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Abstract. Much of the extensive empirical literature on insurance markets has
focused on whether adverse selection can be detected. Once detected, however, there

has been little attempt to quantify its welfare cost, or to assess whether and what

potential government interventions may reduce these costs. To do so, we develop a model

of annuity contract choice and estimate it using data from the U.K. annuity market.

The model allows for private information about mortality risk as well as heterogeneity

in preferences over di¤erent contract options. We focus on the choice of length of

guarantee among individuals who are required to buy annuities. The results suggest

that asymmetric information along the guarantee margin reduces welfare relative to a

�rst best symmetric information benchmark by about $127 million per year, or about

2 percent of annuitized wealth. We also �nd that by requiring that individuals choose

the longest guarantee period allowed, mandates could achieve the �rst-best allocation.

However, we estimate that other mandated guarantee lengths would have detrimental

e¤ects on welfare. Since determining the optimal mandate is empirically di¢ cult, our

�ndings suggest that achieving welfare gains through mandatory social insurance may

be harder in practice than simple theory may suggest.
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1. INTRODUCTION

Ever since the seminal works of Akerlof (1970) and Rothschild and Stiglitz (1976), a rich theoret-

ical literature has emphasized the negative welfare consequences of adverse selection in insurance

markets and the potential for welfare-improving government intervention. More recently, a growing

empirical literature has developed ways to detect whether asymmetric information exists in par-

ticular insurance markets (Chiappori and Salanie (2000), Finkelstein and McGarry (2006)). Once

adverse selection is detected, however, there has been little attempt to estimate the magnitude of its

e¢ ciency costs, or to compare welfare in the asymmetric information equilibrium to what would be

achieved by potential government interventions. In an attempt to start �lling this gap, this paper

develops an empirical approach that can quantify the e¢ ciency cost of asymmetric information and

the welfare consequences of government intervention.1

We apply our approach to the semi-compulsory market for annuities in the United Kingdom.

Individuals who have accumulated funds in tax-preferred retirement saving accounts (the equiva-

lents of an IRA or 401(k) in the United States) are required to annuitize their accumulated lump

sum balances at retirement. These annuity contracts provide a survival-contingent stream of pay-

ments. As a result of these requirements, there is a sizable volume in the market. In 1998, new

funds annuitized in this market totalled $6 billion (Association of British Insurers (1999)).

Although they are required to annuitize their balances, individuals are allowed choice in their

annuity contract. In particular, they can choose from among guarantee periods of 0, 5, or 10

years. During a guarantee period, annuity payments are made (to the annuitant or to his estate)

regardless of the annuitant�s survival. The choice of a longer guarantee period comes at the cost

of lower annuity payments while alive. When annuitants and insurance companies have symmetric

information about an annuitant�s mortality rate, a longer guarantee is more attractive to an annu-

itant who cares more about their wealth when they die relative to consumption while alive; as a

result, the �rst-best guarantee length may di¤er across annuitants. When annuitants have private

information about their mortality rate, a longer guarantee period is also more attractive, all else

equal, to individuals who are likely to die sooner. This is the source of adverse selection, which

can a¤ect the equilibrium price of guarantees and thereby distort guarantee choices away from the

�rst-best symmetric information allocation.

The pension annuity market provides a particularly interesting setting in which to explore the

welfare costs of asymmetric information and the welfare consequences of potential government inter-

vention. Annuity markets have attracted increasing attention and interest as Social Security reform

proposals have been advanced in various countries. Some proposals call for partly or fully replacing

government-provided de�ned bene�t, pay-as-you-go retirement systems with de�ned contribution

systems in which individuals would accumulate assets in individual accounts. In such systems, an

important question concerns whether the government would require individuals to annuitize some

1More recently, several new working papers have presented additional attempts to quantify the e¢ ciency cost of
adverse selection in annuities (Hosseini (2008)) and in health insurance (Carlin and Town (2007), Bundorf, Levin,
and Mahoney (2008), Einav, Finkelstein, and Cullen (2008), and Lustig (2008)).
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or all of their balance, and whether it would allow choice over the type of annuity product pur-

chased. The relative attractiveness of these various options depends critically on consumer welfare

in each alternative allocation.

In addition to their substantive interest, several features of annuities make them a particu-

larly attractive setting for our purpose. First, adverse selection has already been detected and

documented in this market along the choice of guarantee period, with private information about

longevity a¤ecting both the choice of contract and its price in equilibrium (Finkelstein and Poterba

(2004, 2006)). Second, annuities are relatively simple and clearly de�ned contracts, so that model-

ing the contract choice requires less abstraction than in other insurance settings. Third, the case

for moral hazard in annuities is arguably less compelling than for other forms of insurance; our

ability to assume away moral hazard substantially simpli�es the empirical analysis.

We develop a model of annuity contract choice and use it, together with individual-level data

on annuity choices and subsequent mortality outcomes from a large annuity provider, to recover the

joint distribution of individuals�(unobserved) risk and preferences. Using this joint distribution and

the annuity choice model, we compute welfare at the observed allocation, as well as allocations and

welfare for counterfactual scenarios. We compare welfare under the observed asymmetric informa-

tion allocation to what would be achieved under the �rst-best, symmetric information benchmark;

this comparison provides our measure of the welfare cost of asymmetric information. We also com-

pare equilibrium welfare to what would be obtained under mandatory social insurance programs;

this comparison sheds light on the potential for welfare improving government intervention.

Our empirical object of interest is the joint distribution of risk and preferences. To estimate it,

we rely on two key modeling assumptions. First, to recover mortality risk we assume that mortality

follows a mixed proportional hazard model. Individuals�mortality tracks their own individual-

speci�c mortality rates, allowing us to recover the extent of heterogeneity in (ex-ante) mortality

rates from (ex-post) information about mortality realization. Second, to recover preferences, we

use a standard dynamic model of consumption by retirees. In our baseline model we assume that

retirees perfectly know their (ex-ante) mortality rate, which governs their stochastic time of death.

This model allows us to evaluate the (ex-ante) value-maximizing choice of a guarantee period as

a function of ex ante mortality rate and preferences for wealth at death relative to consumption

while alive.

Given the above assumptions, the parameters of the model are identi�ed from the variation in

mortality and guarantee choices in the data, and in particular from the correlation between them.

However, no modeling assumptions are needed to establish the existence of private information

about the individual�s mortality rate. This is apparent from the existence of (conditional) cor-

relation between guarantee choices and ex post mortality in the data. Given the annuity choice

model, rationalizing the observed choices with only variation in mortality risk is hard. Indeed, our

�ndings suggest that unobserved mortality risk and preferences are both important determinants

of the equilibrium insurance allocations.

We measure welfare in a given annuity allocation as the average amount of money an individual

would need to make him as well o¤ without the annuity as with his annuity allocation and his pre-
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existing wealth. We also examine the optimal government mandate among the currently existing

guarantee options of 0, 5, or 10 years. In a standard insurance setting �that is, when all individuals

are risk averse, the utility function is state-invariant, and there are no additional costs of providing

insurance � it is well-known that mandatory (uniform) full insurance can achieve the �rst best

allocation, even when individuals vary in their preferences. In contrast, we naturally view annuity

choices as governed by two di¤erent utility functions, one from consumption when alive and one

from wealth when dead. In such a case, whether and which mandatory guarantee can improve

welfare gains relative to the adverse selection equilibrium is not clear without more information on

the cross-sectional distribution of preferences and mortality risk. The investigation of the optimal

mandate �and whether it can produce welfare gains relative to the adverse selection equilibrium �

therefore becomes an empirical question.

While caution should always be exercised when extrapolating estimates from a relatively ho-

mogeneous subsample of annuitants of a single �rm to the market as a whole, our baseline results

suggest that a mandatory social insurance program that required individuals to purchase a 10 year

guarantee would increase welfare by about $127 million per year or $423 per new annuitant, while

one that requires annuities to provide no guarantee would reduce welfare by about $107 million per

year or $357 per new annuitant. Since determining which mandates would be welfare improving

is empirically di¢ cult, our results suggest that achieving welfare gains through mandatory social

insurance may be harder in practice than simple theory would suggest. We also estimate welfare

in a symmetric information, �rst-best benchmark. We �nd that the welfare cost of asymmetric

information within the annuity market along the guarantee margin is about $127 million per year,

$423 per new annuitant, or about two percent of the annuitized wealth in this market. Thus, we

estimate that not only is a 10 year guarantee the optimal mandate, but also that it achieves the

�rst best allocation.

To put these welfare estimates in context given the margin of choice, we benchmark them

against the maximum money at stake in the choice of guarantee. This benchmark is de�ned as the

additional (ex-ante) amount of wealth required to ensure that if individuals were forced to buy the

policy with the least amount of insurance, they would be at least as well o¤ as they had been. We

estimate that the maximum money at stake in the choice of guarantee is only about 8 percent of the

annuitized amount. Our estimates therefore imply that the welfare cost of asymmetric information

is about 25 percent of this maximum money at stake.

Our welfare analysis is based on a model of annuity demand. This requires assumptions about

the nature of the utility functions that govern annuity choice, as well as assumptions about the

expectation individuals form regarding their subsequent mortality outcomes. Data limitations, par-

ticularly lack of detail on annuitant�s wealth, necessitate additional modeling assumptions. Finally,

our approach requires several other parametric assumptions for operational and computational rea-

sons. The assumptions required for our welfare analysis are considerably stronger than those that

have been used in prior work to test whether or not asymmetric information exists. This literature

has tested for the existence of private information by examining the correlation between insurance

choice and ex-post risk realization (Chiappori and Salanie (2000)). Indeed, the existing evidence
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of adverse selection along the guarantee choice margin in our setting comes from examining the

correlation between guarantee choice and ex-post mortality (Finkelstein and Poterba (2004)). By

contrast, our e¤ort to move from testing for asymmetric information to quantifying its welfare im-

plications requires considerably stronger modeling assumptions. Our comfort with this approach

is motivated by a general �impossibility� result which we illustrate in the working paper version

(Einav, Finkelstein, and Schrimpf (2007)): even when asymmetric information is known to exist,

the reduced form equilibrium relationship between insurance coverage and risk occurrence does not

permit inference about the e¢ ciency cost of this asymmetric information without strong additional

assumptions.

Of course, a critical question is how important our particular assumptions are for our central

results regarding welfare. We therefore explore a range of possible alternatives, both for the ap-

propriate utility model and for our various parametric assumptions. We are reassured that our

central results are quite stable. In particular, the �nding that the 10 year guarantee is the optimal

mandate, and achieves virtually the same welfare as the �rst best outcome, persists under all the

alternative speci�cations that we have tried. However, the quantitative estimates of the welfare

cost of adverse selection can vary with the modeling assumptions by a non trivial amount; more

caution should therefore be exercised in interpreting these quantitative estimates.

The rest of the paper proceeds as follows. Section 2 describes the environment and the data.

Section 3 describes the model of guarantee choice, presents its identi�cation properties, and dis-

cusses estimation. Section 4 presents our parameter estimates and discusses their in-sample and

out-of-sample �t. Section 5 presents the implications of our estimates for the welfare costs of asym-

metric information in this market, as well as the welfare consequences of potential government

policies. The robustness of the results is explored in Section 6. Section 7 concludes by brie�y

summarizing our �ndings and discussing how the approach we develop can be applied in other

insurance markets, including those where moral hazard is likely to be important.

2. DATA AND ENVIRONMENT

Environment. All of the annuitants we study are participants in the semi-compulsory market for

annuities in the U.K.. In other words, they have saved for retirement through tax-preferred de�ned

contribution private pensions (the equivalents of an IRA or 401(k) in the United States) and are

therefore required to annuitize virtually all of their accumulated balances.2 They are however

o¤ered choice over the nature of their annuity product. We focus on the choice of the length of

the guarantee period, during which annuity payments are made (to the annuitant or to his estate)

regardless of annuitant survival. Longer guarantees therefore trade o¤ lower annuity payments in

every period the annuitant is alive in return for payments in the event that the annuitant dies

during the guarantee period.

The compulsory annuitization requirement is known to individuals at the time (during working

2For more details on these rules, see Appendix A and Finkelstein and Poterba (2002).
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age) that they make their pension savings contributions, although of course the exact nature of the

annuity products (and their pricing) that will be available when they have to annuitize is uncertain.

Choices over annuity products are only made at the time of conversion of the lump-sum de�ned

contribution balances to an annuity and are based on the products and annuity rates available at

that time.

All of our analysis takes the pension contribution decisions of the individual during the accu-

mulation phase (as well as their labor supply decisions) as given. In other words, in our analysis of

welfare under counterfactual pricing of the guarantee options, we do not allow for the possibility

that the pre-annuitization savings and labor supply decisions may respond endogenously to the

change in guarantee pricing. This is standard practice in the annuity literature (Brown (2001),

Davido¤, Brown, and Diamond (2005), and Finkelstein, Poterba, and Rothschild (2009)). In our

context, we do not think it is a particularly heroic assumption. For one thing, as we will discuss

in more detail in Section 5.1, the maximum money at stake in the choice over guarantee is only

about 8 percent of annuitized wealth under the observed annuity rates (and only about half that

amount under the counterfactual rates we compute); this should limit any responsiveness of pre-

annuitization decisions to guarantee pricing. Moreover, many of these decisions are made decades

before annuitization and therefore presumably factor in considerable uncertainty (and discounting)

of future guarantee prices.

Data and descriptive statistics. We use annuitant-level data from one of the largest annuity

providers in the U.K. The data contain each annuitant�s guarantee choice, several demographic

characteristics (including everything on which annuity rates are based), and subsequent mortality.

The data consist of all annuities sold between 1988 and 1994 for which the annuitant was still

alive on January 1, 1998. We observe age (in days) at the time of annuitization, the gender of the

annuitant, and the subsequent date of death if the annuitant died before the end of 2005.

For analytical tractability, we make a number of sample restrictions. In particular, we restrict

our sample to annuitants who purchase at age 60 or 65 (the modal purchase ages), and who

purchased a single life annuity (that insures only his or her own life) with a constant (nominal)

payment pro�le.3 Finally, the main analysis focuses on the approximately two-thirds of annuitants

in our sample who purchased an annuity with a pension fund that they had accumulated within

our company; in Section 6 we re-estimate the model for the remaining individuals who had brought

in external funds. Appendix A discusses these various restrictions in more detail; they are made so

that we can focus on the purchase decisions of a relatively homogenous subsample.

Table I presents summary statistics for the whole sample and for each of the four age-gender

combinations. Our baseline sample consists of over 9,000 annuitants. Sample sizes by age and

gender range from a high of almost 5,500 for 65 year old males to a low of 651 for 65 year old

3Over 90 percent of the annuitants in our �rm purchase policies that pay a constant nominal payout (rather
than policies that escalate in nominal terms). This is typical of the market as a whole. Although escalating policies
(including in�ation-indexed policies) are o¤ered by some �rms, they are rarely purchased (Murthi, Orszag, and Orszag
(1999), and Finkelstein and Poterba (2004)).
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females. About 87 percent of annuitants choose a 5 year guarantee period, 10 percent choose no

guarantee, and only 3 percent choose the 10 year guarantee. These are the only three options

available to annuitants in our sample and the focus of our subsequent analysis.

Given our sample construction described above, our mortality data are both left-truncated and

right-censored, and cover mortality outcomes over an age range of 63 to 83. About one-�fth of our

sample dies between 1998 and 2005. As expected, death is more common among men than women,

and among those who purchase at older ages.

There is a general pattern of higher mortality among those who purchase 5 year guarantees than

those who purchase no guarantees, but no clear pattern (possibly due to the smaller sample size) of

mortality di¤erences for those who purchase 10 year guarantees relative to either of the other two

options. This mortality pattern as a function of guarantee persists in more formal hazard modeling

that takes account of the left truncation and right censoring of the data (not shown).4

As discussed in the introduction, the existence of a (conditional) correlation between guarantee

choice and mortality �such as the higher mortality experienced by purchasers of the 5 year guar-

antee relative to purchasers of no guarantee �indicates the presence of private information about

individual mortality risk in our data, and motivates our exercise. That is, this correlation between

mortality outcomes and guarantee choices rules out a model in which individuals have no private

information about their idiosyncratic mortality rates, and guides our modeling assumption in the

next section that allow individuals to make their guarantee choices based on information about

their idiosyncratic mortality rate.

Annuity rates. The company supplied us with the menu of annuity rates, that is the annual

annuity payments per $1 of the annuitized amount. These rates are determined by the annuitant�s

gender, age at the time of purchase, and the date of purchase; there are essentially no quantity

discounts.5 All of these components of the pricing structure are in our data.

