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Abstract. Overloading of road freight vehicles accelerates road damage, creates unfair competition in the transport mar-
ket, and increases safety risk. There is a dearth of research on the mining of data of highway Freight Weight (FW), and 
this paper therefore aims to discover factors affecting road freight overloading based on highway FW data, with a view of 
developing strategies to mitigate such occurrences. A comprehensive sampling survey of road freight transportation was 
conducted in Anhui Province (China). Vehicle Characteristics (VC), Operation Mode (OM), and transportation informa-
tion from a total of 3248 trucks were collected. In order to take advantage of the strengths associated with both statistical 
modelling techniques and non-parametric methods, a Classification And Regression Tree (CART) technique was integrat-
ed with Binary Logistic Regression (BLR) to reveal the factors affecting road freight overloading. The classification efficacy 
test shows that the BLR–CART method outperformed the BLR method in term of accuracy. It is also revealed that the fac-
tors affecting overloading of freight vehicles are the Type of Transportation (ToT), Rated Load (RL), OM, FW during the 
investigation period, interaction between RL and FW, and interaction among RL, FW, and Average Haul Distance (AHD). 
Road transport authorities should pay greater attention to these factors in order to improve efficiency and effectiveness of 
overloading inspection.

Keywords: highway transportation, overloaded trucking, sampling survey, classification and regression tree (CART), binary  
logistic regression (BLR), overloading inspection.

Introduction

Road freight transport is one of the dominant modes of 
freight transportation of the world. As the number of 
heavy trucks increases progressively, more and more de-
veloping countries are preoccupied with solving the prob-
lem of overloaded trucking, due to the lack of transport 
infrastructure and effective enforcement of truck load 
regulation. According to data collected at some Weigh-In-
Motion (WIM) stations, in China, Indonesia and Malay-
sia, overloaded trucks account for 40…70% of all trucks 
during peak months (Jihanny et al. 2018; Yassenn et al. 
2011; Zhao et al. 2012), and the average overloading ratio 
(i.e. load of goods that exceeds the Rated Load (RL) di-
vided by the rated vehicle load) for the overloaded trucks 
varies between 25…70%. For bulk goods transportation 
(e.g., coal, sand, ore, iron) of China, the maximum over-
loading ratio hits 400% (Li et al. 2009; Wu et al. 2012).

Previous studies have demonstrated a number of fun-
damental issues created by overloaded trucks, including 
accelerated pavement wear, unfair competition, and in-
creased risk of road crash (Deng, Yan 2018; Karim et al. 
2013; Zhang et  al. 2012b; Rys et  al. 2016). Pais et  al. 
(2013) found that overloading of freight vehicles results 
in accelerated aging of road structures such as bridges 
and viaducts and the substructure of roads. The main-
tenance costs of roads due to overloaded vehicles are at 
least 100% higher than those with legal loads. Similarly, 
Titi et al. (2018) revealed that a typical overweight truck 
is predicted to contribute over 1000% of the bottom-up 
fatigue cracking caused by a typical legal-weight truck. 
In addition to accelerated pavement wear, Van Loo and 
Henny (2005) indicated that overloading creates an illegal 
and unfair advantage for some operators, allowing them 

   * Corresponding author. E-mail: yikaichen@hfut.edu.cn
** Corresponding author. E-mail: shiqin@hfut.edu.cn

Copyright © 2020 The Author(s). Published by VGTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/441635453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3846/transport.2020.12635


Transport, 2020, 35(3): 236–246 237

to pay lower prices per kilo of goods for the same journey. 
Furthermore, overloading may result in longer braking 
distances, decreased vehicle stability, and more frequent 
unsafe manoeuvres made by other vehicles, which follow 
the slow-moving overloaded vehicle (Brewer 2000; Jacob, 
Feypell-de La Beaumelle 2010), which may increase the 
occurrence of traffic crashes.

In order to solve the problems caused by overloading, 
during the last few decades, numerous weight enforce-
ment campaigns have been conducted in many countries 
to prevent truck overloading. In the United States, Europe, 
Canada and Japan, on-board load sensors and fixed weigh-
ing stations consisting of WIM, video cameras, and static 
weighing equipment have been implemented to iden-
tify and continuously monitor overloaded trucks (Devlin 
2008; Jacob, Van Loo 2008; Trzciński et al. 2017, 2018). 
For overloaded trucks identified by these detection sys-
tems, a warning is sent to the registered owners and they 
are subjected to pay charges with a deterrent amount of 
money. With regard to recidivist carriers, a probationary 
period is enforced (Honefanger et al. 2007). With these 
efforts, the enforcement campaigns successfully restrict-
ed most overloaded vehicles from entering the highways 
(Hamsley et al. 2007). The situation in China, however, is 
quite different. Before 2016, although fixed weighing sta-
tions and mobile weighing stations were used comprehen-
sively to identify overloaded trucks, the truck was released 
and continued travelling to its destination if the drivers 
paid a fine. The regulation has, however, become much 
stricter since September 2016 after new legislation was 
published by the Ministry of Transport (China), which 
stipulated that, in addition to a fine up to 30000 CNY to 
the owners or drivers of oversized or overloaded trucks, 
trucks must go to a designated fixed weighing station to 
discharge or transfer goods to other trucks. In addition, 
registered owners are recorded on a “blacklist” by the Traf-
fic Management Department (MoT PRoC 2016).

