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Abstract: After our work [1] was published, Frink and Meißner [2] pointed out that

the O(q3) three-flavour meson-baryon chiral Lagrangian presented there was not minimal.
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Recently, we presented in [1] the first complete and by then minimal SU(3) chiral in-

variant relativistic meson-baryon Lagrangian at O(q3) with the presence of external sources

(scalar, pseudoscalar, vector and axial ones). This was a clear improvement over the stan-

dard reference at the moment [3], since the Lagrangian presented there was not complete

nor reduced in minimal form. A detailed comparison between the Lagrangians of [1] and [3]

is given in ref.[1]. Later on, Frink and Meißner [2] pointed out that one can further reduce

the number of monomials present in the O(q3) Lagrangian of [1] by six, passing from 84 in

[1] to 78 in [2]. Here, we discuss the findings of [2] and show that the SU(3) meson-baryon

chiral Lagrangian of [2] can be further reduced by two further monomials, i.e. to 76 mono-

mials instead of the 78 ones presented in [2]. We refer to [1] for the presentation of the

building blocks and techniques employed in the construction of the monomials, where it is

discussed in detail.

Some Cayley-Hamilton relations involving monomials with five flavour matrices were

missed in [1], as correctly noticed in [2]. The technicalities of this point were explained in

detail in the Appendix A of [2]. Along these lines, we find three Cayley-Hamilton relations

between the monomials O12 to O25 of [1] that were not taken into account there. If these

Cayley-Hamilton relations are used to eliminate only monomials involving the product

of two flavour traces, then one monomial between O20, O22 and O24 and two more ones

between O21, O23 and O25 can be eliminated. We choose to eliminate O22, O23 and O25.

Thus, we agree with [2] that Cayley-Hamilton relations can be used to further eliminate

three monomials from O12 to O25 in [1]. However, it is not possible to simultaneously

eliminate the monomials O20, O21 and O22 from the basis in [1], as wrongly claimed in [2].

We find other two Cayley-Hamilton relations between the monomials O31 to O37 in [1]

not considered there. They allow to eliminate two monomials between O35, O36 and O37,

as already remarked in [2]. We choose to eliminate O35 and O36.

Another Cayley-Hamilton relation, not used in [1], is found between the monomials

O38 to O43 in [1] that was not used there. This is not commented either in [2]. In this way

one can eliminate another monomial that we chose to be O43 of [1].

In [1] we used a Cayley-Hamilton relation to eliminate the one flavour trace monomial,

Ô33 = i
(
〈B̄{uν , uρ}σλτDρBuµ〉 − 〈B̄

←−
Dρ{u

ν , uρ}σλτBuµ〉
)

εµνλτ , (1)

while all the other monomials eliminated using the Cayley-Hamilton theorem contained

more that one flavour trace. Here, we prefer, because of large Nc counting, to eliminate the

two trace monomial O42 in [1] and put back Ô33 in our new basis for the O(q3) Lagrangian.

Apart from the missed Cayley-Hamilton relations in [1], Frink and Meißner [2] also

realized that only the symmetric combination of O9 and O10 in [1] is independent. Hence,

only one of these two monomials should be considered and we keep O9. Since we found

difficulties in understanding the argumentation given in [2], we reproduce here our way

of deriving such relationship between O9 and O10. We proceed as follows. Taking into

account that

Dνuρ −Dρuν = f−

ρν , (2)
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see eq.(2.10) of [1], the difference between O9 = i〈B̄uµσµνDρB hνρ〉 − i〈B̄
←−
Dρu

µσµνBhνρ〉,

and i〈B̄uµσµνDρB Dνuρ〉− i〈B̄
←−
Dρu

µσµνBDνuρ〉, is accounted for by the monomial O82 of

ref.[1], or by our present Ô74 of Table 1. Then, neglecting a global divergence,

O9 → − i〈DνB̄uµσµνDρB uρ〉 − i〈B̄DνuµσµνDρB uρ〉 − i〈B̄uµσµνDνDρB uρ〉

+ i〈DνDρB̄uµσµνB uρ〉+ i〈DρB̄DνuµσµνB uρ〉+ i〈DρB̄uµσµνD
νB uρ〉 , (3)

where other monomials already accounted for are not written and this is why we use the

right pointing arrow. The second terms on each of the lines of eq.(3) can be written

again in terms of monomials with f−

µν because of eq.(2), since Dνuµ is contracted with the

antisymmetric tensor σνµ. The resulting structures are taken into account by the monomial