Table II shows the annuity rates by age and gender for di¤erent guarantee choices from January

1992; these correspond to roughly the middle of the sales period we study (1988-1994) and are

roughly in the middle of the range of rates over the period. Annuity rates decline, of course, with

the length of guarantee. Thus, for example, a 65 year old male in 1992 faced a choice among a 0

guarantee with an annuity rate of 0.133, a 5 year guarantee with a rate of 0.1287, and a 10 year

guarantee with a rate of 0.1198. The magnitude of the rate di¤erences across guarantee options

closely tracks expected mortality. For example, our mortality estimates (discussed later) imply that

for 60 year old females the probability of dying within a guarantee period of 5 and 10 years is about

4.3 and 11.4 percent, respectively, while for 65 year old males these probabilities are about 7.4 and

4Speci�cally, we estimated Gompertz and Cox proportional hazard models in which we included indicator variables
for age at purchase and gender, as well as indicator variables for a 5 year guarantee and a 10 year guarantee. In both
models, we found that the coe¢ cient on the 5 year guarantee dummy was signi�cantly di¤erent from that on the 0
year guarantee dummy; however, the standard error on the coe¢ cient on the 10 year guarantee dummy was high,
so it wasn�t estimated to be signi�cantly di¤erent from the 5 year guarantee dummy (or from the 0 year guarantee
dummy as well).

5A rare exception on quantity discounts is made for individuals who annuitize an extremely large amount.
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18.9 percent. Consequently, as shown in Table II, the annuity rate di¤erences across guarantee

periods are much larger for 65 year old males than they are for 60 year old females.

The �rm did not change the formula by which it sets annuity rates over our sample of annuity

sales. Changes in nominal payment rates over time re�ect changes in interest rates. To use such

variation in annuity rates for estimation would require assumptions about how the interest rate

that enters the individual�s value function covaries with the interest rate faced by the �rm, and

whether the individual�s discount rate covaries with these interest rates. Absent any clear guidance

on these issues, we analyze the guarantee choice with respect to one particular menu of annuity

rates. For our baseline model we use the January 1992 menu shown in Table II. In the robustness

analysis, we show that the welfare estimates are virtually identical if we choose pricing menus from

other points in time; this is not surprising since the relative payouts across guarantee choices is

quite stable over time. For this reason, the results hardly change if we instead estimate a model

with time-varying annuity rates, but constant discount factor and interest rate faced by annuitants

(not reported).

Representativeness. Although the �rm whose data we analyze is one of the largest U.K. annuity

sellers, a fundamental issue when using data from a single �rm is how representative it is of the

market as a whole. We obtained details on market-wide practices from Moneyfacts (1995), Murthi,

Orszag, and Orszag (1999), and Finkelstein and Poterba (2002).

On all dimensions we are able to observe, our sample �rm appears typical of the industry as a

whole. The types of contracts it o¤ers are standard for this market. In particular, like all major

companies in this market during our time period, it o¤ers a choice of 0, 5, and 10 year guaranteed,

nominal annuities.

The pricing practices of the �rm are also typical. The annuitant characteristics that the �rm

uses in setting annuity rates (described above) are standard in the market. In addition, the level

of annuity rates in our sample �rm�s products closely match industry-wide averages.

While market-wide data on characteristics of annuitants and the contracts they choose are more

limited, the available data suggest that the annuitants in this �rm and the contracts they choose

are typical of the market. In our sample �rm, the average age of purchase is 62, and 59 percent

of purchasers are male. The vast majority of annuities purchased pay a constant nominal payment

stream (as opposed to one that escalates over time), and provide a guarantee, of which the 5

year guarantee is by far the most common.6 These patterns are quite similar to those in another

large �rm in this market analyzed by Finkelstein and Poterba (2004), as well as to the reported

characteristics of the broader market as described by Murthi, Orszag, and Orszag (1999).

Finally, the �nding in our data of a higher mortality rate among those who choose a 5 year

guarantee than those who choose no guarantee is also found elsewhere in the market. Finkelstein

and Poterba (2004) present similar patterns for another �rm in this market, and Finkelstein and

6These statistics are reported in Finkelstein and Poterba (2006) who also analyze data from this �rm. These
statistics refer to single life annuities, which are the ones we analyze here, but are (obviously) computed prior to the
additional sample restrictions we make here (e.g., restriction to nominal annuities purchased at ages 60 or 65).
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Poterba (2002) present evidence on annuity rates that is consistent with such patterns for the

industry as a whole.

Thus, while caution must always be exercised in extrapolating from a single �rm, the available

evidence suggests that the �rm appears to be representative �both in the nature of the contracts

it o¤ers and its consumer pool �of the entire market.

3. MODEL: SPECIFICATION, IDENTIFICATION, AND ESTI-
MATION

We start by discussing a model of guarantee choice for a particular individual. We then complete

the empirical model by describing how (and over which dimensions) we allow for heterogeneity.

We �nish this section by discussing the identi�cation of the model, our parameterization, and the

details of the estimation.

3.1. A model of guarantee choice

We consider the utility-maximizing guarantee choice of a fully rational, forward looking, risk averse,

retired individual, with an accumulated stock of wealth, stochastic mortality, and time-separable

utility. This framework has been widely used to model annuity choices (Kotliko¤and Spivak (1981),

Mitchell, Poterba, Warshawsky, and Brown (1999), Davido¤, Brown, and Diamond (2005)). At the

time of the decision, the age of the individual is t0, and he expects a random length of life7

characterized by a mortality hazard �t during period t > t0.8 We also assume that there exists time

T after which individual i expects to die with probability one.

Individuals obtain utility from two sources. When alive, they obtain �ow utility from consump-

tion. When dead, they obtain a one-time utility that is a function of the value of their assets at

the time of death. In particular, if the individual is alive as of the beginning of period t � T , his

period t utility, as a function of his current wealth wt and his consumption plan ct, is given by

v(wt; ct) = (1� �t)u(ct) + �tb(wt); (1)

where u(�) is his utility from consumption and b(�) is his utility from wealth remaining after death.

A positive valuation for wealth at death may stem from a number of possible underlying structural

preferences, such as a bequest motive (Sheshinski (2006)) or a �regret�motive (Braun and Muer-

mann (2004)). Since the exact structural interpretation is not essential for our goal, we remain

agnostic about it throughout the paper.

7As might be expected, we can rule out a model with deterministic length of life and perfect foresight. Most
individuals in the data choose a positive guarantee length and are alive at the end of it, thus violating such a model.

8Of course, one would expect some relationship between the individual�s expectation and the actual underlying
risk which governs the (stochastic) mortality outcome. We make speci�c assumptions about this relationship later,
but for the purpose of modeling guarantee choice this is not important.
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In the absence of an annuity, the optimal consumption plan can be computed by solving the

following program:

V NAt (wt) = max
ct�0

�
(1� �t)(u(ct) + �V NAt+1 (wt+1)) + �tb(wt)

�
(2)

s:t: wt+1 = (1 + r)(wt � ct) � 0

where � is the per-period discount rate and r is the per-period real interest rate. That is, we

make the standard assumption that, due to mortality risk, the individual cannot borrow against

the future. Since death is expected with probability one after period T , the terminal condition for

the program is given by V NAT+1(wT+1) = b(wT+1).

Suppose now that the individual annuitizes a fraction � of his initial wealth, w0. Broadly

following the institutional framework discussed earlier, individuals take the (mandatory) annuitized

wealth as given. In exchange for paying �w0 to the annuity company at t = t0, the individual

receives a per-period real payout of zt when alive. Thus, the individual solves the same problem as

above, with two small modi�cations. First, initial wealth is given by (1��)w0. Second, the budget
constraint is modi�ed to re�ect the additional annuity payments zt received every period.

For a given annuitized amount �w0, consider a choice from a set G � [0; T ] of possible guarantee
lengths; during the guaranteed period, the annuity payments are not survival-contingent. Each

guarantee length g 2 G corresponds to a per-period payout stream of zt(g), which is decreasing in

g (@zt(g)@g < 0 for any t � t0). For each g, the optimal consumption plan can be computed by solving

V
A(g)
t (wt) = max

ct�0

h
(1� �t)(u(ct) + �V A(g)t+1 (wt+1)) + �tb(wt + Zt(g))

i
(3)

s:t: wt+1 = (1 + r)(wt + zt(g)� ct) � 0

where Zt(g) =
t0+gP
�=t

��
1
1+r

���t
z� (g)

�
is the present value of the remaining guaranteed payments.

As before, since after period T death is certain and guaranteed payments stop for sure (recall,

G � [0; T ]), the terminal condition for the program is given by V A(g)T+1 (wT+1) = b(wT+1).

The optimal guarantee choice is then given by

g� = argmax
g2G

n
V
A(g)
t0

((1� �)w0)
o
: (4)

Information about the annuitant�s guarantee choice combined with the assumption that this choice

was made optimally thus provides information about the annuitant�s underlying preference and

expected mortality parameters. Intuitively, everything else equal, a longer guarantee will be more

attractive for individuals with higher mortality rate and for individuals who obtain greater utility

from wealth after death. We later check that this intuition in fact holds in the context of the speci�c

parametrized model we estimate.

3.2. Modeling heterogeneity

To obtain our identi�cation result in the next section, we make further assumptions that allow only

one-dimensional heterogeneity in mortality risk and one-dimensional heterogeneity in preferences

across di¤erent individuals in the above model.

9



We allow for one-dimensional heterogeneity in mortality risk by using a mixed proportional

hazard (MPH) model. That is, we assume that the mortality hazard rate of individual i at time t

is given by

�it � lim
dt!0

Pr(mi 2 [t; t+ dt)jxi;mi � t)

dt
= �i�0(xi) (t) (5)

where mi denotes the realized mortality date,  (t) the baseline hazard rate, xi is an observable that

shifts the mortality rate, and �i 2 R+ represents unobserved heterogeneity. We also assume that
individuals have perfect information about this stochastic mortality process; that is, we assume

that individuals know their �it�s. This allows us to integrate over this continuous hazard rate to

obtain the vector �i �
�
�it
�T
t=t0

that enters the guarantee choice model.

We allow for one-dimensional heterogeneity in preferences by assuming that ui(c) is homoge-

neous across all individuals and that bi(w) is the same across individuals up to a multiplicative

factor. Moreover, we assume that

ui(c) =
c1�


1� 
 (6)

and

bi(w) = �i
w1�


1� 
 : (7)

That is, we follow the literature and assume that all individuals have a (homogeneous) CRRA

utility function, but, somewhat less standard, we specify the utility from wealth at death using

the same CRRA form with the same parameter 
, and allow (proportional) heterogeneity across

individuals in this dimension, captured by the parameter �i. One can interpret �i as the relative

weight that individual i puts on wealth when dead relative to consumption while alive. All else

equal, a longer guarantee is therefore more attractive when �i is higher. We note, however, that

since u(�) is de�ned over a �ow of consumption while b(�) is de�ned over a stock of wealth, it is
hard to interpret the level of �i directly. We view this form of heterogeneity as attractive both for

intuition and for computation; in Section 6 we investigate alternative assumptions regarding the

nature of preference heterogeneity.

Since we lack data on individuals� initial wealth wi0, we chose the utility function above to

enable us to ignore wi0. Speci�cally, our speci�cation implies that preferences are homothetic, and

�combined with the fact that guarantee payments are proportional to the annuitized amount (see

Section 2) �that an individual�s optimal guarantee choice g�i is invariant to initial wealth w
i
0. This

simpli�es our analysis, as it means that in our baseline speci�cation unobserved heterogeneity in

initial wealth wi0 is not a concern. It is, however, potentially an unattractive modeling decision, since

it is not implausible that wealthier individuals care more about wealth after death. In Section 6 we

explore speci�cations with non-homothetic preferences, but this requires us to make an additional

assumption regarding the distribution of initial wealth. With richer data that included wi0 we could

estimate a richer model with non-homothetic preferences.

Finally, we treat a set of other parameters that enter the guarantee choice model as observable

(known) and identical across all annuitants. Speci�cally, as we describe later, we use external

data to calibrate the values for risk aversion 
, the discount rate �, the fraction of wealth which
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is annuitized �, and the real interest rate r. While in principle we could estimate some of these

parameters, they would be identi�ed solely by functional form assumptions. We therefore consider

it preferable to choose reasonable calibrated values, rather than impose a functional form that would

generate these reasonable values. Some of these calibrations are necessitated by the limitations of

our existing data. For example, we observe the annuitized amount so with richer data on wealth

we could readily incorporate heterogeneity in �i into the model.

3.3. Identi�cation

In order to compute the welfare e¤ect of various counterfactual policies, we need to identify the

distribution (across individuals) of preferences and mortality rates. Here we explain how the as-

sumptions we made allow us to recover this distribution from the data we observe about the joint

distribution of mortality outcomes and guarantee choices. We make the main identi�cation argu-

ment in the context of a continuous guarantee choice set, a continuous mortality outcome, and no

truncation or censoring. In the end of the section we discuss how things change with a discrete

guarantee choice and mortality outcomes that are left truncated and right censored, as we have in

our setting. This requires us to make additional assumptions, which we discuss later.

Identi�cation with a continuous guarantee choice (and uncensored mortality outcomes). To

summarize brie�y, our identi�cation is achieved in two steps. In the �rst step we identify the

distribution of mortality rates from the observed marginal (univariate) distribution of mortality

outcomes. This is possible due to the mixed proportional hazard model we assumed. In the second

step we use the model of guarantee choice and the rest of the data �namely, the distribution of

guarantee choices conditional on mortality outcomes �to recover the distribution of preferences and

how it correlates with the mortality rate. The key conceptual step here is an exclusion restriction,

namely that the mortality process is not a¤ected by the guarantee choice. We view this �no moral

hazard�assumption as natural in our context.

We start by introducing notation. The data about individual i is (mi; gi; xi), where mi is his

observed mortality outcome, gi 2 G his observed guarantee choice, and xi is a vector of observed

(individual) characteristics. The underlying object of interest is the joint distribution of unobserved

preferences and mortality rates F (�; �jx), as well as the baseline mortality hazard rate (�0(xi) and
 (t)). Identi�cation requires that, with enough data, these objects of interest can be uniquely

recovered.

At the risk of repetition, let us state four important assumptions that are key to the identi�cation

argument.

Assumption 1 Guarantee choices are given by gi = g(
�
�it
�T
t=t0

; �ijxi), which comes from the so-
lution to the guarantee choice model of Section 2.1.

Assumption 2 (MPH) Mortality outcomes are drawn from a mixed proportional hazard (MPH)
model. That is, �it = �i�0(xi) (t) with �i 2 R+.
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Assumption 3 (No moral hazard) mi is independent of �i, conditional on �i.

Assumption 4 (Complete information) �it =
�
exp

�
�
R t�1
0 �i�d�

�
� exp

�
�
R t
0 �i�d�

��
= exp

�
�
R t�1
0 �i�d�

�
.

The �rst assumption simply says that all individuals in the data make their guarantee choices

using the model. It is somewhat redundant, as it is only the model that allows us to de�ne �i
and �i, but we state it for completeness. The second assumption (MPH) is key for the �rst step

of the identi�cation argument. This assumption will drive our ability to recover the distribution

of mortality rates from mortality data alone. Although this is a non-trivial assumption, it is a

formulation which is broadly used in much of the duration data literature (Van den Berg (2001)).

We note that assuming that �i is one-dimensional is not particularly restrictive, as any multi-

dimensional �i could be summarized by a one-dimensional statistic in the context of the MPH

model.

The third assumption formalizes our key exclusion restriction. It states that �it is a su¢ cient

statistic for mortality, and although �i may a¤ect guarantee choices gi, this in turn doesn�t a¤ect

mortality. In other words, if individuals counterfactually change their guarantee choice, their mor-

tality experience will remain unchanged. This seems a natural assumption in our context. We note

that, unconditionally, �i could be correlated with mortality outcomes indirectly, through a possible

cross-sectional correlation between �i and �i.

The fourth and �nal assumption states that individuals have perfect information about their

mortality process; that is, we assume that individuals know their �it�s. This allows us to integrate

over this continuous hazard rate to obtain the vector �i �
�
�it
�T
t=t0

that enters the guarantee choice

model, so we can write g(�i; �i) instead of g(
�
�it
�T
t=t0

; �ijxi). This is however a very restrictive
assumption, and its validity is questionable. Fortunately, we note that any other information struc-

ture �that is, any known (deterministic or stochastic) mapping from individuals�actual mortality

process �it to their perception of it �i�would also work for identi�cation. Indeed, we investigate

two such alternative assumptions in Section 6.4. Some assumption about the information structure

is required since we lack data on individuals�ex ante expectations about their mortality.

Before deriving our identi�cation results, we should point out that much of the speci�cation

decisions, described in the previous section, were made to facilitate identi�cation. That is, many

of the assumptions were made so that preferences and other individual characteristics are known

up to a one-dimensional unobservable �i. This is a strong assumption, which rules out interesting

cases of, for example, heterogeneity in both risk aversion and utility from wealth after death.