In addition to practical measures, a limited number 
of studies pertaining to this area have been undertaken 
that focus on the analysis of the economic relationship 
between government, carriers, and other road freight par-
ticipants, as well as suitable countermeasures for overload-
ing. In Zhang et al. (2012a) research, a nested logit model 
was developed considering the hierarchical relationship 
between the degree of overload and the trip route for the 
carrier, and the trip decision behaviours of overloaded 
vehicles were analysed. Moreno-Quintero et  al. (2013) 
proposed a bi-level modelling approach to represent the 
interaction between the vehicle loading practices of road 
freight transport carriers and the decisions of a road 
planning authority. The optimal number of inspection 
sites and fine level was proposed to minimize road main-
tenance cost. To solve the problem of overloaded trucks 
on intercity freight systems, Liu et al. (2017) developed a 
system dynamics model to represent the interactions of 
different agent (e.g., freight owners, infrastructure opera-
tors, government) decisions and performed a long-term 

evaluation of alternative modal shift policies in terms of 
economic effects and social and environmental effects. 
Torres Martínez et al. (2018) employed the Highway De-
velopment and Management 4 (HDM4) model to assess 
the economic benefits of enforcing axle-load regulations 
by applying it to the Douala-N’Djamena corridor in Cam-
eroon. They found that every EUR invested on axle-load 
control generates more than 20 EUR of savings in road 
user costs and road maintenance and rehabilitation ex-
penditures. In research, based on the experimental data 
of trucks’ axle load collected by WIM system, the chaos 
theory has been applied to predict the ratio of trucks likely 
to be overloaded in order to make an appropriate time 
table of human resources in vehicles’ axle loads control 
(Mahmoudabadi, Abolghasem 2013). 

Despite the contributions of the previous work, iden-
tification of factors affecting road freight overloading is 
seriously insufficient due to the lack of reliable data of 
highway freight transportation. Knowing influencing fac-
tors such as characteristics of truck, route, and carrier Op-
eration Mode (OM) would facilitate supervision at load-
ing sites and the location of targeted inspection towards 
suspicious trucks on the preferred routes of overloaded 
truck. These, in turn, help reduce enforcement costs and 
promote efficiency.

Methodologies that identify influencing factors are 
two-folds:

 – linear regression models based on statistical model-
ling techniques, such as binary/multivariate logit and 
probit models, log-linear models, etc. (Mannering, 
Bhat 2014; Xu et al. 2015). One limitation associated 
with the above traditional linear regression models 
is strict assumptions are required, e.g., outcomes are 
independent, variations among individuals are small 
enough to be neglected. This limitation can be allevi-
ated by more advanced linear regression models, e.g., 
the hierarchical logit, nested logit, multi-level logit, 
mixed logit, heteroskedastic probit (Mujalli, De Oña 
2013);

 – nonlinear regression / non-parametric models based 
on data mining and machine learning (e.g. decision 
trees, artificial neural network, support vector ma-
chine, Bayesian networks random forest, memory 
based reasoning, boosting, bagging and ensemble) 
(Stanfill, Waltz 1986; Adla et al. 2014; Bhattacharya, 
Mishra 2018; Brar, Elsayed 2018; Li et al. 2014; Nesa 
et al. 2018; Wang et al. 2018; You et al. 2017). Linear 
regression models require the relationship between 
the dependent and explanatory variables follows a 
linear function. When this is not hold true, nonlinear 
regression models are more promising choices. Non-
linear regression models are well-known for their ca-
pability of extracting the useful hidden information 
from the massive archived data as well as their supe-
rior performance in classification and prediction. In 
spite of the effectiveness of the linear and nonlinear 
regression models, which were frequently used in 
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previous studies, a combination of high-performance 
models usually result in better accuracy due to gen-
eralization (Abdel-Aty et al. 2012).