Ô75 in Table 1. In this way we are left with

O9 → −i〈DνB̄uµσµνDρB uρ〉 − i〈B̄uµσµνD
νDρB uρ〉

+i〈DρB̄uµσµνDνB uρ〉+ i〈DνDρB̄uµσµνB uρ〉 . (4)

Employing the relation −iσµν = gµν − γνγµ in the first and fourth monomials above and

+iσµν = gµν − γµγν in the second and third ones, one can write

O9 → −4〈B̄uνDνDρB uρ〉 − 2〈B̄uνDρB Dνu
ρ〉 − 2〈B̄Dρu

νDνB uρ〉 , (5)

where the equation of motion of baryons has been used to remove those terms involving

γνDνB and DνB̄γν , see eq.(4.2) of [2]. One can proceed analogously for O10 and then

exactly the same combination of monomials as in (5) is found. Hence, only the symmetric

combination of O9 and O10 is independent, while the difference can be written in terms of

other monomials already taken into account.

Frink and Meißner also noticed that the index ordering in the monomials O31, O33

and O34 in [1] do not match the conditions imposed by charge conjugation. We want to

point out that the difference between the index ordering in [1] and that which is exactly

invariant under charge conjugation is O(q4). However, we prefer –see our comments in

[1]– monomials in the Lagrangian which are exactly charge conjugation invariant, because

charge conjugation is a symmetry of strong interactions. Then, we now take the ordering

in the indices such that these monomials are exactly charge conjugation invariant.

As pointed out in [2] the relative sign between the flavour traces in O41 should be

plus instead of the minus in [1]. Once this is corrected O41 becomes of O(q4). Then, the

comment at the end of Section 5 of [1], though correct, is not relevant.

Summarizing the discussion above, we can further eliminate from the O(q3) three-

flavour meson-baryon Lagrangian in [1] the following monomials: O10, O22, O23, O25, O35,

O36, O41 and O43. In addition, we exchange O42 by Ô33. We therefore end with 76

independent monomials in the SU(3) meson-baryon chiral Lagrangian at O(q3), eight less

than in [1] and two less than in [2]. We give the full list of the monomials present in the

minimal SU(3) meson-baryon chiral invariant Lagrangian in Table 1.

L
(3)
MB =

76∑

i=1

hi Ôi . (6)
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i Ôi Contributes to vertex

1 i
(
〈B̄γµDνρB[uµ, hνρ]〉+ 〈B̄

←−
DνργµB[uµ, hνρ]〉

)
M1B1 →M2B2

2 i
(
〈B̄[uµ, hνρ]γµDνρB〉+ 〈B̄

←−
Dνρ[u

µ, hνρ]γµB〉
)

M1B1 →M2B2

3 i
(
〈B̄uµ〉〈hνργµDνρB〉 − 〈B̄

←−
Dνρh

νρ〉〈uµγµB〉
)

M1B1 →M2B2

4 i〈B̄[uµ, hµν ]γνB〉 M1B1 →M2B2

5 i〈B̄γνB[uµ, hµν ]〉 M1B1 →M2B2

6 i
(
〈B̄uµ〉〈h

µνγνB〉 − 〈B̄hµν〉〈uµγνB〉
)

