
Interaction with Embodied Media

by

David Jeffrey Merrill

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CMay 2009

May 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

A uthor
Program in Media Arts and Sciences,
School of Architecture

Certified by..........

Accepted by...........

MASS AHUSrETTS INST E
OFTECHNOLOGY

LIBRARIES 0 2009

L-LIBRARIES

and Planning
May 1, 2009

Pattie Maes
Associate Professor of Media Arts and Sciences

Thesis Supervisor

...... -..o

in Deb Roy
Chair, Program in Media Arts and Sciences

ARCHIVE6

Interaction with Embodied Media

by

David Jeffrey Merrill

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on May 1, 2009, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

The graphical user interface has become the de facto metaphor for the majority of our

diverse activities using computers, yet the desktop environment provides a one size
fits all user interface. This dissertation argues that for the computer to fully realize its

potential to significantly extend our intellectual abilities, new interaction techniques

must call upon our bodily abilities to manipulate objects, enable collaborative work,
and be usable in our everyday physical environment.

In this dissertation I introduce a new human-computer interaction concept,
embodied media. An embodied media system physically represents digital content
such as files, variables, or other program constructs with a collection of self-contained,
interactive electronic tokens that can display visual feedback and can be manipulated
gesturally by users as a single, coordinated interface. Such a system relies minimally
on external sensing infrastructure compared to tabletop or augmented reality systems,
and is a more general-purpose platform than most tangible user interfaces.

I hypothesized that embodied media interfaces provide advantages for activities
that require the user to efficiently arrange and adjust multiple digital content items.
Siftables is the first instantiation of an embodied media interface. I built 180 Siftable
devices in three design iterations, and developed a programming interface and various
applications to explore the possibilities of embodied media. In a survey, outside
developers reported that Siftables created new user interface possibilities, and that
working with Siftables increased their interest in human-computer interaction and
expanded their ideas about the field. I evaluated a content organization application
with users, finding that Siftables offered an advantage over the mouse+graphical user

interface (GUI) for task completion time that was amplified when participants worked
in pairs, and a digital image manipulation application in which participants preferred
Siftables to the GUI in terms of enjoyability, expressivity, domain learning, and for
exploratory/quick arrangement of items.

Thesis Supervisor: Pattie Maes
Title: Associate Professor of Media Arts and Sciences

Thesis Readers:

Thesis Reader

;i4te Professor
MIT Program

Joseph A. Paradiso
Media Arts and Sciences
Media Arts and Sciences

Thesis Reader..
Scott R. Klemmer

Assistant Professor of Computer Science
Stanford University

Z--

Acknowledgments

I have many people to thank. My Ph.D. advisor Pattie Maes encouraged this work

from the beginning, even when it was little more than an intuition that Siftables

would create new and interesting interaction possibilities. My collaborator Jeevan

Kalanithi contributed innumerable ideas, lines of code, and debugging-session help.

I appreciate Pattie's thoughtful analysis and feedback that has steered my design in

productive directions. Given the departure that Siftables represents from her earlier

work, Pattie's support attests to her openness to new ideas and approaches.

I have also benefited greatly from communication with my other committee

members, Joe Paradiso and Scott Klemmer. Joe can always be counted on to suggest

numerous innovative approaches to tough technical challenges. I consider myself

fortunate to have worked closely with Joe, not only because of his earnest roll-up-

the-sleeves willingness to problem-solve on a moment's notice, but because of his

insight about the future of mobile sensing and interaction technology; industry is

only recently beginning to adopt innovations that he was prototyping 10-15 years

ago. Scott Klemmer has a deep and up-to-the-minute knowledge of the field of human-

computer interaction and a masterful ability to identify connections and articulate

important distinctions. Scott's efforts toward the democratization of technology

development have been a steadfast inspiration to me, and Siftables explores a vision

that we share: that hardware might one day be as easy to author as software.

I would also like to acknowledge Ted Selker, my advisor and mentor during my

first year at the Media Lab. I have never met Ted's equal in ideation. My work with

Ted resulted not only in a number of creative projects; my understanding of, and my

ability to brainstorm and prototype ideas rapidly and effectively is forever boosted.

Special thanks as well to key Siftables contributors Seth Hunter, Katya Popova,

Evan Broder, Joshua Kopin, Tobe Nwanna, Rick Mancuso, and Laura Harris.

My colleagues in and out of the Context-Aware Computing, Responsive

Environments, and Fluid Interfaces groups have been an enlightening community

that has helped me define my present understanding of research, invention and Media

Art. I have not encountered another group of individuals that so successfully dovetail

innovative research with practical technological how-to experience. Special gratitude

to Andrea, Win, Josh, Ari, Mat, Mark, Brian, Tristan, Hayes, Amanda, Monzy,

James, Chao-Ming, Gian, Rob, Nathan, Oren, Orit, Brandon, Jeff, Dan, Vincent,

Jamie, Enrico, Sajid, Seth, Marcelo, Amit, Pranav, Doug, and all my other friends!

The staff of the Media Lab have been invaluable friends and supporters throughout

the years, providing steadfast help and generously participating in my studies. Linda

Peterson demonstrates time and again that she truly cares for the well being of

students and for the cohesion of our community at large.

A number of other mentors outside of MIT have influenced my intellectual journey

in important ways. Dominic Massaro at UC Santa Cruz took a chance by hiring me

for the summer when I was an undergraduate at Stanford, and in the years since I have

learned innumerable lessons about psychology, rationality and navigating academia

from our continued friendship and collaborations. Bill Verplank and Max Matthews

at Stanford's CCRMA provided the spark that has become my passion for blending

technology and music, as well as my ability to work with sensing and electronics.

Finally, Cliff Nass's optimism and insights into social science, and Terry Winograd's

wise advice afford continuing inspiration and food for thought.

Mom and Dad's progressive parenting philosophy was: offer love and

encouragement and your children will do great things. I hope my life path is proving

them right. My father Jeff taught me to be curious, industrious, civically engaged, to

always have a number of projects in motion, and to believe that when confronted with

a problem the solution can be arrived at through research and industrious tinkering.

My mom Jeanne taught me to be adventurous and curious about other cultures and

languages, and to not worry about the small things in life. My siblings Amy and Dan

are frequent conversation partners on philosophical matters and are my good friends.

Finally, I am fortunate for the love and companionship of Amy, who thought she

was moving to Boston for 2 years, tops. Amy has already stood with me during some

of the highest and lowest moments of my life, and our personal philosophies have

co-evolved through spirited discussion, travel, and years of shared experiences.

Contents

1 Introduction 17

1.1 Embodied Media: Key Application Types 20

1.2 Thesis Contributions 21

1.3 Dissertation Roadmap 23

2 Background and Motivation 25

2.1 Introduction 25

2.2 Brains, Hands, and Objects 28

2.2.1 Distributed Cognition: How Artifacts Aid Thought 28

2.2.2 The Rich Biomechanics of Human Hands 30

2.3 Gestural Interaction with Computers 31

2.3.1 Gestural Interaction with Electronic Media 32

2.3.2 Free Gesture Interfaces 33

2.3.3 Gesture on a Surface 34

2.3.4 Final Thoughts on Gesture 35

2.4 Reducing the Cost of Developing Interactive Physical Systems 35

2.5 Tangible and Tabletop Interfaces 36

2.5.1 Minimal-Infrastructure Distributed Tangible Interfaces 38

2.5.2 Concluding Tangible User Interface Thoughts 39

2.6 Distributed Media: Complex Behavior from Collections of Simple Pieces 40

2.7 Mobile and Ubiquitous 41

2.7.1 Enabling Advances in Technology 41

2.7.2 Good Mobile UI is Not Just Mobile WIMP 42

2.7.3 Mobile User Experience: Unique Challenges and New Directions

2.7.4 Wireless Sensor Networks: Minimal and Distributed

2.7.5 Shared Synchronous Motion: An Example Application of a

WSN Technique to HCI

3 Design Process and Interaction Techniques

3.1 Embodied Media: Hybrid Tangible-Graphical Distributed User Interfaces

3.1.1 Essential Properties of an Embodied Media System

3.1.2 Incidental Properties of Siftables

3.2 A Sensor Network User Interface (SNUI)

3.3 Prototyping

3.3.1 Choosing Features

3.3.2 Paper, Wood and Acrylic Prototypes

3.3.3 First Electronic Prototype

3.3.4 Second Electronic Prototype

3.3.5 Current Siftables Design

3.4 Designing a Gestural Language

3.4.1 Actions in the Gestural Language . .

3.4.2 Compound Gestures

3.4.3

3.4.4

Mapping the Gestural Language to Applic

Limitations of the Current Design

. 52

. 53

. 55

. 56

. 57

. 61

. 62

. 64

. 65

. 66

... 73

:ations 73

. 78

4 Applications

4.1 Equation Maker

4.2 Scraboggle

4.3 Music Sequencer . . .

4.3.1 Samples

4.3.2 Sequences . .

4.3.3 Sample Effects

4.3.4 Global Effects

4.4 Attentionables

85

.... 86

.... 87

. 88

. 90

. 9 0

. 9 1

. 92

. 92

43

45

46

47

49

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Maze Exploration

Single-Siftable Simon

Multi-Siftable Simon

Tilt-Based Color Etch-A-Sketch Drawing

Fiddle Diddle Make a Riddle

Telestory

Image Manipulation

Application Sketches, Interaction ideas .

4.12.1 Grouping and Ordering

4.12.2 Node Edge Graph Creation . . .

4.12.3

4.12.4

Position Estimation From Integra

Pouring Colors

..........

.

.

.

.

..........

..........

.

.

.

ted Acceleration .

.

4.12.5 Tilt-to-Roll Video

5 Implementation

5.1 Hardware

5.1.1 Siftable Devices

5.1.2 Charging Dongle

5.2 Software

5.2.1 Firmware

5.2.2 ASCII Language

5.2.3 Python API for Remote-Control

...............

...............

...............

...............

...............

...............

Application Development

6 Evaluation

6.1 Evaluating Novel User Interface Systems

6.2 Ordering and Grouping Study

6.2.1 M ethod

6.2.2 Results

6.2.3 Discussion

6.3 Image Manipulation Study

6.3.1 Description of the Application

11

94

96

96

97

97

99

101

104

105

105

108

109

110

113

113

113

121

121

122

127

129

135

135

136

138

138

139

140

141

6.3.2 M ethod

6.3.3 Feedback from Pilot Study . . .

6.3.4 Changes Made to the Application

6.3.5 Results

6.3.6 Discussion

6.4 Developer Feedback

6.4.1 Developer Survey Discussion . . .

6.5 Summary of Results

6.6 Outside Interest in Siftables

. 141

. 144

. 149

. 152

.. 154

. 157

. 158

. 158

... 159

7 Discussion and Future Work 161

7.1 Summary: What is Embodied Media Good For? 162

7.1.1 Characteristic Properties of Well-Suited Applications 162

7.1.2 Takeaway Lessons: Design Opportunities and Recommendations 164

7.2 Future Work 171

7.2.1 Iterating on Siftables 171

7.2.2 Open Questions For Future Investigation 179

7.2.3 Physical Interactions with Collections of Networked Smart

O bjects 180

A Python API

B Siftable Hardware Schematics and Circuit Board Layout Designs

C Siftable Flash Memory Organization

183

199

211

List of Figures

1-1 Siftables as embodied media 19

2-1 Physical representation versus ability to generalize 26

2-2 Early gestural interaction: Telharmonium and Theremin 31

2-3 Modern non-contact gesture interfaces: Polhemus and Nintendo Wii . 33

2-4 Stylus and touch-based interfaces 34

2-5 Conway's game of life and paintable computing 41

3-1 Four design iterations of the Siftables platform 47

3-2 Desktop WIMP versus embodied media interaction 49

3-3 A sensor network user interface (SNUI) 54

3-4 Design space of Siftables as an embodied media implementation . . . 58

3-5 Some visual display possibilities 59

3-6 Paper, wood and acrylic Siftables prototypes 59

3-7 First electronic Siftables prototype 61

3-8 Second electronic Siftables prototype 62

3-9 Attentionables application 63

3-10 Current Siftable device 65

3-11 Design idea: grouping content by pushing Siftables together 66

3-12 Gestural language: topology: row/column 67

3-13 Gestural language: topology: arbitrary 2D Pattern 67

3-14 Gestural language: gesture: shake 68

3-15 Gestural language: gesture: tilt 69

3-16 Gestural language: gesture: arbitrary motion 70

3-17

3-18

3-19

3-20

Gestural language: environment: lean

Gestural language: thump

Siftables-compatible 2D topologies

Vertical stacking possibilities for Siftables

4-1 Application: Equation Maker 86

4-2 Application: Scraboggle 87

4-3 Application: Music Sequencer (overview of Siftable roles) 89

4-4 Application: Music Sequencer (adding a sample to a sequence) 89

4-5 Application: Attentionables 92

4-6 Spotlight interactive installation, by Zuckerman and Sadi 93

4-7 Application: Maze Exploration 95

4-8 Application: Simon 96

4-9 Application: Fiddle Diddle Make a Riddle 98

4-10 Application: Telestory 100

4-11 Application: Telestory (storyboard) 101

4-12 Image manipulation application in use 102

4-13 Image processing effects used in the image manipulation application .

4-14 Image manipulation application: adjusting a parameter

4-15 Application sketch: node edge graph creation tool

4-16 Application sketch: position tracking by integration of inertial data

4-17 Application sketch: pouring colors .

4-18 Application sketch: tilt-to-roll video

4-19 Applications sketches listing, with capabilities used

5-1 Internals of a Siftable

5-2 Block diagram of a single Siftable device

5-3 Siftable wireless communication capabilities

5-4 Mems accelerometer internals

5-5 Battery charging

5-6 Operation flowchart for a single Siftable (primary processor)

103

104

106

108

109

110

112

114

115

115

119

122

124

5-7 Operation flowchart for a single Siftable (secondary processor)

5-8 C API usage example 128

5-9 Python API usage example 129

5-10 Firmware and Python API diagram 132

5-11 Python application template 133

6-1 Participants in the content-organization study 137

6-2 Starting configurations for content-organization task (GUI) 137

6-3 Completion time results from content organization study 139

6-4 Image manipulation application: effect ordering example 141

6-5 Mouse/GUI version of the image manipulation application 143

6-6 Siftables version of the image manipulation application 144

6-7 Split attention problem in the pilot study 146

6-8 Image manipulation study, comparison ratings 152

6-9 Image manipulation study, overall ratings 153

6-10 Developers: ratings of directness of Siftables 156

6-11 Developers: UI possibilities, interest, and expanded HCI ideas 156

B-1 Schematic: main microcontroller 200

B-2 Schematic: secondary microcontroller, infrared 201

B-3 Schematic: main micro prog. header, power, accelerometer, tactile . 202

B-4 Schematic: boost, DMA, flash 203

B-5 Schematic: power-handling 204

B-6 Schematic: OLED connector 205

B-7 Schematic: Bluetooth radio 206

B-8 Printed circuit board layout (top layer) 207

B-9 Printed circuit board layout (internal layer 1) 208

B-10 Printed circuit board layout (internal layer 2) 209

B-11 Printed circuit board layout (bottom layer) 210

C-1 Organization of the 64-mbit flash memory 212

126

16

Chapter 1

Introduction

Research in physical and multi-touch tabletop systems [55] [39], as well as tangible

user interfaces [54], has expanded the expressive potential of the computer by enabling

more natural interactions with digital content. These systems make our interactions

with the computer more physical and gestural, representing physical constraints [93]

and enabling us to utilize both hands to navigate spatial information.

However, despite their improvements over the desktop metaphor, tangible and

tabletop systems tend to be burdened by one of two problems: Most are either special-

purpose systems, built to support a particular type of task and user, or they have

infrastructure requirements (i.e. sensing embedded into the work surface or graphical

projection) that confine their use to a particular location.

In his seminal 1991 essay in Scientific American, Mark Weiser outlined a vision

for the future of computing that predicted an increasing number of electronic devices

supporting our everyday activities, including inch-scale computers that he called tabs

[116]. Weiser discussed the role of these small future computers primarily through

the lens of the already-developed Active Badge system [114], which made office en-

vironments more responsive to the location of the individual user. He also suggested

that tabs with small screens could allow program windows from a computer to be

transferred to a tab, so that these program windows could be scattered about a user's

desk along with their papers or carried to a colleague's office where the program

window would be transferred to the colleague's computer for collaborative work.

Weiser's reference to inch-scale computers with screens foreshadows Siftables. How-

ever, my work explores the user interaction possibilities with collections of inch-sized

devices, a direction that Weiser left largely unexplored. The Active Badge that Weiser

helped to develop is not particularly interactive from the wearer's point of view; each

badge is a transponder that identifies them to the room, so that the environment

can become responsive to their presence and can customize certain services based on

their identity and location. Fishkin, Gujar and Want et al.'s work on manipulative

[40] and embodied user interfaces [28] articulated the idea that a personal electronic

device could be considered an embodiment of digital content that it displays, and

they explored ways that the exterior of the device could afford manipulations of the

embodied content. This work was an inspiration, but my research moves in a different

direction by focusing on physical interactions with collections of identical devices.