We now show identi�cation of the model in two steps, in Proposition 1 and Proposition 2.

Proposition 1 If (i) Assumption 2 holds; (ii) E[�] < 1; and (iii) �0(xi) is not a constant,
then the marginal distribution of �i, F�(�i), as well as �0(xi) and  (t), are identi�ed �up to the
normalizations E[�] = 1 and �0(xi) = 1 for some i �from the conditional distribution of Fm(mijxi).

This proposition is the well known result that MPH models are non-parameterically identi�ed.

It was �rst proven by Elbers and Ridder (1982). Heckman and Singer (1984) show a similar result,
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but instead of assuming that � has a �nite mean, they make an assumption about the tail behavior

of �. Ridder (1990) discusses the relationship between these two assumptions, and Van den Berg

(2001) reviews these and other results. The key requirement is that xi (such as a gender dummy

variable in our context) shifts the mortality distribution.

We can illustrate the intuition for this result using two values of �0(xi), say �1 and �2. The

data then provides us with two distributions of mortality outcomes, Hj(m) = F (mj�0(xi) = �j) for

j = 1; 2. With no heterogeneity in �i, the MPH assumption implies that the hazard rates implied

by H1(m) and H2(m) should be a proportional shift of each other. Once �i is heterogeneous,

however, the di¤erence between �1 and �2 leads to di¤erential composition of survivors at a given

point in time. For example, if �1 is less than �2, then high �i people will be more likely to survive

among those with �1. Loosely, as time passes, this selection will make the hazard rate implied by

Z1m closer to that implied by Z
2
m. With continuous (and uncensored) information about mortality

outcomes, these di¤erential hazard rates between the two distributions can be used to back out the

entire distribution of �i, F�(�i), which will then allow us to know �0(xi) and  (t).

This result is useful because it shows that we can obtain the (marginal) distribution of �i
(and the associated �0(xi) and  (t) functions) from mortality data alone, i.e. from the marginal

distribution of mi. We now proceed to the second step, which shows that given �0(xi),  (t), and

F�(�), the joint distribution F (�; �jx) is identi�ed from the observed joint distribution of mortality

and guarantee choices. Although covariates were necessary to identify �0(xi),  (t), and F�(�), they
will play no role in what follows, so we will omit them for convenience for the remainder of this

section.

Proposition 2 If Assumptions 1-4 hold, then the joint distribution of mortality outcomes and
guarantee choices identi�es Pr(g(�; �) � yj�). Moreover, if, for every value of �, g(�; �) is invert-
ible with respect to � then F�j� is identi�ed.

The proof is provided in Appendix B. Here we provide intuition, starting with the �rst part

of the proposition. If we observed �i, identifying Pr(g(�; �) � yj�) would have been trivial. We
could simply estimate the cumulative distribution function of gi for every value of �i o¤ the data.

While in practice we can�t do exactly this because �i is unobserved, we can almost do this using

the mortality information mi and our knowledge of the mortality process (using Proposition 1).

Loosely, we can estimate Pr(g(�; �) � yjm) o¤ the data , and then �invert�it to Pr(g(�; �) � yj�)
using knowledge of the mortality process. That is, we can write

Pr(g(�; �) � yjm) =
�Z

�
fm(mj�)dF�(�)

��1 Z
�
Pr(g(�; �) � yj�)fm(mj�)dF�(�) (8)

where the left hand side is known from the data, and fm(mj�) (the conditional density of mortality
date) and F�(�) are known from the mortality data alone (Proposition 1). The proof (in Appendix

B) simply veri�es that this integral can be inverted.

The second part of Proposition 2 is fairly trivial. If Pr(g(�; �) � yj�) is identi�ed for every
�, and g(�; �) is invertible (with respect to �) for every �, then it is straightforward to obtain
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Pr(� � yj�) for every �. This together with the marginal distribution of �, which is identi�ed
through Proposition 1, provides the entire joint distribution.

One can see that the invertibility of g(�; �) (with respect to �) is important. The identi�cation

statement is stated in such a way because, although intuitive, proving that the guarantee choice

is monotone (and therefore invertible) in � is di¢ cult. The di¢ culty arises due to the dynamics

and non-stationarity of the guarantee choice model, which require its solution to be numerical and

make general characterization of its properties di¢ cult. One can obtain analytic proofs of this

monotonicity property in simpler (but empirically less interesting) environments (e.g., in a two

period model, or in an in�nite horizon model with log utility). We note, however, that we are

reassured about our simple intuition based on numerical simulations; the monotonicity result holds

for any speci�cation of the model and/or values of the parameters that we have tried, although

absent an analytical proof some uncertainty must remain regarding identi�cation.

Implications of a discrete guarantee choice and censored mortality outcomes. In many appli-

cations the (guarantee) choice is discrete, so �due to its discrete nature �g(�j�) is only weakly
monotone in �, and therefore not invertible. In that case, the �rst part of Proposition 2 still holds,

but Pr(� � yj�) is identi�ed only in a discrete set of points, so some parametric assumptions will
be needed to recover the entire distribution of �, conditional on �. In our speci�c application,

there are only three guarantee choices, so we can only identify the marginal distribution of �, F (�),

and, for every value of �, two points of the conditional distribution F�j�. We therefore recover

the entire joint distribution by making a parametric assumption (see below) that essentially allows

us to interpolate F�j� from the two points at which it is identi�ed to its entire support. We note

that, as in many discrete choice models, if we had data with su¢ ciently rich variation in covari-

ates or variation in annuity rates that was exogenous to demand, we would be non-parameterically

identi�ed even with a discrete choice set.

Since our data limitations mean that we require a parametric assumption for F�j� we try to

address concerns about such (ad hoc) parametric assumptions by investigating the sensitivity of the

results to several alternatives in Section 6. An alternative to a parametric interpolation is to make

no attempt at interpolation, and to simply use the identi�ed points as bounds on the cumulative

distribution function. In Section 6 we also report such an exercise.

A second property of our data that makes it not fully consistent with the identi�cation argument

above is the censoring of mortality outcomes. Speci�cally, we do not observe mortality dates for

those who are alive by the end of 2005, implying that we have no information in the data about

mortality hazard rates for individuals older than 83. While we could identify and estimate a non-

parametric baseline hazard for the periods for which mortality data are available (as well as a

non-parametric distribution of �i), there is obviously no information in the data about the baseline

hazard rate for older ages. Because evaluating the guarantee choice requires knowledge of the

entire mortality process (through age T , which we assume to be 100), some assumption about this

baseline hazard is necessary. We therefore make (and test for) a parametric assumption about the

functional form of the baseline hazard.
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3.4. Parameterization

Mortality process. As we have just mentioned, due to the censored mortality data, we make a

parametric assumption about the mortality hazard rate. Speci�cally, we assume that the baseline

hazard rate follows a Gompertz distribution with shape parameter �. That is, the baseline hazard

rate is given by  (t) = e�t and individual i�s mortality hazard at time t = agei � 60 is therefore
given by  i(t) = �ie

�t. We can test the Gompertz assumption in our sample against more �exible

alternatives by focusing on individuals�mortality experience prior to the age of 83. We are reassured

that the Gompertz assumption cannot be rejected by our (censored) mortality data.9 We also note

that the Gompertz distribution is widely used in the actuarial literature that models mortality

(Horiuchi and Coale (1982)).

We model mortality as a continuous process and observe mortality at the daily level. However,

since the parameterized version of the guarantee choice model is solved numerically, we work with

a coarser, annual frequency, reducing the computational burden. In particular, given the above

assumption, let

S(�; �; t) = exp
��
�

�
1� e�t

��
(9)

be the Gompertz survival function, and the discrete (annual) hazard rate at year t is given by

�it =
S(�i;�;t)�S(�i;�;t+1)

S(�i;�;t)
.

Unobserved heterogeneity. An individual in our data can be characterized by an individual-

speci�c mortality parameter �i and an individual-speci�c preference parameter �i. Everything else

is assumed common across individuals. Although, as we showed, the joint distribution F (�; �) is

non-parameterically identi�ed with continuous guarantee choice, in practice only three guarantee

lengths are o¤ered, so we work with a parametrized distribution.

In the baseline speci�cation we assume that �i and �i are drawn from a bivariate lognormal

distribution  
log�i

log �i

!
� N

 "
��

��

#
;

"
�2� �����

����� �2�

#!
: (10)

In Section 6 we explore other distributional assumptions.

Calibrated values for other parameters. As mentioned, we treat a set of other parameters �
,

�, �, and r �as observables, and calibrate their values. Here, we list the calibrated values and their

source; in Section 6 we assess the sensitivity of the results to these values.

Since the insurance company does not have information on the annuitant�s wealth outside of the

annuity, we calibrate the fraction of wealth annuitized (�) based on Banks and Emmerson (1999),

who use market-wide evidence from the Family Resources Survey. They report that for individuals

with compulsory annuity payments, about one-�fth of income (and therefore presumably of wealth)

9Speci�cally, we use likelihood-ratio tests of the baseline Gompertz model against more general alternatives where
� is allowed to vary with time. We divide the period of observation over which we observe mortality outcomes (21
years) into two and three evenly spaced intervals and let � vary across intervals. The p � value of these tests are
0.938 and 0.373, respectively.
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comes from the compulsory annuity. We therefore set � = 0:2. In Section 6 we discuss what the

rest of the annuitants�wealth portfolio may look like and how this may a¤ect our counterfactual

calculations.

We use 
 = 3 as the coe¢ cient of relative risk aversion. A long line of simulation litera-

ture uses this value (Hubbard, Skinner, and Zeldes (1995), Engen, Gale, and Uccello (1999),

Mitchell, Poterba, Warshawsky, and Brown (1999), Scholz, Seshadri, and Khitatrakun (2003),

Davis, Kubler, and Willen (2006)). Although a substantial consumption literature, summarized in

Laibson, Repetto, and Tobacman (1998), has found risk aversion levels closer to 1, as did Hurd�s

(1989) study among the elderly, other papers report higher levels of relative risk aversion (Barsky,

Kimball, Juster, and Shapiro (1997), Palumbo (1999)).

For r we use the real interest rate corresponding to the in�ation-indexed zero-coupon ten-year

Bank of England bond, as of the date of the pricing menu we use (January 1, 1992, in the baseline

speci�cation). This implies a real interest rate r of 0.0426. We also assume that the discount rate

� is equal to the real interest rate r.

Finally, since the annuities make constant nominal payments, we need an estimate of the ex-

pected in�ation rate � to translate the initial nominal payment rate shown in Table II into the

real annuity payout stream zt in the guarantee choice model. We use the di¤erence between the

real and nominal interest rates on the zero-coupon ten year Treasury bonds on the same date to

measure the (expected) in�ation rate. This implies an (expected) in�ation rate � of 0.0498.10

Summary and intuition. Thus, to summarize, in the baseline speci�cation we estimate six

remaining structural parameters: the �ve parameters of the joint distribution of �i and �i, and

the shape parameter � of the Gompertz distribution. We also allow for observable shifters to

the means of the distribution. Speci�cally, we allow �� and �� to vary based on the individual�s

gender and age at the time of annuitization. We do this because annuity rates vary with these

characteristics, presumably re�ecting di¤erential mortality by gender and age of annuitization; so

that our treatment of preferences and mortality is symmetric, we also allow mean preferences to

vary on these same dimensions.

To gain intuition, note that one way to summarize the mortality data is by a graph of the

log hazard mortality rate with respect to age. The Gompertz assumption implies that, without

heterogeneity, this graph is linear with a slope of �. Heterogeneity implies a concave graph, as over

time lower mortality individuals are more likely to survive. Thus, loosely, the level of this graph

a¤ects the estimate of ��, the average slope a¤ects the estimate of �, and the concavity a¤ects the

estimate of ��. Since �� is a key parameter (which determines the extent of adverse selection), in

Section 6 we explore the sensitivity of the results to more and less concave baseline hazard models.

10We ignore in�ation uncertainty, which may lead us to over-state the welfare value of the nominal annuities we
analyze. We make this abstraction for computational simplicity, and because prior work has found that incorporating
uncertain in�ation based on historical in�ation patterns in the U.S. has a small quantitative e¤ect (of about 1-2
percent) on the welfare gain from annuitization (Mitchell, Poterba, Warshawsky, and Brown (1999)). Since the U.K.
in�ation experience has been broadly similar, it seems natural to expect a qualitatively similar (small) e¤ect in our
context too.
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Consider now the data on guarantee choices, and its relationship to mortality outcomes. Suppose

�rst that there was no heterogeneity in mortality rates (�� = 0). In such a case, the guarantee

choice model would reduce to a standard ordered probit with three choices (see equation (14)

below), and the thresholds would be known from the guarantee choice model and estimates of ��
and �. In this simple case the mean and variance of � would be directly estimated o¤ the observed

shares of the three di¤erent guarantee choices.

It is the presence of unobserved heterogeneity in mortality risk (�� > 0) that makes intuition

more subtle. The guarantee choice is still similar to an ordered probit, but the thresholds (which

depend on �i) are now unobserved. Therefore, the model is similar to an ordered probit with

random e¤ects. This is where the relationship between mortality and guarantee choices is crucial.

By observing mi, we obtain information about the unobserved �i. Although this information is

noisy (due to the inherent randomness of any hazard model), it is still useful in adjusting the

weights Pr(mij�; �) in the integral in equations (13) and (14) below. Loosely, individuals who (ex
post) die earlier are more likely (from the econometrician�s perspective) to be of higher (ex ante)

mortality rate �i. Therefore, the mortality data is used as a stochastic shifter of the individual

random e¤ects. This allows separate identi�cation of �� and the correlation parameter �.

3.5. Estimation

For computational convenience, we begin by estimating the shape parameter of the Gompertz

hazard � using only mortality data. We then use the guarantee choice and mortality data together

to estimate the parameters of the joint distribution F (�; �). We estimate the model using maximum

likelihood. Here we provide a general overview; more details are provided in Appendix C.

Estimation of the parameters of the baseline hazard rate (�). We observe mortality in daily

increments, and treat it as continuous for estimation. We normalize ti = agei � 60 (as 60 is the
age of the youngest individual who makes a guarantee choice in our sample). For each individual

i, the mortality data can be summarized by mi = (ci; ti; di) where ci is the (normalized) age at

which individual i entered the sample (due to left truncation) and ti is the age at which he exited

the sample (due to death or censoring). di is an indicator for whether the person died (di = 1) or

was censored (di = 0).

Conditional on �, the likelihood of observing mi is

Pr(mi = (ci; ti; di) j�; �) =
1

S(�; �; ci)
(s(�; �; ti))

di (S(�; �; ti))
1�di ; (11)

where S(�) is the Gompertz survival function (see equation (9)) and s(�) = @S(�;�;t)
@t is the Gompertz

density. Our incorporation of ci into the likelihood function accounts for the left truncation in our

data.

We estimate � using only mortality data. We do so by using equation (11) and integrating over

�i. That is, we maximize the following likelihood

LM (�; ��; ��j (mi)
N
i=1) =

NX
i=1

log

�Z
Pr(mij�; �)

1

��
�

�
log�� ��

��

�
d�

�
(12)
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to obtain a consistent estimate of �.11

Estimation of the parameters of F (�; �). Having estimated �, we can then use the guarantee

choice model to numerically compute the optimal guarantee choice for each combination of �i and

�i. This choice is also a function of the other (calibrated) parameters of the model and of the

observed annuity rates. Consistent with intuition, the numerical solution to the model has the

property that the relative value that individual i obtains from a (longer) guarantee is increasing in

both �i and �i. Recall that this monotonicity property is important for identi�cation; speci�cally,

it is key to proving the second part of Proposition 2. This implies that for any value of �i, the

guarantee choice can be characterized by two cuto¤ points: ��0=5 (�i) and �
�
5=10 (�i). The former

is the value of �i that makes an individual (with parameter �i) indi¤erent between choosing no

guarantee and a 5 year guarantee, while the latter is the value of �i that makes an individual

(with parameter �i) indi¤erent between choosing a 5 year and a 10 year guarantee. For almost

all relevant values of �i the baseline model � as well as other variants we estimated � and its

speci�cation results in ��0=5 (�i) < ��5=10 (�i), implying that there exists a range of �i�s that implies

a choice of a 5 year guarantee (the modal choice in the data). For some extreme values of �i this

does not hold, but because �i is unobserved this does not create any potential problem. Figure 1

illustrates the optimal guarantee choice in the space of �i and �i, in the context of the baseline

speci�cation and the mortality data (which were used to estimate �).

