

# Rare B decays in ATLAS and CMS

CKM2006 at Nagoya University Dec. 14<sup>th</sup> 2006 Makoto Tomoto Nagoya University on behalf of CMS and ATLAS collaborations







tadata,

citation and similar papers

#### Outline

# B physics in ATLAS and CMS ATLAS and CMS detectors $B \rightarrow \mu\mu$ $B \rightarrow X\mu\mu$ Conclusion

Makoto Tomoto (Nagoya University)

### B physics in ATLAS and CMS

- ATLAS and CMS
  - p-p collision at  $\sqrt{s} = 14 \text{TeV}$
- σ(b<del>b</del>) = 500 μb
  - $B_d\overline{B}_d$ :  $B^+B^-$ :  $B_s\overline{B}_s$ : b-barions = 4:4:1:1
  - 10<sup>5</sup> bb pairs/s @ L=10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>
    - "B-factory" as well as "New particle-factory"
- Detector design is dedicated high-p<sub>T</sub> physics
  - Majority of B-events is low-p<sub>T</sub> particles
    - Trigger and analysis are a challenge
    - $\rightarrow$  B-decays to  $\mu$ 's are promising
- Strategy on B-physics in ATLAS and CMS
  - CP violation (Low luminosity run)
  - B<sub>s</sub> oscillation (Low luminosity run)
  - Rare B decay (Even in High lumi.) ( $B \rightarrow \mu\mu$ ,  $B \rightarrow K^*\mu\mu$ ,  $\Lambda_b \rightarrow \Lambda\mu\mu$ )

Makoto Tomoto (Nagoya University)



#### Rare B decays

- $B_{s} \rightarrow \mu^{+}\mu^{-}$  $B \rightarrow \mu^+ \mu^-$  and  $b \rightarrow sII$  $w^+$ ц+ b b Sensitive to new physics Ζ SUSY, Higgs etc. W μ\_ S - FCNC transition Forbidden at tree diagram  $\tan\beta=50$ 
  $$\begin{split} B(\bar{B}_q \rightarrow \mu^+ \mu^-) \times 10^8 \\ 10 \\ 1 \end{split}$$
   $Br(B \rightarrow \mu\mu)$  $B_s \rightarrow \mu \mu$  $B_d \rightarrow \mu\mu$ **10**<sup>-8</sup> 3.5×10<sup>-9</sup> 0.9×10<sup>-10</sup> SM  $B_s \rightarrow \mu \mu$ q = sCDF (780 pb<sup>-1</sup>) 1.0×10<sup>-7</sup> 95%CL 3.0×10<sup>-7</sup> 95%CL 11.1×10<sup>-7</sup> 95%CL DØ (700 pb<sup>-1</sup>) 2.0×10<sup>-7</sup> 95%CL **10**-9 Belle 78 fb<sup>-1</sup> 1.6×10<sup>-7</sup> 90% CL q = d $B_d \rightarrow \mu \mu$ BaBar 111 fb<sup>-1</sup> 0.6×10<sup>-7</sup> 90% CL 150200250300 350
  - SM: Br(b $\rightarrow$ sII) ~ 10<sup>-6</sup> ~ 10<sup>-7</sup> Br(B<sub>d</sub> $\rightarrow$ K\*µµ) measurements Belle : 1.33  $^{+0.42}_{-0.37} \pm 0.10 \times 10^{-6}$ Babar : 0.86  $^{+0.79}_{-0.58} \pm 0.16 \times 10^{-6}$
  - $|V_{ts}|$  and  $|V_{td}|$  determination
  - Wilson coefficient C<sub>7</sub>, C<sub>9</sub>, C<sub>10</sub>



 $M_H$  (GeV)

## LHC

- 27Km ring, proton-proton collider,  $\sqrt{s}$ =14TeV
- 4 experiments in LHC

LHCb dedicated B-physics ALICE dedicated heavy ion Two general purpose detectors: CMS and ATLAS

- Operation plan
  - End of 2007:
     900 GeV
     commissioning run
  - After summer 2008: 14TeV, Low luminosity run (L = 10<sup>33</sup>cm<sup>-2</sup>s<sup>-1</sup>)
  - Design: 14TeV, High luminosity run (L = 10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>)

