to test if data could be

transferred between the host PC and the FPGA on the XEM3010 without corrupting the

data or loosing parts of it.

A user interface has been developed for “HUSBi ComTest”, which allows the user to

perform different tests with several configurable parameters. The interface was

implemented with the aid of a cross platform GUI library called “wxWidgets”.

Figure 3: HUSBi ComTest user interface

HUSBi ComTest allows the user to configure the FPGA with a binary file and test the

data rate achieved uploading data from the FPGA to the host PC or downloading data

the opposite way. The total amount of data used for these tests is user configurable, as

is the size of each package. If these two numbers are of equal size, only one package

will be transferred.

A loop test can also be performed, where a package of random generated data is send

from the host PC to the FPGA and back again. The received data is then compared with

 Page 9 of 25

the data originally send off in order to test if the data has been corrupted, or if parts of

the data were lost during transmission.

2.2. Experience Gained from HUSBi Communication Test

Developing “HUSBi ComTest” gave a good introduction into the world of High Speed

USB2.0 interfaces. By using the API provided with the XEM3010 developer’s board,

communication between the host PC and the FPGA proved to be less difficult to

implement than expected.

Working with the wxWidgets API was challenging. By using some of the more

complex functions available, a sophisticated user interface with a genuine Windows

look was created. Although the knowledge gained was not used to any further extent in

the HUSBi project, it can still prove to be valuable in the future.

A lot of experience setting up project properties and compiler settings in Visual Studio

was acquired from working with the two APIs mentioned above. Especially the

wxWidgets API was very complex to link correctly to the project. Valuable experience

in working with Visual Studio 2005 was gained by setting up the project for HUSBi

ComTest.

On the hardware side, VHDL code was developed for the FPGA on the XEM3010.

Even though the design was somewhat simple, a lot of experience was obtained from

working with both VHDL language and with development tools from Xilinx such as

“ISE WebPack 8.2i”.

 Page 10 of 25

2.3. Proof of Concept Results

Several tests were made in order to examine the achievable data rates for both upload

and download. In these tests, 32MB of random generated data was transferred between

the host PC and the FPGA on the XEM3010 developer’s board. Different package sizes

were used, in order to test the variation in achievable data rate. The results of these tests

can be seen below:

Test Results

0

50

100

150

200

250

300

1 2 4 8 16 32 64 256 1024 4096 8192

Package Size (kBytes)

D
at

a
R

at
e

(M
bp

s)

Download
Upload

Figure 4: Test results from HUSBi ComTest

When the package size was increased the data rate also increased. This was true for

both the upload and the download tests. In order to achieve the highest possible data

rate, the number of transferred packages should be minimized. Optimally, all data

should be send in one large package.

Another of the objectives for the “Proof of Concept” phase was to attain data rates of a

minimum of 156.7Mbps. When downloading data into the FPGA this is easily

achieved, but uploading data to the host PC this is not true. The difference in achieved

upload and download data rate is tested and confirmed by Opal Kelly [4]. It was

concluded that changes had to be made in order to reduce the amount of data which was

read. This would introduce a much needed safety margin between needed and achieved

upload data rate.

 Page 11 of 25

3. HUSBi Linux USB Device Driver

The main focus of the HUSBi project was to develop a Linux USB device driver for the

“Prototype Hostcard”. As the UF/PNPI system requires that the parameters of the

hardware modules are read with 20ms intervals, a very reliable timer was needed. Only

drivers running in the kernel of the operating system have 100% reliable timers

available [5], so it was decided to implement the HUSBi USB device driver as a kernel

module instead of a normal user application. This choice introduced some restriction on

which files and libraries the driver could be linked to. This, unfortunately, meant that

the APIs used in “HUSBi ComTest” could not be used.

3.1. Initial Analysis

Since no documentation was available on the hostcard PCI driver, and only very little

on the DIM server [6], a lot of research and analysis was required prior to the

development of the new driver.

3.1.1. Driver in Kernel Space

Developing a driver running in the kernel of the operating system is a complex task.

Compared to normal user applications, none of the usual debugging tools are available,

and if the kernel module is not running perfectly the entire OS will crash, and a reboot

is needed. Knowledge of kernel driver development has mainly been obtained from the

book: “Linux Device Drivers” [7], which includes in-depth explanation of all aspects of

Linux kernel drivers, as well as small examples throughout the book.