Research in distributed cognition shows that physical objects help us think, by

allowing cognitive processing to be externalized onto the tools that we use during

problem-solving. Furthermore, our hands and bodies are skillful in ways that are

under-utilized by computers; we can grasp, push, drag, and scoop individual or groups

of objects with great dexterity, actions that are largely ignored by today's desktop

and mobile interfaces. This background, discussed more at length in chapter 2 on

page 25, was a key motivator for the work.

This thesis presents embodied media, a new model for distributed, physically em-

bodied user interfaces. This class of interface comprises a collection of small, phys-

ical, stand-alone electronic manipulatives that can represent collections of digital

items such as files, variables, or other program constructs. Embodied media devices

present visual feedback to the user indicating their current role, and can be physically

manipulated as a single, coordinated interface to alter the represented digital items.

Unlike today's mobile devices, the model of use is not one device per person. Rather,

a single person interacts with a collection of devices. Instead of pressing buttons on

a mouse or moving their fingertips across a touch-screen, the user interacts with the

system physically and spatially by arranging the manipulatives in relation to each

other and gesturing with them in continuous, three-dimensional ways. The result is

Figure 1-1: Siftables are the first instantiation of an embodied media user interface.

a mobile, distributed physical embodiment of digital information that the user can

perceive visually, grasp physically, and manipulate by hand. The concept draws on

previous work in tangible and graphical user interfaces, but it brings these pieces

together in a novel way to investigate an unexplored point in the design space.

As part of this work I have created Siftables, the first instantiation of an embodied

media interface. A Siftable device is a tiny mobile computer that does not require

(but than can use) environmentally-installed sensing infrastructure. Each Siftable

features a color display, a three-axis accelerometer, infrared-based neighbor detection,

a rechargeable battery, flash memory and a Bluetooth radio for wireless communica-

tion. Siftables introduces a new class of multi-object interaction techniques that take

advantage of our natural ability to quickly manipulate collections of physical items

(see chapter 3 on page 47 for details). They can be grasped, shaken, tilted, arranged

in a row or arbitrary two-dimensional topology, or moved in expressive gestural ways.

Developers can create applications for Siftables using two distinct application

programming interfaces (APIs). The first is a C API for programming the firmware

of the devices directly, which allows for completely stand-alone operation. The second

is a Python API for controlling a set of Siftables wirelessly from a nearby computer

over Bluetooth. The use of a host computer makes it possible to use a large display

or other input-output resources in conjunction with the Siftables. I consider both

application forms to be instantiations of embodied media; while the Siftables-only

model enables the greatest mobility, a wireless connection to a computer (or to the

Internet) is important for many applications in order for manipulations to affect an

underlying data model. The notebook computer that I use for development is portable

compared to most surface-based interaction systems, however in the future the use of

a mobile phone to host Siftables applications could enable even greater mobility.

Siftables combine the flexibility of graphical display with the tangibility of phys-

ical manipulatives, and they have enabled the creation of a number of applications.

Through my reporting of my design process, feedback from the user studies that I con-

ducted, and related discussion about interactive possibilities and design techniques,

I hope that Siftables may act as a reference implementation that points the way to

future embodied media implementations.

1.1 Embodied Media: Key Application Types

Applications that may benefit from an embodied media representation feature some

or all of the following characteristics: spatial arrangement of items, iterative definition

of relationships between content items, collaborative interaction, children or certain

special-needs populations as users, non-precise gestural input, and a primary emphasis

on the manipulation of content rather than its capture.

Educational interactions are well-suited to embodied media, for instance language,

science or mathematics tools in which learners compose words, molecules, or equa-

tions from component parts and receive real-time feedback about the correctness or

implications of their solution. Casual entertainment such as puzzle or narrative games

can be implemented using embodied media in a manner that adopts traditional play

patterns for collaborative or competitive engagement with other players in a uniquely

face-to-face manner. Multi-person collaboration is an important style of work and

play, so interfaces like embodied media that support parallel interaction are valuable.

The manipulative-based interaction style is also useful for young children who are not

yet proficient with the keyboard and/or mouse, or special-needs users who are not able

to effectively interact with the standard desktop interface. Expressive interactions for

music or video performance may be compelling if the design of the gestures matches

the input affordances to the user's precision.

An expanded discussion of these recommendations, including application charac-

teristics that are not well-suited to an embodied media user interface, can be found

in section 7.1 on page 162. See chapter 4 on page 85 for a full listing of applications

that have been created for Siftables.

1.2 Thesis Contributions

The primary contribution of this thesis is the introduction and characterization of

a new human-computer interaction concept, embodied media. An embodied media

system physically represents digital content such as files, variables, or other pro-

gram constructs with separate interactive electronic tokens that can display visual

feedback and can be manipulated physically by the user as a single, coordinated

interface. Unlike tabletop or augmented reality systems, an embodied media system

relies minimally on external sensing infrastructure. Compared to most tangible user

interfaces an embodied media system represents a more generalizable platform. My

characterization includes both a listing of essential features that an embodied media

system requires, and a summary of novel interaction possibilities and application

types that embodied media systems are well suited to support.

Siftables is an interactive system of programmable electronic manipulatives that

was constructed to explore the embodied media concept. Its combination of sensing,

embedded computation, graphical display and wireless communication built into each

device is a novel system design that allows Siftables to support a range of interactive

application scenarios. The contribution of Siftables is the construction and critical

discussion of a working embodied media instantiation.

Siftables also enables a number of novel multi-object interaction techniques that

are not possible, or that require additional infrastructure in other systems. These

techniques leverage the collective sensing, coordinated graphical display, and wireless

communication capabilities of the manipulatives. Siftables can sense adjacency of

neighboring Siftables, tilting, shaking and other motion. Their feedback capabilities

include on-manipulative color graphics and audio triggered on a wirelessly-connected

computer. The ways that Siftables can be manipulated together in concert allows

this work to explore a new point in the design space of human-computer interaction

technologies, and I identify and discuss a number of of novel multi-object interaction

opportunities.

Along with my colleagues I have created a number of applications using Siftables,

including an image manipulation system, a word-finding game, an equation editor,

a graph-topology creation tool, an interactive cartoon narrative system, and various

other game and creativity support tools. These application examples primarily vali-

date the utility and flexibility of Siftables. They also provide the background for my

identification of application types that embodied media interfaces such as Siftables

are particularly well-suited to support. Along with my discussion of novel multi-

object interaction opportunities, this work offers guidance for other implementors of

embodied media user interfaces..

Siftables was designed to enable other developers can create applications with the

platform. More than twenty researchers in industry and academia have used Siftables'

high-level Python API to explore embodied media. Siftables thus contributes a multi-

purpose, reusable platform for exploring embodied media interaction possibilities, and

the feedback I collected from these developers contributes additional insight into the

interaction possibilities of embodied media.

Finally, I conducted studies to measure qualitative aspects of the user experience

using Siftables as well as the task efficiency implications of an embodied media sys-

tem compared to the mouse/GUI. The overall findings of these studies were that

participants preferred Siftables to the mouse/GUI in terms of enjoyability, expressiv-

ity, domain learning, and for exploratory/quick arrangement of content items, and

that Siftables offered an advantage over the mouse/GUI for task completion time

(particularly when participants worked in pairs). These findings, and my subsequent

discussion, are the final contribution of this thesis.

1.3 Dissertation Roadmap

Chapter 2 covers the background and motivation for this thesis, beginning with find-

ings from cognitive psychology that suggest the advantages of physical tools for inter-

action. It then reviews an abbreviated history of gestural interaction with electronic

media, with special consideration given to tangible interaction systems that consist of

collections of physical manipulatives. The chapter continues with systems that enable

rapid prototyping of physical interfaces, and closes with a discussion of ubiquitous

computing and some user interface trends in contemporary mobile technology.

Chapters 3 through 5 cover the design process, applications, and the technical de-

tails of Siftables. Chapter 3 explains the initial design inspiration and the prototypes

that were built on the way to the current system. It also contains a discussion of the

gestural language possibilities of an embodied media system. Chapter 4 continues

with a full listing of the applications that have been created for Siftables and a

number of shorter "application sketches" that explored particular interaction ideas.

Chapter 5 presents implementation details including Siftable hardware, firmware, and

the high-level Python application programming interface.

Chapter 6 describes the methods, results and discussion of one pilot and two user

studies that provide quantitative and qualitative feedback about Siftables compared

to a mouse/GUI system. Chapter 7 presents takeaway lessons about the types of

interactions that are well-supported by an embodied media user interface, along with

a number of design suggestions for embodied media. The thesis ends with a look

toward both the future of Siftables and embodied media and to our future interactions

with computers as collections of networked "smart" objects.

24

Chapter 2

Background and Motivation

This chapter begins with a discussion of the typical tradeoff between physicality

and flexibility in a user interface. From there it continues by presenting evidence

from cognitive psychology for the advantages of physical tools for interaction. It then

reviews an abbreviated history of gestural interaction with electronic media, beginning

with the 1920's-era Theremin and moving to modern systems. Special emphasis is

given to tangible interaction systems that utilize collections of physical manipulatives,

since these interfaces provided inspiration and contrast during my design process. The

chapter continues with a look at the progress in recent years toward enabling easy

and rapid prototyping of physical interactive systems, and closes with a discussion of

contemporary mobile, ubiquitous personal technology, putting forth both a philosophy

for design of these systems going forward and an argument about why the present is

an advantageous moment in history to be building them.

2.1 Introduction

Throughout most of human history, the tools we have used have been purely physical.

People have developed deep skill in using tools, and utilizing the physicality of the

tool has been a key advantage. From tools for manipulating physical matter such

as stone adzes, augers, and looms, to tools for manipulating abstract items like the

abacus or slide rule, a unifying theme has been that the shape of the tool largely

oTopobo
Cn

a AudioE
.C Cubes

-touch

oE i i

degree to which interface generalizes across activity domains

Figure 2-1: Physical representation versus ability to generalize. This plot
situates selected human-computer interfaces in a two-dimensional space, at locations
characterized by the amount of meaning that is encoded in the physical form of
the interface (vertical axis) versus the degree to which the interface generalizes across
activity domains (horizontal axis). Scale is intentionally omitted; the general positions
are what I intend to communicate.

determines its possible uses. An auger does not make a very good adze, nor does

it make a very good abacus, and vice versa for all of the aforementioned. At the

risk of over-generalizing, I suggest that most physical tools on their own have limited

versatility. A tool like the Swiss army knife is more versatile than most as it is an

agglomeration of smaller individual tools. Other more generic tools, such as a hiking

stick, are more versatile due to their unspecific form.

The introduction of the computer was a step forward in the versatility of tools

for manipulating information. A software program can change the behavior of the

underlying machine effortlessly, and graphical displays now provide inexpensive and

flexible visual output. Pixels are cheap, and extremely malleable. The machines

on our desks can at once be calculators, spreadsheets, audio recording workstations,

word processors, Internet browsers, video editing systems and more. The tool seems

nearly infinitely adaptable. However, compared to an adze, a hammer, or even an

abacus, the computer is not a particularly physical tool. Typing on a keyboard and

moving a mouse uses our skills for manipulating physical objects with our hands to

some degree, but this usage is limited compared to our rich heritage.

Tangible User Interfaces (TUIs) have been developed in the past fifteen years as a

way to re-physicalize our usage of computers. From early work at Interval Research

[109], to Hiroshi Ishii's research at the MIT Media Lab [54] and Scott Klemmer's

research at UC Berkeley [60] and Stanford [41], many new physical interfaces to

computation have been explored. Some of this work follows the old-tool pattern of

designing specific form-factors for specific tasks, while other systems keep the tools

generic but project graphics around them to give them context-specific meaning. I

believe that there is an inherent tension between the amount of meaning that is

encoded into the physical shape of an interface, and the degree to which the interface

generalizes across activity domains. See figure 2-1 on the facing page for a depiction

showing how I believe some selected human-computer interfaces are situated in a

space defined by this tension. I this figure do not make a claim about how these

properties can be measured or what the numerical value of each coordinate would be.

Rather, the arrangement of the examples with respect to each other is intended to

illustrate the general point that there is a tension between the amount of meaning

that is encoded into the physical shape or affordances of an interface, and the degree

to which the interface generalizes across activity domains.

The point in the design space that my work explores is the generic physical tool

with a graphical skin and sensing capabilities. This point represents a hybrid of the

physical tool and the graphical user interface; a smart, physical-digital instrument

that can sense various forms of user input and can display information on a built-in

graphical display.

The rest of this chapter will examine the background and motivation for this

design, and related work.

2.2 Brains, Hands, and Objects

This section examines some psychological literature that relates to problem solving

using physical objects.

2.2.1 Distributed Cognition: How Artifacts Aid Thought

There has been a great deal of recent interest in physical user interfaces for computers.

A key reason is that physical user interfaces have certain unique benefits, some that

can be explained by theories of cognitive science. One such theory is distributed

cognition, developed in the early 1980's by Edwin Hutchins [49]. The premise is that

people can externalize working memory and cognitive processing onto the objects or

tools that they use during problem solving activities. These objects, whether they

are physical or virtual, help us think about problems [120], and support us in solving

problems more effectively. Don Norman puts it nicely in his book "Things That Make

Us Smart": ...the more information present in the environment, the less information

needs to be maintained within the mind [86].

For example, Kirsch and Maglio observed that expert players of the video game

Tetris made more rotations on average of each piece before dropping it to the bottom

of the game area, compared to novice players [70]. Although counterintuitive at

first, the connection between greater expertise and a greater number of rotations

suggests that in-game rotation, where the player can view the result, is less cognitively

expensive than mental rotation of the pieces.

In a related study on a word-finding task using Scrabble tiles [71], Maglio et al.

found that participants that were allowed to re-arrange the tiles had more success

identifying possible words than those who were not allowed to move the tiles. This

finding reinforces the idea that objects can be used to offload cognitive processing;

rather than having to imagine possible letter sequences, participants re-arranged the

tiles to spell out words, and this ability to re-arrange the solution space proved to

be helpful. In this work and subsequently, actions that a problem-solver takes to

re-arrange the environment to aid their problem-solving process are termed epistemic

actions, whereas actions that make a direct step towards the solution of a problem

have been termed pragmatic actions [57]. For example, placing certain letters next

to each other that seem likely to form a word fragment (without having a full word

yet identified) would be considered an epistemic action, since some word-recognition

effort would be offloaded into the completed "chunk." Assembling a complete word

would be a pragmatic action.

These studies suggest that human-computer interfaces that allow a solution space

to be re-arranged easily by the user provide a likely benefit for problem-solving activ-

ities. Recognizing this, Fitzmaurice posed an important question in his dissertation:

We have the potential to rapidly manipulate physical artifacts. The question is does

the UI provide us with the affordances to utilize this potential? [29] (section 2.1).

The speed of manipulation that a user interface affords can also impact the efficacy

of an interaction. Even small differences in the amount of time that an interaction

takes can have a profound impact on the type of strategy that is employed by a user,

impacting the quality of the solutions [36]. Fitzmaurice made the same point about

virtual objects used as cognitive aids: ...if the amount of effort and attention needed

to manipulate these virtual objects is high, it may outweigh the value of using them

as external cognitive aids [29].

Another related cognitive science experiment [120] found that the form of ob-

jects used in the classic Tower of Hanoi problem impacted the speed of participants'

problem-solving and the accuracy of their solution. Objects that encoded constraints

or rules of the problem in their shape provided a time advantage and reduced errors.

Mackay observed that air traffic controllers use paper strips to work together, check-

ing their position and markings repeatedly and sometimes even annotating strips

simultaneously [69]. These finding suggests that user interfaces to computers that

can represent problem constraints in a manner that is perceptible to the user and

relevant to the style of manipulation, and that permit collaborative manipulation,

may have similar advantages. While Siftables feature a generic physical shape, the

visual display capabilities of embodied media manipulatives allow them to visually

encode some problem constraints.

2.2.2 The Rich Biomechanics of Human Hands

Our hands are skillful, allowing us to manipulate physical objects in ways that are

not yet well-utilized by today's interfaces to computers. Guiard's Kinematic Chain

Model provides an analysis of role differences between hands when both hands are

used together. The summary of Guiard's framework is that for the majority of manual

acts, the hands act in concert in an asymmetrical, complementary manner. The non-

dominant hand is typically used to hold the manipulated object in place, creating a

frame of reference that the dominant hand works in to take action on the object. The

dominant hand tends to move more frequently and with greater precision than the

non-dominant hand. Finally, the action of the non-preferred hand often precedes the

action of the preferred hand. These findings should be familiar, for example from the

everyday experience of writing on a sheet of paper, and they apply to many other

manipulation activities (summarized from [44]).