In order to mitigate the research gaps mentioned 
above, this paper identifies factors affecting road freight 
overloading based on data collected from a survey of 
highway FW of Anhui Province (China) in 2015. An inte-
grated Binary Logistic Regression (BLR) – Classification 
And Regression Tree (CART) model (BLR–CART), which 
combines the advantages of both linear and nonlinear re-
gression models, is proposed to analyse the data. First, the 
BLR model and the CART model were used to identify the 
main effects of factors affecting road freight overloading, 
respectively. Continuous independent variables, which 
were not identified by the former but were identified by 
the latter, were grouped according to the results of the 
CART model and then re-entered into the BLR model. 
Second, the interaction terms of factors derived from the 
CART model were re-entered into the BLR model. Subse-
quently, a classification efficacy test was used to demon-
strate the advantage of the integrated BLR–CART model 
over the traditional BLR model. Finally, based on the final 
factors identified by the BLR–CART model, enforcement 
countermeasures for overloaded trucks were proposed in 
terms of policy formulation, supervision, and administra-
tion.

1. Methods

1.1. Conception of BLR–CART model

Logistic regression is a multivariate analysis method wide-
ly used for quantitative description of the relationship be-
tween dependent and independent variables (Zuo et  al. 
2016). BLR is applied when the dependent variables are 
binary. However, such method has the following caveats:

 – logistic regression focuses on the main effects of 
independent variables. When there are more in-
dependent variables, the number of possible inter-
action terms increases rapidly. The inclusion of all 
the possible interaction terms will negatively affect 
the goodness-of-fit and classification efficacy of the 
model. Thus, in current studies, the incorporation of 
interaction terms depends more on experience and 
professional judgment. In this respect, the interaction 
effects between variables are usually not completely 
explored (Lei et al. 2015);

 – when continuous independent variables and depend-
ent variables are nonlinearly related, the significance 
of continuous independent variables may be errone-
ously predicted (Wang, Priestley 2017).

The CART model can resolve these problems effec-
tively, as it can analyse the mechanism of a variable in 
subgroups in detail to clearly demonstrate the interac-
tion effects between variables and their relationships. 
Furthermore, for continuous explanatory variables, the 
CART model can derive the optimal grouping modes 
with maximum information gains (Lei et al. 2015). How-
ever, the CART model cannot explain the main effects of 

independent variables properly, which happens to be the 
strong points of the logistic regression.

Therefore, this study proposed an integrated BLR–
CART model, which takes advantage of strengths of 
both BLR and CART, to identify impact factors affect-
ing road freight overloading. First, significance tests were 
performed for all independent variables, and those not 
showing statistical significance were eliminated. Second, 
the BLR and CART models were applied respectively to 
identify impact factors to road freight overloading. For 
continuous independent variables identified by the CART 
model but not by the BLR model, grouping was performed 
according to the division results of the CART model and 
then were included in the BLR model. Meanwhile, the in-
teraction terms acquired by the CART model were also 
included in the BLR model. This refined BLR model is 
estimated with the survey data explained earlier. The de-
tails of the BLR–CART model are given in the following 
subsections.

1.2. Significance tests of independent variables

Before the inclusion of independent variables into the BLR 
and CART models, both t-test and chi-square test were 
applied, respectively, to continuous variables and categori-
cal variables in Table 1 (Gilbert, Prion 2016; Kim et  al. 
2015; Menard 2001). Independent variables showing no 
statistical significance (p < 0.05) were eliminated from the 
dataset.

1.3. BLR analysis

First, BLR regression analysis was conducted based on the 
independent variables that passed the significance test to 
recognize the main effects of the impact factors to road 
freight overloading. The possibility of overloading is ex-
pressed as follows (Ramos et al. 2017):
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where: x1, x2, ..., xm are independent variables; b0 is con-
stant quantity; b1, b2, …, bm are regression coefficients; y 
is a binary dependent variable (y = 1 indicates overload, 
y = 0 indicates not overload).

1.4. CART analysis

After the identification of the main effects of the impact 
factors using BLR regression analysis, CART analysis was 
applied to determine other main effects and the interac-
tion terms (Bremner, Taplin 2015; Nishida et  al. 2005). 
In the CART analysis, the minimum Gini change value 
was set at 0.0001, the missing value of the tree during its 
growth was excluded, and the decision tree was trimmed 
by the “cost-complexity pruning” method (Hu, Stein-
grimsson 2018). The complexity parameter was set at 1,  
and the samples were verified by the splitting method; 
80% of the samples were randomly drawn to form the 
training set and 20% to form the test set.
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For continuous independent variables identified by the 
CART model but not by the BLR model, grouping was 
performed according to the division results of the CART 
model, and then the continuous independent variables 
became categorical independent variables. The categorical 
independent variables and interaction terms that passed 
the goodness-of-fit likelihood-ratio test in the CART 
model were re-included into the BLR model to yield the 
final analytical results.