Keeping � �xed at its estimate, we then estimate the parameters of F (�; �) by maximiz-

ing the likelihood of guarantee choices and mortality. The likelihood depends on the observed

mortality data mi and on individual i�s guarantee choice gi 2 f0; 5; 10g. We can write the contri-
bution of individual i to the likelihood as

li(mi; gi;�;�; �) =

Z
Pr(mij�; �)

�Z
1

�
gi = argmax

g
V
A(g)
0 (�; �; �)

�
dF (�j�;�;�)

�
dF (�;�;�)

(13)

where F (�;�;�) is the marginal distribution of �i, F (�j�;�;�) is the conditional distribution of
�i, � is the Gompertz shape parameter, Pr(mij�; �) is given in equation (11), 1(�) is the indicator
function, and the value of the indicator function is given by the guarantee choice model discussed

in Section 3.1.

Given the monotonicity of the optimal guarantee choice in �i (and ignoring �for presentation

only �the rare cases of ��0=5 (�i) > ��5=10 (�i)), we can rewrite equation (13) as

li(mi; gi;�;�; �) =

8>>><>>>:
R
Pr(mij�; �)

�
F (��0=5 (�) j�;�;�)

�
dF (�;�;�) if gi = 0R

Pr(mij�; �)
�
F (��5=10 (�) j�;�;�)� F (�

�
0=5 (�) j�;�;�)

�
dF (�;�;�) if gi = 5R

Pr(mij�; �)
�
1� F (��5=10 (�) j�;�;�)

�
dF (�;�;�) if gi = 10

:

(14)

11Note that all three parameters ��, ��, �� �are in fact identi�ed and estimated. However, we later re-estimate
�� and �� using the entire data (that contain the guarantee choices), which is more e¢ cient. As will be clear below,
estimating � using the entire data is computationally more demanding.
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That is, the inner integral in equation (13) becomes an ordered probit, where the cuto¤ points are

given by the location in which a vertical line in Figure 1 crosses the two curves.

The primary computational challenge in maximizing the likelihood is that, in principle, each

evaluation of the likelihood requires us to resolve the guarantee choice model and compute these

cuto¤ points for a continuum of values of �. Since the guarantee choice model is solved numerically,

this is not trivial. Therefore, instead of recalculating these cuto¤s at every evaluation of the

likelihood, we calculate the cuto¤s on a large grid of values of � only once and then interpolate to

evaluate the likelihood. Unfortunately, since the cuto¤s also depend on �, this method does not

allow us to estimate � jointly with all the other parameters. We could calculate the cuto¤s on a

grid of values of both � and �, but this would increase computation time substantially. This is

why, at some loss of e¢ ciency but not of consistency, we �rst estimate � using only the mortality

portion of the likelihood, �x � at this estimate, calculate the cuto¤s, and estimate the remaining

parameters from the full likelihood above. To compute standard errors, we use a nonparametric

bootstrap.

4. ESTIMATES AND FIT OF THE BASELINE MODEL

4.1. Parameter estimates

Table III reports the parameter estimates. We estimate signi�cant heterogeneity across individuals,

both in their mortality and in their preference for wealth after death. We estimate a positive

correlation (�) between mortality and preference for wealth after death. That is, individuals who

are more likely to live longer (lower �) are likely to care less about wealth after death. This positive

correlation may help to reduce the magnitude of the ine¢ ciency caused by private information about

risk; individuals who select larger guarantees due to private information about their mortality (i.e.

high � individuals) are also individuals who tend to place a relatively higher value on wealth after

death, and for whom the cost of the guarantee is not as great as it would be if they had relatively

low preferences for wealth after death.

For illustrative purposes, Figure 2 shows random draws from the estimated distribution of log�

and log � for each age-gender cell, juxtaposed over the estimated indi¤erence sets for that cell.

The results indicate that both mortality and preference heterogeneity are important determinants

of guarantee choice. This is similar to recent �ndings in other insurance markets that preference

heterogeneity can be as or more important than private information about risk in explaining in-

surance purchases (Finkelstein and McGarry (2006), Cohen and Einav (2007), Fang, Keane, and

Silverman (2008)). As discussed, we refrain from placing a structural interpretation on the � pa-

rameter, merely noting that a higher � re�ects a larger preference for wealth after death relative

to consumption while alive. Nonetheless, our �nding of heterogeneity in � is consistent with other

estimates of heterogeneity in the population in preferences for leaving a bequest (Laitner and Juster

(1996), Kopczuk and Lupton (2007)).
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4.2. Model �t

Table IV and Table V present some results on the in-sample and out-of-sample �t of the model,

respectively. We report results both overall and separately for each age-gender cell. Table IV

shows that the model �ts very closely the probability of choosing each guarantee choice, as well as

the observed probability of dying within our sample period. The model does, however, produce a

monotone relationship between guarantee choice and mortality rate, while the data show a non-

monotone pattern, with individuals who choose a 5 year guarantee period associated with highest

mortality. As previously discussed (see footnote 4), the non-monotone pattern in the data may
merely re�ect sampling error; we are unable to reject the null that the 5 and 10 year guarantees

have the same mortality rate.

Table V compares our mortality estimates to two di¤erent external benchmarks. These speak

to the out-of-sample �t of our model in two regards: the benchmarks are not taken from the

data, and the calculations use the entire mortality distribution based on the estimated Gompertz

mortality hazard, while our mortality data are right censored. The top panel of Table V reports

the implications of our estimates for life expectancy. As expected, men have lower life expectancies

than women. Men who purchase annuities at age 65 have higher life expectancies than those who

purchase at age 60, which is what we would expect if age of annuity purchase were unrelated

to mortality. Women who purchase at 65, however, have lower life expectancy than women who

purchase at 60, which may re�ect selection in the timing of annuitization, or the substantially

smaller sample size available for 65 year old women. As one way to gauge the magnitude of the

mortality heterogeneity we estimate, Table V indicates that in each age-gender cell, there is about

a 1.4 year di¤erence in life expectancy, at the time of annuitization, between the 5th and 95th

percentile.

The fourth row of Table V contains life expectancy estimates for a group of U.K. pensioners

whose mortality experience may serve as a rough proxy for that of U.K. compulsory annuitants.12

We would not expect our life expectancy estimates �which are based on the experience of actual

compulsory annuitants in a particular �rm �to match this rough proxy exactly, but it is reassuring

that they are in a similar ballpark. Our estimated life expectancy is about 2 years higher. This

di¤erence is not driven by the parametric assumptions, but re�ects higher survival probabilities for

our annuitants than our proxy group of U.K. pensioners; this di¤erence between the groups exists

even within the range of ages for which we observe survival in our data and can compare the groups

directly (not shown).

The bottom of Table V presents the average expected present discounted value (EPDV) of an-

nuity payments implied by our mortality estimates and our assumptions regarding the real interest

rate and the in�ation rate. Since each individual�s initial wealth is normalized to 100, of which 20

percent is annuitized, an EPDV of 20 would imply that the company, if it had no transaction costs,

would break even. Note that nothing in our estimation procedure guarantees that we arrive at rea-

12Exactly how representative the mortality experience of the pensioners is for that of compulsory annuitants is not
clear. See Finkelstein and Poterba (2002) for further discussion of this issue.
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sonable EPDV payments. It is therefore encouraging that for all the four cells, and for all guarantee

choices within these cells, the expected payout is fairly close to 20; it ranges across the age-gender

cells from 19.74 to 20.66. One might be concerned by an average expected payment that is slightly

above 20, which would imply that the company makes negative pro�ts. Note, however, that if the

e¤ective interest rate the company uses to discount its future payments is slightly higher than the

risk-free rate of 0.043 that we use in the individual�s guarantee choice model, the estimated EPDV

annuity payments would all fall below 20. It is, in practice, likely that the insurance company

receives a higher return on its capital than the risk free rate, and the bottom row of Table V shows

that a slightly higher interest rate of 0.045 would, indeed, break even. In Section6 we show that

our welfare estimates are not sensitive to using an interest rate that is somewhat higher than the

risk free rate used in the baseline model.

As another measure of the out-of-sample �t, we examined the optimal consumption trajectories

implied by our parameter estimates and the guarantee choice model. These suggest that most of

the individuals are saving in their retirement (not shown). This seems contrary to most of the

empirical evidence (e.g., Hurd (1989)), although there is evidence consistent with positive wealth

accumulation among the very wealthy elderly (Kopczuk (2007)), and evidence, more generally,

that saving behavior of high wealth individuals may not be representative of the population at

large (Dynan, Skinner, and Zeldes (2004)); individuals in this market are higher wealth than the

general U.K. population (Banks and Emmerson (1999)). In light of these potentially puzzling

wealth accumulation results, we experimented with a variant of the baseline model that allows

individuals to discount wealth after death more steeply than consumption while alive. Speci�cally,

we modi�ed the consumer per-period utility function (as shown in equation (1)) to be

vi(wt; ct) =
�
1� �it

�
ui(ct) + �

t�itb
i(wt); (15)

where � is an additional parameter to be estimated. Our benchmark model corresponds to � = 1.

Values of � < 1 imply that individuals discount wealth after death more steeply than consumption

while alive. Such preferences might arise if individuals care more about leaving money to children

(or grandchildren) when the children are younger than when they are older. We �nd that the

maximum likelihood value of � is 1. Moreover, when we re-estimate the model imposing values of

� relatively close to 1 (such as � = 0:95), we are able to produce more sensible wealth patterns in

retirement, but do not have a noticeable e¤ect on our core welfare estimates.

5. WELFARE ESTIMATES

We now take our parameter estimates as inputs in calculating the welfare consequences of asym-

metric information and government mandates. We start by de�ning the welfare measure we use,

and calculating welfare in the observed, asymmetric information equilibrium. We then perform

two counterfactual exercises in which we compare equilibrium welfare to what would arise under a

mandatory social insurance program that does not permit choice over guarantee, and under sym-

metric information. Although we focus primarily on the average welfare, we also brie�y discuss
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distributional implications.

5.1. Measuring welfare

A useful monetary metric for comparing utilities associated with di¤erent annuity allocations is the

notion of wealth-equivalent. The wealth-equivalent denotes the amount of initial wealth that an

individual would require in the absence of an annuity, in order to be as well o¤ as with his initial

wealth and his annuity allocation. The wealth-equivalent of an annuity with guarantee period g

and initial wealth of w0 is the implicit solution to

V
A(g)
0 (w0) � V NA0 (wealth� equivalent); (16)

where both V
A(g)
0 (�) and V NA0 (�) are de�ned in Section 3. This measure is commonly used in

the annuity literature (Mitchell, Poterba, Warshawsky, and Brown (1999), Davido¤, Brown, and

Diamond (2005)).

A higher value of wealth-equivalent corresponds to a higher value of the annuity contract. If

the wealth equivalent is less than initial wealth, the individual would prefer not to purchase an

annuity. More generally, the di¤erence between the wealth-equivalent and the initial wealth is the

amount an individual is willing to pay in exchange for having access to the annuity contract. This

di¤erence is always positive for a risk averse individual who does not care about wealth after death

and faces an actuarially fair annuity rate. It can take negative values if the annuity contract is

over-priced (compared to the individual-speci�c actuarially fair rate) or if the individual su¢ ciently

values wealth after death.

Our estimate of the average wealth-equivalent in the observed equilibrium provides a monetary

measure of the welfare gains (or losses) from annuitization given equilibrium annuity rates and

individuals�contract choices. The di¤erence between the average wealth equivalent in the observed

equilibrium and in a counterfactual allocation provides a measure of the welfare di¤erence between

these allocations.

We provide two ways to quantify these welfare di¤erences. The �rst provides an absolute

monetary estimate of the welfare gain or loss associated with a particular counterfactual scenario.

To do this, we scale the di¤erence in wealth equivalents by the $6 billion which are annuitized

annually (in 1998) in the U.K. annuity market (Association of British Insurers (1999)). Since the

wealth equivalents are reported per 100 units of initial wealth and we assume that 20 percent

of this wealth is annuitized, this implies that each unit of wealth-equivalent is equivalent, at the

aggregate, to $300 million annually. We also occasionally refer to a per-annuitant welfare gain,

which we compute by dividing the overall welfare e¤ect by 300,000, which is our estimate of new

annuitants in the U.K. market in 1998.13 Of course, one has to be cautious about these speci�c

numbers, as they rely on extrapolating our estimates from our speci�c sample to the entire market.

While an absolute welfare measure may be a relevant benchmark for policies associated with the

particular market we study, a relative measure may be more informative when considering using our

13We obtain it by dividing the $6 billion �gure we have just referred to by the average annuitized amount (in 1998)
in our full company data (rather than the sample we use for estimation; see Appendix A), which is $20; 000.
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estimates as a possible benchmark in other contexts, or examining the quantitative sensitivity of

our estimates. For example, if we considered the decision to buy a one month guarantee, we would

not expect e¢ ciency costs associated with this decision to be large relative to life-time wealth. A

relative welfare estimate essentially requires a normalization factor.

Therefore, to put these welfare estimates in perspective, we measure the welfare changes relative

to how large this welfare change could have been, given the observed annuity rates. We refer to

this maximum potential welfare change as the �Maximum Money at Stake�(MMS). We de�ne the

MMS as the minimum lump sum that individuals would have to receive to insure them against the

possibility that they receive their least-preferred allocation in the observed equilibrium, given the

observed equilibrium pricing. The MMS is therefore the additional amount of pre-existing wealth

an individual requires so that they receive the same annual annuity payment if they purchase

the maximum guarantee length (10 years) as they would receive if they purchase the minimum

guarantee length (0 years).

The nature of the thought experiment behind the MMS is that the welfare loss from buying a

10 year guarantee is bounded by the lower annuity payment that the individual receives as a result.

This maximum welfare loss would occur in the worst case scenario, in which the individual had

no chance of dying during the �rst 10 years (or alternatively, no value of wealth after death). We

report the MMS per 100 units of initial wealth (i.e., per 20 units of the annuitized amount)

MMS � 20
�
z0
z10

� 1
�
; (17)

where z0 and z10 denote the annual annuity rates for 0 and 10 year guarantees, respectively (see

Table II). A key property of the MMS is that it depends only on annuity rates, but not on our

estimates of preferences or mortality risk. Converting this to absolute amounts, the MMS is just

over $500 million annually, just below $1; 700 per new annuitant, or about 8 percent of the market

as a whole.

5.2. Welfare in observed equilibrium

The �rst row of Table VI shows the estimated average wealth equivalents per 100 units of initial

wealth in the observed allocations implied by our parameter estimates. The average wealth equiv-

alent for our sample is 100.16, and ranges from 99.9 (for 65 year old males) to 100.4 (for 65 year

old females). An average wealth equivalent of less than 100 indicates an average welfare loss asso-

ciated with the equilibrium annuity allocations relative to a case in which wealth is not annuitized;

conversely, an average wealth equivalent of more than 100 indicates an average welfare gain from

annuitization at the observed rates. Note that because annuitization of some form is compulsory,

it is possible that individuals in this market would prefer not to annuitize.14

14Our average wealth equivalent is noticeably lower than what has been calculated in the previous literature
(Mitchell, Poterba, Warshawsky, and Brown (1999), Davido¤, Brown, and Diamond (2005)). The high wealth
equivalents in these papers in turn implies a very high rate of voluntary annuitization, giving rise to what is known as
the �annuity puzzle�since, empirically, very few individuals voluntarily purchase annuities (Brown, Mitchell, Poterba,
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Figure 3 shows the distribution across di¤erent types of the welfare gains and losses from

annuitization at the observed annuity rates, relative to no annuities. This �gure super-imposes

iso-welfare contour lines over the same scatter plots presented in Figure 2. It indicates that, as

expected, the individuals who bene�t the most from the annuity market are those with low mortality

(low �) and weak preference for wealth after death (low �). The former are high (survival) risk, who

face better than actuarially fair annuity rates when they are pooled with the rest of the annuitants.

The latter are individuals who get less disutility from dying without much wealth, which is more

likely to occur with than without annuities.

5.3. The welfare cost of asymmetric information

In the counterfactual symmetric information equilibrium, each person faces an actuarially fair

adjustment to annuity rates depending on her mortality. Speci�cally, we o¤er each person payment

rates such that the EPDV of payments for that person for each guarantee length is equal to the

equilibrium average EPDV of payments. This ensures that each person faces an individual-speci�c

actuarially fair reductions in payments in exchange for longer guarantees. Note that this calculation

is (expected) revenue neutral, preserving any average load (or subsidy) in the market.

Figure 2 may provide a visual way to think about this counterfactual. In the counterfactual

exercise, the points in Figure 2, which represent individuals, are held constant, while the indi¤erence

sets, which represent the optimal choices at a given set of annuity rates, shift. Wealth equivalents

are di¤erent at the new optimal choices both because of the direct e¤ect of the di¤erent annuity

rates and because these rates in turn a¤ect optimal contract choices.

