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Braneworld cosmological singularities
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The purpose of this brief report is to present some results of our on-going project

on the asymptotic behaviour of braneworld-type solutions on approach to their pos-

sible finite ‘time’ singularities. Cosmological singularities in such frameworks have

served as means to attack the cosmological constant problem (see1 and references

therein). The main mathematical tool of our analysis is the method of asymptotic

splittings introduced in Ref.2

Below we study a model consisting of a 3−brane configuration embedded in a

five dimensional bulk space with a scalar field being minimally coupled to the bulk

and conformally coupled to the fields restricted on the brane. The total action is

taken to be Stotal = Sbulk + Sbrane, where

Sbulk =

∫

d4xdY
√

g5

(

R

2κ2
5

− β

2
(∇φ)2

)

, Sbrane = −
∫

d4x
√

g4f(φ), at Y = Y∗,

with Y denoting the fifth bulk dimension, κ2
5 = M−3

∗ , M∗ being the five dimensional

Planck mass and f(φ) is the tension of the brane depending on the scalar field φ.

We assume a bulk metric of the form ds2 = a2(Y )ds̃2 + dY 2, where ds̃2 is the four

dimensional flat, de Sitter or anti-de Sitter metric. Then varying the above action

we obtain the field equations:

a′2

a2
=

βκ2
5φ

′2

12
+

kH2

a2
(1)

a′′

a
= −βκ2

5φ
′2

4
, φ′′ + 4

a′

a
φ′ = 0, (2)

where k = 0, 1 or −1, and H−1 is the de Sitter curvature radius. Assuming further

that the unknowns are invariant under a Y → −Y symmetry and solving the field

equations on the brane we may express the solution in the form

a′(Y∗) = −κ2
5

6
f(φ(Y∗))a(Y∗), φ′(Y∗) =

f ′(φ(Y∗))

2β
. (3)

We now apply the method of asymptotic splittings to look for the possible asymp-

totic behaviours of the general solution. Setting x = a, y = a′, z = φ′, where the

differentiation is considered with respect to Υ = Y − Ys (Ys being the position of

the singularity), the field equations (2), become the following system of ordinary

differential equations:

x′ = y, y′ = −βAz2x, z′ = −4yz/x, (4)
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where A = κ2
5/4. Hence, we have the vector field f = (y,−βAz2x,−4yz/x)⊺. Equa-

tion (1) does not include any terms containing derivatives with respect to Υ; it

is the constraint equation of the above system. In terms of the new variables, the

constraint has the form

y2/x2 = Aβ/3z2 + kH2/x2. (5)

Substituting the forms (x, y, z) = (αΥp, γΥq, δΥr), with (p, q, r) ∈ Q3 and

(α, γ, δ) ∈ C3−{0}, in the dynamical system (4), we seek to determine the possible

dominant balances in the neighborhood of the singularity, that is pairs of the form

B = {a,p}, where a = (α, γ, δ) and p = (p, q, r). For our system we find:

B1 = {(α, α/4,
√

3/4
√

Aβ), (1/4,−3/4,−1)} (6)

B2 = {(α, α, 0), (1, 0,−1)} (7)

B3 = {(α, 0, 0), (0,−1,−1)}. (8)

Since (4) is a weight-homogeneous system, the scale invariant solutions given by

the above balances are exact solutions of the system. The balance B1 satisfies the

constraint equation (5) only for k = 0, corresponding thus to a general solution for

a flat brane, whereas B2 corresponds to a particular solution for a curved brane

since it satisfies Eq. (5) for k 6= 0 and α2 = kH2. Finally the balance B3 represents

a static universe conformal to Minkowski space and will not be analyzed further.

Next we calculate the Kowalevskaya exponents, i.e., the eigenvalues of the matrix

given by K = Df(a)− diag(p); for B1 we find that spec(K) = {−1, 0, 3/2}, whereas

for B2, spec(K) = {−1, 0,−3}. These exponents correspond to the indices of the

series coefficients where arbitrary constants first appear. The −1 exponent signals

the arbitrary position of the singularity, Ys. Since we have two non-negative integer

eigenvalues the solution we are constructing will be a general solution (full number

of arbitrary constants).