2. Data collection

Truck samples were taken from the Anhui Operating 
Trucks Database maintained by the Road Transport Ad-
ministration of Anhui Province (RTAAP). The database 
includes the information of all the trucks registered in the 
16 cities of Anhui Province. Truck types in the database 
included Container Car (CC), Van (V), Tank Car (TC), 
tractor–semi-trailer, Ripping Fence Truck (RFT), and oth-
ers. The sampling process is as follows: First, the sample 
size of each type of truck accounts for 0.5% of the total 
number of the type of truck registered in Anhui Province. 
Second, the sampled size of each type of truck is divided 
to each city according to the respective proportion of the 
type of truck of the city in Anhui Province. Finally, trucks 
are sampled randomly in each city. The sample sizes of the 
cities are illustrated in Figure 1.

In total, 3440 sample trucks were drawn for the sur-
vey. During the survey, questionnaires were forwarded to 
truck drivers or freight corporation managers by officers 
of RTAAP to ask questions about vehicular characteristics, 
OM and Transport Information (TI). Each driver was of-
fered a reward after completing the survey, and their an-
swers were confidential to truck owners and local road 
freight authorities. The survey was launched on 1 June 
2015, and lasted 10 days. Overall, 3419 questionnaires 
were gathered, of which 3248 presented complete and ef-
fective data. The distribution of the questionnaires across 
cities is illustrated in Figure 1, and the summary of the 
data is tabulated in Table 1.

As shown in Table 1. With respect to Vehicle Type 
(VT), Other Cargo Vehicles (OCV) include low-speed ag-
ricultural vehicle and wheeled tractor. FW is the total FW 
within the 10 days of the survey. Average Haul Distance 
(AHD) is the average distance of a trip.

To identify key factors to road freight overloading, 
dependent and independent variables need to be defined 
first. Dependent variables relate to whether a truck has 
previously had an overloaded trip. Thus, a binary depend-
ent variable was used and defined as 1  = overload, 0  = 
not overload. Independent variables consisted of Vehicle 
Characteristics, OMs, and TI. VC included VT, VL, RL, 
Number of Axles (NA), Engine Power (EP) and Engine 
Displacement (ED). TI included Type of Goods (TG), 
Type of Transportation (ToT), Travel Mileage (TM), Fuel 
Consumption (FC), Freight Mileage (FM), FW and AHD. 
The definitions and descriptions of the 14 independent 
variables are shown in Table 2.

Some variables shown in Table 2 need further explana-
tion. With respect to OM, Cooperation Operation (CO) 
is an OM in which vehicles are attributed to the corpo-
ration and dispatched and managed by the corporation; 
incomes and costs are circulated by the corporation as a 
whole. Whereas Non-Cooperation Operation (NCO) re-
fers to operating certificates in the name of the transport 
company, the corporation takes certain management re-
sponsibilities for collecting management fees, but is not 
responsible for the specific operation and transportation 
activities of the vehicles. Individual Operation (IO) is a 
kind of OM for operating certificates in the name of in-
dividuals, and the individuals have responsibility for the 
operation. Regarding TI, TG is the TG with the maximum 
weight during the survey period. TM, FC, FM and FW 
mean the total amount of the respective variable during 
the survey period.

Figure 1. Sample trucks of each city in Anhui Province of China
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Table 1. Summary of the survey data

VT Number 
of vehicles

FW  
[1000 t]

AHD  
[km]

Tired Tractor (TT) 49 48.9 59.42
CC 26 32.9 209.86
V 941 6355.4 83.65
TC 103 4433.5 40.98
Semitrailer (S) 436 14678.1 443.32
RFT 1555 37225.9 140.24
OCV 138 1622.0 73.45
Total 3248 64396.7 –
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3. Results

3.1. Results of BLR–CART model

After the significance test, 11 statistically significant vari-
ables (p < 0.05) were obtained: TG, VL, ToT, VT, OM, NA, 
ED, FC, FM, FW and AHD.

These variables were fitted by BLR, and the multicol-
linearity among the independent variables was eliminated 
through stepwise regression. The results of BLR model are 
shown in Table 3. The main effects of factors of overload-
ing are ToT, VL, OM, FW and AHD.