In order to enhance error tracking of the system, a serial link has been set up between

the Linux PC and the HyperTerminal of a standard Windows PC. All kernel messages

are then displayed in the HyperTerminal, and are available even after the kernel of the

Linux PC has crashed. This was an excellent addition to the development environment,

which reduced the time spent debugging the system.

 Page 12 of 25

3.1.2. Driver Interface

It is important to have a firm understanding of how the different function in the driver

interacts, and how the driver interfaces to the DIM server and the hostcard. The figure

below illustrates this, where the items shaded dark grey are the hardware specific parts

of the system:

Figure 5: HUSBi USB device driver interface

3.2. Design Process

The main reasons behind the high data rate required for the UF/PNPI system are the

many read and write operations used, each of which introduces a small delay. So in

order to reduce the data rate, a new architectural principle is introduced in the HUSBi

driver. Instead of reading the data of each channel, one at a time, all the data of all

modules and channels attached to the hostcard is read at once, and is stored in an

internal data structure on the host PC. The functions in the driver which used to access

the hostcard directly, in order to read the values of the channels, will now find the data

needed in this data structure instead. The result of this, is that only a single read

operation is needed each 20ms. A new calculation was made which took these changes

into account, resulting in a required data rate of only 2.84Mbps. This only includes the

most important data, which is used to make sure that the detector equipment is not

damaged. In addition, all the data for all channels needs to be transferred, but only

every second as the DIM server only poll the driver very slowly (poll rate between 1

and 10 seconds). The data rate of 2.84Mbps is easily obtainable, and a huge safety

margin between the achievable and required data rate is established in the system.

 Page 13 of 25

3.3. Implementation of the HUSBi Device Driver

In order to make the task more manageable, the implementation was divided into two

separate parts. The first part is a simulator driver covering all the lightly shaded parts of

Figure 5 including the interface towards the DIM server. This is followed by adding the

hardware interface, which is shaded in a darker gray in the figure, for the final version

of the driver. By implementing the driver in two steps, the interface towards the DIM

server could be tested without any hardware attached, and only when this interface was

working as intended the interface towards the hostcard was added.

3.3.1. Simulator Driver

Since the simulator driver does not serve any real hardware device, it is created as a

char driver which is a suitable class for most simple drivers [7]. This type of driver can

be used to serve a data structure instead of a physical device, which is exactly what is

needed for the simulator driver. A lot of effort was put into ensuring that every possible

command from the DIM server was executed correctly by the driver. When the server

writes a value to the hostcard, the driver stores this value in the data structure instead.

In a similar way, the driver will read a value in the data structure, whenever the DIM

server requires an updated value.

3.3.2. HUSBi Device Driver

For the final version of the HUSBi driver, hardware support was added. The driver

class was changed from char to usb, which involved quite a few changes to how the

driver registers itself in the kernel. In the source tree of Linux 2.6.x a skeleton of a USB

driver4 can be found, which was used as inspiration for the HUSBi driver. This sample

driver shows examples of implementation of registration of the driver, open/close

function, read/write functions, removal of the driver, and much more. The combination

of this sample driver, and the book “Linux Device Drivers” [7] made it possible to

implement the HUSBi USB Device Driver, with a fully functional interface to the

hostcard.

4 Can be found in the source tree: /usr/src/linux2.6.x/drivers/usb/usb-skeleton.c

 Page 14 of 25

3.4. Experience Gained from the HUSBi Device Driver

A lot of experience has been gained from developing a USB kernel module. It is a task

which people are normally advised to avoid if possible, as debugging a driver running

in the kernel is very complicated. If the module crashes the kernel, the developer will

often be left without any trace of what caused the crash. This section summarizes the

valuable knowledge obtained from the work on the HUSBi Device Driver.

3.4.1. Kernel Driver

It quickly became obvious that developing a kernel module is something completely

different than a normal user application. Even a simple task, such as allocating memory

for the data structure, requires several instructions.

The biggest difference by far is the fact that the kernel module cannot be linked to any

external libraries or header files. This means that only functions that are actually part of

the kernel itself5 may be used in kernel modules. The number of available functions

increases with each new version of the Linux kernel, but it is still negligible compared

to the amount of functions, libraries, and APIs available to a user application. This

means that a lot of micromanagement and low level code is needed for a kernel module,

opposed by the user application which just makes use of a function in an API.

A small example will illustrate this difference clearly: In order to write an array of data

into the FPGA in “HUSBi ComTest”, the function WriteToPipeOut() was called once,

and the API took care of the rest. In the HUSBi driver, the hvcard_write() function is

no less than 50 lines of code.