Let us now focus on each of the two possible balances separately and build

series expansions in the neighborhood of the singularity. For the first balance, we

substitute in the system (4) the series expansions x = Υp(a + Σ∞
j=1cjΥ

j/s), where

x = (x, y, z), cj = (cj1, cj2, cj3), s is the least common multiple of the denominators

of positive eigenvalues (here s = 2), and we arrive at the asymptotic solution

x = αΥ1/4+
4

7
c32Υ

7/4+· · · , y = x′, z =

√
3

4
√

A
Υ−1− 4

√
3

7α
√

Aβ
c32Υ

1/2+· · · . (9)

The last step is to check if, for each j satisfying j/s = ρ with ρ a positive eigenvalue

corresponding to an eigenvector v of the K matrix, the compatibility conditions

hold, i.e. v⊤ · Pj = 0, where Pj are polynomials in ci, . . . , cj−1 given by Kcj −
(j/s)cj = Pj . Here the corresponding relation j/2 = 3/2 is valid only for j = 3

and the compatibility condition indeed holds. We therefore conclude that near the

singularity at finite distance Ys from the brane, the asymptotic forms of the variables

are a → 0, a′ → ∞, φ′ → ∞. This is exactly the asymptotic behaviour of the solution

found previously by Arkani-Hammed et al in Ref.1



December 9, 2013 17:59 WSPC - Proceedings Trim Size: 9.75in x 6.5in Braneworld˙sing2a

Braneworld Singularities 3

However, the previous behaviour is not the only possible one. The second balance

has two distinct negative Kowalevskaya exponents and we therefore expect to find

an infinite expansion of a particular solution around the presumed singularity at

Ys. Expanding the variables in series with descending powers of Υ, in order to meet

the two arbitrary constants occurring j = −1 and j = −3, and substituting back in

the system (4) we find the forms

x = αΥ + c−1 1 + · · · , y = α + · · · , z = c−3 3Υ
−4 + · · · (10)

Therefore as Υ → 0, or equivalently as S = 1/Υ → ∞, we have that a → ∞,

a′ → ∞ and φ′ → ∞.

We thus conclude that there exist two possible outcomes for these braneworld

models, the dynamical behaviours of which strongly depend on the spatial geometry

of the brane. For a flat brane the model experiences a finite distance singularity

through which all the vacuum energy decays, whereas for a de Sitter or anti-de

Sitter brane the singularity is now located at an infinite distance. We can choose

the coupling such that to allow only for that behaviour met in flat solutions and,

in fact, the particular form of the coupling used by Arkani-Hammed et al in1 is the

only choice to make this possible. This easily follows by using equations (3) and

solving the Friedmann equation (1) on the brane for kH2, i.e.

kH2 =
a2(Y∗)κ

2
5

4

(

κ2
5

9
f2(φ) − f ′2(φ)

4β2

)

.

Clearly then k is identically zero if and only if f ′(φ)/f(φ) = (2β/3)κ5, or equiv-

alently, if and only if f(φ) ∝ e(2β/3)κ5φ (Arkani-Hammed et al in1 have β = 3).

By working with other couplings we can allow for non-flat, maximally symmetric

solutions to exist and avoid in this way having the singularity at a finite distance

away from the position of the brane.

I.A. was supported in part by the European Commission under the RTN contract

MRTN-CT-2004-503369, while S.C. and I.K. were supported by the joint E.U. and

Greek Ministry of Education grants ‘Pythagoras’ and ‘Herakleitos’ respectively. S.C.

and I.K. are very grateful to CERN-Theory Division, where part of their work was

done, for making their visits there possible and for allowing them to use its excellent

facilities. This work of I.K. represents a partial fulfilment of the PhD requirements,

University of the Aegean.

References

1. N. Arkani-Hammed, S. Dimopoulos, N. Kaloper, R. Sundrum, Phys. Lett. B480

(2000) 193-199, arXiv:hep-th/0001197v2; S. Kachru, M. Schulz, E. Silverstein, Phys.
Rev. D62 (2000) 085003, arXiv:hep-th/0002121.

2. S. Cotsakis, J. D. Barrow, The Dominant Balance at Cosmological Singularities,
arXiv:gr-qc/0608137; to appear in the Proceedings of the Greek Relativity Meeting
NEB12, June 29-July 2, 2006, Nauplia, Greece.

http://arxiv.org/abs/hep-th/0001197
http://arxiv.org/abs/hep-th/0002121
http://arxiv.org/abs/gr-qc/0608137

	Antoniadis et al