The 11 statistically significant independent variables 
also were entered into the CART model; the results are 
shown in Figure 2. Each interior node corresponds to one 
of the input variables; each leaf represents a value of the 
target variable (not overload, overload) given the values 
of the input variables represented by the path from the 
root to the leaf. As shown, the first-order interactions ex-

Table 2. Classification and description of independent variables

Item Name of independent variable Definition and assignment

Vehicle Characteristics (VC)

Vehicle Type (VT)

0 = Other Cargo Vehicles (OCV)
1 = Tired Tractor (TT)
2 = Container Car (CC)
3 = Van (V)
4 = Tank Car (TC)
5 = Semitrailer (S)
6 = Ripping Fence Truck (RFT)

Vehicle Length (VL) continuous variable
Rated Load (RL) continuous variable
Number of Axles (NA) continuous variable
Engine Power (EP) continuous variable
Engine Displacement (ED) continuous variables

Operation Mode (OM) –
0 = Cooperation Operation (CO)
1 = Non-Cooperation Operation (NCO)
2 = Individual Operation (IO)

Transport Information (TI)

Type of Goods (TG)

0 = Special Goods (SG)
1 = Radioactive Objects (RO)
2 = Large Objects (LO)
3 = Non-radioactive Hazardous Goods (NHG)
4 = General Goods (GG)

Type of Transportation (ToT)

0 = Concrete Transport (CT)
1 = House-moving Service (HS)
2 = Muck and Gravel Transportation (MGT)
3 = City Delivery (CD)
4 = Trunk-Road Transportation (TRT)

Travel Mileage (TM) continuous variable
Fuel Consumption (FC) continuous variable
Freight Mileage (FM) continuous variable
Freight Weight (FW) continuous variable
Average Haul Distance (AHD) continuous variable

ist between FW and RL, and the second-order interaction 
exists among FW, RL and AHD, as well as among FW, 
RL, and OM.

With respect to the main effects of the impact factors, 
RL, which is a continuous variable, appeared in the CART 
model but not the BLR model. Therefore, it was necessary 
to group the RL. According to the results of the CART 
model, RL < 5.958 t, 5.958 ≤ RL ≤16.005 t and RL >16.005 t  
were defined as small tonnage, medium tonnage, and large 
tonnage, respectively. After the grouped RL was included 
in the BLR model, the deviance in the likelihood-ratio test 
decreased and the variable became statistically significant 
(p < 0.05), indicating that the inclusion of the grouped RL 
improved the goodness-of-fit of the model. Similarly, all 
the interaction terms also passed the likelihood-ratio tests.

Subsequently, the discrete RL and the interaction 
terms were re-included in the BLR model. After the step-
wise regression, the final key factors (main effects and in-
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Table 3. Analysis results of traditional BLR model 

Variable b S.E. Wald df Sig. exp (b)

ToT – – 19.822 4 0.001 –
HS 1.276 0.700 3.326 1 0.068 3.583
MGT 0.896 0.246 13.314 1 0.000 2.449
CD 0.894 0.212 17.852 1 0.000 2.446
TRT 0.720 0.215 11.180 1 0.001 2.055
VL –0.139 0.023 104.975 1 0.000 0.867
OM – – 44.303 2 0.000 –
CO –0.122 0.142 0.735 1 0.391 0.885
IO 0.663 0.162 16.699 1 0.000 1.940
FW 0.008 0.001 95.731 1 0.000 1.008
AHD 0.001 0.000 9.991 1 0.002 1.001
Constant 
quantity 0.287 0.404 0.506 1 0.477 1.333

Notes: b – regression coefficient; S.E. – standard error; Wald – 
Wald chi-square; df – degree of freedom; Sig. – significance.

teraction terms) impacting road freight overloading are 
shown in Table 4.

It should be noted that accurate explanations of the ef-
fects of interaction terms on overloading could be difficult 
based on the results of Table 4. For example, with regard 
to the interaction between RL and FW, only the product 

of medium tonnage and FW is significant. As the product 
increases by 1, the probability of overloading decreases by 
0.2%, so the influence is too small to be taken into ac-
count. Similar findings can be discovered with other in-
teraction terms. However, the CART model can address 
this problem well. The interaction rules of Table 5 can be 
obtained from Figure 2. Inspections should be carried out 
towards vehicles with the described characteristics shown 
in Table 5, thus improving the efficiency of overloading 
management.

3.2. Comparison between BLR–CART model  
and traditional BLR model

The accuracy of the BLR–CART model was compared 
with that of the traditional BLR model with the Area Un-
der Curve (AUC) of the Receiver Operating Characteristic 
(ROC). The larger the AUC, the higher the accuracy of the 
model (Nandi, Shakoor 2010). As shown in Figure 3 and 
Table 6, the AUC of the traditional BLR model is 0.736, 
and the AUC of the BLR–CART model is 0.786, higher 
than that of the traditional BLR model. The Z-value be-
tween the two models is 3.3634, and the calibration level 
is a = 0.05. With reference to the U-bound table (Iyama 
et al. 2017), the difference between the two models is sta-
tistically significant. Therefore, the classification efficacy of 
the BLR–CART model is better than that of the traditional 
BLR model.