We note that our welfare analysis of the impact of adverse selection considers only the impact

of selection on the pricing of the observed contracts. Adverse selection may also a¤ect the set of

contracts o¤ered, and this may have non trivial welfare costs. Our analysis however treats the

contract set (of 0, 5, and 10 year guarantees) as given; that is, we assume that the contract space

does not change in the counterfactual of symmetric information. The most important reason for

this assumption is that incorporating the impact of adverse selection on the contract space would

require a model of guarantee lengths in which the current o¤ered guarantee lengths are optimal.

This seems di¢ cult given that the three o¤ered guarantee lengths are �xed over time, across the

annuity providers in the market, and perhaps most surprisingly over di¤erent age and gender

combinations, which are associated with di¤erent mortality pro�les.

The second panel of Table VI presents our estimates of the welfare cost of asymmetric in-

formation. The �rst row shows our estimated wealth-equivalents in the symmetric information

counterfactual. As expected, welfare is systematically higher in the counterfactual world of sym-

and Warshawsky (2001)). Our substantially lower wealth equivalents �which persist in the robustness analysis (see
Table VII) � arise because of the relatively high � that we estimate. Previous papers have calibrated rather than
estimated � and assumed it to be 0. If we set log� = �� and � = 0, and also assume �like these other papers �that
annuitization is full (i.e., 100 percent vs. 20 percent in our baseline), then we �nd that the wealth equivalent of a 0
year guarantee for a 65 year old male rises to 135.9, which is much closer to the wealth equivalent of 156 reported by
Davido¤, Brown, and Diamond (2005).
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metric information. For 65 year old males, for example, the estimates indicate that the average

wealth equivalent is 100.74 under symmetric information, compared to 100.17 under asymmetric

information. This implies that the average welfare loss associated with asymmetric information is

equivalent to 0.57 units of initial wealth. For the other three age-gender cells, this number ranges

from 0.14 to 0.27. Weighting all cells by their relative sizes, we obtain the overall estimate reported

in the introduction of annual welfare costs of $127 million, $423 per new annuitant, or about 2

percent of annuitized wealth. This also amounts to 0.25 of the concept of maximum money at stake

(MMS) introduced earlier.

What is the cause of this welfare loss? It arises from the distortion in the individual�s choice

of guarantee length relative to what he would have chosen under symmetric information pricing.

Despite preference heterogeneity, we estimate that under symmetric information all individuals

would choose 10 year guarantees (not shown). However, in the observed equilibrium only about 3

percent of individuals purchase these annuities. This illustrates the distortions in optimal choices

in the observed equilibrium.

To illustrate the impact on di¤erent individuals, Figure 4 presents contour graphs of the changes

in wealth equivalents associated with the change to symmetric information. That is, as before, for

each age-gender cell we plot the individuals as points in the space of log� and log �, and then draw

contour lines over them. All the individuals along a contour line are predicted to have the same

absolute welfare change as a result of the counterfactual. Figure 4 indicates that, while almost all

individuals bene�t from a move to the �rst best, there is signi�cant heterogeneity in the welfare

gains arising from individual-speci�c pricing. The biggest welfare gains accrue to individuals with

high mortality (high �) and high preferences for wealth after death (high �).

Two di¤erent factors work in the same direction to produce the highest welfare gains for high

�, high � individuals. First, a standard one-dimensional heterogeneity setting would predict that

symmetric information would improve welfare for low risk (high �) individuals relative to high risk

(low �) individuals. Second, the asymmetric information equilibrium involves cross-subsidies from

higher guarantees to lower guarantees (the EPDV of payout decreases with the length of the guar-

antee period, as shown in Table V);15 by eliminating these cross-subsidies, symmetric information

also improves the welfare of high � individuals, who place more value on higher guarantees. Since

we estimate that � and � are positively correlated, these two forces reinforce each other.

A related question concerns the extent to which our estimate of the welfare cost of asymmetric

information is in�uenced by re-distributional e¤ects. As just discussed, symmetric information

produces di¤erent welfare gains for individuals with di¤erent � and �. To investigate the extent to

15The observed cross-subsidies across guarantee choices may be due to asymmetric information. For example,
competitive models of pure adverse selection (with no preference heterogeneity), such as Miyazaki (1977) and Spence
(1978), can produce equilibria with cross-subsidies from the policies with less insurance (in our context, longer
guarantees) to those with more insurance (in our context, shorter guarantees). We should note that the observed cross
subsidies may also arise from varying degrees of market power in di¤erent guarantee options. In such cases, symmetric
information may not eliminate cross-subsides, and our symmetric information counterfactual would therefore con�ate
the joint e¤ects of elimination of informational asymmetries and of market power. Our analysis of the welfare
consequences of government mandates in the next subsection does not su¤er from this same limitation.
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which our welfare comparisons are a¤ected by the changes in cross-subsidy patterns, we recalculated

wealth-equivalents in the symmetric information counterfactual under the assumption that each

individual faces the same expected payments for each option in the choice set of the counterfactual

as she receives at her choice in the observed equilibrium. The results (not shown) suggest that, in

all the age-gender cells, our welfare estimates are not, in practice, a¤ected by redistribution.

5.4. The welfare consequences of government mandated annuity contracts

Although symmetric information is a useful conceptual benchmark, it may not be relevant from

a policy perspective since it ignores the information constraints faced by the social planner. We

therefore consider the welfare consequences of government intervention in this market. Speci�cally,

we consider the consequences of government mandates that each individual purchases the same

guarantee length, eliminating any contract choice; as noted previously, such mandates are the

canonical solution to adverse selection in insurance markets (Akerlof (1970)). To evaluate welfare

under alternative mandates, we calculate average wealth equivalents when all people are forced

to have the same guarantee period and annuity rate, and compare them to the average wealth

equivalents in the observed equilibrium. We set the payment rate such that average EPDV of

payments is the same as in the observed equilibrium; this preserves the average load (or subsidy)

in the market.

Before presenting the results, it is useful to note a contrast between our setting and the standard

or canonical insurance model. As mentioned in the introduction, unlike in a standard insurance

setting, the optimal mandatory annuity contract cannot be determined by theory alone. In the

canonical insurance model � that is, when all individuals are risk averse, the utility function is

state-invariant, and there are no additional cost of providing insurance � it is well-known that

mandatory (uniform) full insurance can achieve the �rst best allocation, even when individuals vary

in their preferences. Since adverse selection reduces insurance coverage away from this �rst-best, no

estimation is required in this standard context to realize that the optimal mandate is full insurance.

In contrast, our model of annuity choices is governed by two di¤erent utility functions, one from

consumption when alive, u(�), and one from wealth when dead, b(�) (see equation (1)). Therefore
optimal (actuarially fair) guarantee coverage will vary across individuals depending on their relative

preference for wealth at death vis-a-vis consumption while alive. In such a case, whether and which

mandatory guarantee can improve welfare gains relative to the adverse selection equilibrium is not

a-priori clear.16 The investigation of the optimal mandate �and whether it can produce welfare

gains relative to the adverse selection equilibrium �therefore becomes an empirical question.

The results are presented in the bottom panels of Table VI. In all four age-gender cells, welfare

is lowest under a mandate with no guarantee period, and highest under a mandate of a 10 year

guarantee. Welfare under a mandate of a 5 year guarantee is similar to welfare in the observed

16This is somewhat analogous to an insurance market with a state-dependent utility function. In such a case, the
optimal mandate could be either full, partial, or no insurance (and analogously longer or shorter guarantee). For
more details, see Sections 2 and 3.1 of the working paper version (Einav, Finkelstein, and Schrimpf (2007)).
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equilibrium.

The increase in welfare from a mandate of 10 year guarantee is virtually identical to the increase

in welfare associated with the �rst best, symmetric information outcome reported earlier. This

mandate involves no allocative ine¢ ciency, since we estimated that a 10 year guarantee is the

�rst best allocation for all individuals. Although it does involve transfers (through the common

pooled price) across individuals of di¤erent mortality risk, these do not appear to have much e¤ect

on our welfare estimate.17 Consistent with this, when we recalculated wealth-equivalents in each

counterfactual under the assumption that each individuals faces the same expected payments in the

counterfactual as she receives from her choice in the observed equilibrium, our welfare estimates

were not noticeably a¤ected (not shown). As with the counterfactual of symmetric information,

there is heterogeneity in the welfare e¤ects of the di¤erent mandates for individuals with di¤erent

� and �. Not surprisingly, high � individuals bene�t relatively more from the 10 year mandate and

lose relatively more from the 0 year mandate (not shown).

Our �ndings highlight both the potential bene�ts and the potential dangers from government

mandates. Without estimating the joint distribution of risk and preferences, it would not have been

apparent that a 10 year guarantee is the welfare-maximizing mandate, let alone that such a mandate

comes close to achieving the �rst best outcome. Were the government to mandate no guarantee, it

would reduce welfare by about $107 million per year ($357 per new annuitant), achieving a welfare

loss of about equal and opposite magnitude to the $127 million per year ($423 per new annuitant)

welfare gain from the optimal 10 year guarantee mandate. Were the government to pursue the naive

approach of mandating the currently most popular choice (5 year guarantees) our estimates suggest

that this would raise welfare by only about $2 million per year or less than $7 per new annuitant,

foregoing most of the welfare gains achievable from the welfare maximizing 10 year mandate. These

results highlight the practical di¢ culties involved in trying to design mandates to achieve social

welfare gains.

6. ROBUSTNESS

In this section, we explore the robustness of our welfare �ndings. Our qualitative welfare conclusions

are quite stable across a range of alternative assumptions. In particular, the �nding that the

welfare maximizing mandate is a 10 year guarantee, and that this mandate achieves virtually the

same welfare as the �rst best outcome, persists across all alternative speci�cations. The �nding of

welfare gains from a 10 year guarantee mandate but welfare losses from mandating no guarantee is

also robust.

17We estimate that welfare is slightly higher under the 10 year mandate than under the symmetric information
equilibrium (in which everyone chooses the 10 year guarantee). This presumably re�ects the fact that under the
mandated (pooling) annuity payout rates, consumption is higher for low mortality individuals and lower for high
mortality individuals than it would be under the symmetric information annuity payout rates. Since low mortality
individuals have lower consumption in each period and hence higher marginal utility of consumption, this transfer
improves social welfare (given the particular social welfare measure we use).
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However, the quantitative estimates of the welfare cost of asymmetric information can vary

non-trivially across speci�cations, and as a result needs to be interpreted with more caution. It is

$127 million per year (i.e. 25 percent of the MMS) in our baseline speci�cation. It ranges from

$111 million per year to $244 million per year (or from 22 percent to about 50 percent of the MMS)
across the alternative speci�cations. Our bounds exercise, which we discuss below, produces similar

conclusions concerning the robustness of our �ndings concerning the optimal guarantee mandate

and its ability to achieve close to the �rst best outcome, as well as the greater uncertainty about

our quantitative welfare estimates of the gains from symmetric information.

Finally, we note that our robustness discussion focuses on the (qualitative and quantitative)

sensitivity of our welfare estimates, rather than the estimates of the underlying parameters (e.g.,

the magnitude of the average �). The underlying parameters change quite a bit under many of

the alternative models. This is important for understanding why, as we vary certain assumptions,

it is not a-priori obvious how our welfare estimates will change (in either sign or magnitude). For

example, although it may seem surprising that welfare estimates are not very sensitive to our

assumption about the risk aversion parameter, recall that the estimated parameters also change

with the change in the assumption about risk aversion.

The change in the estimated parameters across speci�cations is also important for the overall

interpretation of our �ndings. One reason we hesitate to place much weight on the structural

interpretation of the estimated parameters (or the extent of heterogeneity in these parameters)

is that their estimates will be a¤ected by our assumptions about other parameters (such as risk

aversion or discount rate). This is closely related to the identi�cation result in Section 3.

The remainder of this section describes the alternative speci�cations we explored. Table VII

provides a summary of the main results.

6.1. Parameter choices

Following our discussion of the baseline model in Section 3, although we estimate the average level

and heterogeneity in mortality (�i) and in preferences for wealth after death (�i), we choose values

for a number of other parameters based on external information. While we could, in principle,

estimate some of these parameters, they would be identi�ed solely by functional form assumptions.

Therefore, we instead chose to explore how our welfare estimates are a¤ected by alternative choices

for these parameters.

Choice of risk aversion coe¢ cient ( 
). Our baseline speci�cation (reproduced in row 1 of Table

VII) assumes a (common) CRRA parameter of 
 = 3 for both the utility from consumption u(c)

and from wealth after death b(w). Rows 2 and 3 of Table VII show the results if instead we assume


 = 5 or 
 = 1:5.

Rows 4 and 5 report speci�cations in which we hold constant the CRRA parameter in the utility

from consumption (at 
 = 3) but vary the CRRA parameter in the utility from wealth after death.

Speci�cally, we estimate the model with 
 = 1:5 or 
 = 5 for the utility from wealth after death

b(w).
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A downside of the speci�cations reported in rows 4 and 5 is that they give rise to non-homothetic

preferences and are therefore no longer scalable in wealth. This implies that heterogeneity in initial

wealth may confound the analysis. Therefore, in row 6, we also allow for heterogeneity in initial

wealth. As in row 5, we assume that 
 = 3 for utility from consumption, but that 
 = 1:5 for

the utility from wealth after death. This implies that wealth after death acts as a luxury good,

with wealthier individuals caring more, at the margin, about wealth after death. Such a model

is consistent with the hypothesis that bequests are a luxury good, which may help explain the

higher rate of wealth accumulation at the top of the wealth distribution (Dynan, Skinner, and

Zeldes (2004), Kopczuk and Lupton (2007)). Unfortunately, we do not have data on individual�s

initial wealth wi0, which would allow us to incorporate it directly into the model. Instead, to

allow for heterogeneity in initial wealth, we calibrate the distribution of wealth based on Banks

and Emmerson (1999) and integrate over this (unobserved) distribution.18 We also let the means

(but not variances) of log� and log � to vary with unobserved wealth. The welfare estimates are

normalized to be comparable with the other exercises.

Choice of other parameters. We also reestimated the model assuming a higher interest rate than

in the baseline case. As already mentioned, our estimates suggest that a slightly higher interest

rate than the risk free rate we use in the individual�s value function is required to have the annuity

company not lose money. Thus, rather than the baseline which uses the risk free rate as of 1992

(r = � = 0:043), in row 7 we allow for the likely possibility that the insurance company receives a

higher rate of return, and reestimate the model with r = � = 0:05. This in turn implies an average

load on policies of 3.71 percent.

In row 8 we use a di¤erent set of annuity rates. Since the choice of 1992 pricing for our baseline

model was arbitrary, we report results for a di¤erent set of annuity rates, from 1990, with the

corresponding in�ation and interest rates.

6.2. Wealth portfolio outside of the compulsory annuity market

As noted, our data do not contain information on the annuitant�s wealth portfolio outside of the

compulsory market. This is an important limitation to the data. In our baseline speci�cation

we used survey data reported by Banks and Emmerson (1999) to assume that 20 percent of the

annuitants��nancial wealth is in the compulsory annuity market (� = 0:2), and the rest is in liquid

�nancial wealth. Rows 9 and 10 report results under di¤erent assumptions of the fractions of wealth

annuitized in the compulsory market (we tried values of 0.1 and 0.3 of �).

In row 11 we report results in which we allow for heterogeneity in �. We calibrate the distribution

of � and integrate over this unobserved distribution.19 We allow the means (but not variances) of

18Banks and Emmerson (1999) report that the quartiles of the welath distribution among 60-69 pensioners are
1,750, 8,950, and 24,900 pounds. We assume that the population of retirees is drawn from these three levels, with
probability 37.5%, 25%, and 37.5%, respectively.
19Banks and Emmerson (1999) report an average � of 20 percent and a median of 10 percent. We therefore calibrate

heterogeneity in � by assuming it can obtain one of three values �0.1, 0.2, and 0.4 �with probabilities of 0.5, 0.25,
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log� and log � to vary with this unobserved �.

In row 12, we assume that 50 percent of wealth is annuitized (at actuarially fair annuity rates)

through the public Social Security program.20 We then consider the welfare cost of asymmetric

information for the 20 percent of wealth annuitized in the compulsory market. As can be seen in

Table VII, this alternative assumption has by far the biggest e¤ect on our estimate of the welfare

cost of asymmetric information, raising it from $127 million per year (or about 25 percent of the

MMS) in the baseline speci�cation to $244 million per year (or about 50 percent of the MMS).

As we noted at the outset of this section, it is di¢ cult to develop good intuition for the com-

parative statics across alternative models since the alternative models also yield di¤erent estimated

parameters. However, one potential explanation for our estimate of a larger welfare cost when 50

percent of wealth is in the public annuity may be that the individual now only has 30 percent of

his wealth available to �o¤set�any undesirable consumption path generated by the 70 percent of

annuitized wealth.