Makoto Tomoto (Nagoya University)



#### Detectors

Magnetic field

4 Tesla



#### Compact Muon Solenoid

| Total weight            | : 12500 T |
|-------------------------|-----------|
| <b>Overall diameter</b> | : 15.0 m  |
| Overall length          | : 21.5 m  |
| Magnetic Field          | : 4 Tesla |

#### A Toroidal LHC ApparatuS

| Total weight            | : 7000 T |
|-------------------------|----------|
| <b>Overall diameter</b> | : 22.0 m |
| Overall length          | . 46.0   |

- **Overall length**
- **Magnetic Field**
- : 46.0 m
- : 2 Tesla (solenoid) 0.5 Tesla (toroid)

Makoto Tomoto (Nagoya University)



exhaulting constants

Korus, Pakistan, Duvsis, USA



## Inner Detectors



To reconstruct vertex of B decays Used in HLT, better I D of B events → I mpact parameter significance



Pixel, SCT, TRT in 2 T solenoid field



#### **I** mpact Parameter Resolution





## Muon detectors



For trigger and offline selection to get pure rare B-decay samples

#### ATLAS:

- RPC (barrel) and TGC (endcap) for LVL1 trigger
- CSC and MDT for precise tracking in 0.5 T toroid field





CMS:

- RPC (barrel) for LVL1 trigger
- CSC and DT for precise tracking in 2 T solenoid field





## ATLAS/CMS Trigger System





Makoto Tomoto (Nagoya University)



## di-muon trigger





ATLAS LVL2:

Confirm each m Rol from LVL1

Mass cut

 $B \rightarrow \mu \mu$  : 4 GeV < M( $\mu \mu$ )< 6 GeV

ATLAS EF:

Refit I D tracks in Level-2 Rol Decay vertex reconstruction Transverse Decay length cut:

 $L_{xy} > 200 \mu m$ 

CMS L\" 1



#### CMS HLT:

Primary vertex reconstruction

- use three most probable vertices Regional track reconstruction

- partial reconstruction with  $\leq$  6hits
- Pt > 4 GeV

Track pairs

- mass windows for signal
- (un)like sign charge

Vertex fit

-  $\chi^2$  <20 & Decay flight length > 150 $\mu m$ 

### CMS offline analysis : $B \rightarrow \mu \mu$

- Decay flight length significance  $l_{xy}/\sigma_{xy}$  $\triangleright$  transverse plane:  $l_{xy}/\sigma_{xy} > 18$
- Muon separation in  $\eta\phi$ :

$$\Delta R(\mu\mu) = \sqrt{(\eta_{\mu_1} - \eta_{\mu_2})^2 + (\phi_{\mu_1} - \phi_{\mu_2})^2}$$
  
0.3 < \Delta R(\mu\mu\mu) < 1.2

Isolation of muon pair

 $\triangleright$ 

$$I = \frac{p_{\perp}(B_s)}{p_{\perp}(B_s) + \sum_{trk} |p_{\perp}|}$$
  
tracks in cone with  $r = \sqrt{\eta^2 + \phi^2} < 1.0$   
and  $p_{\perp} > 0.9 \,\text{GeV}$   
>  $I > 0.85$ 

- Secondary vertex
  - ▷ Pointing angle:  $\cos(\alpha) > 0.995$

$$ho$$
 vertex fit  $\chi^2 < 1$ 





events/bir

10

events/bin

0.12

0.08 0.06 0.04 0.00

10





## ATLAS offline analysis : $B_s \rightarrow \mu \mu$

- $M_{mm} = M_{Bs}^{+140}_{-70} MeV$
- isolation: no charged tracks with  $p_T > 0.8$  GeV in cone  $\theta < 15$  degrees
- vertex fit with pointing to primary vertex constraint
- transverse decay length L<sub>xy</sub>/s(L<sub>xy</sub>) > 11



| Exected Signal V.S. II                         | Iclusive pp-                     | γμμλ οκς                 |  |
|------------------------------------------------|----------------------------------|--------------------------|--|
|                                                | ${\sf B}^{\sf O}_{\sf S}$ signal | BG (bb→μμX)              |  |
| $p_T > 6 \text{ GeV}, \Delta R_{\mu\mu} < 0.9$ | 50 events                        | $6.0 \times 10^6$ events |  |
| $M_{\mu\mu}$ cut                               | 0.77                             | 2 × 10 <sup>-2</sup>     |  |
| I solation cut                                 | 0.36                             | 5 × 10 <sup>-2</sup>     |  |
| L <sub>xy</sub> /σ>11, χ²<15                   | 0.4                              | < 0.7 × 10 <sup>-4</sup> |  |
| All cuts                                       | 7                                | 20±20                    |  |