The implication of Guiard's analysis on the current work is that by enabling

both hands to take different roles in manipulating digital information, Siftables may

support a greater degree of skillful interaction than systems that do not enable two-

handed manipulation. Multi-touch systems typically support two-handed interaction,

but they lack certain physical feedback advantages enjoyed by tangible interfaces.

An interesting possibility is that role differences in a Siftable-based activity may

be distributed into different manipulatives. See the color-mixing interaction sketch as

an example (section 4.12.4 on page 109), wherein several Siftables show colored paint

buckets on their screens, and another Siftable starts out with an image displayed.

When a paint-bucket Siftable is placed next to the image Siftable then tilted toward

it, a pouring action occurs wherein the given color is added to the image Siftable

for as long as the paint-bucket Siftable is tilted. To relate this example to Guiard's

model, the image Siftable is the reference frame and the dominant hand holds the

tilted Siftable as a way to take action on the object (the image). This example is

inspired by the way we pour water from a jug held in the dominant hand into a cup

held in the non-dominant hand.

Figure 2-2: Early Gestural Interaction: The Telharmonium, developed in 1897 (left),
and Theremin, developed in the 1920's (right) are examples of early electronic musical

instruments that supported expressive gestural interaction.

Support for collaboration is the other key advantage of a multi-manipulative in-

teractive system, since more than one person may simultaneously grasp, arrange,

and otherwise manipulate elements of the interface in parallel. The ability to work

collaboratively can be helpful in problem solving and creative work, but is not well-

supported by typical desktop computers.

2.3 Gestural Interaction with Computers

Our ways of using the computer to manipulate information have changed significantly

a number of times over the past fifty years. Early interactions with computers for

'number-crunching' tasks such as code cracking and missile trajectory calculation

were defined by discrete inputs. The first widely available personal computers were

programmed by a series of toggle switches on a front panel [81]. However, beginning

with the light pen in the mid-1950's [111] and followed by the mouse in the late 1960's

[25], the computer's ability to sense and utilize a user's continuous physical gesture

has opened up possibilities to make it a much more expressive, nuanced tool.

2.3.1 Gestural Interaction with Electronic Media

Gestural interfaces that provide continuous input to electronic systems predate the

digital computer. The keyboard-based Telharmonium [115] musical instrument from

the late 1800's may have featured expressive foot-pedal controls, though little is known

about the details. The first non-contact gestural interface to an electronic system was

a musical instrument called the Theremin [34]. The Theremin allowed a player to

modulate the pitch and volume of an auditory oscillation by varying the distance

between their body and the instrument. Standing behind the instrument as behind

tiny podium, the hands of the player carefully dance up and down, forward and back,

never touching the instrument itself while creating an oscillation that can change as

nimbly and expressively as the human voice.

It is interesting to note that technical advancements in musical instruments have

foreshadowed later progress in human-computer interaction. For instance, the first

"button" 1 was probably the hole of a flute, since the change in pitch when the

hole is covered or uncovered is a mode switch. Considered in this way, the first

button may have appeared 9000 years ago, as prehistoric flutes have been found from

that era [119]! Other electronic music interfaces such as Hugh LeCaine's Electronic

Sackbut (1948) [90] had pressure-sensitive panels that allowed a player continuously

modulate volume, pitch and timbre. It may have been the continuous nature of analog

electronics that encouraged the creators of these early musical instruments to support

expressive gestural interaction before the arrival of the digital computer. As discussed

in the next section it was not until the 1950's that digital computers learned to sense

continuous gesture, and not until the Macintosh with mouse emerged in the 1980's

that gestural interaction with computers became widely available. These examples of

arts-oriented inventions making strides that predate and perhaps inspire advances in

information technology may be instructive as we seek ways to transform the personal

computer into an ever-more capable tool for personal expression.

1Here I will use a loose definition of a button, considered to be any mechanism by which a
discontinuous state-change of a system may be affected by some physical pressure applied by the
user.

Figure 2-3: The Polhemus (left) is a system that permits three-dimensional position
sensing for interactive applications. The Nintendo Wii (right) controller is an inertial
motion sensing and pointing device.

2.3.2 Free Gesture Interfaces

The term "free gesture" is used here to describe gestural input to a computer that

is unconstrained by physical contact with a fixed surface or object. The Theremin

was the first example of free-gesture input to an electronic system, however it did

not gain wide popularity. A possible reason is that free-gesture systems, although

expressive, are known to be poor input devices for precise control [88]. In the years

since the Theremin, a number of other systems have been created that feature free

gesture input to a computer.

The Polhemus FASTRAK is a 6 degree of freedom (DOF) system for tracking

the absolute position and orientation of a small sensor unit. It has been used in a

number of human-computer interface systems such as [46] and [75]. A limitation of

the FASTRAK is that the sensor requires a wired connection to the base unit; a

subsequent product release [97] makes the sensor unit wireless, but requires nearby

receiver modules that are connected by wires to a base station.

More recently the Nintendo Wii game console [51] has popularized a baton-like

free gesture interface as an input for video games. During game play, up to four

players use wireless game controllers featuring 3-DOF inertial (acceleration) sensing

as well as a number of discrete buttons. Each wireless controller has an optional

Figure 2-4: Direct pointing at a screen or surface has been an input modality since
early stylus systems like Sketchpad (left two images). Touch pad and multi-touch
systems have removed the requirement for the stylus (right two images).

secondary inertial input connected by a cable that also provides 3-DOF acceleration

input for use by the player's other hand. The Wii has been a commercial success,
and a factor that may contribute to the popularity difference between the Wii and

the Teremin is that games for the Wii are designed to largely obviate the requirement

for precise control.

2.3.3 Gesture on a Surface

Two-dimensional, surface-oriented interactive systems are another class of gesture-

based interfaces that are relevant to the current work. Stylus-based tools for position

sensing across a surface are the oldest example of this category. The light pen of

the 1950's was the first of these interfaces, and modern drawing tablet and tablet

computer systems still feature a pen-like stylus that provides absolute position sensing

of a single point of contact across the tablet or screen's surface. The mouse is also

in this category, allowing for two-dimensional relative sensing of a single point of

contact with a surface. Both mouse and tablet+stylus interfaces also feature discrete

button-based input along with 2D gesture.

Fingertip-sensitive touch pads, such as those made by ALPS [68] and Synaptics

[112], have become integrated into most modern laptop computers. These interfaces

do not require a stylus; using a capacitive sensing grid, they track the position of one

or more of the user's fingertips to control the mouse cursor or zooming and scrolling

of on-screen content.

Multi-touch surfaces have also become popular in recent years. Although the first

multi-touch interface appeared in 1982 [76], it was Han's large-surface multi-touch

demos [39] and Apple's introduction of multi-touch on their iPhone device [53] that

has recently brought this interaction technique to the public's attention. A drawback

of surface-based interfaces is that they typically require visual attention, since the

smooth planar surface itself does not provide any tactile feedback to the user [17].

2.3.4 Final Thoughts on Gesture

In summary, interfaces that permit continuous gestural input can support expressive

control in ways that discrete button-based interfaces cannot. The tradeoffs are that

free gesture has limited affordances for precision and thus may be most successful in

gaming systems such as the Wii or in other scenarios where the task can be designed

or adapted to avoid requirements for high precision input. Mice and tablet interfaces

both offer single-point of contact interaction; a key difference between these two

is that whereas the mouse-based interaction separates the locus of interaction (the

desk) from the location of the visual feedback (the screen), tablets and touch screens

feature visual feedback that is co-located with the input. This co-location of input and

output can create an increased sense of connectedness between the user's actions and

the corresponding manipulation of the content [28]. However, multi-touch interaction

on large displays requires extra visual attention from the user, and the interaction is

typically confined to a two-dimensional plane.

2.4 Reducing the Cost of Developing Interactive

Physical Systems

A great deal of progress has been made in the domains of web and personal software

towards enabling people to more easily author their own online content and software

programs. Wiki and blog infrastructure allow people to create web pages without

having to learn HTML, and toolkits such as d.mix [42] lower the barrier to entry

for crafting programmatic online behavior. Additionally, programming environments

like Flash [50] and Processing [32] allow people to write interactive software that runs

on the web or on their local machine with only an introductory-level background in

programming.

A key challenge in technology design and development is that physically-embodied

(i.e. hardware) systems are much more difficult to create and to author behavior

for than software systems [59]. Building a new electronic device requires tools and

supplies beyond the personal computer, and answers to questions and problems are

not as easily found on the Internet, making troubleshooting more difficult. The result

is that there are few tangible platforms that can be reused for multiple applications.

Toolkits have emerged that begin to meet this need, such as Bug Labs (prototyping

personal consumer devices) [62], Lego Mindstorms (modular robotics) [8], iStuff Mo-

bile (physical user interfaces for mobile phones) [6], and Arduino (microcontroller and

sensors prototyping) [77]. Each toolkit addresses a certain class of device or system,

but none specifically addresses distributed, embodied media user interfaces. Siftables

have been designed as a general-purpose tangible prototyping platform to support

the creation of a range of user interface ideas, and as such they make a contribution

in reducing the difficultly of exploring the design space of hybrid tangible-graphical

user interfaces.

2.5 Tangible and Tabletop Interfaces

George Fitzmaurice's Ph.D. dissertation [29] introduced the idea of a "graspable" user

interface, outlining the benefits of a system featuring multiple physical manipulatives 2

that can each be distinct both in visual appearance and function. Since this work,

there have been a number of examples of what I will call tangible tabletop interfaces,

systems that comprise physical "handles" on a display surface that provide a means

to manipulate digital content, such as d-touch [19], reacTable [55] and Sensetable [94].
2In educational circles, the term 'manipulative' describes any physical object that is specifically

designed to foster learning. Here I use a technology-oriented definition, wherein a manipulative is
considered to be a physical object that affords some interaction with digital information.

Many of these systems have a similar structure and interaction style: they feature

inert manipulatives whose positions (and in some cases, orientations) can be sensed by

the system, and graphics superimposed onto the work surface. For instance, reacTable

features cubes with fiducial markers (patterns that are visually distinct) on each face.

Computer vision software operates on the video feed captured by a camera installed

under the clear surface of the table to determine the identity and position of all blocks

that are currently in the work area. Users interact by moving the cubes to create

networks of inter-connectivity in a graph-like structure that is projected visually, and

the system produces audio in response. In the case of reacTable the end result is an

audio synthesizer.

Earlier variants on the tangible tabletop paradigm include Wellner's Digital Desk

[117], a tabletop system that projected graphics onto a desktop work surface, al-

lowing the user to interact by pointing with the fingers at real paper documents.

Another was the wall-mounted Designers' Outpost [60], that featured post-it notes

as physical manipulatives and allowed them to be hand-annotated. The focus of

the Designers' Outpost was the seamless integration of physical and virtual editing

capabilities, as individual notes could be edited or removed, whilst remaining in the

digital representation of an ongoing design session. The Tern tangible programming

language [48] comprises inert but physically and visually distinct interlocking wooden

manipulatives. The user creates a program by locking a set of statements into a

sequence, and when the sequence is photographed it is parsed from the single snapshot

using computer vision software, then the associated instructions are executed.

These tangible tabletop interfaces all require environmental infrastructure: either

sensing apparatus built into the table, cameras above or below the surface, or some

combination of the two. These infrastructure requirements impose a tradeoff; they

permit the systems to sense the absolute (workspace-relative) position of the ma-

nipulatives, and in some cases to display graphics surrounding the manipulatives.

However, these features come at the cost of portability and directness. Since the

sensing is required, the manipulatives must be used in the two-dimensional plane

of the instrumented workspace and usually have no utility elsewhere; some systems

such as reacTable and Sensetable lose their ability to track the object at a height of

only a few centimeters from the surface. Furthermore, in some of the aforementioned

systems the digital content is projected around the manipulative, rather than the

manipulative displaying the content directly. A system that can display graphical

content on-manipulative can be more mobile since it does not require use near a

projector for the graphics to be seen, and the feedback can take the form of an

"information skin" directly on the object rather the manipulative being a "handle"

[30] to a separate projected item.

2.5.1 Minimal-Infrastructure Distributed Tangible Interfaces

A few systems have emerged that attempt to free tangible tabletop manipulatives from

environmental infrastructure like position-sensing and graphical projection. These

systems build more functionality into the manipulatives themselves, or interface the

manipulatives to a nearby computer in a more lightweight manner that allows them

to more easily be used in different locations.

The Tangible Music Sequencer [10] and Flow Blocks [122] are examples of this class

of minimal-infrastructure systems. The Tangible Sequencer [10] in particular is an

interesting precursor to the current work because its blocks have both local (neighbor-

to-neighbor) and longer-distance (radio) communication. However, the Tangible Mu-

sic Sequencer has been applied only to a single domain: electronic melody sequencing.

Sony's Block Jam [84] is a similar system, wherein cubes with low-resolution Light-

Emitting Diode (LED) arrays on top can show iconic graphical feedback and can

be arranged into two-dimensional patterns to create musical sequences. Like the

Tangible Music Sequencer and Block Jam, Flow Blocks are an interface designed for

a specific activity; the purpose of Flow Blocks is to allow children to explore complex

causal relationships and to understand their analogical relationships to the dynamics

of real world systems.

Zigelbaum's Tangible Video Editor [121] is another example of a minimal-infrastructure

tangible system. Zigelbaum configured modified Compaq iPaq PDA devices to rep-

resent individual video clips, and users could create an edited movie sequence by

aligning the iPaqs end-to-end. Since the PDAs have screens, Zigelbaum was able to

exploit the flexibility that comes from the introduction of graphics capabilities on

the manipulatives, and to represent video clips in a manner consistent with their

underlying graphical nature. However, the Tangible Video Editor was a single-task-

domain system, with affordances designed specifically for video editing.

Exploring distributed topological interaction for non-block forms are interfaces

like Triangles [35] and Glume [91]. These construction kits allow a user to connect

pieces into three-dimensional shapes, and the system captures the topology of the

interconnected elements. Topobo [100] is a similar system that does not capture

the topology of the three-dimensional construction, but that records motions to the

structure applied by the user, then can actuate to play back the recorded motions.

These minimal-infrastructure tangible interfaces are important steps towards true

general purpose systems. They are more portable than their tangible tabletop pre-

decessors yet they preserve the utility of physical graspability. However, their design

for single-activity usage limits their ability to explore the wide range of possibilities

permitted by a general-purpose distributed physical interface such as Siftables.

2.5.2 Concluding Tangible User Interface Thoughts

This section reviewed distributed user interfaces and a number of specific tangible

and tabletop systems with varying degrees of infrastructure requirements. A key

advantage of these systems' physical graspability is the implicit feedback that comes

from manipulating a real object, as compared to a touch screen interface with purely

graphical items. However, the typical handles-on-a-surface instantiation of tangible

tabletop systems (see section 2.5 on page 36) is still not as direct as an embodied

media interface like Siftables wherein the manipulative itself can both sense the user's

manipulation and display graphical feedback. Furthermore, interaction with most

tabletop interfaces is limited to the two-dimensional plane of the work surface, and

they require environmentally installed sensing infrastructure to operate, limiting their

mobility. Those systems that do not require significant infrastructure have so far

explored relatively specific usage scenarios.

2.6 Distributed Media: Complex Behavior from

Collections of Simple Pieces

The idea that interesting global behavior can emerge from a collection of relatively

simple, locally interacting computational pieces dates back to cellular automata (CA)

simulations [118]. Inspired by the behavior of crystals, ant colonies, beehives and

other collective phenomena from nature, the authors of early CA software explored

ways that simple rules for the behavior of individual nodes can form complex behavior

in aggregate when these nodes are allowed to interact with each other. John Con-

way's game of life [18] popularized the concept and spawned thousands of software

implementations by programmers worldwide.

Paintable computing [15] brings a theme similar to cellular automata into the

physical domain. It posits the possibility that individual computational devices might

be so small as to be suspended en masse in a viscous fluid and literally painted onto a

surface by a user, where they would harvest energy from their environment, establish

radio communication with their neighbors, and collaboratively become a dynamic

ad-hoc computer and (in some cases) a graphical display. Paintable computing has

not yet been realized at the desired size and scale, but larger (sensor-network sized)

nodes have been built to prototype the behaviors that a paintable computer could

exhibit, notably the Pushpin computing system [66]. Other distributed computing

paradigms include object-oriented architectures, and systems that are distributed

across the Internet.

Embodied media explores a different style of distributed system, with a fewer

number of components than cellular automata or paintable computing, each typically

configured to exhibit different behavior. Furthermore, neither cellular automata nor

paintable computing were imagined to be particularly tangible systems for interac-

tion. A few projects have explored diffusion of media using tangible, mobile devices.