Figure 2. Results of CART model
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4. Discussion

Based on Table 4, the influences of the factors on over-
loading are analysed, and corresponding countermeasures 
are proposed in the following.

Table 4. Analysis results of BLR–CART model

Variable b S.E. Wald df Sig. exp (b)
ToT – – 20.403 4 0.000 –
HS 1.369 0.686 3.977 1 0.046 3.931
MGT 0.839 0.210 16.014 1 0.000 2.315
CD 0.663 0.177 13.943 1 0.000 1.940
TRT 0.528 0.180 8.610 1 0.003 1.696
RL – – 6.567 2 0.037 –
Medium 
tonnage –0.228 0.182 1.575 1 0.209 0.796

Large tonnage –0.573 0.225 6.508 1 0.011 0.564
OM – – 46.479 2 0.000 –
CO –0.090 0.111 0.662 1 0.416 0.914
IO 0.655 0.135 23.545 1 0.000 1.925
FW 0.048 0.007 46.299 1 0.000 1.049
RL ⋅ FW – – 39.324 2 0.000 –
Medium 
tonnage ⋅ FW –0.002 0.000 17.275 1 0.000 0.998

Large 
tonnage ⋅ FW 0.000 0.000 3.158 1 0.076 1.000

RL ⋅ FW ⋅ AHD – – 29.399 2 0.000 –
Medium 
tonnage ⋅ AHD 0.000 0.000 1.617 1 0.204 1.000

Large 
tonnage ⋅ AHD 0.000 0.000 5.606 1 0.018 1.000

Constant 
quantity 0.287 0.404 0.506 1 0.477 1.333

Notes: b – regression coefficient; S.E. – standard error; Wald – 
Wald chi-square; df – degree of freedom; Sig. – significance.

Table 5. Interaction rules

Rule RL  
[t]

FW  
[t]

AHD 
[km]

Overloading 
probability 

[%]
1 (0, 5.958] (9.97, 176.3] – 80.1
2 (0, 5.958] (64.5, 176.3] – 59.4
3 (5.958, 16.005] (64.5, 176.3] – 72.4
4 (0, 5.958] [0, 176.3] – 70.9
5 >16.005 (64.5, 176.3] >154.175 62.8

Figure 3. ROC curves of BLR–CART model  
and traditional BLR model

Table 6. ROC comparison between BLR–CART model the 
traditional BLR model

Model Area S.E. Sig.
Progressive 95% range

lower 
limit

upper 
limit

Traditional 
BLR 0.736 0.011 0.000 0.715 0.757

BLR–CART 0.786 0.010 0.000 0.767 0.805

Notes: S.E. – standard error; Sig. – significance.

Regarding effects of ToT on road freight overloading, 
as indicated in Table 1, CT is a reference type for the cat-
egorical variable – ToT. According to the high-to-low or-
der of the overloading probability shown in Table 3, ToT 
are HS, MGT, CD, TRT and other.

HS transportation has the highest overloading prob-
ability, which is 3.931 times of the “other” type. The main 
reason may relate to the fact that the house-moving in-
dustry has rapidly developed in recent years and has a 
relatively low market entrance threshold. There are no 
regulations available for overseeing this booming indus-
try, so it is out of order and lacks supervision. Under such 
circumstances, house-moving companies usually carry 
excess freight to save cost. In addition, MGT, which usu-
ally occurs at night, is also highly overloaded. This relates 
to the loose nighttime management of the urban traffic 
management departments. The next two types are CD and 
TRT. CD vehicles usually take local streets or arterials, and 
the overloading investigation on these roads is relatively 
loose and less frequent. However, TRT takes mainly toll 
highways that are under strict supervision (Hang et  al. 
2005). To address these issues, the government should 
set up relevant regulations and industry standards for HS 
companies, and road freight authorities should strengthen 
nighttime inspections for gravel overloading, focusing on 
roads around construction sites, factories, and mines, as 
well as implementing an accountability system for con-
struction sites. In addition, since CD vehicles have many 
alternative routes, it would be more effective to implement 
unscheduled inspections at warehouses and supermarkets 
than strengthening inspections on roads.

