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Abstract

We optimize the nominal final focus system for CLIC to maximize the luminosity at
the IP. We investigate the effect of quadrupole optimization after sextupole optimization for
high and low dispersion reductions. Finally we try to improve our optimization further via
a small corrective optimization and check that the optimal dispersion reduction also holds
for the entire Beam Delivery System (BDS).
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Introduction

The nominal final focus system (FFS) of the CLIC follows the design given by P. Raimondi and A. Seryi
in [1]. This design, in its original configuration, contains high order aberrations visible, for instance, in
deformations of the phase-space shape. In [3] it was shown that a reduction of the dispersion led to a
luminosity increase for a modified version of the FFS with more non-linear elements. It is the scope of
this paper to find the optimum dispersion for the nominal FFS and evaluate the luminosity gain.

Optimization Method and Solution Stability

We use the MAPCLASS [2] to maximize the luminosity for different dispersions. The different disper-
sion levels are obtained by scaling the bending angles of the FFS dipoles. The optimization is done in
two steps, first optimizing the sextupole strengths and secondly the quadrupole strengths (the magnet
names are given in Table 1). We do the calculations up to sixth order and only introduce synchrotron
radiation in the luminosity calculation.

First step SF6, SF5, SD4, SF1,SD0
Second step QF8, QD7, QF3a, QF3b, QD2

Table 1: Sextupoles and quadrupoles used in the two steps of the optimization. The numbers appearing
in the names are ordered in increasing distance to the IP.

To test the stability of the solution, we started a calculation from zero sextupole strength for all the
sextupoles. Even when doing so, the Simplex method still converges to the right solution.

Results

We see from Figure 1, that by decreasing the dispersion, we can achieve a luminosity of
���������	�
�����
�

���������������������
, which is a 28% increase from the nominal FFS. The Figure furthermore shows, that the

effect of changes in the quadrupole strength is greatly decreased as the dispersion decreases, as it would
be expected. At around 25% reduction of the dispersion, the effect of quadrupole optimization is, within
the errorbars, completely negligible.
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Figure 1: Luminosity versus dispersion reduction through the FFS.

As a test of validity, we ran an optimization of all ten parameters, starting from the optimized values
found after the quadrupole optimization. This was done to check for any cross correlations between the
two parameter-sets. This attempt did not yield any improvement of the luminosity beyond the error-bars,
and we therefore believe, that the two parameter-sets are only weakly correlated.
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Figure 2: Beam size after optimization of sextupoles and quadrupoles. Values are shown for calculations
with and without synchrotron radiation.

We see in Figure 2 that the vertical beam size is roughly constant, when we include the synchrotron
radiation, while the horizontal beam size decreases with the dispersion. This means that the general
gain we see in the luminosity is contributed by a change in the horizontal size of the beam. We would
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expect the curves with and without radiation considered to go asymptotically toward each other as the
dispersion goes to zero, as the radiation of the beam is mainly due to the dispersion. For the horizontal
beam size, this is verified by Figure 2. In the vertical case the dispersion reduction is not investigated to
a low enough value for it to be verified, but we do see the two curves approach each other.

Based on these results, a dispersion reduction of 21 % is the best choice. Furthermore, a decrease
in dispersion would mean an increase in multipole strength, which would lead to an increased orbit
instability. We find for this dispersion reduction, that the multipole values should be increased from the
nominal values by the percentage given in Table 2.

Name Strength Correction [%] Name Strength Correction [%]

SD0 27.0 QD2 0.03
SF1 27.4 QF3a 0.08
SD4 26.6 QF3b -0.26
SF5 24.6 QD7 -0.64
SF6 8.2 QF8 1.10

Table 2: Optimized multipole strengths for a 21 % dispersion reduction.

Plotting the horizontal phase-space distribution (Figure 3) and beam profile (Figure 4) for the 21 %
dispersion reduction, we see that there are still a few particles in the far outer rims of the beam, but this
is only about 0.1 % of the particles. This could probably be improved by adding higher order multipolar
correctors.
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Figure 3: Phase-space plot of the ( � ,��� )-plane
for 21% dispersion reduction.
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Figure 4: Beam-profile at the IP for 21% dis-
persion reduction.
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Figure 5: Relative increase in the sextupole strength.

The evolution of the strengths of SD0 and SF1 as a function of the dispersion reduction in the FFS
are shown in Figure 5. The coefficients of parabolic fits are given in the Table 3

Coefficients: � � �����
�
���

SF1 SD0
a

�����	����������

a

�����	� � � ����

b 
 ����������� ��� b 
 ������� ��� ���
c

��� � � ����� ���
c

� ���
� � � � ���

Table 3: Fitting parameters for SDF1 and SD0.

Verification of dispersion reduction

Performing the same optimization to the entire BDS, we get Figure 6 by doing the optimization de-
scribed in Table 4.
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Figure 6: Luminosity versus dispersion reduction through the BDS.

First step SF6, SF5, SD4, SF1,SD0
Second step OF1, OD0, OF4, OD4

Third step DD0, DF0, DF4
Fourth step QF8, QD7, QF3a, QF3b, QD2
Fine-tuning All of the above

Table 4: Sequence for adjusting the relevant circuits.

This shows that the optimum of 21% dispersion reduction also holds for the entire BDS. We see that
the luminosity increase is reduced from the previous 28% to 18%, when the entire BDS is taken into
consideration.

Conclusion

We have found that a 21 % reduction in the final focus dispersion of CLIC, increases the luminosity by
18 %. This reduction also gives a more Gaussian shape of the beam.
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