A related issue is the possibility that annuitants may adjust their non-annuitized �nancial

wealth portfolio in response to the changes in guarantee prices created by our counterfactuals. Our

analysis assumes that individuals do not adjust the rest of their portfolio in response to changes

in their guarantee length or price. If individuals could purchase actuarially fair life insurance

policies with no load, and without incurring any transaction costs in purchasing these policies,

they could in principle undo much of the e¢ ciency cost of annuitization in the current asymmetric

information equilibrium. More generally, this issue �ts into the broader literature that investigates

the possibility and extent of informal insurance to lower the welfare bene�ts from government

interventions or private insurance (Golosov and Tsyvinski (2007))

Of course, in practice the ability to o¤set the equilibrium using other parts of the �nancial

portfolio will be limited by factors such as loads and transaction costs. Given that the maximum

money at stake in the choice of guarantee is only about 8 percent of annuitized wealth under the

observed annuity rates (and only about 4 percent (on average) under the counterfactual symmetric

information rates), even relatively small transaction costs could well deter individuals from re-

optimizing their portfolios in response to changes in guarantee prices. Re-optimization will also be

limited by the fact that much of individuals�wealth outside of the compulsory annuity market is

tied up in relatively illiquid forms such as the public pension. Indeed, the data suggest that for

individuals likely to be in the compulsory annuity market, only about 10 to 15 percent of their total

wealth is in the form of liquid �nancial assets (Banks, Emmerson, Old�eld, and Tetlow (2005)).

A rigorous analysis of this is beyond the scope of the current work, and would probably require

better information than we have on the asset allocation of individual annuitants. With richer data

and 0.25, respectively.
20On average in the U.K. population, about 50 percent of retirees�wealth is annuitized through the public Social

Security program, although this fraction declines with retiree wealth (O¢ ce of National Statistics (2006)). Compulsory
annuitiants tend to be of higher than average socio-economic status (Banks and Emmerson (1999)) and may therefore
have on average a lower proportion of their wealth annuitized through the public Social Security program. However,
since our purpose is to examine the sensitivity of our welfare estimates to accounting for publicly provided annuities,
we went with the higher estimate to be conservative.
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that included information on the life insurance holdings in each individual�s portfolio, we could

potentially expand our model to include a model of life insurance demand and thereby use our

estimates to examine how this aspect of the portfolio would respond to our counterfactual annuity

rates, and how this in turn it would a¤ect the welfare estimates of these counterfactuals. We hope

that further research with hopefully richer data will build on the model and identi�cation results

here to extend the analysis in this important dimension.

6.3. Modeling heterogeneity

Di¤erent distributional assumptions of heterogeneity. We explored the sensitivity of our welfare

estimates to the parameterization of unobserved heterogeneity. One potential issue concerns our

parametric assumption regarding the baseline mortality distribution at the individual level. As dis-

cussed in the end of Section 3, our assumption about the shape of the individual mortality hazard

a¤ects our estimate of unobserved mortality heterogeneity (i.e., ��). To explore the importance of

our assumption, row 13 presents results under a di¤erent assumption about the mortality distrib-

ution at the individual level. In particular, we assume a mortality distribution at the individual

level with a hazard rate of �i exp
�
�(t� t0)h

�
with h = 1:5, which increases faster over time than

the baseline Gompertz speci�cation (which has the same form, but h = 1). This, by construction,

leads to a higher estimated level of heterogeneity in mortality, since the baseline hazard is more

convex at the individual level.

We also investigated the sensitivity of the results to alternative joint distributional assumptions

than our baseline assumption that � and � are joint lognormally distributed. Due to our estima-

tion procedure, it is convenient to parameterize the joint distribution of � and � in terms of the

marginal distribution of � and the conditional distribution of �. It is common in hazard models

with heterogeneity to assume a gamma distribution (Han and Hausman (1990)). Accordingly, we

estimate our model assuming that � follows a gamma distribution. We assume that conditional on

�, � is distributed either lognormally (row 14) or gamma (row 15). Speci�cally, let a� be the shape

parameter and b� be the scale parameter of the marginal distribution of �. When � is conditionally

log-normally distributed, its distribution is parameterized by

log(�)j� � N
�
�� + � (log(�)� log(b�)) ; �2�

�
: (18)

When � is conditionally gamma distributed, its shape parameter is simply a� , and its conditional

scale parameter is b� = exp
�
�� + � (log(�)� log(b�))

�
. These speci�cations allow thinner tails,

compared to the bivariate lognormal baseline.

In unreported speci�cations, we have also experimented with discrete mixtures of lognormal

distributions, in an attempt to investigate the sensitivity of our estimates to the one-parameter

correlation structure of the baseline speci�cation. These mixtures of lognormal distributions almost

always collapsed back to the single lognormal distribution of the baseline estimates, trivially leading

to almost identical welfare estimates.

Bounds. As mentioned earlier, an alternative to a parametric interpolation is to make no
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attempt at interpolation, and to simply use the identi�ed points as bounds on the cumulative

distribution function. To do so, we �x �� and �� (and �) at our baseline estimates, and then use

semiparametric Maximum Likelihood to obtain estimates for Pr(g(�; �) = yj�), where y = 0; 5; 10.
As shown in Proposition 2, this conditional guarantee choice is identi�ed even when the choice set

is discrete. Using the guarantee choice model and the fact that the guarantee choice is (weakly)

monotone in � in our model, these conditional guarantee choices can be mapped to bounds on the

conditional distribution F�j� (see our discussion of �
�
0=5 (�i) and �

�
5=10 (�i) in the end of Section 3).

We can then use these bounds to compute bounds on any object of interest.

To be more precise, let h(�; �) be an object of interest (e.g., welfare), and consider the case in

which we wish to bound its population average. We then compute an upper bound by:

Eh =

Z 0BBBB@
�
sup�<��0=5(�)

h(�; �)
�
Pr
�
� < ��0=5 (�)

�
+

+

�
sup

�2
h
��0=5(�);�

�
5=10(�)

i h(�; �)
�
Pr
�
� 2

h
��0=5 (�) ; �

�
5=10 (�)

i�
+

+
�
sup�>��5=10(�)

h(�; �)
�
Pr
�
� > ��5=10 (�)

�
1CCCCA dF (�); (19)

and similarly for the lower bound (with sup replaced by inf). We focus on bounding the welfare

change from the di¤erent counterfactuals. To do this, we �rst compute the expected annuity

payments in the observed equilibrium (these are point identi�ed, as they are a function of the

conditional guarantee choice, Pr(g(�; �) = yj�)), and use this to compute annuity rates in each of
the counterfactuals. We then follow the procedure above to obtain bounds on the welfare change

for each of the counterfactuals (a symmetric information case, and each of the three mandates we

explored), for each of the age and gender combination separately.

The results from this exercise (not shown) imply that across all age and gender combinations,

the welfare ranking of the di¤erent mandates is the same as in our baseline case. In all age-gender

cases, the welfare e¤ect of the di¤erent mandates can be unambiguously ranked in the sense that

their bounds do not overlap. In particular, a 10 year guarantee mandate results in a positive welfare

gain which even at its lower bound is always higher than the upper bound of the welfare gain from

any other mandate. The no guarantee mandate always produces a negative e¤ect on welfare (even

at the upper bound), and a 5 year guarantee mandate results in a small and mostly negative welfare

e¤ect (in two of the four age-gender combinations the upper bound of the welfare is positive, but

very small). As in the baseline model, the welfare gain of the symmetric information equilibrium

is similar to that of a 10 year guarantee mandate in the sense that the ranges of these welfare

gains largely overlap (although in most cases the symmetric equilibrium outcome results in slightly

tighter bounds). Consistent with the baseline results, in all cases we also obtain the result that the

vast majority of individuals choose the 10-year guarantee contract in the symmetric information

counterfactual. To check robustness, we also use the same procedure to bound the di¤erence in

welfare between one counterfactual to each of the others. Given that the bounds on the welfare

change do not overlap, it may not be surprising that the bounds on the welfare di¤erences also give

rise to the same ranking of guarantee mandates. That is, zero is never within these bounds, so each

mandate can be unambiguously ranked with respect to each of the alternatives.
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In contrast to the robust ranking, the bounds on the estimated magnitude of the welfare gains

(from either symmetric information or from the 10-year guarantee mandate) are not tight. For

example, in the largest age-gender cell (65 year old males), we estimate the lower bound on the

welfare gain from symmetric information to be as low as 30 percent of our baseline estimate, and in

another cell (60 year old males) the upper bound on the welfare change from symmetric information

is 56% higher than our baseline estimate. We view these results as largely consistent with the rest

of the sensitivity analysis in this section; the results regarding the optimal mandate, as well as

the similarity of the welfare gains from the optimal mandate and symmetric information are quite

robust, but the quantitative estimates of the welfare gains are more sensitive to various assumptions.

Allowing heterogeneity in other parameters. While we allow for heterogeneity in mortality

(�) and in preference for wealth after death (�), our baseline speci�cation does not allow for

heterogeneity in other determinants of annuity choice, such as risk aversion and discount rate.

Since the various parameters are only identi�ed up to a single dimension (see Section 3), except by

functional form, more �exible estimation of � and � is analogous to a speci�cation which frees up

these other parameters.

One way to e¤ectively allow for more �exible heterogeneity is to allow the mean of � and �

to depend on various observable covariates. In particular, one might expect both mortality and

preferences for wealth after death to vary with an individual�s socioeconomic status. We observe

two proxies for the annuitant�s socioeconomic status: the amount of wealth annuitized and the

geographic location of the annuitant residence (his or her ward) if the annuitant is in England or

Wales (about 10 percent of our sample is from Scotland). We link the annuitant�s ward to ward-

level data on socioeconomic characteristics of the population from the 1991 U.K. Census; there is

substantial variation across wards in average socioeconomic status of the population (Finkelstein

and Poterba (2006)). Row 16 shows the results of allowing the mean of both parameters to vary

with the annuitized amount and the percent of the annuitant�s ward that has received the equivalent

of a high school degree of higher; both of these covariates may proxy for the socioeconomic status

of the annuitant.

We also report results from an alternative model in which �in contrast to our baseline model �we

assume that individuals are homogenous in their � but heterogeneous in their consumption 
. Rows

17 and 18 report such a speci�cation. In row 17 we �x � at its estimated conditional median from

the baseline speci�cation (Table III) and assume that � and the coe¢ cient of risk aversion for utility

from consumption are heterogeneous and (bivariate) lognormally distributed. The 
 coe¢ cient in

the utility from wealth after death b(w) is �xed at 3. As in row 6, this speci�cation gives rise to

non-homothetic preferences, so we use the median wealth level from Banks and Emmerson (1999)

and later renormalize, so the reported results are comparable.

Row 18 allows for preference heterogeneity in both � and 
. For computational reason, we

assume that 
 is drawn from a discrete support (of 1.5, 3, and 4.5). We assume that � and � are

(as in the baseline model) joint lognormally distributed, but we allow 
 (which is unobserved) to

shift their means. We note that this speci�cation of heterogeneity in both � and 
 is only identi�ed
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by functional form, cautioning against structural interpretation of the estimated distribution of

heterogeneity.

6.4. Imperfect information about mortality

Throughout we made a strong assumption that individuals have perfect information about their

actual mortality rate �i. This is consistent with empirical evidence that individuals�perceptions

about their mortality probabilities covary in sensible ways with known risk factors, such as age,

gender, smoking, and health status (Hamermesh (1985), Smith, Taylor, and Sloan (2001), Hurd

and McGarry (2002)). Of course, such work does not preclude the possibility that individuals also

make some form of an error in forecasting their mortality.

We therefore investigate other assumptions about the information structure. Recall that while

we make a perfect information assumption in order to establish identi�cation, we can identify the

model using alternative assumptions about the information structure. We report two such exercises

here.

Before reporting the exercises, we note at the outset two potential complications with models

of imperfect information, which are why we prefer to work with perfect information in our baseline

speci�cation. First, the dynamic nature of our model gives rise to potential learning. As individuals

survive longer they may update their prior about their true underlying mortality process. While

such learning can no longer a¤ect their (past) guarantee choice, it could a¤ect their consumption

decisions. If forward looking individuals anticipate this possibility for learning, they may take this

into account and it could alter their guarantee choice. We do not account for such learning in the

exercises we report below. Second, once information is imperfect, the notion of welfare may be less

obvious. One could measure �perceived�welfare which is measured with respect to the individual�s

information, or �true�welfare which is measured with respect to the true mortality process. We

choose to report perceived welfare, which is more consistent with our notion of wealth equivalence.

Throughout, we assume that individuals have perfect information about the mortality process,

except for their idiosyncratic risk characterized by �i. With some abuse of notation, we denote

by �(�i) the perceived mortality risk by individual i. Our �rst set of exercises assumes that

individuals have biased beliefs about their mortality risk. In particular, individuals know that

log �(�i) = ��(xi) + � (log�i � ��(xi)) , (20)

where �i is the true mortality rate of individual i, �� is the population mean of log�i (estimated in

Table III), and �(�i) is the mortality rate perceived by individuals when they make their guarantee

choice and subsequent consumption decisions. � is a free parameter. When � = 1 individuals have

correct beliefs and the above assumption reduces to our baseline model. When � < 1 individuals

perceive their mortality process as closer to the mean, while � > 1 is the case where individuals

over-weight idiosyncratic information. Results for the cases of � = 0:5 and � = 2 are summarized

in rows 19 and 20 of Table VII.

The second set of exercises assumes that individuals have correct, but uncertain beliefs about
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their mortality risk. In particular, let

log �(�i) � N
�
log�i; �

2
"

�
. (21)

Our baseline model is the special case of �" = 0. The case of �" > 0 represents speci�cations where

individuals are more uncertain about their mortality realization. We model the guarantee choices

by having individuals form expected value functions by integrating over this additional uncertainty.

In rows 21 and 22 we summarize results for the cases of �" = 0:027 and �" = 0:108, which are half

and twice our estimate of �� (see Table III).

6.5. Departing from the neoclassical model

Our baseline model is a standard neoclassical model with fully rational individuals. It is worth

brie�y discussing various �behavioral�phenomena that our baseline model (or extensions to it) can

accommodate.

A wide variety of non-standard preferences may be folded into the interpretation for the prefer-

ence for wealth after death parameter �. As previously noted, this preference may re�ect a standard

bequest motive, or some version of �regret� or �peace of mind� that have been discussed in the

behavioral literature (Braun and Muermann (2004)).

Another possibility we considered is non-traditional explanations for the high fraction of indi-

viduals in our data who choose the 5 year guarantee option. One natural possibility that can be

ruled out is that this re�ects an in�uence of the 5 year guarantee as the default option. In practice

there is no default for individuals in our sample, all of whom annuitized at age 60 or 65. Individuals

in this market are required to annuitize by age 70 (for women) or 75 (for men). To annuitize before

that age, they must actively �ll a form when they decide to annuitize, and must check a chosen

guarantee length. Failure to complete such an active decision would simply delay annuitization

until the maximum allowed age.

Another natural possibility is that the popularity of the 5 year guarantee may partly re�ect

the well-known phenomenon in the marketing literature that individuals are more likely to �choose

the middle�(Simonson and Tversky (1992)). We therefore estimated a speci�cation of the model

in which we allow for the possibility that some portion of individuals �blindly�choose the middle,

that is the 5 year guarantee option. We allow such individuals to also di¤er in the mean mortality

rate. Row 23 summarizes the results from such a speci�cation.21

6.6. Estimates for a di¤erent population

As a �nal robustness exercise, we re-estimated the baseline model on a distinct sample of annuitants.

As mentioned brie�y in Section 2 and discussed in more detail in Appendix A, in our baseline

21Welfare of individuals who always choose the middle is not well de�ned, and the reported results only compute
the welfare for those individuals who are estimated to be �rational�and to choose according to the baseline model.
For comparability with the other speci�cations, we still scale the welfare estimates by the overall annuitized amount
in the market.
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estimates we limit the annuitant sample to the two-thirds of individuals who have accumulated

their pension fund with our company. Annuitants may choose to purchase their annuity from an

insurance company other than the one in which their funds have been accumulating, and about

one-third of the annuitants in the market choose to do so. As our sample is from a single company,

it includes those annuitants who accumulated their funds with the company and stayed with the

company, as well as those annuitants who brought in external funds. Annuitants who approach

the company with external funds face a di¤erent pricing menu than those who buy internally.

Speci�cally, the annuity payment rates are lower by 2.5 pence per pound of the annuitized amount

than the payment rates faced by �internal�annuitants.22 Annuitants who approach the company

with external funds may also be drawn from a di¤erent distribution of risk and preferences, which is

why we do not include them in our main estimates. The estimated parameters for this population

are, indeed, quite di¤erent from the estimates we obtain for the internal individuals (not shown).