With regard to effects of RL on road freight overload-
ing, according to Table 4, vehicles with smaller RL have a 
high overloading probability, which is different from the 
conclusion of Moreno-Quintero et  al. (2013), showing 
that vehicles with greater load capacity are more likely to 
be overloaded. However, in accordance with the findings 
from the previous section, HS and city deliveries, which 
are overload-prone transportation types, usually prefer the 
use of vehicles with a smaller RL. 
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Since large vehicles are the main causes of pavement 
damage, larger vehicles have a lower overloading prob-
ability than vehicles with smaller RL, demonstrating the 
effectiveness of overloading enforcement in China, espe-
cially the widespread use of the toll-by-weight method. In 
recent years, many highways and bridges in China have 
been constructed and financed by local governments and 
the private sector, with investments paid off by collect-
ing user tolls. Initially, most tolls in China were collected 
based on vehicle class and verified load capacity. How-
ever, past experience in China showed that this toll fee 
structure does not charge vehicles based on their actual 
damage to the roads. In particular, heavily-overloaded 
trucks pay less than what their use of the roadway system 
is worth (Hang et al. 2013). The toll-by-weight method, 
which charges truck drivers according to loaded weight, 
can guarantee that trucks are charged more fairly and 
maximize the return from highway investments. Thus, in 
October 2005, the Ministry of Transport of People’s Re-
public of China issued a formal document to encourage 
more provinces and municipalities to switch to the toll-by-
weight toll method. Currently, more than 90% of highways 
in China have implemented this method. 

In the toll-by-weight method, the excess charge on the 
overloaded weight is calculated by the product of the over-
limit penalty rate (CNY/tkm), overloaded weight and TM. 
Thus, this phenomenon of our finding may be explained 
that with the same overloading rate, the penalty on small-
er vehicles is much less than that of larger vehicles, ow-
ing to lower overloaded weight. The cost of violating the 
law is not high enough to raise the attention of owners of 
small RL vehicles, so they are more willing to take the risk 
of overloading to gain additional profits. Another reason-
able explanation is that small trucks (such as agricultural 
trucks) are more easily refitted than large trucks.

The countermeasures are two-folds:
 – the toll-by-weight method should be further spread 
and improved, paying particular attention to the en-
hancement of the over-limit penalty rate on vehicles 
with small load capacity;

 – traffic police departments should implement new 
countermeasures towards vehicles that are converted 
privately, such as refusing the MOT test, conducting 
mandatory dismantling, or seizure (Pillay, Bosman 
2001).

Regarding OM, enterprise incorporated management 
is taken as a reference. The overloading probability of 
vehicles from unincorporated enterprises is 0.914 time 
that of incorporated enterprises. The two are relatively 
close; however, the overloading probability of IO is close 
to twice that of corporate operation (1.925). As transport 
corporations have extensive supervision of their vehicles, 
their overloading probability is low, whereas vehicles of 
IO corporations can be seriously overloaded due to lack 
of effective and timely management and excessive pursuit 
of economic profits.

The reason for non-standard management of IO is 
complicated. In the early 1980s, the Chinese government 

began to open the road transport market. Since the safety 
of passenger transportation has a stronger social impact, 
the threshold of passenger transportation was relatively 
high, and a considerable number of vehicles and regis-
tered funds on the corresponding scale were stipulated to 
enter the market. The price of the operation also was car-
ried out by the government guidance price. However, the 
threshold for the freight transportation market was very 
low to encourage its rapid development, and the situation 
did not change during the past three decades. The result 
is that among 13.7 million commercial freight vehicles in 
China (MoT PRoC 2018), more than 90% are operated 
individually. In this OM, each truck owner works sepa-
rately, and his/her transport scale is very small. Because 
of the difficulties of effective and timely supervision by 
the road transportation authority, proper management of 
personnel, vehicle maintenance, and operation cannot be 
guaranteed. Therefore, overloading becomes a common 
phenomenon.

In the long run, it is suggested that a strict system of 
access to the freight transportation market be established 
to promote the transformation of IOs into enterprise cor-
porations. In the near future, as individuals want to take 
chances and pursue profits blindly, an incentive system is 
suggested to give cash rewards for vehicles that have not 
been overloaded for a long time, reducing the occurrence 
of overloading. In addition, it is recommended to imple-
ment a scoring system for overloaded owners or drivers; 
for owners or drivers of trucks that often are overloaded 
or have heavy overloading, their score will be low. Once 
it is lower than the assigned threshold, their driving li-
censes are revoked, which has proved to be an effective 
measure in other developing countries (Torres Martínez 
et al. 2018).

With respect to FW, it is the sum of the mass of goods 
for every vehicle within the survey period (10 days). The 
larger FW is, the higher the overloading probability. Road 
damage increases as the FW of a vehicle climbs. In addi-
tion, the damage caused by overloaded trucks is not nec-
essarily gradual. After reaching certain weight thresholds, 
overloaded trucks can cause immediate and disastrous 
damage to highways. Thus, particular attention should be 
given to high-severity overloading. Enforcement in China 
has some strengths in this respect. The toll fee structure 
based on toll-by-weight includes a basic rate and an over-
limit penalty rate. To encourage drivers to not overload 
their vehicle, the basic rate is usually reduced by a cer-
tain amount (also called incentive rate) as the gross truck 
weight increases. To deter high-severity overloading, the 
over-limit penalty rate often is set to be much higher than 
the basic rate and increases with the overloading rate.