M1B1 →M2B2

7 i〈B̄σµνDρB{u
µ, hνρ}〉 − i〈B̄

←−
DρσµνB{u

µ, hνρ}〉 M1B1 →M2B2

8 i〈B̄{uµ, hνρ}σµνDρB〉 − i〈B̄
←−
Dρ{u

µ, hνρ}σµνB〉 M1B1 →M2B2

9 i〈B̄uµσµνDρBhνρ〉 − i〈B̄
←−
Dρu

µσµνBhνρ〉 M1B1 →M2B2

10 i
(
〈B̄σµνDρB〉 − 〈B̄

←−
DρσµνB〉

)
〈uµhνρ〉 M1B1 →M2B2

11 〈B̄γ5γνB{uµuµ, uν}〉 M1B1 →M2M3B2

12 〈B̄γ5γνBuµuνuµ〉 M1B1 →M2M3B2

13 〈B̄uµγ5γνB{u
µ, uν}〉 M1B1 →M2M3B2

14 〈B̄uµuµγ5γνBuν〉 M1B1 →M2M3B2

15 〈B̄{uµuµ, uν}γ5γνB〉 M1B1 →M2M3B2

16 〈B̄{uµ, uν}γ5γνBuµ〉 M1B1 →M2M3B2

17 〈B̄uµuνuµγ5γνB〉 M1B1 →M2M3B2

18 〈B̄uνγ5γνBuµuµ〉 M1B1 →M2M3B2

19 〈B̄{uν , γ5γνB}〉〈uµuµ〉 M1B1 →M2M3B2

20 〈B̄[uν , γ5γνB]〉〈uµuµ〉 M1B1 →M2M3B2

21 〈B̄γ5γνB〉〈uµuµuν〉 M1B1 →M2M3B2

22 i〈B̄γτB{[uµ, uν ], uρ}〉εµνρτ M1B1 →M2M3B2

23 i〈B̄{[uµ, uν ], uρ}γτB〉εµνρτ M1B1 →M2M3B2

24 i〈B̄[uµ, uν ]γτBuρ〉εµνρτ M1B1 →M2M3B2

25 i〈B̄uργτB[uµ, uν ]〉εµνρτ M1B1 →M2M3B2

26 i〈B̄γτB〉〈[uµ, uν ]uρ〉εµνρτ M1B1 →M2M3B2

Table 1:
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i Ôi Contributes to vertex

27 〈B̄γ5γµDνρBuµuνuρ〉+ 〈B̄
←−
Dνργ5γµBuρuνuµ〉 M1B1 →M2M3B2

28 〈B̄uµγ5γµDνρBuνuρ〉+ 〈B̄
←−
Dνρu

µγ5γµBuρuν〉 M1B1 →M2M3B2

29 〈B̄uµuνγ5γµDνρBuρ〉+ 〈B̄
←−
Dνρu

νuµγ5γµBuρ〉 M1B1 →M2M3B2

30 〈B̄uµuνuργ5γµDνρB〉+ 〈B̄
←−
Dνρu

ρuνuµγ5γµB〉 M1B1 →M2M3B2

31
(
〈B̄γ5γµDνρB〉+ 〈B̄

←−
Dνργ5γµB〉

)
〈uµuνuρ〉 M1B1 →M2M3B2

32 i
(
〈B̄uµσλτDρB{u

ν , uρ}〉 − 〈B̄
←−
Dρu

µσλτB{uν , uρ}〉
)

εµνλτ M1B1 →M2M3B2

33 i
(
〈B̄{uν , uρ}σλτDρBuµ〉 − 〈B̄

←−
Dρ{u

ν , uρ}σλτBuµ〉
)

εµνλτ M1B1 →M2M3B2

34 i
(
〈B̄{uµ, σλτDρB}〉 − 〈B̄

←−
Dρ{u

µ, σλτB}〉
)
〈uνuρ〉εµνλτ M1B1 →M2M3B2

35 i
(
〈B̄[uµ, σλτDρB]〉 − 〈B̄

←−
Dρ[u

µ, σλτB]〉
)
〈uνuρ〉εµνλτ M1B1 →M2M3B2

36 〈B̄uµγ5γµBχ+〉 B1 →M1B2

37 〈B̄χ+γ5γµBuµ〉 B1 →M1B2

38 〈B̄uµγ5γµB〉〈χ+〉 B1 →M1B2

39 〈B̄γ5γµBuµ〉〈χ+〉 B1 →M1B2

40 〈B̄γ5γµB〉〈uµχ+〉 B1 →M1B2

41 〈B̄γ5γµB{uµ, χ+}〉 B1 →M1B2

42 〈B̄{uµ, χ+}γ5γµB〉 B1 →M1B2

43 〈B̄{χ−, γ5B}〉 B1 →M1B2

44 〈B̄[χ−, γ5B]〉 B1 →M1B2

45 〈B̄γ5B〉〈χ−〉 B1 →M1B2

46 〈B̄γµB[χ−, uµ]〉 B1M1 →M2B2

47 〈B̄[χ−, uµ]γµB〉 B1M1 →M2B2

48 〈B̄uµ〉〈χ−γµB〉 − 〈B̄χ−〉〈u
µγµB〉 B1M1 →M2B2

49 〈B̄{Dµf
µν
+ , γνB}〉 B1 → γB2

50 〈B̄[Dµf
µν
+ , γνB]〉 B1 → γB2

51 i〈B̄γ5γνB[uµ, f
µν
+ ]〉 γB1 →M2B2

52 i〈B̄[uµ, f
µν
+ ]γ5γνB〉 γB1 →M2B2

Table 1:
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i Ôi Contributes to vertex