Kramer's master's thesis explored custom tangible manipulatives that could be used

to interactively transmit mobile code to each other based on their adjacency [61].

The iBall experiment allowed children to create small interactive programs that were

I?1R

Figure 2-5: Conway's Game of Life (left) demonstrated how complex behavior can
emerge from a distributed system of interacting nodes with simple rules. Butera's
dissertation on paintable computing developed a working physical instantiation of a
distributed physical system.

shared in a peer-to-peer fashion using a modified version of the SEGA DreamCast

platform [12]. The following sections look towards human-computer interaction with

distributed systems.

2.7 Mobile and Ubiquitous

Other research threads that feed into this dissertation are mobile systems that can

comfortably operate away from the familiar desktop computer setting, and ubiqui-

tous systems that introduce many computational devices into the environment. This

section will examine the important ways that these systems differ from the desktop

scenario, and the possibilities that they offer to my work.

2.7.1 Enabling Advances in Technology

The timely convergence of a number of technological advancements makes us now

uniquely positioned to explore the implications of mobile and ubiquitous computing.

The implication of Moore's Law [104] is an exponential increase in computational

power that allows mobile phones and other portable devices to run sophisticated user

interfaces driven by small processors whose clock speeds were characteristic of typical

desktop computers just a decade ago.

In addition to processing power, other factors have converged to allow discontin-

uous advances in mobile interaction with information. Wireless communication has

seen a number of changes, from more efficient transmit and receive circuitry that

reduces power usage and extends battery life to algorithms for reliable mesh connec-

tivity between sensor network nodes. Recent progress in sensing technology has also

permitted interesting new possibilities. Particularly, the maturation of MEMS (Micro

Electro-Mechanical Systems) based accelerometers, first made by Analog Devices [22],

has allowed these sensors to become a standard way for mobile phones and digital

cameras to sense orientation and motion during use.

These advances in sensing, processing and wireless communication have enabled

the creation of mobile phones, sensor networks, and a number of other wirelessly-

connected devices like pacemakers [110] and portable game systems [85] that enable

health monitoring, access to information, and play away from the desktop environ-

ment. The next section will examine the current landscape and recent progress in

mobile human-computer interaction.

2.7.2 Good Mobile UI is Not Just Mobile WIMP

Due to their limited processing and display capabilities, early mobile devices such

as pagers and first-generation mobile phones featured minimal, text-based user in-

terfaces. User interaction with these devices comprised pressing buttons to navigate

simple menus and contact lists. As mobile processing and display capabilities im-

proved, the interfaces on mobile devices began to more closely emulate the standard

windows, icons, mouse and pointer (WIMP) paradigm from the desktop. However, the

use of space in a WIMP system can become awkward on a system with no mouse such

as today's mobile phones. With only a keypad and perhaps a "joystick" directional

control, extra reliance on visual feedback for mobile phone interaction became the

norm, for instance highlighting the background of the currently selected desktop icon.

Touch screens have been brought into service as a more graceful solution to the

problem of navigating spatial information on small displays. Position-sensitive touch

sensing on a graphical display is not a new technology. An early example is the

PLATO IV Touch Screen Terminal (1972), an instructional system that allowed stu-

dents to answer questions by touching anywhere on the screen. In 1992, IBM and Bell

South made a mobile phone with a touch screen, preceding Apple's iPhone by more

than two decades [17]. However, the falling costs of sensing architecture supporting

this technique and the maturation of the related algorithms, particularly for multi-

touch, have resulted in an explosion in the number of recent mobile devices that use

a touch screen. The influence of the interaction designer in this process should not

be underestimated. In the case of multi-touch interaction, Han popularized the tech-

nique by demonstrating a series of compelling interaction sketches and applications in

online videos and live presentations[39]. Apple has now made very similar interaction

techniques standard on their iPod and iPhone devices [53].

The example of the touch screen can be a useful case study in how a new technology

or sensing technique may provide an advantage in a mobile context even before it finds

wide usage for the desktop computer user. The design challenges of mobile interaction

(i.e. small devices, tiny screens) make the incorporation of new technologies and the

development of specialized techniques critical to progress in usability. However the

integration of touch screens into mobile devices may be a bandage for a wound that

actually requires stitches, or even major surgery. The next section looks at some

recent examples of more dramatic ways that mobile interaction his being reconsidered.

2.7.3 Mobile User Experience: Unique Challenges and New

Directions

The reasons why human-computer interaction with mobile devices is fundamentally

different than interaction with a desktop computer go beyond the surface differences

of a smaller screen and more limited keypad. Important differences between the two

scenarios relate not only to the device itself, but additionally to the contexts of use

[89].

In addition to the spatial problems presented in the previous section, the graphical

user interface also relies on the assumption that the user can devote undivided visual

attention to the screen of the device. This assumption may not be valid when we

consider the unique constraints on the mobile user with respect to attention and

device manipulation [13]. She may be driving a car or riding a bicycle, both of which

will place restrictions on how much visual attention she can devote to the device itself

(possibly none), and that will also restrict her interaction with the device to one hand

or fewer! Even if both hands are free, she may be walking down a busy sidewalk or

talking to a friend, reducing the amount of attention she can pay to the device.

A growing body of research in mobile HCI seeks to address the unique challenges

posed by mobile technology use. New approaches have included the use of spatial-

ized audio menus and head motion [96] as input, the sensing of wrist gestures [27]

hand poses [101] and body-relative spatial motions [3], vibrotactile feedback [98], and

improvements to common mobile tasks such as traversing a list of contacts [40] [87].

An even more radical response to the challenges of mobile interaction is a flexible

device that responds to bending rather than buttons [105], largely dispensing with

the WIMP paradigm. Another prototype input device discerns the user's scratching

and other physical contact with its textured surfaces [83] by listening to the audio

signature of these interactions, allowing the device to remain in the user's pocket

during use as they operate it completely by feel.

These recent prototypes are only the beginning of a dramatic re-conceptualization

of the mobile user interaction experience, and I believe the most interesting work is

still yet to emerge. Much future work is technically possible today, but not yet

imagined by interaction designers. Humankind is at a moment in history featuring a

sea of new technological possibilities, we just need to develop more creative ways to

imagine how we might leverage them. The next section examines sensor networks,

one such area of technological development that I believe is ripe for application to

problems of human-computer interaction.

2.7.4 Wireless Sensor Networks: Minimal and Distributed

There has been a great deal of research activity in academic and industrial settings

around wireless sensor networks (WSNs). The typical WSN features a collection of

physically separate devices with sensing, computation and wireless communication

abilities that cooperate to perform a wide variety of tasks. They are capable of

exhibiting coordinated behavior, forming a kind of "functional fabric" in the spaces

that they inhabit. Pister's "Smart Dust" work at U.C. Berkeley predicts individual

motes that will eventually be the size of a grain of sand, or even a dust particle, each

with self-contained sensing, computation, communication and power [56].

WSN deployments have often been applied to problems of environmental monitor-

ing, such as detecting the stresses on a structure like a bridge [103], or the movement

of people through a building [26]. The key features that make these WSNs useful are

their ability to sense phenomena that is distributed across space, and to aggregate

the sensor data so that it can be pieced together (usually in an offline manner or

on a separate dedicated server) into a coherent summary of the phenomena. Thus

many deployments can build rich models of local interactions and their surroundings

without requiring external sensing or power infrastructure.

Ad-hoc mesh networks and routing protocols push the boundaries of system flexi-

bility by avoiding reliance on environmentally installed infrastructure such as cellular

networks or WiFi. Most WSNs have a user interface to them; this allows a user,

for example, to query the current state of the nodes or to upload new firmware, yet

little research effort has been invested in understanding the possibilities of multi-node

sensor networks as user interfaces. Human-computer interaction research for single-

device-per-user scenarios (e.g. mobile phones and other ubiquitous computing) is

discussed in section 2.7.3 on page 43. Mapping out the human-computer interaction

possibilities realized by WSN-like system that features a collection of independent

interactive nodes was a motivating inspiration behind the design of Siftables (for

more discussion of this theme, see section 3.2 on page 53). The next section looks at

one example of sensor network techniques applied to human-computer interaction.

2.7.5 Shared Synchronous Motion: An Example Application

of a WSN Technique to HCI

A problem that is central to many WSN deployments is the coordinated detection

of events such as sound or motion. For networks that feature body-worn or carried

devices, for instance in gait monitoring applications [82], the collective detection of

inertial events can be a key feature. It can be useful for a distributed system to

know when certain subsets of nodes are moving together. From gestalt psychology

the principle of common fate [113] explains our bias to interpret things that move

in a synchronous manner to be part of the same object. Common fate is a heuristic

that allows us to make sense of dynamic visual phenomena. At least in part inspired

by this human capability, a number of distributed systems have attempted to detect

synchronous inertial events sensed concurrently by multiple devices.

The Smart Its Friends [47] system detects when two personal devices are being

held and shaken together as a criteria for establishing a trusted connection between

them. The question addressed is: When should two mobile devices be allowed to

communicate? The assumption is that if the same person holds the two devices in

hand it indicates trust between their owners. Hinckley's related work uses the detec-

tion of an impact between tablet computers as a trigger for opening a communication

channel for data, or for turning the two displays into a single larger display [45]. A

related project detects when the same person is wearing two devices while walking

[63], and another allows multiple sensor nodes to detect if they are attached to items

that are being transported by the same vehicle [73] in a distributed real-time manner.

These research projects demonstrate the utility for human-computer interaction

when groups of mobile devices can detect shared synchronous motion. Given their

inertial sensing, wireless communication and graphical display capabilities, Siftables

would be a useful platform to explore this technique further with larger numbers of

small devices, and in conjunction with graphical on-object feedback. In the same

manner, I expect that other developments in the field of WSNs will contribute to the

design of distributed interactive systems.

Chapter 3

Design Process and Interaction

Techniques

Siftables began as a brainstorm in 2006 with Jeevan Kalanithi; we imagined how

people might interact with digital information by using their hands to manipulate a

sea of tiny physical, active, computational objects. Though we were influenced by

ideas from tangible interfaces, pervasive computing and sensor networks, only later

would Siftables be contextualized against the backdrop of these ideas as a hybrid

that blended these themes with the flexibility of pixels that defines graphical user

interfaces. The beginning however, was pure inspiration, an uninhibited "what if"

speculation about a system that would permit compelling new physical interactions.

Figure 3-1: The four design iterations of the Siftables platform. From left to
right: Version 1: not battery powered, used an LCD, and could sense accelerometer
motion. Version 2: Bluetooth-enabled, battery powered and able to communicate
with neighbors over infrared. Version 3: OLED display, 3D printed case and charging
cradle. Version 4: injection-molded case, mature event-driven operating system and
Python API for remote software control and application development.

The key idea motivating this brainstorm and leading to the development of Sifta-

bles was the conviction that current user interfaces are not yet utilizing our hands

and bodies very well [58]. Tangible user interfaces engage our bodies and leverage

our spatial understanding of physical objects, but they tend to be single-purpose

systems designed for a particular task or user population. Tabletop and graphical

user interfaces tend to be more general-purpose due to their use of pixels, but infras-

tructure requirements limit their mobility. We speculated that a system able to fuse

the beneficial features of tangible and graphical user interfaces could enable a huge

step forward in our ability to manipulate digital content in a physical, expressive,

collaborative manner.

In the first brainstorm, Kalanithi and I posited the Siftable Computer composed

of a collection of physical "beans", tiny battery-powered electronic devices with a

screen, accelerometer and radio. Each bean would embody a digital information or

media item to be arranged (i.e. a photograph, email, audio clip, etc.), and users could

move the beans around by hand, sorting them in the same way they would sort any

collection of physical items. Using their accelerometers and wireless communication,

the system would infer groups based on shared synchronous motion. Group affiliation

would be displayed visually via a colored bar or border on a portion of each small

screen to provide feedback to the user. A user could shake a bean to erase its cur-

rent group affiliation, or bang on the table to simultaneously erase all current group

affiliations of the beans. All arrangements would be wirelessly synchronized with a

nearby computer, and the system would feature a tight loop of user manipuation and

on-device visual feedback.

We also posited "action beans", which would represent application-specific actions

a user can take on the data. For instance a particular bean could be designated as an

"email to Mom" bean. Individual beans or groups of beans could be bumped against

this action bean, causing all photos to be emailed to the user's mother. Other possible

action beans could be a "backup bean", "create a zip archive" bean, or "delete" bean.

The current working system reflects a number of hardware and software iterations,

each version pushing closer to realizing the ideas from the original brainstorm.

Figure 3-2: A typical desktop computer interaction scenario (left), in which a mouse
is used as a virtual pointer into a graphical representation of the virtual desktop
space. In an embodied media user interface (right), the manipulatives give physical
embodiment to digital media content. They can both display a dynamic visual
representation of the media or action that they represent, and sense the user's input,
without requiring environmentally-installed sensing or display infrastructure.

3.1 Embodied Media: Hybrid Tangible-Graphical

Distributed User Interfaces

This thesis introduces a new human-computer interaction concept, embodied media.

An embodied media system physically represents collections of digital items such as

files, variables, or other program constructs with a set of self-contained, interactive to-

kens. Embodied media tokens can present visual feedback to the user indicating their

current role, and can be physically manipulated by the user as a single, coordinated

interface as a means of altering the digital items represented. An embodied media

system relies minimally on external sensing infrastructure, in contrast to tabletop or

augmented reality systems.

Siftables is an embodied media system that combines the flexible graphical dis-

play capabilities of the GUI with the physicality of a TUI, while incorporating some

capabilities of a sensor network. In contrast to tabletop TUIs that provide handles

to a projected digital representation of data, a Siftable can display a graphical rep-

resentation of the data on its exterior that can be viewed by the user and altered by

their manipulations of the device. Since each Siftable is both a physical manipulation

interface and a display, it can tightly couple input and output to embody the digital

media that it represents.

The concept of embodiment [28] is an important difference between Siftables and

GUI or tangible tabletop interfaces. When our hand moves and clicks a mouse button,

or when we manipulate a collection of graspable pucks, these interfaces are tools by

which we navigate an interaction grammar. These physical manipulation interfaces

have become 'physical cursors' into a digital interaction space, but they are still

"handles."

Siftables attempt to offer the user a mental model where the manipulative itself

is the target of the action. The goal is to enable an increase in directness (the

aforementioned coupling between input and output), compared to physical handles.

The design philosophy is that to the user, the Siftable is the media (the noun), or

the Siftable is the action (the verb), rather than being just a tool for navigating

an interaction grammar expressed on a larger display. This mental model makes

the most sense for Siftables applications that do not include a large screen. In these

applications the manipulatives can be seen as a medium, as the material for expressing

the user's intentions in the digital realm, rather than as a reference or handle to a

separate virtual representation.

3.1.1 Essential Properties of an Embodied Media System

To articulate a crisp definition of embodied media, I have identified the following prop-

erties that I consider essential to any embodied media system. These properties enable

the physical, two-handed, collaborative interaction with collections of digital content

items imagined in the original brainstorm. The properties outlined are characteristic

of Siftables, but they are not a full description of the Siftables platform. The goal of

this section is to give the reader an ability to identify what features are essential, and

what features are incidental, to any specific embodied media instantiation.

* Multiple Physical Manipulatives Used Together: Multiple manipulatives enable

a one-to-one correspondence between a manipulative and a digital content item

or control, even if this is not always the manner in which they are used. Im-

portantly, embodied media systems permit the embodiment of collections of

media. The requirement of being used together entails some form of real-time

communication among the group of manipulatives. Applications for Siftables

have used two to thirteen devices at a time.

* On-Manipulative Feedback: On-manipulative feedback is essential to make the

mapping between a manipulative and the digital entity that it embodies legible

to the user, and to establish the impression that the manipulative embodies the

entity. This feedback could be as simple as glowing with a unique color, as

flexible and reconfigurable as a color bitmap display as with Siftables, or even

physical such as a shape-changing surface.

* On-Manipulative Sensing of Other Manipulatives: The ability for a manipula-

tive to be aware of its interactions with other manipulatives allows the user to

establish and manipulate symbolic relationships between the digital entities that

they embody. Siftables senses the proximity of other devices in four directions;

sensing shared synchronous motion (see section 2.7.5 on page 46) is another

possibility.

* On-Manipulative Sensing of User Input: Each manipulative must permit direct

user interaction. This interaction could be inertial (as with Siftables), or touch-

based, or pressure, breath, or any number of other modalities. The key reason

that on-device manipulation is important is that this directness contributes to

the impression of embodiment of the entity by the manipulative, compared to a

mouse/GUI or tangible "handles" system.