The fact that new versions of the Linux kernel are occasionally released is both good

and bad. As explained above, the new versions introduce additional functions which

can be used for kernel module development. Unfortunately the names of functions

change from time to time and infrequently used functions are removed all together.

This means that sample code found in textbooks or on the Internet can be somewhat

5 These files can be found in the “include/linux” directory in the Linux kernel source tree

 Page 15 of 25

useless, as the functions used either has had their name changed or has been removed

from the kernel source tree.

So one very important lesson learned, is always to make sure that the needed function is

still present in the source tree. Additionally, it is a very good idea to read through the

source code of the function, in order to confirm that the functionality has not been

altered.

3.4.2. Debugging Tools

One of the biggest challenges faced with when developing a kernel module is error

tracking and debugging the source code in general. Even the smallest error in the

execution of the driver, will cause the entire kernel of the operating system to break

down. A kernel crash is accompanied by a huge number of error messages, which are

all logged in a file in the kernel. Unfortunately this log is erased then the kernel is

restarted, which means that the original cause of the break will not be visible to the

developer.

In order to work around this problem, a serial link was set up between the Linux host

PC and a Windows PC. All kernel messages were copied to the HyperTerminal of the

second PC. Since the HyperTerminal stores several of the latest messages received, the

developer can examine all the kernel messages receives since the break down, in order

to analyze which error caused the crash.

This addition debugging tool proved to be absolutely invaluable. During the

development phase of the HUSBi device driver the kernel crashed a lot of times, and

without the possibility to examine what caused the error, there would have been no way

to properly debug the driver.

 Page 16 of 25

3.5. HUSBi Device Driver Results

The two different versions of the HUSBi device driver were tested separately. The

simulator driver was tested on its own in order to make sure that the interface between

the driver and the DIM server was working as intended. The final version was tested

with the remaining system in the acceptance test, so most of the result mentioned here

is from the test of the simulator driver.

3.5.1. DIM Server Interface

The interface between the driver and the DIM server was tested with the following test

setup:

Figure 6: Simulator driver test setup

An entire system, including the simulated hostcard with a Master Board and Remote

Distribution Board attached, was set up in the control system. All tests performed on

the system had the desired outcome. The DIM server located the simulated modules,

and all commands send to the driver were executed in a satisfactory manner.

3.5.2. Hostcard Functionality

Using the same test setup the functionality of the driver was also tested. This included

automatic ramping the output voltage of channels, by the use of a kernel timer. It was

also confirmed that the output voltage could not be set on a channel which was not

actually turned on, as well as other similar tests. Of all the tests performed, none

produced negative results, so it was concluded that the functionality of the old PCI

hostcard driver has been successfully implemented in the HUSBi device driver.

 Page 17 of 25

3.6. Suggestions for Improvements

Even though all the functionality which is needed for the UF/PNPI system has been

implemented, there is still room for improvements. This upgrading of the driver will

mostly be kernel related though, as any changes to the functionality will require

changes to the DIM server as well, which should be avoided unless absolutely

necessary.

A common problem in kernel modules is concurrency problems, when different

functions try to access the same data at the same time. This can be avoided by

introducing the use of semaphores and mutexes (mutual exclusion) [7]. Data can be

locked by a function by using these operations, and only unlocked once the function is

finished using the data. Any other function which tries to access a piece of locked data

will have to wait until the data is unlocked. This addition would make sure that no race

conditions would occur when different functions access the data in the data structure.

One thing that has not yet been tested is what happens if the driver tries to allocate

memory for the full data structure of one hostcard with 16 Remote Distribution Boards

attached. The function which is used to allocate memory in the HUSBi driver is called

kmalloc(), which is usually used for small amounts of memory. If larger quantity of

memory must be allocated, it is usually better to use a page oriented technique. The size

of a memory page differs from system to system, and is set by the variable PAGE_SIZE

in the kernel. The size of a page can be anything between 4KB and 64KB, and a

maximum of 1024 or 2048 pages (system depended) can be allocated. If the HUSBi

driver ever should encounter problems using kmalloc(), memory allocation must be

done on a “per page basis”.

 Page 18 of 25

4. USB Interface for the HUSBi Hostcard

In order to demonstrate that the HUSBi device driver can communicate with a hostcard

over the USB2.0 bus, the interface had to be implemented on a hardware platform as

well. This phase of the project includes hardware design for an FPGA, like the one

which is on the existing hostcard. Even the newest and fastest FPGAs on the marked do

not run at high enough clock frequency to receive a serial bit stream of 480Mbps which

High Speed USB2.0 devices must support. For this reason, an external USB transceiver

is used in order to de-serialize the received bit stream.