#### Makoto Tomoto (Nagoya University)





## Projected upper limits : $B_s \rightarrow \mu\mu$



7 signals and 20 backgrounds can expect upper limit on  $Br(B_s \rightarrow \mu\mu)$ 

$$Br(B_{s}^{0} \to \mu^{+}\mu^{-}) \leq \frac{N(n, n_{bg})}{2\sigma_{Bs} L \alpha \varepsilon_{total}}$$

 Single experiment expects to reach the sensitivity of SM prediction

3 years of data taking : L=30fb<sup>-1</sup>





Both ATLAS and CMS has proven to continue measurement of  $B_s \rightarrow \mu\mu$  at nominal LHC luminosity  $10^{34}$ . This will mean 100 fb<sup>-1</sup> just in one year.



## Specific background study : $B_s \rightarrow \mu \mu$





## $B \rightarrow X \mu \mu$

| BR used<br>in the<br>MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                     | Signature after trigger<br>+ offline reconstruction<br>30 fb <sup>-1</sup> |                                                       | Models used <u>in MC</u> or to confront experimental sensitivities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                                                     | Signal                                                                     | Bkg                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.3 ×10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B <sub>d</sub> →K <sup>0*</sup> μμ                                      |                                                                                                     | 2500                                                                       | <50000                                                | Melikhov, Nikitin, Simula, PRD57,98;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.5 ×10 <sup>-7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $B^+ \rightarrow K^+ \mu \mu$                                           | Br.fraction                                                                                         | 1500                                                                       | <10000                                                | Melikhov, Stech, PRD62, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0 ×10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $B_s \rightarrow \phi \mu \mu$                                          | μμ-mass                                                                                             | 900                                                                        | <10000                                                | WC: SM Buras, Munz, PRD52, 95;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         | A <sub>FB</sub>                                                                                     |                                                                            |                                                       | MSSM Cho, Misiak, Wyller, PRD54,96.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.0 ×10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Λ_b$ → Λμμ                                                             |                                                                                                     | 800                                                                        | < 4000                                                | NP: Chen, Geng, PRD64,2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                                                     |                                                                            |                                                       | Aliev NPB649,2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Lambda_{b}$ mas<br>3000 $2500$ $2000$ $1500$ $1000$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ $500$ | S M. (A)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20 | Biglietti et al.<br>TLAS Coll.)<br>ucl. Phys B 156<br>006)<br>c = 25%<br>c = 21.5  MeV<br>ass (MeV) | Forward-bac<br>Asymmetry<br>Β                                              | ckward<br>/ (A <sub>FB</sub> )<br>μ <sup>+</sup><br>Λ | ATLAS statistical error<5%<br>Forward-Backward Asymmetry<br>experimetal points $simulated events withpositive MSSM C7, eff-0.1-0.2-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.4-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.$ |

## Conclusion

- ATLAS and CMS sensitivity to rare B-decay is expected to reach the level of SM prediction after 3 years of data taking
  - $b \rightarrow \mu\mu$ s and  $B \rightarrow \mu\mu$  promising for new physics
  - We will directly and indirectly be able to search for new physics at the same place and time
- At LHC nominal luminosity  $10^{34}$ cm<sup>-2</sup>s<sup>-1</sup>, ATLAS and CMS can make a measurement of B<sub>s</sub>->µµ branching ratio just after one year.
- More study using full simulation/reconstruction is under way
- The installation and commissioning of the detectors are in good progress
- Everyone is waiting for the data taking ...

Makoto Tomoto (Nagoya University)

#### Backup or Old slides

Makoto Tomoto (Nagoya University)

#### Rare B-decays