* Reprogrammability: Embodied media entails flexibility, and a single system

of embodied media manipulatives should support many different application

types. As such, it is important that the behavior and visual feedback of the

manipulatives can be easily altered. Siftables features two high-level APIs,

enabling applications to be developed quickly and easily.

* Minimal External Sensing Infrastructure: The final part of the embodied media

vision is that the system should be mobile, avoiding strong dependencies on

bulky/fixed-location sensing infrastructures such as cameras or special-purpose

tabletop surfaces. This allows the user experience with an embodied media

system to adhere more closely to the experience of working with non-electronic

tools, which by nature do not have dependencies on their environment. Siftables

can wirelessly connect to a laptop computer, or can operate in a standalone

mode, either of which permits greater mobility than most interactive "surface"

installations.

3.1.2 Incidental Properties of Siftables

Siftables is just one instantiation of the embodied media concept, and its particular

features are not the only possible set. The following properties are characteristic of

Siftables, but are not strictly essential to an embodied media user interface.

* Un- Tethered Operation: Battery power and wireless communication allow Sifta-

bles to operate in an un-tethered manner, without requiring a cable for com-

munication or power. However, a system could conceivably satisfy the essential

requirements of embodied media while requiring such tethering, if the tethering

was to a portable device such as a laptop computer or mobile phone.

* Square Shape: Siftables are square tiles, which allows them to be tessellated

and to communicate laterally in four directions. However, they could be a

different shape, such as a triangle, pentagon, hexagon, etc. while still realizing

the essential properties.

* Generic Physical Shape: The physicality of Siftables makes them graspable, and

their generic square shape does not bind them to represent a particular function

or media type. However, an embodied media system could feature physically

differentiated manipulatives, for instance to make a durable distinction between

devices that represent items versus operators, optionally with physical con-

straints on how such pieces can interact or interlock. The specific item or

operator assigned to each manipulative could still be changeable at run time.

Each Manipulative Has Identical Capabilities: Siftables each have the same

capabilities to sense each other, to sense their own motion, and to communicate

wirelessly, store data, and display graphics. The design philosophy for Siftables

is that each is interchangeable with any other. However, related to the discussion

about generic physical shape, an embodied media system could feature some

manipulatives with different capabilities than others, or even a system that

featured a combination of embodied media manipulatives and non-embodied-

media, but still interactive, items, working together.

Technological capabilities are now available to explore other embodied media in-

stantiations, including sensor networks, which are discussed in the next section.

3.2 A Sensor Network User Interface (SNUI)

The tradeoff between tangibility and flexibility discussed in chapter 2 on page 25 led

us to consider how we could expand the design space of interactive systems to enable

combine directness and flexibility in a user's interaction with digital information or

media. One element of how Siftables combines these design goals is its incorporation

of certain sensor network characteristics.

As discussed in [2], most sensor network systems today implement monitoring

scenarios [72] [103] [26] [67]. These deployments typically feature a user interface to

the network, for instance visualization and management software on a PC that can

query and summarize data from the nodes, or that can update their behavior. Lifton

et al. first coined the acronym SNUI (Sensor Network User Interface) [65] to describe

the management software that they developed for such a deployment. Other work in

"participatory sensing" [14] has posited networks of people, each with a mobile device

such as a smart-phone, as a kind of interactive sensor network.

SENSOR NETWORK

NOD S SENSOR NETWORK = USER INTERFACE

USER N USER
USER INTERFACE

Figure 3-3: In a Sensor Network User Interface (SNUI) as defined by Merrill, Kalanithi

and Maes [79], the sensor network is the user interface. On the left is a SNUI as

described by Lifton et al. [65], in which the nodes are "out there" in the world,
accessed by a user interface program on a standard computer. On the right a SNUI

like Siftables, a user interface where the nodes themselves are interactive and are

directly manipulated by the user.

With Kalanithi and Maes I defined a new sense of SNUI [79]. Rather than describ-

ing an interface to a sensor network, or a group of individuals with mobile devices

as the nodes of an interactive sensor network, we proposed the use of nodes of a

wireless sensor network as a user interface that can be directly manipulated by an

individual or a group (co-located or not). Siftables is a SNUI in this sense of the term.

Each node has sensing, wireless communication, and user-directed output capabilities,

specifically graphical representations.

3.3 Prototyping

Prototyping is an important part of many design processes. I must clarify the distinc-

tion between the capabilities of Siftables as currently implemented and the possibili-

ties that the implemented system allow us to explore. The underlying assumption of

my research is articulated by Bradley Rhodes as he summarizes the attitude towards

prototyping generally found at the MIT Media Lab. It comes from an explanation of

why the Media Lab is situated within the School of Architecture at MIT.

... it's not just the research topics that draw from architecture, it's also

the methodology. Engineers draw designs. Scientists run experiments.

Architects, we build models. At the Media Lab we called them "demos"

and they tended to look more like computers and electronics than miniature

foam-core houses, but they were based on the same basic idea that you

can't truly understand something new until you build one and play with it

a while. - Bradley Rhodes

By building a functioning model that can be tested and shared with other people,

we can better understand the possibilities and limitations of a new technology or

design idea. Therefore Siftables is a high-resolution prototype. In order to under-

stand the implications of an interface that comprises a collection of small physical

manipulatives that can be easily handled en-masse, I could not have used existing

platforms such as mobile phones, because their form factor is too large and certain

capabilities (i.e. neighbor sensing) are absent. I wanted to be able to display dynamic

information on the devices, so Siftables were built to have functional color screens.

Furthermore, the vision was that they be untethered, so Siftables are battery-powered

and have wireless communication.

Despite the system's relatively high fidelity, some details that were part of the

original idea but that were not essential to understand the interaction possibilities

were omitted for pragmatic reasons. For instance, mesh networking. To draw on

many of the exciting advances in sensor network research, future embodied media

manipulatives should be able to communicate with any other nearby manipulative di-

rectly. However, I decided that this capability could be simulated with a star network

topology for data communication in which each Siftable has a wireless connection to

the same host computer wherein resides the controlling program. Furthermore, a real-

world Siftables deployment may not require the nearby computer to run the program.

It could either be distributed entirely among the devices, or a single Siftable could be

elected dynamically to control the others. Again, this architecture was not necessary

in order to answer the interesting research questions, so it was not implemented.

After the initial brainstorm described at the outset of this chapter, we prototyped

the Siftables platform at various levels of realism in order to better understand the

implications of different possibilities for physical form factor and interaction. The

next few sections discuss the prototypes we created and what we learned from each.

3.3.1 Choosing Features

Determining the set a capabilities that a Siftable would require was not a straightfor-

ward process. From the kernel of the original idea of interactive "beans" that could

show graphical feedback and be manipulated by hand it was clear that Siftables would

require a display and to be able to sense how they were being handled. Wireless com-

munication would be required to immediately sync their state with an on-computer

representation of the embodied data. However, a description at this level is grossly

under-specified. A display could be a bitmap screen capable of millions of colors, or

it could be black and white, or a segmented liquid crystal display (LCD), a series of

LEDs of different colors, or even an actuated "skin" that could deform dynamically.

Likewise, the ability for the devices to sense how they were being handled might imply

inertial sensing with an accelerometer or gyros (or both), but it could also include

sensitivity to touch, proximity, eye gaze, sound, breath, directional heading, absolute

position relative to a workspace, or any number of other quantities.

The feature set that was implemented was chosen after several iterative brain-

storms regarding the core interaction ideas and applications that might be built.

Recognizing that Siftables could be a platform supporting a number of different ap-

plications, we decided to choose a set of features that enabled a reasonably large

flexibility of use contexts. The physical size of electronic components placed a lower

bound on the size and shape of the device, pushing it a bit larger than we had

originally imagined. Finally, accessibility of components and ease of integration was a

factor: components that could be obtained easily and utilized without undue difficulty

were selected given the time-sensitive nature of getting the platform to a usable state.

See figure 3-4 on the next page for an overview of the space of feature possibilities

that were considered and those that were selected.

3.3.2 Paper, Wood and Acrylic Prototypes

The exact size and shape of the Siftable manipulatives was left unspecified in the

initial brainstorm. The basic interaction idea called for devices no larger than a small

mobile phone, since the user manipulates a collection of devices during a typical

interaction and might each need to hold several of them in one hand at times. This

observation provided a rough upper bound on the size of the individual devices slightly

smaller than a typical mobile phone. At the other end, each Siftable would need to be

easily manipulated by a wide range of users of different ages and degrees of manual

ability, so they could not be too small or difficult to grasp. Picking a Siftable up from

a flat surface should be easy for most users, implying that the devices would need to

be at least as wide as a small coin, and probably taller, given the difficulty that coins

can present when they are lying flush against a smooth surface.

audi
v ib ra t io n

world-referenced
audio absolute

color/LED workspace-referenced

segmented disp V atlher-maipulative referenced

sbitmap display V i a rfae referenced (mouse, anoto pen)

Dbitmap display otu/ebcV1n

1D 3dipaoutput/feedback V" , two

2D translation

3D YV discrte V 4 directions~locomotion Y f

1D ocontinuous

2D rotation jheading (compass)

3D / V mmber of objects (2-N)

Y uniform

non-uniform

Figure 3-4: Design space of Siftables as an embodied media implementation. The check marks show features of Siftables, and

the entire figure shows an expanded design space of options that would be compatible with embodied media. The non-checked

items were not explored in the current instantiation.

Figure 3-5: A subset of different display possibilities that were considered for Siftables.

From left to right, they are single-color (essentially 1 pixel of information), black
and white segmented, black and white bitmap, color bitmap, and three-dimensional.
Depicted products are (from left to right) AudioCubes [95], Delphi key fob [21], Cube
World [33], Tamagotchi [7], and the Hitachi Wooo H001 mobile phone [24].

Figure 3-6: Paper, wood and acrylic mockups. The given size and thickness were
selected after considering both the visibility of thumbnail images and how many
Siftables could comfortably be used on a tabletop at a time.

~lLd

To explore the size and shape that Siftables should be, we built non-functional

prototypes from wood, acrylic and paper. Beginning with differently-sized paper

cutouts of images, we quickly observed that the Siftable's screen should be large

enough to comfortably discern the content of an image thumbnail. Given that many

imagined uses involved tabletop interaction, easy viewing would need to be possible

even at a distance of up to a meter away. After examining images of different sizes,

we determined that the size of the screen should be at least 1 inch on a side.

We also realized that the impression of a "sea of small active manipulatives"

quickly diminished with larger cutout images. Our desire to retain this design idea

suggested an upper bound on the size of each manipulative. Pictures the size of mobile

phones or larger began to take up too much desk space in aggregate. Furthermore,

larger images invited deeper inspection, causing attention to focus on individual items

rather than the collection. We also noted during this phase that a perfectly square de-

vice would be advantageous, since it permitted regular tiling and other 2-dimentional

topologies to be created. Thus we narrowed our focus to square screens at most 2

inches on a side.

Wood and acrylic cases were made to hold images that were our favorite size after

the paper prototyping phase. After a bit of experimentation with the thickness of the

acrylic, we made these cases to be roughly 1.5 x 1.5 inches square, and 0.3 inches in

height. See effig:sift-nonelectronic-mockups for more details.

The takeaway from our paper, wood and acrylic prototypes was that the primary

tension in screen size came from our desire to see the images easily (the larger the

better), while being able to handle multiple devices easily at the same time (the

smaller the better, to a certain point). Also, we realized that the size of the image

impacted the amount of visual inspection that a Siftable would invite. In a sense

analogous to hand-sketching in which the level of detail must be finely tuned to avoid

non-important features [16], we observed that the level of visual detail shown on a

Siftable should be considered carefully when displaying photographs or other images.

Figure 3-7: The first electronic prototype. Early feedback was that the interaction

ideas were compelling, but the proposed photograph-sorting application was not, since

many people felt that their current GUI-based tools were sufficient.

3.3.3 First Electronic Prototype

The first electronic prototype was built between August and October in 2006. It fea-

tured a 128x128-pixel color LCD and 3-axis accelerometer. It was used to implement

a simple interaction sketch to explore photograph grouping. Images stored in the

program memory of the microcontroller could be loaded into the display, and when

the Siftable was shaken, a border would appear around the edge of the screen.

A problem with the circuit board layout prevented us from implementing neighbor

detection in this first prototype. This capability was explored in the next prototype.

I built four devices of this version, and visitors to our laboratory were exposed to

the following interaction sketch: They were told that Siftables was an interface that

could be used to manipulate a personal collection of digital photographs or other

digital media, and that in a true deployment, thumbnails of the images would be

transmitted wirelessly to the devices. Pushing a collection of Siftables together into

a pile would result in the original photographs being put into a folder together on

the computer. I would present two Siftables showing different images on their screens

to the visitor, and bump the devices together. The impact would cause a border to

appear around the edge of each photograph. I would explain that at this point the

two photographs would either be put into a folder together or labeled with the same

Figure 3-8: The second electronic prototype, with working infrared communication,
flash memory and Bluetooth radio, allowed me to experiment with neighbor detection
and wireless image uploading from the computer. In the application depicted in the
rightmost image, a detected neighbor triggers drawing of a red triangle on the affected
side.

tag, so that they would be found together when a person searched their photograph

collection at a later time, Turning the Siftables upside-down briefly would clear the

border.

I learned two lessons from this sketch. People found the interaction possibilities

of the platform compelling, but they were not particularly interested in the proposed

application of photograph sorting. Many felt that their current GUI-based tools

were sufficient, or that they would rather have ways to enter textual annotations for

photographs more easily. They also wondered how the system could accommodate

the thousands of photographs in their collections. While it is possible that a more

realistic photo-sorting application would have been more compelling, my intuition

was to look elsewhere for applications that uniquely benefited from the possibilities

of embodied media.

3.3.4 Second Electronic Prototype

The second electronic prototype was finished in early February 2007. It improved

technically over the earlier prototype, with infrared communication in all four direc-

tions, Bluetooth radio, flash memory and a rechargeable battery.

The interaction sketches I implemented with this prototype explored peer-to-peer

communication and detecting impacts to the table surface. Images could be loaded

Figure 3-9: The "Attentionables" application was programmed for the Second

Electronic Prototype by Evan Broder. Siftables detect each other using infrared when

placed side-by-side, and each face looks towards the other. Attentionables adapts an

art piece by Zuckerman and Sadi, and it was the first real application that extended

Siftables' behavior beyond the level of a simple application sketch.

into the flash memory of a Siftable wirelessly over Bluetooth, and the presence of a

neighbor could be detected using infrared communication.

To explore user interface implications of peer-to-peer communication, the Siftables

were programmed to show visual feedback in the form of a red triangle at the edge

of the screen when the presence of a neighbor was detected on the given side. This

neighbor-detection demo illustrated the possibility that Siftables could be arranged

on a table in arbitrary two-dimensional topologies to build interconnected structures

such as flowcharts, or they could just as easily pass information and media such as

business cards or photographs from person to person.

To explore inertial interaction with the environment, several Siftables were pro-

grammed to sense sharp perturbations in the Z (up-down) direction. On detection of

perturbation, each Siftable would toggle its display between showing a photograph

and showing a blank screen. This allowed us to prototype a solution for the problem

of having more digital media items than the number of available Siftables to display

them; the user could pound or slap the table surface to swap in the next "batch" of

media. The gesture would cause each Siftable to change its assignment and update

its graphical display to show the next piece of available media.

The Second Electronic Prototype was the first version to have all major features

working. As a result, it began to interest other researchers who saw it as a platform

that they might use to implement user interface ideas. Ivan Poupyrev (Sony Com-

puter Science Lab) suggested that DataTiles [102] could have been implemented using

Siftables. Zigelbaum (Tufts, MIT Media Lab) expressed interest in creating a more

compelling version of his Tangible Video Editor [121] using Siftables. In the months

that followed, more colleagues inquired about when they could work with Siftables

to implement human-computer interaction research ideas.

Feedback from other researchers began to suggest that Siftables would be a useful

platform to implement a wide range of application ideas. During the summer of

2007 an undergraduate named Evan Broder became the first application developer,

programming a Siftable-based version of the art piece "Spotlight" [123] wherein an

animated face on each Siftable would look towards neighboring Siftables when they

were placed side-by-side. In addition to neighbor-detection, Broder's "Attention-

ables" application exercised Siftables' ability to animate through sequences of images

stored in the flash memory.

Siftables needed an API for communication between software on a computer and

a Siftable. Broder developed a small command set that could be typed into a serial-

over-Bluetooth terminal on the computer when connected to a Siftable for his own use.

Although this early command set was subsequently discarded, it was an important

first step towards what is now a full API.

3.3.5 Current Siftables Design

The technical specifications of the current Siftables design are described in chapter 5

on page 113. All of the intended features are now usable: graphical display, flash

memory, inertial sensing, neighbor identity+orientation detection, rechargeable bat-

tery and Bluetooth wireless communication. Furthermore, the exterior case is now

extremely robust. Whereas a proto-generation of the current version had relatively

Figure 3-10: The current Siftable device. I built 140 units in the spring of 2008, some

to support collaborations with other researchers and some for my own experiments.

fragile 3D printed cases, the current design has an injection-molded plastic exterior.