4.1. Choice of USB Transceiver

The choice of the right USB transceiver chip proved to be very difficult, but equally

important. The initial choice was to use the FX2LP [8], which was on the XEM3010

developer’s board used for “HUSBi ComTest”. This device is a very complex chip,

which includes on-chip memory, a Serial Interface Engine (SIE), and an 8-bit

microcontroller on top of the actual USB transceiver. There is a huge selection of

different setups [9], which can be used in order to change the way the FX2LP handles

incoming data, but it quickly became apparent that this chip was a bit to complex for

this project.

Another option was found: a demo board using an older USB transceiver called SX2

[10]. This chip is basically the same transceiver, as the one inside the FX2LP, but

without all the additional on-chip components. It acts like a FIFO with the USB to one

side, and a 16bit data bus to the other. Using simple control signals, the FIFO can be

filled with data, and read or written once the FIFO is full. The FPGA on the demo

board was from Altera, and not Xilinx as the one on the existing hostcard. By using a

high level design language, it should be possible to export the hardware design between

different FPGA types.

 Page 19 of 25

4.2. The Design Process

In order to ensure that the HUSBi device driver will recognize the SX2 demo board, a

successful enumeration process between the device and host PC must be carried out.

The datasheet for the USB transceiver [10] describes this process in fine details, along

with any additional setup of the device, which needs to be configured before USB

communication can be established.

It was decided to limit the hardware design to support only a simple read request, as

this would be sufficient to fulfill the objective of demonstrating the USB

communication. If the SX2 receives a read request from the host PC, a counter will

start feeding data into a buffer. Once this buffer is filled, the SX2 will send the data to

the requester.

4.3. VHDL Implementation

The code for the FPGA on the SX2 demo board is implemented as a big state machine,

written in VHDL in order to ensure portability to other FPGAs. This was an important

goal in order to avoid limiting the choice of components used in the future PCB design

for the HUSBi card.

A colleague assisted in the programming of the Altera FPGA, as he had the required

software available as well as great experience in working with the SX2.

 Page 20 of 25

4.4. Experience Gained

During the comparison of available USB transceivers, an important lesson was learnt:

the most complex device available is not always the optimal solution. As it turned out,

using the SX2, which is the more simple option, introduced just the right functionality

needed in order to implement simple USB2.0 communication. The more complex

FX2LP can be configured in a large number of ways, in order to optimize performance

for a specific system. But for a simple USB link, the SX2 has more than adequate

functionality.

The VHDL implemented on the SX2 demo board, is a lot more complicated than the

code used in “HUSBi ComTest”. With the more complex code, it is important to

remember that processes can run in parallel inside the FPGA. This is true due to the

fact that the code is implemented at gate level in the FPGA, meaning that different

tasks can run completely independently of each other. This can be a big advantage, but

can also cause a lot of problems when being used to the more normal sequential

execution of code. It was a great experience to work with a skilled VHDL designer as

Paschalis Vichoudis, and a lot of knowledge has been gained from him.

 Page 21 of 25

4.5. Results

The enumeration process between the host PC and the SX2 demo board is working as

intended, meaning that the HUSBi device driver is automatically loaded when the

board is connected to the PC, and unloaded again when the board is disconnected. In

“USB language” this type of device is called a hotplug device. This adds a lot of

flexibility to the use of the device, and could for example mean that no keyboard is

necessary for the host PC once the HUSBi device driver is installed.

The read request from the host PC is successfully supported by the SX2 demo board.

This demand comes from user space, from the DIM server for example. A connection

between the host PC and the SX2 are established, and the read request is send to the

FPGA. The read data is made available in the FIFO of the SX2, and the host PC reads

the data. Finally, the data is send back to user space by the HUSBi driver.

 Page 22 of 25

4.6. Suggestions for Improvements and Further Development

Since the focus of the project is set on the development of the HUSBi device driver, a

lot of work needs to be done on the hardware side, before a new hostcard with High

Speed USB2.0 interface can be produced.

In order to reduce the amount of data which needs to be transferred between the host

PC and the hostcard each 20ms, only the utmost necessary data will be transferred. The

result of the calculation of required data rate in section 3.2 is based on only having to

receive the most important data. Since the DIM server will have to access data

regarding the hostcards, the entire data structure will have to be updated from time to

time. Since the DIM server supports very slow controls (poll rate can be set between 1s

and 10s), the update of the full data structure will not have to happen very often.