Row 24 shows the results of estimating the model separately for this distinct group of individuals,

using their distinct pricing menu. We continue to �nd that the welfare minimizing mandate is of

no guarantee and that the welfare maximizing mandate is a 10 year guarantee, and it can get very

close to the welfare level of the �rst best outcome. The welfare cost of asymmetric information is
also quite similar: $137 in this �external�annuitant sample, compared to our baseline estimate of

$127 in our sample of annuitants who are �internal� to our �rm. This gives us some con�dence

that our results may be more broadly applicable to the U.K. annuitant population as a whole and

are not idiosyncratic to our particular �rm and its pricing menu.

7. CONCLUSIONS

This paper represents, to our knowledge, one of the �rst attempts to empirically estimate the

welfare costs of asymmetric information in an insurance market and the welfare consequences of

mandatory social insurance. We have done so in the speci�c context of the semi-compulsory U.K.

annuity market. In this market, individuals who save for retirement through certain tax-deferred

pension plans are required to annuitize their accumulated wealth. They are allowed, however, to

choose among di¤erent types of annuity contracts. This choice simultaneously opens up scope for

adverse selection as well as selection based on preferences over di¤erent contracts. We estimate that

both private information about risk and preferences are important in determining the equilibrium

allocation of contracts across individuals. We use our estimates of the joint distribution of risk and

preferences to calculate welfare under the current allocation and to compare it to welfare under

various counterfactual allocations.

We �nd that government mandates that eliminate any choice among annuity contracts do not

necessarily improve on the asymmetric information equilibrium. We estimate that a mandated

22We found it somewhat puzzling that payout rates are lower for individuals who approach the company with
external funds, and who therefore are more likely to be actively searching across companies. According to the
company executives, some of the explanation lies in the higher administrative costs associated with transferring
external funds, also creating higher incentives to retain internal individuals by o¤erring them better rates.
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annuity contract could increase welfare relative to the current equilibrium by as much as $127

million per year, or could reduce it by as much as $107 million per year, depending on what

contract is mandated. Moreover, the welfare maximizing choice for a mandated contract would not

be apparent to the government without knowledge of the joint distribution of risk and preferences.

Our results therefore suggest that achieving welfare gains through mandatory social insurance may

be harder in practice than simple theory would suggest.

Our results also suggest that, relative to a �rst-best symmetric information benchmark, the

welfare cost of asymmetric information along the dimension of guarantee choice is about 25 percent

of the maximum money at stake in this choice. These estimates account for about $127 million

annually, or about 2 percent of annual premia in the market. However, these quantitative results are

less robust to some of the modeling assumptions than the results concerning the optimal mandate.

Although our analysis is speci�c to the U.K. annuity market, the approach we take can be

applied in other insurance markets. As seen, the data requirements for recovering the joint distrib-

ution of risk and preferences are data on the menu of choices each individual faces, the contract each

chooses, and a measure of each individual�s ex-post risk realization. Such data are often available

from individual surveys or from insurance companies. These data are now commonly used to test

for the presence of asymmetric information in insurance markets, including automobile insurance

(Chiappori and Salanie (2000), Cohen and Einav (2007)), health insurance (Cardon and Hendel

(2001)), and long term care insurance (Finkelstein and McGarry (2006)), as well as annuity mar-

kets. This paper suggests that such data can now also be used to estimate the welfare consequences

of any asymmetric information that is detected, or of imposing mandatory social insurance in the

market.

Our analysis was made substantially easier by the assumption that moral hazard does not exist

in annuity markets. As discussed, this may be a reasonable assumption for the annuity market. It

may also be a reasonable assumption for several other insurance markets. For example, Cohen and

Einav (2007) argue that moral hazard is unlikely to be present over small deductibles in automobile

insurance. Grabowski and Gruber (2005) present evidence that suggests that there is no detectable

moral hazard e¤ect of long term care insurance on nursing home use. In such markets, the approach

in this paper can be straightforwardly adopted.

In other markets, such as health insurance, moral hazard is likely to play an important role.

Estimation of the e¢ ciency costs of asymmetric information therefore requires some additional

source of variation in the data to separately identify the incentive e¤ects of the insurance policies.

One natural source would be exogenous changes in the contract menu. Such variation may occur

when regulation requires changes in pricing, or when employers change the menu of health insurance

plans from which their employees can choose.23 Non-linear experience rating schemes may also

introduce useful variation in the incentive e¤ects of insurance policies (Abbring, Chiappori, and

Pinquet (2003), Abbring, Heckman, Chiappori, and Pinquet (2003), Israel (2004)). We consider

the application and extension of our approach to other markets, including those with moral hazard,

23See also Adams, Einav, and Levin (2009) for a similar variation in the context of credit markets.
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an interesting and important direction for further work.
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Appendix A. Additional details about the data

As mentioned in the text, we restrict our sample in several ways:

� As is common in the analysis of annuitant choices, we limit the sample to the approximately
sixty percent of annuities that insure a single life. The mortality experience of the single life

annuitant provides a convenient ex-post measure of risk; measuring mortality risk of a joint

life policy which insures multiple lives is less straightforward (Mitchell, Poterba, Warshawsky,

and Brown (1999), Finkelstein and Poterba (2004, 2006)).

� We also restrict the sample to the approximately eighty percent of annuitants who hold only
one annuity policy, since characterizing the features of the total annuity stream for individuals

who hold multiple policies is more complicated. Finkelstein and Poterba (2006) make a similar

restriction.

� We focus on the choice of guarantee period and abstract from a number of other dimensions

of individuals�choices.

� Individuals can choose the timing of their annuitization, although they cannot annuitize
before age 50 (45 for women) or delay annuitizing past age 75 (70 for women). We allow

average mortality and preferences for wealth after death to vary with age at purchase

(as well as gender), but do not explicitly model the timing choice.

�Annuitants may also take a tax-free lump sum of up to 25 percent of the value of the

accumulated assets. We do not observe this decision � we observe only the amount

annuitized �and therefore do not model it. However, because of the tax advantage of

the lump sum �income from the annuity is treated as taxable income �it is likely that

most individuals fully exercise this option, and ignoring it is therefore unlikely to be a

concern.

�To simplify the analysis, we analyze policies with the same payment pro�le, restricting
our attention to the 90 percent of policies that pay a constant nominal payout (rather

than payouts that escalate in nominal terms). As an ancillary bene�t, this may make

our assumption that individuals all have the same discount rate more plausible.

� We limit our sample of annuitants to those who purchased a policy between January 1, 1988
and December 31, 1994. Although we also have data on annuitants who purchased a policy

between January 1, 1995 and December 31, 1998, the �rm altered its pricing policy in 1995. An

exogenous change in the pricing menu might provide a useful source of variation in estimating

the model. However, if the pricing change arose due to changes in selection of individuals

into the �rm �or if it a¤ects subsequent selection into the �rm �using this variation without

allowing for changes in the underlying distribution of the annuitant parameters (i.e., in the

joint distribution of � and �) could produce misleading estimates. We therefore limit the

sample to the approximately one-half of annuities purchased in the pre-1995 pricing regime.
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In principle, we could also separately estimate the model for the annuities purchased in the

post-1995 pricing regime. In practice, the small number of deaths among these more recent

purchasers created problems for estimation in this sample.

� Annuitants may choose to purchase their annuity from an insurance company other than the

one in which their fund has been accumulating, and about one-third of annuitants market-

wide choose to do so. As our sample is from a single company, it includes both annuitants

who accumulated their fund with the company and stayed with the company, as well as those

annuitants who brought in external funds. We limit our main analysis to the approximately

two-thirds of individuals in our sample who purchased an annuity with a pension fund that

they had accumulated within our company. In the robustness section, we re-estimate the

model for the one-third of individuals who brought in external funds, and �nd similar welfare

estimates.

� The pricing of di¤erent guarantees varies with the annuitant�s gender and age at purchase.
We limit our sample of annuitants to those who purchased at the two most common ages of

60 or 65. About three-�fths of our sample purchased their annuity at 60 or 65.

Appendix B. Proof of Proposition 2

We can write the observed distribution of mortality outcomes and guarantee choices in terms of

the unobservables as

Pr (g(�; �) � yjmi � m) Pr(mi � m) =

Z 1

0
Pr (g(�; �) � yj�) Pr(mi � mj�)dF�(�) (22)

The left side of this equation is known from Z(g;m). From Proposition 1 we know that Pr(mi �
mj�) and F�(�) can be identi�ed from mortality data. Thus, all we need to show is that this

equation can be uniquely solved for Pr (g(�; �) � yj�). We will use the fact that mortality follows
an MPH model to derive an explicit expression for Pr (g(�; �) � yj�) in terms of the inverse Laplace
transform.24

Since Pr(mi � mj�) comes from an MPH model, we can write it as

Pr(mi � mj�) = 1� e���(m); (23)

where �(m) =
Rm
0  (t)dt is the integrated hazard function, which increases from 0 to 1. Substi-

24Alternatively, we could proceed by noting that for each x, equation (22) is a Fredholm integral equation of the
�rst kind with kernel Pr(mi � mj�). We could appeal to the theory of integral equations and linear operators to
show that the equation has a unique solution when Pr(mi � mj�) satis�es an appropriate condition. Proving the
proposition in this way would be slightly more general, but it would lead to a highly implicit function that de�nes
Pr (g(�; �) � xj�).
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tuting equation (23) into equation (22) and rearranging yields

Pr (g(�; �) � y;mi � m) =

Z 1

0
Pr (g(�; �) � yj�) (1� e���(m))dF�(�) = (24)

=

Z 1

0
Pr (g(�; �) � yj�) dF�(�)�

Z 1

0
Pr (g(�; �) � yj�) e���(m)dF�(�) =

= Pr (g(�; �) � y)�
Z 1

0
Pr (g(�; �) � yj�) e���(m)dF�(�):

The �rst part of the right side of this equation is simply the unconditional cumulative distribution

function of g and is known. The remaining integral on the right side is the Laplace transform of

Pr (g(�; �) � yj�) f�(�) evaluated at �(m). It is well known that the Laplace transform is unique

and can be inverted. If we let L�1fh(�)g(�) denote the inverse Laplace transform of h(�) evaluated
at �, then

Pr (g(�; �) � yj�) = 1

f�(�)
L�1fPr (g(�; �) � y)� Pr (g(�; �) � y;mi � �(�))g(�): (25)

This equation provides an explicit expression for Pr (g(�; �) � yj�), so it is identi�ed.
Given Pr (g(�; �) � yj�) we can recover F�j� if g(�; �) is invertible with respect to �, for every

�. With invertibility, we can write:

Pr (g(�; �) � yj�) = Pr
�
� � g�1� (�; y)j�

�
= F�j�(g

�1
� (�; y)j�): (26)

Thus, we identify F�j�.

Appendix C. Additional details about estimation

C.1. Likelihood

For each individual we observe mortality data, mi = (ci; ti; di), where ci is the time at which person

i entered the sample, ti is the time at which the person left the sample, and di indicates whether

the person died (di = 1) or was censored (di = 0). The contribution of an individual�s mortality to

the likelihood, conditional on �i, is:

Pr (mi = (ci; ti; di) j�; �) = Pr(t = tijt > ci; �; �)
di Pr(t � tijt > ci; �; �)

1�di =

=
1

S(�; �; ci)
(s(�; �; ti))

di (S(�; �; ti))
1�di ; (27)

where S(�; �; t) = exp
�
1
�(1� e

�t)
�
is the Gompertz survival function, and s(�; �; t) = �e�t exp

�
1
�(1� e

�t)
�

is the Gompertz density. The log likelihood of the mortality data is computed by integrating equa-

tion (27) over �, and adding up all individuals:

LM (�; ��; ��j (mi)
N
i=1) =

NX
i=1

log

�Z
Pr(mij�; �)

1

��
�

�
log�� ��

��

�
d�

�
: (28)
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We maximize equation (28) over �, ��, and �� to obtain an estimate of �. The initial estimates of

�� and �� are not used, as we obtain more e¢ cient estimate of these parameters in the next step

(described below).

The contribution of an individual�s guarantee choice to the likelihood is based on the guarantee

choice model above. Recall that the value of a given guarantee depends on preference for wealth

after death �, and annual mortality hazard, which depends on � and �. Some additional notation

will be necessary to make this relationship explicit. Let V A(g)0 (w0;�; �; �) be the value of an annuity

with guarantee length g to someone with initial wealth w0, Gompertz parameter �, mortality rate

�, and preference for wealth after death �. Conditional on �, the likelihood of choosing a guarantee

of length gi is:

Pr(gij�; �) =
Z
1

�
gi = argmax

g
V
A(g)
0 (w0;�; �; �)

�
dF�j�(�j�) (29)

where 1(�) is an indicator function. As mentioned in the text, we numerically veri�ed that the
relative value of a longer guarantee increases with �. Therefore, we know that for each � there

is some interval, [0; ��0;5(�; �)), such that the zero year guarantee is optimal for all � in that

interval. ��0;5(�; �) is the value of � that makes someone indi¤erent between choosing a 0 and 5

year guarantee. Similarly, there are intervals, [��0;5(�; �); �
�
5;10(�; �)), where the �ve year guarantee

is optimal, and [��5;10(�; �);1), where the ten year guarantee is optimal.25

We can express the likelihood of an individual�s guarantee choice in terms of these indi¤erence

cuto¤s as:

Pr(gij�; �) =

8><>:
F�j�

�
��0;5(�; �)

�
if g = 0

F�j�
�
��5;10(�; �)

�
� F�j�

�
��0;5(�; �)

�
if g = 5

1� F�j�
�
��5;10(�; �)

�
if g = 10

(30)

Given our lognormality assumption, the conditional cumulative distribution function F�j� (�) can
be written as:

F�j� (�
�(�; �)) = �

�
log(��(�; �))� ��j�

��j�

�
(31)

where �(�) is the normal cumulative distribution function, ��j� = �� +
��;�
�2�
(log� � ��) is the

conditional mean of �, and ��j� =

r
�2� �

�2�;�
�2�

is the conditional standard deviation of �. The

full log likelihood is obtained by combining Pr(gij�; �) and Pr(mij�; �), integrating over � , taking
logs, and adding up over all individuals:

L(�;�; �) =
NX
i=1

log

Z
Pr(mij�; �) Pr(gij�; �)

1

��
�

�
log�� ��

��

�
d�: (32)

25Note that it is possible that ��0;5(�; �) > �
�
5;10(�; �). In this case there is no interval where the �ve year guarantee

is optimal. Instead, there is some ��0;10(�; �) such that a 0 year guarantee is optimal if � < ��0;10(�; �) and a 10
guarantee is optimal otherwise. This situation (which does not create potential estimation problems, but simply
implies that a 5 year guarantee is never optimal) only arises for high values of ��s that are well outside the range of
our mortality data.
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We calculate the integral in equation (32) by quadrature. Let fxjgMj=1 and fwjgMj=1 be M
quadrature points and weights for integrating from �1 to 1. Person i�s contribution to the

likelihood is:

Li(�;�; �) =

MX
j=1

Pr(mij� = (exj��+�� ; �) Pr(gij� = exj��+�� ; �)�(xj)wj : (33)

We maximize the likelihood using a gradient based search. Speci�cally, we use the modeling lan-

guage AMPL along with the SNOPT sequential quadratic programming algorithm (Gill, Murray,

and Saunders (2002)) for maximization.

C.2. Guarantee indi¤erence curves

As mentioned in the text, the most di¢ cult part of calculating the likelihood is �nding the points

where people are indi¤erent between one guarantee option and another, that is �nding ��0;5(�; �)

and ��5;10(�; �). To �nd these points we need to compute the expected utility associated with each

guarantee length.

The value of a guarantee of length g with associated annual payments zt(g) is

V A(g)(w0;�; �) = max
ct;wt

TX
t=0

at(�)�
t c
1�

t

1� 
 + �ft(�)�
t (wt + Zt(g))

1�


1� 
 (34)

s.t. wt+1 = (1 + r)(wt + zt(g)� ct) � 0

where � is the discount factor, r is the interest rate, and Zt(g) =
t0+gP
�=t

�
1
1+r

���t
z� (g) is the present

discounted value of guaranteed future payments at time t. Also, at(�) =
Qt
�=1(1 � �� (�)) is the

probability of being alive at time t and ft(�) = �t(�)
Qt�1
�=1(1 � �� (�)) is the probability of dying

at time t. Note that a person who dies at time t, dies before consuming ct or receiving zt(g).

Technically, there are also no borrowing constraints and non-negativity constraints on wealth and

consumption. However, it is easy to verify that these constraints never bind, the former due to the

fact that the individuals are retirees who do not accumulate new income, and the latter due to the

form of the utility functions.