Possessing a large quantity of manufactured prototype units has enabled more

developers to get involved in creating applications for Siftables. In the summer of

2008 four undergraduates and two graduate students at MIT worked with Siftables.

Additionally, nearly 100 units have been sent out to researchers in industry and

elsewhere in academia. My ability to share the platform has resulted in an acceleration

of progress on the firmware and Python API. More details about these collaborations

and new applications can be found in chapter 4 on page 85.

3.4 Designing a Gestural Language

Designing a gestural language that enabled novel possibilities for interaction with

digital content was a motivating factor behind the development of Siftables. We

began with the idea of a single gesture: grouping (see figure 3-11 on the following

page). Inspired by research on shared synchronous motion [45] [47] [63], we imagined

that collections of content, each item represented by a Siftable, could be grouped by

pushing the given Siftables together into a pile. The devices, noticing that they were

being jostled, would each report this motion to a server. The server would notice

Figure 3-11: An early design idea for a gestural language element. Inspired by related
work on user interface uses of shared, synchronous motion, we imagined that digital
content could be grouped by pushing a collection of Siftables representing content
items into a pile.

which devices were being moved at the same time and would group the content by
placing it into a shared directory, or assigning a common tag to all elements. Visual

feedback commands would be transmitted to each affected Siftable for display.

As the platform was developed, we identified a more complete set of gestural

language actions that could be implemented with Siftables. Some of these actions

are shared with other tangible-tabletop style systems, while others are not possible

in those systems. The actions that are unique to Siftables take advantage of their

ability to sense motion and/or to show graphics on the manipulatives themselves,
capabilities that other multi-manipulative systems do not typically have.

3.4.1 Actions in the Gestural Language

This section will outline the actions (basic interactive primitives) that are possible in
the interaction language of Siftables. I do not present a complete enumeration, since
many custom actions can be created by leveraging continuous gesture. However, these
primitives capture the current actions that applications have been designed around,
as well as a few others that are not yet implemented.

Figure 3-12: Topology: row/column. Siftables can be arranged into linear sequences.

U mum

Figure 3-13: Topology: arbitrary 2D pattern. Siftables can sense each other in any
contiguous two-dimensional pattern, provided that the devices are at right angles with
respect to each other and close enough to communicate by infrared. In this image,
the red rectangles indicate the awareness that each Siftable in the shown topology
would have of its neighbor in the direction of the given edge.

Topology: Row/Column

Siftables can be arranged into linear topologies, sensing their adjacency to neighbors

as an input (see figure 3-12). This language element can be used in applications that

involve sequencing of content items, such as letters, numbers, video clips, or Boolean

variables, for instance model parameters or database query elements.

Topology: Arbitrary 2D Pattern

Since they are able to sense their neighbors in four directions, Siftables can be ar-

ranged into arbitrary two-dimensional topologies (see figure 3-13). This can be used

Figure 3-14: Gesture: shake. At the bottom you can see data collected from a Siftable
being shaken up-down (bottom left), versus side-to-side (bottom right).

to implement applications that involve spatial arrangement of content items.

The limitations of the 2-dimensional arrangement possibilities are that Siftables

must be close enough to detect each other, and they must be arranged at right angles

to each other in a grid pattern.

Gesture: Shake

Siftables can detect the user's shaking gesture on each axis separately using a running

windowed calculation that sums the absolute deviation from the mean of the last 32

samples. A mapping of this gesture could be an on-screen confirmation that asks for

a "yes" or "no" shake. Another possibility is that a shake may clear the association

between the shaken Siftable and a digital content item (see figure 3-14).

Figure 3-15: Gesture: tilt.

Gesture: Tilt

Since acceleration and gravity both exert a force, a Siftable can compute its tilt with

respect to the direction of gravity. It can generate an event upon detecting that this

tilt exceeds a threshold (see figure 3-15).

Gesture: Upside-Down

An extension of tilt-detection, the property of being upside-down can also be detected

by a Siftable. The gesture of turning a Siftable upside-down then back has been used

in one application sketch to advance the content being displayed on-screen.

Gesture: Nudge

A small shove of the Siftable along the X or Y axis in the horizontal plane can be

detected. This gesture was prototyped by undergraduate Laura Harris, and could be

used to provide discrete directional input to an application. For instance, in a map

exploration application a nudge could trigger the current view shown on the Siftable's

screen to traverse to the adjacent tile of a map.

Figure 3-16: Gesture: arbitrary motion.

Gesture: Arbitrary Motion (application-specific)

Using its three-axis accelerometer a Siftable can sense arbitrary inertial motion. The

ability for a manipulative or controller to recognize arbitrary user-created or developer-

created motions has been explored both in research [80] [78] [9] and commercial

contexts [51] so this possibility was not implemented for Siftables (see figure 3-16).

Environment: Lean

Lean is a variation on Tilt. Being sensitive to its angle of tilt means that a Siftable

can be leaned up against a physical object such as a wedge or other object. In a

manner akin to Patten's mechanical constraints, [92] this allows physical objects in

the environment to be used in conjunction with Siftables, for instance as a way to

quickly set the value of a parameter in a simulation or musical performance application

(see figure 3-17 on the facing page).

Environment: Thump

The table itself can be used as an input. If their threshold for shake detection is set

to high sensitivity, Siftables can detect impacts to the surface, for instance to clear

Figure 3-17: Environment: lean (top). Siftables can interact with physical objects in

the environment, for instance to quickly set a parameter that is keyed to tilt. The

bottom image shows the accelerometer data that is produced by leaning a Siftable

against a wedge. Each signal is from one axis of the accelerometer. From top to

bottom (left-hand edge of plot) the signals are: Z, X, Y. As the Siftable is tilted

up from a flat resting position to an angled orientation, the component of gravity

sensed by the Z axis decreases, while the component of gravity sensed by the Y axis

increases.

Figure 3-18: Thump gesture: A user thumps their fist on the table, bumping all
Siftables at once to clear their current data associations (top). Inertial data from
three Siftables manipulated in this way is shown in the graphs (bottom).

I I I I I

; i
:::::~::;: :li::-:r:~:: ::: ; :

b -: -:~:': ::-:;-~---I-- .; ~; ~':~::::::::
-_:.:-_i-ir- -~ - -

15 ---;-

the current associations between Siftables and media items. In the future, custom

signal-processing code could be written that would separate this gesture even more

cleanly from other manipulations (see figure 3-18 on the preceding page).

3.4.2 Compound Gestures

Just as words in a spoken language are strung together to form sentences, actions in

the Siftables interaction language can be detected in a sequence. An example is the

interaction sketch created for pouring color. The user interaction consists of placing

a Siftable showing a paint-bucket next to another Siftable showing an image. Then,

as the paint-bucket Siftable is tilted on its edge towards the image Siftable, the image

Siftable begins to accumulate the hue shown by the paint-bucket Siftable. When the

paint-bucket Siftable is returned to a flat position, the accumulation of color ends.

The sequence of atomic gestures in the aforementioned example is the following:

First, two neighbor proximity events are generated (one by each Siftable upon noticing

the other). Then, a tilt event is generated by the paint-bucket Siftable, indicating

that it is on edge. Until the second tilt event arrives to indicate that the paint-bucket

Siftable has been laid flat, color is added at a fixed interval to the image on the image

Siftable. The rate of the addition of color may depend on the degree of tilt of the

paint-bucket Siftable.

The combinatorics of the existing gestures thus creates a large set of possibilities

for the implementation of compound gestures.

3.4.3 Mapping the Gestural Language to Applications

Mapping the possibilities of the gestural language to the needs of particular appli-

cations is an application-specific activity, and a general-purpose recipe cannot be

provided. However, in this section I will discuss some useful and re-usable mappings

that have been developed in service of the various applications that I and others have

created. Note that more than one of these mappings may be used in conjunction to

create a maximally usable application.

Adjacency-Based Entity-Connection

Placing and leaving two Siftables adjacent to each other, close enough to be mutually

detected as neighbors, can be a way to logically or spatially arrange their associated

information entities. An example is the Scraboggle application, in which Siftables

representing letters are placed adjacent to each other to form complete words. Visual

feedback indicating the detection of neighbors may be helpful, but is not required.

Adjacency-Based Property-Toggle

Placing two Siftables adjacent to each other momentarily can be a way to toggle a

property on one or both of the Siftables. An example of this mapping is the node

edge application, in which Siftables can be "bumped" against each other to create an

edge between them, and "bumped" again to remove the same edge. Visual feedback

indicating the state of the property is recommended.

Entity Dump

When two Siftables are next to each other, one can be tilted toward the other as a

means to transfer an information entity from the tilted Siftable to the flat Siftable. An

example of this mapping is the maze exploration game, in which the player's character

is transferred from one maze location to an adjacent location by "dumping". Visual

feedback showing the entity transfer to the flat Siftable is recommended.

Attribute Pour

When two Siftables are next to each other, one can be tilted up toward the other as a

means to transfer a continuous amount of a property from the tilted Siftable to the flat

Siftable. The amount increases as long as the tilted Siftable is held in a tilted state.

An example of this mapping is the color pouring application, in which three colors can

be mixed in a "container" Siftable by pouring. The rate of pour may be fixed, or may

be linked to the degree of tilt. Visual feedback indicating the continually-updating

amount of the property that has been transferred is recommended.

Shake to Signal

Shaking a Siftable can be used as a way to provide a discrete (i.e. button-like) input,

without a button. An example of this mapping is the node edge application, in which

tilt-to-adjust mode can be entered and subsequently exited by shaking the Siftable. In

that example, the steady-state value is measured from 0.5 seconds before the second

shake, to capture the tilt value before it is perturbed by the shaking gesture. See

section 7.1.2 on page 166 for a longer discussion of this example.

Tilt to Adjust (direct)

The instantaneous tilt of a Siftable can be linked to a continuously-valued variable

in an application, allowing the user to change the value of the variable by tilting the

Siftable. An example of this mapping is the effect adjustment in the music sequencer

application, used to manipulate Lead, Bass, and Drum. The advantage of the direct

approach is an expressivity that derives from the value changing seemingly instantly

as the user adjusts the tilt of the Siftable. The disadvantage is that in order to fix

the value at a given point, the user must either leave the Siftable tilted at the desired

angle, or have some way to start and stop the tilt-based adjustment (a button could

have solved this problem, also see "Shake to Signal"). Auditory or visual feedback is

recommended, but not required. See section 4.12.2 on page 105 and section 7.1.2 on

page 166 for longer discussions of using tilt to adjust a value.

Tilt to Adjust (temporal)

The state of a Siftable being tilted at an angle that falls outside a "deadband" around

flat can be used to increment or decrement the value of a variable for as long as the

Siftable is tilted at an angle falling outside the deadband. An example of this mapping

is the effect adjustment in the image manipulation application. The advantage of the

temporal approach is that the user can adjust the value to a given point, then leave

the Siftable flat on the table and the value will remain at the desired point. The

disadvantage of the temporal approach is limited expressivity, since it takes time to

reach a given value. The rate of adjustment may either be fixed, or may be linked to

the degree of tilt. See section 4.12.2 on page 105 and section 7.1.2 on page 166 for

longer discussions of using tilt to adjust a value.

Discrete Tilt to Select (one-axis)

Tilting a Siftable away from flat and back can be used as a means to provide a single

discrete directional input to an application for linear traversal of a list of items or for

selection from two options. An example of this mapping is the color menu in the tilt-

based color etch-a-sketch drawing application, in which tilting up or down allows the

user to navigate the menu, and shaking the Siftable activates the current selection.

Visual feedback showing the result of the selection or navigation, and keeping the list

short are recommended.

Discrete Tilt to Select (two-axis)

Tilting a Siftable away from flat and back can be used as a means to provide a

single discrete directional input to an application for two-dimensional traversal, or

for selection of one of four options. One example of this mapping are the Simon

game, where tilting the Siftable towards a given side is a means to select one of four

color regions. Another example is Telestory, in which tilting the Siftable toward one

of its corners is a means to select the object in the given quadrant. Visual feedback

showing the result of the selection or navigation is recommended.

Upend to Switch

Turning a Siftable upside-down and back can provide a single discrete input to an

application. An example of this mapping is an application sketch where the image

displayed on the Siftable's screen changes each time the Siftable is upended. Visual

feedback showing the result of the upending is recommended.

Thump to Advance

Thumping the tabletop upon which one or more Siftables is resting can be a means

to provide a single discrete parallel input to all Siftables simultaneously. An example

of this mapping is an application sketch where the images displayed on the Siftables'

screens change each time the tabletop is thumped. Other mappings could include

advancing the content displayed on each Siftable by one, an "undo" gesture, or a

"clear" gesture that would remove any existing Siftable-to-content mapping. Sensing

a tabletop thump requires either fine-tuning the Siftables' shake-detection threshold

to be highly-sensitive while avoiding spurious detections, or developing a custom

signal-processing routine to detect such impacts. Visual feedback showing the result

of the thumping is recommended.

Cluster to Group

Pushing a group of Siftables together into a cluster can be a means to logically

group their content. One way to accomplish this is to require all grouped Siftables

to be positioned in such a way that they recognize each other as neighbors, and

the contiguous topology of Siftables with neighbor relationships would be considered

a group. This method places constraints on the interaction, requiring the user to

carefully align the Siftables. Another way would be to detect a synchronous shake

or impact on the grouped Siftables, then to infer which devices were part of the

grouping by the temporal alignment of such shakes or impacts. I did not implement

this mapping, but the theoretical background for it was discussed in section 2.7.5 on

page 46.

Nudge to Traverse

Nudging a Siftable along its X or Y axis can be a means to provide a single discrete

directional input to an application for two-dimensional traversal, or for selection from

one of four options. For instance, an underlying image or map could be traversed by

a single Siftable, moving one grid location at a time when the user nudges the Siftable

in the X or Y directions. I did not utilize this mapping in application development,

but the ability to sense the gesture was prototyped by Laura Harris in her exploration

of position estimation from integrated acceleration (see section 4.12.3 on page 108 for

details).

Motion Shape to Anything

Moving a Siftable in an arbitrary three-dimensional shape can provide continuous

or discrete input to an application. Inertial data such as the windowed sum of the

absolute deviation from the mean or the raw accelerometer data can be linked to a

program variable such as a pitch or a modulation frequency in a music application,

or could be used as an input to an accumulative process such as "bowing" a physical

model of a tensioned string. To utilize motion data in a symbolic manner, complete

gesture shapes could be recognized as a means to trigger application events. I did not

implement recognition of gesture shapes in the Siftables API, but I explored similar

user-created "gestural bookmarks" in my master's thesis [78] [80].

3.4.4 Limitations of the Current Design

Although the possibilities of the gestural language are many, certain limitations exist

when compared to other interactive systems. This section discusses such limitations,

breaking them down into three rough categories: topology limitations, gestural limi-

tations, and architecture limitations.

Topology limitations

Siftables can sense the presence of neighboring Siftables in the four directions facing

their sides, but there is currently no provision for sensing a neighbor above or below.

Such a capability would allow for stacking Siftables to be a meaningful gesture, for

instance to group data items. Stacking could optionally impose an ordering on the

grouped tokens, but this would not be necessary. Inertial data from Siftables being

stacked may permit the detection of the stacking gesture (see figure 3-20 on page 80),

Figure 3-19: Sketches showing two-dimensional topologies that Siftables support.
Topologies include tree (top left, bottom left), directed graph (middle left), clusters
(top right), sequences (middle right) and 2D tiling topologies (bottom right).

79

but this possibility has not been investigated thoroughly.

Figure 3-20: Stacking: Siftables could be stacked as a way of ordering or grouping
the data they represent. The current API does not support this feature, but one
possibility for detecting the ordering of the stack using the current system would be
to monitor the inertial data generated by the stacked devices. The data on the right
was collected to understand feasibility of this technique. The topmost plot (right)
represents the token that remained on the table, the middle plot shows the second
token being lifted and placed on the aforementioned, and the bottom plot shows the
third token being lifted placed on the stack of two.

Additionally, it would be useful in some cases for a Siftable to sense a neighbor

that is diagonally proximate, or at any radial position around its perimeter. This

would permit greater flexibility in topological arrangements, as well as continuous

spatial input; for instance, the continuous position of a Siftable along a circle around

the perimeter of another could be used to tune a parameter such as volume in a

musical application.

Taking the previous thought to its logical conclusion, Siftables would benefit from

absolute position sensing. If a group of Siftables could determine their two-or-three-

dimensional position in space with respect to each other to an accuracy of about a

centimeter, they would claim a significant amount of the capability that tabletop inter-

faces possess, namely the ability to utilize the workspace as a coordinate system (see

section 3.4.4 on page 82 for a discussion of graphics limitations that would remain).