There also are weaknesses related to overloading en-
forcement in China. Toll stations are managed by highway 
operating agencies, whereas weight enforcement is con-
ducted by highway administrations and traffic police de-
partments at fixed weighing stations and mobile weighing 
stations on toll roads and non-toll roads; these two types 
of activities occur dependently. In addition, the jurisdic-
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tion of these stations belongs to each province. Thus, for 
long-distance haul freight transport (especially trans-pro-
vincial transportation), overloaded trucks may be charged 
many times for overloading, which often triggers conflicts 
between carriers and fee collectors (APCD 2006). Recent 
legislation published by the Ministry of Transport of Peo-
ple’s Republic of China in 2016 stipulates that oversized 
(also overloaded) trucks must go to a designated fixed 
weighing station to discharge or transfer goods to other 
trucks. In theory, multiple charges on overloaded weight 
can be avoided in this way (MoT PRoC 2016). However, 
the high costs of the parking facilities, unloading areas, 
and alternative trucks may hinder the feasibility of en-
forcement of this legislation, especially for mobile weigh-
ing stations. An alternative method suggested by the 
authors is to develop a nationwide overloading Manage-
ment Information System (MIS), which is integrated with 
Global Positioning System (GPS) and Radio-Frequency 
IDentification (RFID) techniques (McDonnell et al. 2008); 
once a vehicle is fined during one trip, the information is 
uploaded by fee collectors and stored in the MIS through 
wireless communication devices (e.g., cellphone, portable 
computer). When the same vehicle approaches the next 
static or mobile weighing station, RFID reader equipped 
in the station communicates with the RFID tag attached 
to the windshield of vehicle and identifies the vehicle. GPS 
tracking information obtained from on-vehicle systems is 
uploaded to the MIS to determine whether the vehicle 
deviated from the corridor, made specific stops to reload 
the vehicle. If not, the vehicle will not be fined again. Be-
sides avoiding repeated fines, the time savings enjoyed by 
transporters due to a reduction in the number of weigh-
ing of vehicles combined with reduced vehicle operational 
costs due to fewer stops, would also provide the required 
incentive for participation in a voluntary overload con-
trol scheme, according to experiences of other countries 
(Hoffman, De Coning 2014).

In addition to the recommendations above, for corpo-
rations with large FW, it is suggested to intensify inspec-
tions around their loading sites and impose a joint pun-
ishment system, on overloaded vehicle owners, transport 
corporations, and goods owners (Zhou 2014). In addition, 
the rated power of the vehicle engines should be limited, 
not only to limit its loading capability but to control over-
loading (Li et al. 2009).

Conclusions

Since there is a dearth of research on the mining of data 
of highway FW, this paper aims to discover factors affect-
ing road freight overloading based on highway FW data, 
with a view of developing strategies to mitigate such oc-
currences. Vehicular characteristics, OM, and transporta-
tion information of 3248 vehicles were sampled from the 
Anhui Operating Trucks Database in 2015. An integrated 
BLR–CART model, which combined the advantages of 
both linear and nonlinear regression models, was pro-
posed to identify factors affecting road freight overload-

ing. The results have shown that the BLR–CART model 
has better classification efficacy than the traditional BLR 
model.

Obtained from the BLR–CART model, the factors af-
fecting overloading of freight vehicles include ToT, RL, 
OM, FW during the investigation period, interaction be-
tween RL and FW, and interaction among RL, FW and 
AHD. Aiming at improving efficiency and effectiveness of 
overloading inspection, countermeasures were proposed 
in terms of market regulation, overloading inspection, 
punishment strategies, and policy-making. The research 
results have significant practical importance for different 
departments working collaboratively to manage transport 
companies and formulate overloading regulatory policies, 
particularly in the context of China and other developing 
countries.

Due to limited information in the survey, this paper 
does not consider the effects of the characteristics of ve-
hicle owners and drivers, transportation time, or location/
type of road on road freight overloading. Also, the severi-
ties of overloading are not classified and considered in the 
model. The information provided here is useful in sched-
uling enforcement actions. Such limitations may be ad-
dressed in follow-up studies through the integrated use of 
survey results and data collected from WIM devices and 
static weighing equipment. With respect to the methods, 
the integrated use of random-parameter BLR and CART 
can be considered in the future. The random-parameter 
BLR better represents the unobserved heterogeneity in the 
data, compared with the BLR.
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