53 i
(
〈B̄uµ〉〈f

µν
+ γ5γνB〉 − 〈B̄f

µν
+ 〉〈uµγ5γνB〉

)
γB1 →M2B2

54 〈B̄γτB{uµ, f
νρ
+ }〉εµνρτ γB1 →M2B2

55 〈B̄{uµ, f
νρ
+ }γ

τB〉εµνρτ γB1 →M2B2

56 〈B̄uµγτBf
νρ
+ 〉εµνρτ γB1 →M2B2

57 〈B̄f
νρ
+ γτBuµ〉εµνρτ γB1 →M2B2

58 〈B̄γτB〉〈uµf
νρ
+ 〉εµνρτ γB1 →M2B2

59
(
〈B̄[uµ, f

νρ
+ ]σλτDµB〉 − 〈B̄

←−
Dµ[uµ, f

νρ
+ ]σλτB〉

)
ενρλτ γB1 →M2B2

60
(
〈B̄σλτDµB[uµ, f

νρ
+ ]〉 − 〈B̄

←−
DµσλτB[uµ, f

νρ
+ ]〉

)
ενρλτ γB1 →M2B2

61
(
〈B̄uµ〉〈f νρ

+ σλτDµB〉+ 〈B̄
←−
Dµf

νρ
+ 〉〈u

µσλτB〉
)

ενρλτ γB1 →M2B2

62 〈B̄{Dµf
µν
−

, γ5γνB}〉 γB1 →M2B2

63 〈B̄[Dµf
µν
−

, γ5γνB]〉 γB1 →M2B2

64 〈B̄γ5γ
τB{uµ, f

νρ
−
}〉εµνρτ γB1 →M2M3B2

65 〈B̄{uµ, f
νρ
−
}γ5γ

τB〉εµνρτ γB1 →M2M3B2

66 〈B̄f
νρ
−

γ5γ
τBuµ〉εµνρτ γB1 →M2M3B2

67 〈B̄uµγ5γ
τBf

νρ
−
〉εµνρτ γB1 →M2M3B2

68 〈B̄γ5γ
τB〉〈uµf

νρ
−
〉εµνρτ γB1 →M2M3B2

69 i〈B̄[uµ, f
µν
−

]γνB〉 γB1 →M2M3B2

70 i〈B̄γνB[uµ, f
µν
−

]〉 γB1 →M2M3B2

71 i
(
〈B̄uµ〉〈f

µν
−

γνB〉 − 〈B̄f
µν
−
〉〈uµγνB〉

)
γB1 →M2M3B2

72 i
(
〈B̄σνρDµB{uµ, f

νρ
−
}〉 − 〈B̄

←−
DµσνρB{u

µ, f
νρ
−
}〉

)
γB1 →M2M3B2

73 i
(
〈B̄{uµ, f

νρ
−
}σνρDµB〉 − 〈B̄

←−
Dµ{u

µ, f
νρ
−
}σνρB〉

)
γB1 →M2M3B2

74 i
(
〈B̄uµσνρDµBf

νρ
−
〉 − 〈B̄

←−
DµuµσνρBf

νρ
−
〉
)

γB1 →M2M3B2

75 i
(
〈B̄f

νρ
−

σνρDµBuµ〉 − 〈B̄
←−
Dµf

νρ
−

σνρBuµ〉
)

γB1 →M2M3B2

76 i
(
〈B̄σνρDµB〉 − 〈B̄

←−
DµσνρB〉

)
〈uµf

νρ
−
〉 γB1 →M2M3B2

Table 1: Minimal set of linearly independent monomials of

the SU(3) chiral meson-baryon Lagrangian of O(q3). On the

third column we give the vertex with the minimal number of

mesons and photons to which each term contributes.