Absolute position sensing in three dimensions would extend this coordinate system in

ways that would be useful for navigating three-dimensional data. For instance, each

:; ;;;; ;.; ; ; ; ; __ 1

Siftable could be used as a small "window" into a virtual world that could be moved

and oriented to view the world from different viewpoints and angles.

Gesture Sensing Limitations

The current sampling rate of the accelerometer is 100Hz. The implication of Shan-

non's sampling theorem [108] is that by sampling at 100Hz, signals with a frequency

less than 50Hz can be detected. An upper limit of 50Hz is acceptable for sensing

human gesture, since any muscle-driven motion that a user could apply to a Siftable

would not exceed 50Hz. However, some manipulations produce higher-frequency sig-

nals that could be useful to detect. For instance, scraping a Siftable along a rugged

texture would produce vibrations both above and below 50Hz, as would a sharp

impact to the surface that a Siftable rests upon.

Another gesture-related limitation is the inability to sense absolute position. True

position tracking is not possible with only one accelerometer, since rotations cannot

be sensed. Laura Harris and I have experimented with integrating the accelerometer

data to derive a continuous estimate of position. This works to some degree when

rotation is not applied. However the inclusion of additional sensors such as a gyro

or an additional accelerometer would improve the ability to track absolute position.

This could open up greater possibilities for gesture, as discussed above.

Bluetooth Limitations

The current design uses Bluetooth radios for wireless data communication between

a Siftable and a computer. Bluetooth is a convenient standard for prototyping wire-

less devices since it functions as a "cable replacement" wireless data channel be-

tween two devices. However, it was not designed to support large numbers of inter-

communicating devices, as it only permits seven simultaneous wireless connections at

a time to a single radio.

One approach to mitigating the seven-device limitation is to use a Bluetooth router

connected to the host computer. These routers typically contain several separate

Bluetooth radios; for instance a router with 3 radios would permit simultaneous

wireless connections to up to 21 devices. However, these routers are expensive and

would only be a bandage on the device-number limitation, since they still permit a

relatively low number of connections. A scaleable solution would be the incorporation

of a more flexible radio, for instance a ZigBee-compatible radio or another 2.4GHz

RF radio capable of mesh networking. This would allow for greater flexibility both

in the number of Siftables participating in an interaction at a given moment, and

would permit dynamic inclusion of new Siftables as they become available. These

capabilities would make a Siftables user interface more robust, since new Siftables

could be engaged if existing ones are low on battery power, and would allow groups

of people to use their personal Siftables together in an ad-hoc manner, in collaborative

applications such as games or schedule planning.

Display Limitations

The graphics capabilities of Siftables are limited compared to a tabletop interface

with graphics integrated into the work surface. The key difference is that Siftables can

display graphics on their built-in screens, but not in the spaces between manipulatives.

The design trade-off, as mentioned in chapter 2 on page 25, is increased mobility

resulting from minimal reliance on bulky infrastructure. However, this limitation

presents certain challenges; for instance, in an application with an underlying graph

representation featuring nodes and edges, Siftables can show icons or dynamic depic-

tions indicating the contents of the nodes, but edges (the connections between the

nodes) are more difficult to represent. One approach to addressing this limitation

would be to include more nuanced graphics on the Siftables' screens, as I have done

in the graph application described in chapter 4 on page 85. However, this approach is

not ideal; compared to tabletop interfaces the amount of pixel real-estate available per

manipulative is small. One possible future approach to solve this problem is horizontal

projection of graphics by each Siftable, as discussed in chapter 7 on page 161.

Power Limitations

Each Siftable is powered by a rechargeable Lithium-Polymer battery, which permits

between 4-10 hours of operation before requiring recharging (see chapter 5 on page 113

for details). This duration has been acceptable for the purposes of my research,

however for a real-world deployment it would be preferable to have a longer time

between charges, for greater flexibility of applications, particularly mobile interaction

contexts. Optimizing the design of graphics and the sleep states of the display and

microcontrollers is future work that could extend the battery life significantly.

84

Chapter 4

Applications

The original idea for Siftables was that they would permit manipulations of existing

collections of media. We did not specify whether Siftables should be interfaced to

desktop or laptop computers or should operate as a stand-alone interactive platform;

the characteristics of the interactive experience were the key concern. A collection of

Siftables can provide distributed, physical manipulation affordances to a software ap-

plication running on a laptop or desktop computer, allowing for other computational

resources such as audio or Internet connectivity to be leveraged by an application. As

a stand-alone platform, Siftables can provide both input and output without requiring

the use of a laptop or desktop computer entirely for certain applications. In practice,

I have found it more convenient to develop applications that run on a computer and

communicate wirelessly with Siftables. As mentioned in chapter 1 on page 17, I con-

sider both application forms to be instantiations of embodied media since the laptop

is quite portable compared to most surface or tangible pucks interaction systems.

The following sections discuss a number of applications that were created by myself

and collaborators to explore the possibilities of the Siftables platform. The discus-

sion begins with applications that utilize only the displays of the Siftables for visual

feedback, then describes applications that utilize a large display as well. The chapter

concludes with a number of application sketches that were implemented as prototypes

to investigate various interaction possibilities. For a compact listing of applications

and sketches, along with the features that each uses, see figure 4-19 on page 112.

Figure 4-1: Equation Maker is an interactive equation editor. On the left is a complete

equation. In the center, the user re-arranges the equation. On the right, the display
has updated to show the correct value to the right of the equals sign.

4.1 Equation Maker

Jeevan Kalanithi created an application that allows simple mathematical equations

to be created and computed. In the Equation Maker application, two Siftables show

operators and a variable number of others display numbers. Arranging the Siftables

into a valid ordering (for instance, [1] [+] [2] [=] [X], where X is a number Siftable) trig-

gers the calculation and display of the value to the right of the equal sign. Whenever

the Siftables are re-arranged, the computation updates immediately and the result is

displayed (see figure 4-1).

The application so far features addition and subtraction. To change the operator

from a plus to a minus, the user can tilt the operator Siftable to an angle greater

than 45 degrees and back. Tilting the Siftable again change the operator back.

Equation Maker is a strong example of a "pure" embodied media application,

since all interaction takes place with the Siftables, and no external display or other

interface resources are required. Additionally, the ability for a user to see the result

of their constructed equation immediately on the Siftable the right of the equal sign

takes advantage of the tight communication loop between the computational resource

(the laptop computer running the application) and the manipulatives themselves. In

informal usage settings the Equation Maker application has been received enthusias-

tically by users.

Figure 4-2: Scraboggle is a word-finding game similar to the popular tabletop
games Scrabble and Boggle. It utilizes the display, neighbor-detection, and wireless
radio communication capabilities of Siftables, and triggers sound effects on the host
computer.

4.2 Scraboggle

Scraboggle is a word-finding game in which alphabetic characters are displayed on

the screens of a set of Siftables (see figure 4-2). The name derives from popular word-

making games Scrabble and Boggle. During each round of the game, each Siftable's

screen displays a randomly-selected letter of the alphabet. Users create as many

words as they can in a given period of time by placing Siftables into contiguous rows

or columns to spell words. As the user attempts to create words, the sequences that

they create are checked against a dictionary. Whenever the user constructs a valid

word, the screens of the involved Siftables draw a colored border to encircle the word

and an audio sample is played from the computer. After one second, the screens are

redrawn without the border. As each round progresses, the brightness of the Siftables'

screens decreases linearly until all of the screens are completely dark, signaling the

end of the round. At the conclusion of each round, a new letter is randomly assigned

to each Siftable, the screens return to full brightness, and the round timer begins

again.

Scraboggle enabled the exploration of how Siftables could implement a constraint-

satisfaction task with a requirement for domain knowledge, in which rapid re-arrangement

and feedback played an important role. In a study using Scrabble tiles, Kirsch and

Maglio [71] found that people performed better at a word-finding task when they

could use their hands to arrange the tiles, as compared to a version of the task where

they were only allowed to visually inspect the available tiles. Their finding supports

the utility of physically arranging letters into sequences, and Siftables augments this

interaction with the capability of real-time visual feedback when a word is spelled.

Informal usage by tens of users over a several month period suggests that the ability

to physically create word sequences was compelling.

As the first application written with the current Python API, Scraboggle was

a useful test bed for application development. All application-specific logic relies

entirely on the Python API and it utilizes bitmap images stored in the Siftables' on-

board flash memory. Scraboggle does not require any modifications to the standard

firmware, and in this sense is a complimentary example to Attentionables (see sec-

tion 4.4 on page 92). After completing Scraboggle I abstracted a standard application

template that includes solutions to problems that arose during my authoring of the

application, that has been a useful starting-point for a number of subsequent applica-

tions. The abstracted features include an application loop that waits for asynchronous

events and generally handled concurrency, topology determination when Siftables are

placed in a row or column and program exit that gracefully disconnects the wireless

Bluetooth links to the Siftables.

4.3 Music Sequencer

I built a music sequencer to explore the use of Siftables for a relatively sophisticated

and expressive application (see figures figure 4-3 on the facing page and figure 4-4

on the next page). During play, the application allows the user to create multi-

layered sequences of samples, to order and re-order a sequence, to attach an effect

to a particular voice and gesturally manipulate the effect, and to manipulate global

effects that apply to the entire sequence.

I wrote the Siftable-control and on-screen feedback behavior using the Python

API, and Josh Kopin built the music engine with a combination of Pure Data [99] and

Figure 4-3: The music sequencer application. Siftables are configured as (A) initially

blank sequence tiles, (B) voices such as lead, bass, and drums, (C) voice effects that

can apply to a single voice, such as filter and reverberation, and (D) global effects

that apply to the entire piece such as tempo and volume.

Figure 4-4: The music sequencer application in use. The user grasps the Siftable
configured as the Bass voice (left), and adds Bass to the middle sequence by bumping
it against to the sequence Siftable (right). A bar appears on the screen of the sequence
Siftable, drawn with the same color as the Bass Siftable's background, and with the
same number of square markings as the side that was bumped against it.

Ableton Live [1]. Communication between Pure Data and the Python interpreter was

accomplished using datagram (UDP) network communication, formatted according

to the Open Sound Control (OSC) [74] protocol. Since the Siftables themselves to

not include speakers, it was necessary for the audio portion of this application to be

hosted on a separate computer.

The following sections discuss the interactions of the music sequencer application

in more detail.

4.3.1 Samples

Three Siftables are designated as "sample" objects. When the program starts, the

screen of each of these Siftables is drawn with a unique color and the name of the

sample it represents is written using the font library. Additionally, small squares

are drawn along each of the four edges of the screen, visually marking each edge to

represent a different variation of the sample. See the "Sequences" section below for

an explanation of how samples can be inserted into sequence Siftables.

4.3.2 Sequences

A variable number of Siftables are designated as "sequence" objects that begin empty,

showing a blank screen. Samples can be inserted into sequence Siftables by placing

any of the four edges of the sample Siftable adjacent to the sequence Siftable. A

given sample can be removed from a sequence Siftable by placing the sample Siftable

adjacent to the sequence Siftable a second time. During play, zero or one of each

sample class may be present in a particular sequence Siftable at any moment.

When the application begins, one sequence Siftable is designated as the "playback

head" or "index" Siftable, and a bright border is drawn around its perimeter. At this

point, the "active sequence" comprises only this single sequence Siftable, and the

program loops continuously, playing any samples that have been inserted into it.

The active sequence can be extended, reduced, and rearranged while the program

plays. Sequence Siftables that come in contact with the active sequence become

"active", extending the length of the active sequence. The active sequence is looped

continuously. This means that the sequencer iterates across the Siftables in the active

sequence, and at each step the samples present in the given sequence Siftable are

played in unison. The border of the sequence Siftable being played is highlighted to

provide visual feedback to the user. The border is present but not highlighted for

sequence Siftables that are not in the active sequence, or that are not currently being

played.

4.3.3 Sample Effects

Some Siftables are designated as "sample effects" meaning that they represent effects

that can be attached to a particular sample, then manipulated. These Siftables show a

colored circle that fills the screen, and the name of the effect is drawn on top with white

lettering. In the current design, these effects include reverberation and a sweeping

band-pass filter that acts like a "wah" pedal. A sample effect can be attached to a

given sample by placing the sample effect Siftable adjacent to the sample Siftable. It

can be removed by placing the two Siftables adjacent to each other a second time.

When a sample effect is attached to a sample, the sample Siftable displays a small

circle drawn with the same color as the circle on the sample effect Siftable. This

visual feedback is designed to help the user remember which effects are enabled for

a given sample. When a sample effect is removed from a sample, the small circle

disappears.

When a sample effect is attached to a sample, the user can manipulate the effect

by tilting the effect Siftable along its X (left/right) axis. A direct mapping from

instantaneous tilt to parameter value is used, and the tilt data is scaled to match the

range of the effect. This means that tilting the sample 90 degrees to the left (such

that the effect Siftable is standing on edge) will produce an effect value of zero, while

tilting the sample Siftable 90 degrees to the right will produce the maximum effect

value.

Figure 4-5: Attentionables was the first complete application created for Siftables.

It utilizes the display, neighbor-detection and accelerometer and is an adaptation of

Zuckerman and Sadi's Spotlight installation (see figure 4-6 on the facing page).

4.3.4 Global Effects

There are two "global effects" that affect the active sequence as a whole, and that

do not require attachment to any particular sample. In the current version, these

effects are volume and tempo. The Siftables representing these effects show a black

screen with white text drawn to indicate the effect name. When a global effect

Siftable is resting on the table, its value does not change. However, when it is lifted

from the surface and tilted past 45 degrees, it exits a tilt "deadband" and the value

begins to change at a regular interval until it returns within 45 degrees of flat again.

To increase the tempo of the active sequence, for example, the tempo global effect

Siftable is lifted from the table surface and tilted to the right. For as long as the

Siftable remains tilted, the tempo increases, and when the Siftable is held flat or laid

to rest on the table again, the tempo remains at the value set by the manipulation.

See section 4.12.2 on page 105 for a thorough discussion of tilt input.

4.4 Attentionables

Attentionables was the first application with any significant complexity that was

built for Siftables. It is an adaptation of a wall-sized interactive art installation

called Spotlight [123], by Orit Zuckerman and Sajid Sadi (see figure 4-6 on the next

page). The original Spotlight piece features a matrix of "active/social portraits"

affixed to a wall. The portraits are actually composed of a sequence of pre-recorded

Figure 4-6: Spotlight is an interactive art installation by Orit Zuckerman and Sajid

Sadi that expands on the techniques of classic portraiture [123]. On the left, a visitor is

pressing a button on a keypad on which each key shows a face from the installation.

On the right, the selected face reacts while the others turn their attention in its

direction.

video clips, and they can interact with each other autonomously or as a result of

input from the viewer. The default state of the Attention piece features each face

looking forward towards the viewer. Every 15 or 20 seconds, a pair of nearby portraits

looks towards each other for a few seconds, then reverts to looking forward. Using

a specially designed remote control, a viewer can cause all of the portraits to look

towards a single portrait, and that portrait reacts in a manner that demonstrates the

individual's personality, as if they suddenly found themselves the center of attention

in a crowded room. Spotlight explores the boundaries of portraiture, giving the

viewer a more intimate and dynamic understanding of the depicted individuals than

a traditional static, single-snapshot portrait would allow.

Attentionables incorporated the video content and the core behavior patterns

of Attention, but it enabled new interaction possibilities that were not available in

the wall-mounted installation. In Attentionables, each portrait is displayed on the

screen of a Siftable. When two Siftables are placed near each other, the faces look

in the direction of each other. When a Siftable acquires more than one neighbor, the

newly-surrounded portrait looks at each neighbor in turn, then displays the "center-

of-attention" sequence. The portraits also react to gravity, looking in the direction

of tilt if they are not resting flat in the X/Y plane. Finally, shaking a portrait will

also trigger the "center-of-attention" sequence. Evan Broder wrote the first version of

Attentionables during the summer of 2007. I subsequently re-wrote Broder's version

to utilize the C API for attaching behavior to events generated by the Siftables'

operating system. The video clips are stored as sequences of image frames in the flash

memory, and callback handlers are registered for neighbor, tilt, and shake events.

The implementation of Attentionables enabled three extensions to the behavior

that were not possible in the original Attention piece. The first was that the layout

portraits could be re-arranged. Any combination of neighbors could be created, and

the topological arrangement of any two Siftables (i.e. which side of A was facing

which side of B) could be easily manipulated. Second, the center-of-attention gesture

can be triggered by the user in a more interactive manner: by surrounding a portrait

with others or shaking it. Finally, by responding to tilt, the portraits acquire a

proprioceptive element, aware of their own "body" as well as interactions with the

environment. In informal usage settings, users have reported that this ability enhances

the lifelike quality of the portraits.