We used the �rst order conditions from equation (34) to collapse the problem to a numerical

optimization over a single variable, consumption at time zero. The �rst order conditions for equation

(34) are

�tat(�)c
�

t =  t 8t 2 f0; 1; :::; Tg (35)

�tft(�)�(wt +G
g
t )
�
 = � t +

1

1 + r
 t�1 8t 2 f1; 2; :::; Tg (36)

(wt + zt � ct)(1 + r) = wt+1 8t 2 f0; 1; :::; T � 1g (37)

where  t is the Lagrange multiplier on the budget constraint at time t. Initial wealth w0 is taken

as given. It is not possible to completely solve the �rst order conditions analytically. However,
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suppose we knew c0. Then from the budget constraint (equation (37)), we can calculate w1. From

the �rst order condition for c0 (equation (35)), we can �nd  0:

 0 = s0(�)�
0c�
0 : (38)

We can then use the �rst order condition for w1 to solve for  1

 1 = �f1(�)�1�(w1 +G
g
1)
�
 +

1

1 + r
 0: (39)

Then,  1 and the �rst order condition for ct gives c1:

c1 =

�
 1

�1a1(�)

��1=

: (40)

Continuing in this way, we can �nd the whole path of optimal ct and wt associated with the cho-

sen c0. If this path satis�es the non-negativity constraints on consumption and wealth, then we have

de�ned a value function of c0, ~V (c0; g; �; �). Thus, we can reformulate the optimal consumption

problem as an optimization problem over one variable.

max
c0

~V (c0; g; �; �): (41)

Numerically maximizing a function of a single variable is a relatively easy problem and can be

done quickly and robustly. We solve the maximization problem in equation (41) using a simple

bracket and bisection method. To check our program, we compared the value function as computed

in this way and by an earlier version of the program that used a discretization and backward

induction approach. They agreed up to the expected precision.

Finally, the guarantee cuto¤s, ��0;5(�; �) and �
�
5;10(�; �), are de�ned as the solution to

V A(0)(w0;�; �
�
0;5(�; �)) = V A(5)(w0;�; �

�
0;5(�; �)) (42)

V A(5)(w0;�; �
�
5;10(�; �)) = V A(10)(w0;�; �

�
5;10(�; �)) (43)

For each �, we solve for these cuto¤ points using a simple bisective search. Each evaluation of the

likelihood requires knowledge of ��0;5(�(xj); �)) and �
�
5;10(�(xj); �)) at each integration point xj .

Maximizing the likelihood requires searching over �� and ��, which will shift �(xj). As mentioned

in the text, rather than recomputing these cuto¤ points each time �(xj) changes, we initially

compute them on a dense grid of values of �, and log-linearly interpolate as needed.

47



Figure 1: Schematic indi¤erence sets

Choose no
guarantee period

Choose 10 year
guarantee period

Choose 5
year
guarantee
period

The �gure provides an illustration of the pairs of points (�,�) which would make individuals indi¤erent between

choosing 0 year guarantee and 5 year guarantee (lower left curve) and between 5 year guarantee and 10 year guarantee

(upper right curve). These particular curves are computed based on our baseline estimate of � and the annuity rates

faced by 65 year old males; the sets are not a function of the other estimated parameters. Individuals are represented

as points in this space, with individuals between the curves predicted to choose 5 year guarantee, and individuals

below (above) the lower (upper) curve predicted to choose 0 (10) year guarantee.
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Figure 2: Estimated distributions

60 Females

65 Females

65 Males

60 Males

The �gure presents the estimated indi¤erence sets for each age-gender cell, with a scatter plots from the estimated

joint distribution of (log�,log�) super-imposed; each point is a random draw from the estimated distribution in the

baseline speci�cation. The estimated indi¤erence sets for the 65 year old males are given by the pair of dark dashed

lines, for the 60 year old males by the pair of lighter dashed lines, for the 65 year old females by the pair of dotted

lines, and for the 60 year old females by the pair of solid lines. The estimated indi¤erence sets for the 65 year old

males are the same as those shown in Figure 1 (but a �close up�and in log scale).
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Figure 3: Welfare contours

The �gure super-imposes iso-welfare (wealth equivalent) contour lines on the previous Figure 2. Individuals with

wealth equivalent greater than 100 would voluntarily annuitize, while individuals with wealth equivalent less than

100 would not. Each panel represents a di¤erent age-gender cell: 60 year old females (upper left), 65 year old females

(upper right), 60 year old males (lower left), and 65 year old males (lower right).
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Figure 4: Welfare change contours (symmetric information)

The �gure presents Figure 2, with contour lines that present the change in welfare (wealth equivalent) from the

counterfactual exercise of symmetric information. Individuals with positive (negative) welfare change are estimated

to gain (lose) from symmetric information, compared to their welfare in the observed asymmetric information equi-

librium. Each panel represents a di¤erent age-gender cell: 60 year old females (upper left), 65 year old females (upper

right), 60 year old males (lower left), and 65 year old males (lower right).
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Table I: Summary statistics

60 Females 65 Females 60 Males 65 Males All

No. of obs. 1,800 651 1,444 5,469 9,364

Fraction choosing 0 year guarantee 14.0 16.0 15.3 7.0 10.2
Fraction choosing 5 year guarantee 83.9 82.0 78.7 90.0 86.5
Fraction choosing 10 year guarantee 2.1 2.0 6.0 3.0 3.2

Fraction who die within observed mortality period:
   Entire sample 8.4 12.3 17.0 25.6 20.0
   Among those choosing 0 year guarantee 6.7 7.7 17.7 22.8 15.7
   Among those choosing 5 year guarantee 8.7 13.3 17.0 25.9 20.6
   Among those choosing 10 year guarantee 8.1 7.7 16.1 22.9 18.5

Recall that we only observe individuals who are alive as of January 1, 1998, and we observe mortality only for

individuals who die before December 31, 2005.
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Table II: Annuity payment rates

Guarantee Length 60 Females 65 Females 60 Males 65 Males

0 0.1078 0.1172 0.1201 0.1330
5 0.1070 0.1155 0.1178 0.1287

10 0.1049 0.1115 0.1127 0.1198

These are the rates from January 1992, which we use in our baseline speci�cation. A rate is per pound annuitized.

For example, a 60 year old female who annuitized X pounds and chose a 0 year guarantee will receive a nominal

payment of 0.1078X every year until she dies.
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Table III: Parameter estimates

Estimate Std. Error

μα 60 Females ­5.76 (0.165)
65 Females ­5.68 (0.264)
60 Males ­4.74 (0.223)
65 Males ­5.01 (0.189)

σα 0.054 (0.019)

λ 0.110 (0.015)

μβ 60 Females 9.77 (0.221)
65 Females 9.65 (0.269)
60 Males 9.42 (0.300)
65 Males 9.87 (0.304)

σβ 0.099 (0.043)

ρ 0.881 (0.415)

No. of Obs. 9,364

These estimates are for the baseline speci�cation described in the text. Standard errors are in parentheses. Since

the value of � is estimated separately, in a �rst stage, we bootstrap the data to compute standard errors using 100

bootstrap samples.
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Table IV: Within-sample �t

Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted

Fraction choosing 0 year guarantee 14.00 14.42 15.98 15.32 15.30 14.49 6.99 7.10 10.24 10.22
Fraction choosing 5 year guarantee 83.94 83.16 82.03 83.21 78.67 80.27 89.98 89.75 86.52 86.57
Fraction choosing 10 year guarantee 2.06 2.42 2.00 1.47 6.03 5.25 3.04 3.15 3.24 3.22

Fraction who die within observed mortality period:
   Entire sample 8.44 7.56 12.29 14.23 17.04 19.73 25.56 25.80 20.03 20.20
   Among those choosing 0 year guarantee 6.75 6.98 7.69 13.21 17.65 18.32 22.77 23.14 15.75 18.60
   Among those choosing 5 year guarantee 8.74 7.63 13.30 14.39 16.99 19.86 25.87 25.31 20.60 20.31
   Among those choosing 10 year guarantee 8.11 8.48 7.69 16.05 16.09 21.67 22.89 27.88 18.48 22.37

Overall60 Females 65 Females 60 Males 65 Males

This table summarizes the �t of our estimates within sample. For each age-gender cell, we report the observed

quantity (identical to Table I) and the corresponding quantity predicted by the model. To construct the predicted

death probability, we account for the fact that our mortality data is both censored and truncated, by computing

predicted death probability for each individual in the data conditional on the date of annuity choice, and then

integrating over all individuals.
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Table V: Out�of-sample �t

60 Females 65 Females 60 Males 65 Males Overall

Life Expectency:
   5th percentile 87.4 86.7 79.4 81.4 79.8
   Median individual 88.1 87.4 80.0 82.1 82.2
   95th percentile 88.8 88.2 80.7 82.8 88.4

   U.K. mortality table 82.5 83.3 78.9 80.0 80.5

Expected value of payments:
   0 year guarantee 19.97 20.34 20.18 21.41 20.63
   5 year guarantee 19.77 20.01 19.72 20.64 20.32
   10 year guarantee 19.44 19.49 19.12 19.61 19.45
   Entire sample 19.79 20.05 19.74 20.66 20.32

   Break­even interest rate 0.0414 0.0430 0.0409 0.0473 0.0448

This table summarizes the �t of our estimates out of sample. The top panel report life expectancies for di¤erent

percentiles of the mortality distribution, using the parametric distribution on mortality to predict mortality beyond

our mortality observation period. The bottom row of this panel presents the corresponding �gures for the average

pensioner, based on the PFL/PML 1992 period tables for �life o¢ ce pensioners� (Institute of Actuaries (1992)).

While the predicted life expectancy is several years greater, this is not a problem of �t; a similar di¤erence is also

observed for survival probabilities within sample. This simply implies that the average �life o¢ ce pensioner� is not

representative of our sample of annuitants. The bottom panel provides the implications of our mortality estimates

for the pro�tability of the annuity company. These expected payments should be compared with 20, which is the

amount annuitized for each individual in the model. Of course, since the payments are spread over a long horizon

of several decades, the pro�tability is sensitive to the interest rate we use. The reported results use our baseline

assumption of a real, risk-free interest rate of 0.043. The bottom row provides the interest rate that would make the

annuity company break even (net of various �xed costs).
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Table VI: Welfare estimates

60 Females 65 Females 60 Males 65 Males Average

Observed equilibrium:
   Average wealth­equivalent 100.24 100.40 99.92 100.17 100.16
   Maximum Monet at Stake (MMS) 0.56 1.02 1.32 2.20 1.67

Symmetric information counterfactual:
   Average wealth­equivalent 100.38 100.64 100.19 100.74 100.58
   Absolute welfare difference (M pounds) 43.7 72.0 82.1 169.8 126.5
   Relative welfare difference (as a fraction of MMS) 0.26 0.23 0.21 0.26 0.25

Mandate 0 year guarantee counterfactual:
   Average wealth­equivalent 100.14 100.22 99.67 99.69 99.81
   Absolute welfare difference (M pounds) ­30.1 ­53.2 ­73.7 ­146.1 ­107.3
   Relative welfare difference (as a fraction of MMS) ­0.18 ­0.17 ­0.19 ­0.22 ­0.21

Mandate 5 year guarantee counterfactual:
   Average wealth­equivalent 100.25 100.42 99.92 100.18 100.17
   Absolute welfare difference (M pounds) 2.8 6.0 1.7 1.6 2.1
   Relative welfare difference (as a fraction of MMS) 0.02 0.02 0.004 0.002 0.006

Mandate 10 year guarantee counterfactual:
   Average wealth­equivalent 100.38 100.64 100.19 100.74 100.58
   Absolute welfare difference (M pounds) 43.7 72.1 82.3 170.0 126.7
   Relative welfare difference (as a fraction of MMS) 0.26 0.23 0.21 0.26 0.25

The �rst panel presents estimated average wealth equivalents of the annuities under the observed equilibrium,

based on the baseline estimates. The column labeled average is an average weighted by sample size. Wealth equivalents

are the amount of wealth per 100 units of initial wealth that we would have to give a person without an annuity so

he is as well o¤ as with 20 percent of his initial wealth annuitized. The second row presents our measure of MMS as

de�ned in equation (17).

The second panel presents counterfactual wealth equivalents of the annuities under the symmetric information

counterfactual. That is, we assign each individual payment rates such that the expected present value of payments

is equal to the average expected payment per period in the observed equilibrium. This ensures that each person

faces an actuarially fair reductions in payments in exchange for longer guarantees. The absolute di¤erence row shows

the annual cost of asymmetric information in millions of pounds. This cost is calculated by taking the per pound

annuitized di¤erence between symmetric and asymmetric information wealth equivalents per dollar annuitized (20,

given the model) and multiplying it by the amount of funds annuitized annually in the U.K., which is six billion

pounds. The relative di¤erence uses the MMS concept as the normalization factor.

The third panel presents the same quantities for counterfactuals that mandate a single guarantee length for all

individuals, for the actuarially fair pooling price. Each set of results investigates a di¤erent mandate.
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Table VII: Robustness

Symm. info. Mandate 0 Mandate 5 Mandate 10

1 Baseline specification 100.16 126.5 ­107.3 2.1 126.7

Different choices of γ's:
2    Consumption γ=5, Wealth after death γ=5 100.51 111.0 ­117.0 0.0 111.0
3    Consumption γ=1.5, Wealth after death γ=1.5 99.92 133.2 ­102.0 0.6 133.2
4    Consumption γ=3, Wealth after death γ=5 100.47 120.0 ­123.0 3.0 120.0
5    Consumption γ=3, Wealth after death γ=1.5 99.94 135.3 ­96.9 2.1 135.3
6 Row 5 + allow heterogeneity in initial wealtha 101.18 127.4 ­148.3 ­32.9 128.8

Other parameter choices:
7    r=0.05 and δ=0.05 99.29 119.4 ­97.5 5.7 119.4
8    January 1990 annuity rates 100.16 123.0 ­112.5 0.0 123.0

Wealth portfolio outside of compulsory annuity:
9 Fraction annuitized (η) = 0.3 100.65 114.0 ­118.0 0.0 114.0
10 Fraction annuitized (η) = 0.1 99.93 135.0 ­108.0 ­4.2 135.0
11     Allow heteregoeneity in ηb 100.22 141.3 ­113.7 2.5 132.4
12 Half of initial wealth in public annuityc 99.95 255.6 ­426.3 ­34.2 243.6

Parametereization of heterogeneity:
13 Non­Gompertz mortality distributiond 100.06 144.0 ­100.8 6.0 144.0
14 α dist. Gamma, β dist. Lognormal 100.20 132.0 ­111.6 3.0 132.0
15     α dist. Gamma, β dist. Gamma 100.14 123.0 ­105.6 3.0 123.0
16 Allow covariatese 100.17 132.0 ­110.1 3.0 132.0
17 β fixed, Consumption γ heterogeneousf 100.55 129.3 ­110.0 2.1 129.4
18     Heterogeneity in both β and γ 100.05 131.9 ­117.0 ­5.9 129.0

Different information structure
19    Biased beliefs: θ = 0.5 100.16 122.9 ­104.0 3.0 122.9
20    Biased beliefs: θ = 2 100.19 126.0 ­101.6 5.9 126.0
21    Uncertain α: σε = 0.027 100.15 128.9 ­104.7 5.9 128.9
22    Uncertain α: σε = 0.108 100.17 126.0 ­105.9 3.0 126.0

Departure from neo­classical model:
23 Some individuals always "pick the middle"g 100.22 132.0 ­99.9 9.0 132.0

Different sample:
24 "External" individualsh 95.40 137.4 ­134.4 ­16.8 137.7

Specification Average wealth
equivalent

Average absolute welfare difference (million pounds)

The table reports summary results � average wealth equivalent and average welfare e¤ects � from a variety of

speci�cations of the model. Each speci�cation is discussed in the text in more detail. Each speci�cation is shown on

a separate row of Table VII and di¤ers from the baseline speci�cation of Table VI (which is reproduced in the �rst

row of Table VII) in only one dimension, keeping all other assumptions as in the baseline case.
a See text for the parameterization of the unobserved wealth distribution. For comparability, the average wealth-

equivalent is normalized to be out of 100 so that it is on the same scale as in the other speci�cations.
b See text for the parameterization of the unobserved fraction of non-annuitized wealth (�) distribution.
c We assume the public annuity is constant, nominal, and actuarially fair for each person.
d This speci�cation uses hazard rate of �i exp

�
�(t� t0)

h
�
with h = 1:5 (Gompertz, as in the baseline, has

h = 1).
e Covariates (for the mean of both � and �) consist of the annuitized amount and the education level at the

individual�s ward.
f � is �xed at the estimated �� (see Table III). Since the resulting utility function is non-homothetic, we use

the average wealth in the population and renormalize, as in row 6. See text for more details.
g The welfare estimates from this speci�cation only compute welfare for the �rational� individuals, ignoring the

individuals who are assumed to always pick the middle.
h �External�individuals are individuals who did not accumulated their annuitized funds with the company whose

data we analyze. These individuals are not used in the baseline analysis (see Appendix B).
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