– 5 –



In the previous list, the symbol Dνρ = DνDρ + DρDν . For the other symbols we refer

to [1]. In addition, a covariant derivative acts only on one hadronic matrix field, the one

immediately to the right or left (in the latter case there is a left pointing arrow over D).

E.g., DρBuν must be understood such that the covariant derivative acts only on B. We

also want to remark that our way of presenting the monomials of the O(q3) meson-baryon

chiral Lagrangian here and in [1] is much more compact and easy to manipulate than the

one employed in [2]. We also prefer not to introduce dimensionful parameters to change

artificially the dimension of the coefficients hi.

Regarding the Lagrangian presented in [2], monomials O
(3)
32 and O

(3)
33 are not linearly in-

dependent from the rest of monomials in theO(q3) meson-baryon chiral Lagrangian and can

be removed. We first note that σµν [uµ, [uν , uρ]], the combination used in [2], is proportional

to σµν [uρ, [uµ, uν ]]. This can be seen by explicitely expanding the commutators and taking

into account that σµν is antisymmetric in the indices µ and ν. In this way, the two monomi-

als O
(3)
32 and O

(3)
33 of [2] are accounted for by the structures 〈B̄γ5σ

ρη[[uρ, uη], uσ ]DσB〉 and

〈B̄γ5σ
ρηDσB [[uρ, uη], uσ ]〉, plus the corresponding charge conjugated terms. We consider

in detail the first of these monomials and employ the relation,

[[uρ, uη ],X] = 4[Dρ,Dη]X + 2i[f+
ρη ,X] , (7)

see eq.(2.9) of [1]. Hence,

〈B̄γ5σ
ρη [[uρ, uη ], uσ]DσB〉 = 4〈B̄γ5σ

ρη[Dρ,Dη ]uσ DσB〉+ 2i〈B̄γ5σ
ρη[f+

ρη, uσ]DσB〉 . (8)

The last term in the previous equation is accounted for by the monomials O
(3)
61 and O

(3)
62

of ref.[2] and corresponds to O67 of [1], once the identity σαβεαβρη = 2iγ5σ
ρη is employed.

Then, we do not consider this term any further and concentrate on the first one on the

right hand side of the equality.

〈B̄γ5σ
ρη [Dρ,Dη ]uσDσB〉 = 2〈B̄γ5σ

ρηDρDηuσ DσB〉

= −2〈DρB̄γ5σ
ρηDηuσDσB〉 − 2〈B̄γ5σ

ρηDηuσ DρD
σB〉 , (9)

where a total divergence has been dropped out in the last equality. Now, since σρη =

iγργη − igρη , we have for the first term on the second line,

i〈DρB̄γ5γ
ργηDηuσDσB〉 − i〈DρB̄γ5g

ρηDηuσ DσB〉 . (10)

The first term in the previous equation can be removed by the baryon equations of motion.

Using now that σρη = −iγηγρ + igρη to the last term in eq.(9), one has,

i〈B̄γ5g
ρηDηuσ DρD

σB〉 − i〈B̄γ5γ
ηγρDηuσ DρD

σB〉 . (11)

Employing again the baryon equations of motion the last term can be disregarded. When

summing eqs.(10) and (11), as corresponds to the last line of eq.(9), the terms proportional

to gρη cancel each other. As a result the monomial on the left hand side of eq.(8) can

be removed as stated before. One can proceed in a similar way to remove the monomial
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〈B̄γ5σ
ρηDσB [[uρ, uη], uσ ]〉 as well. This discussion shows that one can further reduce the

number of monomials by two in [2] passing from 78 to 76, in agreement with the number

of monomials we found above.

In addition, we notice that the monomial O
(3)
40 of [2] is not exactly charge conjugation

invariant since those terms involving two covariant derivatives acting on the mesonic fields

uα are missed. These contributions, though are of O(q4), are needed to guarantee exact

charge conjugation invariance.

Here, we have discussed the findings of [2] in relation to [1] and showed that one can

reduce in eight the number of monomials in the SU(3) meson-baryon chiral Lagrangian of

O(q3) presented in [1] and in two when comparing with the Lagrangian in [2]. Thus, we

end up with 76 monomials, instead of the 84 in [1] and of the 78 presented in [2].
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