Since both the SX2 and FX2LP has four user configurable endpoints, it would be

optimal to set up two endpoints (one IN and one OUT) to be used for transferring the

smaller status structure each 20ms. The two remaining endpoints (again one IN and one

OUT) can be set up in order to transfer the full data structure each second. This way,

the required data rate is still kept low, and all the data will periodically be updated

within the timing required by the system.

For the PCB design, several suggestions have been made. The new hostcard will need

an FPGA, an EEPROM, and a USB transceiver as the most important components. The

leading FPGA manufacturers are Xilinx and Altera, and both companies provide

medium density, low cost FPGAs, which is sufficient for the new hostcard. The final

choice must be made on the basis of what is available, and maybe a preference based

on the experience of the developer.

The choice of EEPROM will be dictated by the choice of FPGA. The datasheet of each

type of FPGA provides a list of EEPROMs which the FPGA supports, so it will just be

a matter of choosing one which is big enough for the configuration file for the FPGA.

 Page 23 of 25

The final choice of USB transceiver will be very difficult. The choice will depend on a

lot of things, most importantly if the time is available to develop the firmware for the

microcontroller on the FX2LP, which controls how the USB communication is carried

out. The obvious choice would be to use the SX2, but it needs to be considered if any of

the configuration possibilities of the FX2LP will be missed.

If it is decided to use the FX2LP as the USB transceiver, a very good option would be

to incorporate the XEM3010 developer’s board into the new PCB design. The fact that

the board can be used as a piggy-back board6, will ease the task of the new PSB design

tremendously as the FPGA, EEPROM, and USB transceiver hardware already is on the

XEM3010.

Finally, there have been suggestions as to the final layout of the hostcard. In order to

implement as much functionality as possible, the following proposal has been made:

Figure 7: Suggestion of final layout of HUSBi hostcard

This suggestion includes five hostcards in a single module, and uses an on-board USB

HUB in order to enable communication to all the FPGAs from just a single USB

connection to the host PC.

6 A small printed circuit board, that plugs into another board in order to enhance its capabilities.

 Page 24 of 25

5. Conclusions

The HUSBi project was undertaken in order to change the interface of an already

existing communication card, used in a high voltage distribution system, from PCI to

High Speed USB2.0. This was done in order to prepare the system for the future, where

multiple PCI slots will not be standard installations in PCs. The changes made in order

to upgrade the interface include a USB Linux kernel device driver, and USN interface

on an FPGA.

A high priority was to ensure that the number of changes which needed to be made to

the existing system was kept to an absolute minimum. This was achieved by keeping

the naming convention of both functions and commands used in the device driver

unchanged. Some major architectural changes have been made to the structure and data

flow of the driver, in order to ensure that the communication with the attached

hardware could be carried out without encountering any timing problems. The USB

interface to the FPGA was created by the use of an external USB transceiver along with

some VHDL code for the FPGA.

The interface towards the software elements of the existing system works according to

the objectives of the project, and it has been demonstrated that the USB communication

between the driver and hardware is working as well. So, all the basic requirements of

the project has been met, even though there is still a lot of work to be done before a

complete new communication card can be manufactured.

The development of the HUSBi card and its associated software has been very

challenging as a lot of so far unknown subjects were covered throughout the course of

the project. This also made certain that the work was very interesting.

 Page 25 of 25

References
[1] Presentation on DIM; provided on the CD

[2] Compaq, HP et al. Universal Serial Bus Specification, Revision 2.0, 2000

[3] Private conversation with W. Bialas, 2006

[4] Opal Kelly Incorporated, FrontPanel™ User’s Manual, Revision 20060703,

2006

[5] Private conversation with A. Madorsky, 2006

[6] Magnus Lieng, A short documentation of the UF PNPI DIM Server, 2006

[7] Allesandro Rubini et al, Linux Device Drivers, Third Edition, 2005

[8] Cypress Semiconductor Corporation, EZ-USB FX2LP™ USB Microcontroller,

Revision 38-08032, 2006

[9] Cypress Semiconductor, EZ-USB technical Reference Manual, Version 1.4,

2006

[10] Cypress Semiconductor Corporation, EZ-USB SX2™ High-Speed USB Interface

Device, Revision 38-08013, 2004