4.5 Maze Exploration

Tobe Nwanna wrote a maze exploration application. The conceptual model of the

game is that the user can explore the corridors of a maze, but only a limited amount

of the territory can be seen at a given time. The application utilizes two Siftables,

and the interaction model is that the user's character, represented by a black circle,

exists in a single grid-square of the maze at any given moment. The Siftable showing

the user's character is drawn with a bitmap loaded from the flash memory that shows

the local passageway. A given grid-square can be a straight-through, right-angle, or a

"T" junction. By placing the second Siftable next to the Siftable showing the user's

Figure 4-7: A maze exploration game illustrates some methods for navigating
structures that are too large to be completely represented on the screen of a collection
of Siftables at a single instant. The user can "dump" their character from one position
to an adjacent position and can view a summary of the already-explored territory.

character, the adjacent passageway can be viewed. If the map permits it, the user

can transfer their character's position to the adjacent square by tilting the primary

Siftable in the direction of the adjacent square, "dumping" the character into the

adjacent square (see figure 4-7).

Shaking the secondary Siftable triggers a map mode. In map mode, the secondary

Siftable shows a small map of the squares that have been already explored by the user,
as well as a dot indicating the character's current position. Shaking the secondary

Siftable again brings the game back to play mode.

The game also features dangers. Certain locations have pits that the user's charac-

ter can fall into, ending the game. Also, an enemy "ghost" wanders the passageways,

moving continuously from square to square. If the ghost reaches the user's character,

the game ends.

This application explores how Siftables can be used to navigate a space or a piece

of digital content that is too large to be fully represented on their screens at a single

moment. It also provides an example means of transferring the user's point of view

from Siftable to Siftable, using the physical metaphor of "dumping" an item by tilting

one device towards an adjacent device. Finally, the "map mode" provides a compact

way to summarize the territory that has been already explored.

Figure 4-8: Simon: An adaptation to Siftables of the classic sequence-memory game.

In the single-Siftable version, the user tilts a Siftable in the direction of the triangles

shown on the screen to input the sequence.

4.6 Single-Siftable Simon

Rick Mancuso created an application similar to the classic memory puzzle game "Si-

mon." The original Simon game features a device with four large buttons covering

its top surface. Each button is a different color, and can be illuminated. The game

is a memory activity in which a sequence of ever-increasing length is presented by

the system by lighting up buttons and playing an auditory tone each time a button

lights up. In each round, the user presses the buttons in the order presented by

the system, which becomes increasingly difficult as the sequence gets longer. In the

Siftables version, the buttons from the original Simon game are represented by colored

triangles displayed on the screen of the Siftable. Rather than pressing a button, the

user tilts the Siftable in the direction of the desired triangle (see figure 4-8).

4.7 Multi-Siftable Simon

This application is similar to Single-Siftable Simon, but it uses four Siftables. Each

represents a button from the original Simon game, and the sequence is expressed by

drawing a border around the Siftables from the sequence in order. To input their

recollection of the sequence, the user shakes the Siftables in order, one at a time.

4.8 Tilt-Based Color Etch-A-Sketch Drawing

Tobe Nwanna also created a single-point drawing application. It features a drawing

mode in which the tilt of the Siftable causes a single-pixel "tip" to draw in the

direction of gravity at a fixed rate, and a color-selection menu that allows the user to

change the active drawing color. The color menu is invoked and dismissed by shaking

the Siftable, and while the menu is open tilting the Siftable towards the top or bottom

can traverse it. Noting that tilt-to-scroll can be a problematic user interface paradigm

for handheld devices, the decision was made to discretize menu-navigation. Each time

the Siftable is tilted in a direction, the highlighted item advances by one menu item

in the given direction. The Siftable must be tilted back to a flat orientation before

the marker can be advanced again. See section 3.4.3 on page 76 for more about this

style of menu navigation.

A unique of this application is the large amount of state that is kept in the Python

environment: the entire drawing is represented as a collection of points in an array in

the Python interpreter, so that when the user returns from menu mode, their drawing

is re-created by sending the sequence of points to be drawn to the Siftable. This

exposes a limitation of the current Siftables design, the speed of drawing graphics to

the screen. Re-creating the user's drawing can take up to several seconds, depending

on the complexity of the drawing. Nwanna generalized his menu architecture, creating

a library that allows other developers to create their own menus.

4.9 Fiddle Diddle Make a Riddle

Seth Hunter, a colleague at MIT, consulted with a first grade teacher in the Boston

Public School system to design and author a language-learning application using

Siftables. The application is targeted at children aged 4-7, and it is based loosely on

the children's book Hop on Pop, by Dr. Seuss [107].

The focus of the application is to teach children basic sentence-construction skills

through creative play. The application allows children to explore creative analogies

Figure 4-9: Fiddle Diddle Make a Riddle is a language-learning application for

children that teaches prepositions and word order in simple sentences. On the left is

the sentence "king on ring" spelled with three Siftables, and a picture of a small king

sitting on a ring on the fourth Siftable. On the right is an example of an on-Siftable

instruction, showing the user that they need to re-arrange the Siftables in order to

move forward in the application.

by introducing humorous relationships between words and allowing them to structure

those relationships by arranging Siftables in multiple sequences.

The application aims to teach phonemic awareness (rhyme endings with differ-

ent spellings), semantic sentence structures (what image does the sentence imply?),

creativity through control of language (experimenting with different arrangements),

and vocabularies and fluency through image/word association, grapheme awareness

through word families (the -ice of mice and lice), and basic punctuation (when blocks

are switched the capital letters and periods are switched).

As an example, one run of the application features the words "ice", "on", and

"mice" each on a separate Siftable. When the user arranges the three Siftables to

spell "mice on ice", the fourth Siftable shows a picture of two cartoon mice wearing

ice skates on a frozen rink. Re-arranging the three words so that they spell "ice on

mice" causes the fourth Siftable to show an image of a mouse with icicles hanging

from its whiskers. At the instant that the image on the fourth Siftable changes to

display the result of the sentence, the sentence is also spoken aloud from the computer

with a pre-recorded audio sample, reinforcing the spelling task with auditory spoken

language (see figure 4-9).

A feature that sets this application apart from others is its inclusion of just-in-

time graphical hints that are displayed on the Siftable. A hint appears if a certain

amount of time has elapsed in a single "round" of the application and the user has

not yet spelled out a valid sentence. When these conditions are met, the fourth

Siftable shows a short video clip of two hands re-arranging a collection of Siftables, to

suggest to the user that they should re-arrange the manipulatives. Another similar

hint happens after a user has completed both possible sentences at least once, but

has not changed the order of the Siftables for several seconds. In this condition, a

short video clip is shown of a hand reaching out, picking up a Siftable, and shaking it.

These on-Siftable hints are an interesting example of how future applications could

be self-teaching, helping a user become "un-stuck" when they have run out of ideas

for how to proceed. As an extension of this concept, hints could coordinate visual

information across several Siftables, optionally in conjunction with audio.

4.10 Telestory

Seth Hunter and Katya Popova created Telestory, a language-learning application

designed to teach vocabulary to children that are not yet old enough to read. This

application comprises an interactive cartoon on a large display featuring characters

that are represented both on a Siftable and on a large computer or television display.

A primary activity in Telestory is introducing props and characters into the scene by

picking up the Siftable displaying the given item. A character and a prop can also

be introduced to each other by placing the Siftables that represent them adjacent to

each other (see figure 4-10 on the following page). The introduction of a character to

any other object triggers an animation in the cartoon that involves the two entities,

as well as auditory speech playback that introduces the new object or interaction.

Hunter created an interactive tilt-based menu for Telestory to allow a child to

select props. The menu divides the screen of the Siftable into four quadrants, and

shows a thumbnail image of each prop in each quadrant. One of the four quadrants

starts out in full color, while the other three are faded. Tilting the Siftable toward

a particular corner causes the thumbnail in that corner to become the selected item,

Figure 4-10: Telestory is a language-learning application designed to teach vocabulary

to children that are not yet old enough to read. On the left, the child lifts a Siftable

containing a prop to bring that prop onto the large screen. In the center, he places

the Siftable showing the dog next to the Siftable showing the cat. On the right, the

dog and cat meet as a result of the adjacency.

and to be shown in full color, while the others become faded. If a given prop remains

selected for two seconds the selected item enters the cartoon on the large screen. This

menu allows each prop-Siftable to represent four different items, and is described

further in section 3.4.3 on page 76.

Hunter observed two children aged 4 and 5 interacting with Telestory in separate

sessions. He found that both children seemed to easily understand the connection

between the Siftables and the corresponding on-screen characters. Direct correspon-

dences, such as raising the Siftable displaying the sun to make the sun rise in the

cartoon, or shaking the Siftable showing the dog to make the on-screen dog shake,

were the most popular. The four year old took great pleasure in making the cat

character sneeze after sniffing a sunflower by placing the Siftables side-by-side, and

he triggered this interaction more than twenty times.

Interactions that required the child to shift their visual attention from the screen

to a Siftable did not work as well, as they tended to keep their eyes on the screen

except when finding a new Siftable to grasp. For this reason, the tilt-based menu

took longer for the children to understand and use.

Telestory uses only pre-loaded graphics and the Python API. A takeaway obser-

vation from Telestory is that more effective Siftables applications for children may

be ones that either create a direct connection between manipulation of a Siftable

100

Figure 4-11: An early storyboard for the Telestory application, sketched by Katya
Popova.

and a corresponding reaction from an on-screen entity, or that keep the content and

interaction exclusively on the Siftables themselves. This lesson is corroborated by

open-ended responses collected after the pilot trials for the image manipulation ap-

plication.

4.11 Image Manipulation

I built an image manipulation application with Siftables that allows users to apply

image-processing filters to digital images displayed on a computer screen. In the

interaction, a single Siftable represents the original image, and it shows a thumbnail-

sized version of the unmodified source image on its screen. The remaining Siftables

represent image-processing filters, and in its default resting state, each filter-Siftable

displays the name of the filter on its screen (for example, "Blur", "Threshold", etc.).

A full listing of filters, and descriptions of their effects can be found in figure 4-13 on

page 103.

A user can create an ordered sequence of filters by placing the filter Siftables

adjacent to each other into a row. To apply the effects to the source image, the

sequence of adjacent effect Siftables is placed adjacent to the source image Siftable,

on its right side. The sequence of filters becomes "active" and is applied to the source

101

Figure 4-12: The image manipulation application in which individual image-
processing effects can be engaged or disengaged by placing them into a contiguous
sequence to the right of the "image" Siftable that shows a thumbnail of the original
image. The "effect" Siftables display the effect's name when they are at rest, and
show a live preview of the effect during adjustment.

102

Blur Application of Blur reduces the image's high-frequency content,
producing a perceived effect similar to de-focusing an image. At the
extreme low end of the manipulation range, no change is applied
to the image. At the extreme high end, the image looks very
unfocused. The neutral point for this effect is at zero.

Saturation Saturation controls the perceived intensity of the colors in the
image. Application of this effect with a value of zero will produce a
grayscale image. At the extreme high end, colors look more vibrant
than the original. The range of this effect was set such that the
neutral point is at fifty percent.

Brightness Brightness controls the overall luminosity of the image. Application
of this effect with a value of zero will produce an entirely black
image. At the extreme high end, the image will be completely
white. The range for this effect was scaled such that the neutral
point is at fifty percent.

Threshold Threshold converts the source image into a 2-color image containing
only black and white pixels. The criteria for whether a given pixel
from the source becomes white or black in the result is related
to the source pixel's original brightness; if the brightness is over
the user-defined threshold, the resulting pixel in the output will
be white, and if it is below the threshold the resulting pixel will
be black. This effect always changes the resulting image, unless
the original image consists of only black and/or white pixels. The
starting-point for this effect was set to fifty percent.

Hue Hue determines the color mapping from input to output pixels,
following a circular color-wheel pattern. Adjustment of the effect
will rotate the colors of the image through a full 360-degree cycle
such that at either the low or high end of the scale the image colors
are unchanged. At intermediate values, the perceptual effect is
that the salient colors of the image progress through variations,
becoming more yellow, green, blue, purple and red. The scale for
this effect was designed such that the neutral point is at 0 (same
as the maximum value).

Figure 4-13:
application,

A full listing of image processing effects used in the image manipulation
and descriptions of each effect.

103

Figure 4-14: Image Manipulation application: Adjusting the brightness parameter by
lifting and tilting the "brightness" Siftable, the placing it back into the filter chain.

While the adjustment is in progress, the Siftable's screen shows a live preview of the

effect, then once it is placed down again it reverts to showing the name of the effect
and red value-bar.

image in left-to-right order. The full-sized image on the computer screen updates

accordingly. Every change to the active sequence to the right of the source image

Siftable triggers an update of the result image on the computer screen.

The user adjusts the magnitude of each filter Siftable by tilting the Siftable on

the X (left/right) axis. In this way, an effect can be lifted off the table by the user,

adjusted, and then placed back onto the table, either into or out of the active sequence

(see figure 4-14).

Each of the effects that are used is described in the following subsections. All

effects except Threshold have a neutral point, a setting at which they produce no

perceived change to the resulting image. In the application, the value of each effect

is set initially to its neutral point, and the value of Threshold is set to fifty percent.

The image manipulation application investigated how Siftables can be used in

exploratory manipulation of digital images. It also allowed for exploration of the use

of Siftables in conjunction with a computer screen. See chapter 6 on page 135 for

feedback from a study that was run using the image manipulation application.

4.12 Application Sketches, Interaction ideas

This section documents application sketches. These sketches were implemented as

prototypes to investigate various interaction possibilities, but were not developed to

the level of complete applications.

104

4.12.1 Grouping and Ordering

I created a simple application to evaluate the efficiency of content grouping and

ordering activities using Siftables (see section 6.2 on page 136). The application used

the alphabetic character images that were created for Scraboggle, a set of numeric

digit images between 0-9, and rectangles of different colors that were drawn to the

screen. The application featured three different states, one for each visual content

type. In the alphabetic character and numeric digit states, the user's goal was to place

the Siftables into a linear ordering, either alphabetic or numeric, both increasing to

the right. When colored rectangles were drawn to the screen, the user's goal was to

separate the Siftables into two groups, putting alike colors together. For information

about the experiment, see section 6.2 on page 136.

4.12.2 Node Edge Graph Creation

I wrote a graph-creation framework to explore how graph topologies can be repre-

sented and manipulated using Siftables (see figure 4-15 on the next page). In this

framework, a node can be represented by each Siftable, or by each side of each Siftable.

Placing two Siftables adjacent to each other creates an edge connecting the two nodes.

When an edge is created, each of the newly-connected Siftables shows a colored dot

on its screen, along the edge that was placed adjacent to the other Siftable. The pair

of dots is assigned a color that is unique to that particular edge. Placing the same

side of the two Siftables adjacent to each other a second time removes the edge and

causes the associated dots to disappear.

The node-edge creation tool was a proof-of-concept, to illustrate how Siftables

could be used in process modeling applications such as supply-and-demand or predator-

prey models. Along with their topological layout, another important feature of many

process models is that continuous values can be set at a particular nodes. For instance,

if a node represents a rate of change or production, adjusting this rate is important

to understand and control the dynamics of the model. I created a tilt-based value-

adjustment interaction that enables a continuous value to be set at a given node.

105

Figure 4-15: The node edge application sketch allows graph topologies to be created.

Colored visual feedback is drawn on the Siftable's screen to allow the user to view

edges; each edge is assigned a unique color so that the user can distinguish them

visually. From left to right, top to bottom: creating an edge (1-3), removing the edge

(4-5), and a later state in the interaction where three edges have been created (6).

106

There are two basic ways to map a tilt gesture onto a continuous value, instanta-

neous and time-based, which are explained in the following sections.

Tilt-to-value approach: instantaneous

The instantaneous tilt of the Siftable can be sensed and mapped onto the range of

possible values. The problem with this method is that placing the Siftable down on

the table will result in a "flat" tilt measurement, which may not be the desired value.

One solution is to introduce physical props that allow the Siftable to be kept at a

particular angle, thus "setting" the tilt to a given value in a way that persists until

the Siftable is moved. The introduction of props, although interesting, seemed like

an awkward solution.

Tilt-to-value approach: time-based

Rather than linking the Siftable's instantaneous tilt to a continuous value, the value

can be set initially to 0.5. When the Siftable is lying flat on the table, this value

remains constant. However, whenever the Siftable is tilted more than 45 degrees

away from a flat state, the variable begins to change at a fixed rate (or optionally

at a rate related to the degree of tilt) for as long as the Siftable is tilted. Thus, a

90-degree "dead-band" is imposed around the resting position.

The drawback of the "dead-band" approach is that it wastes the user's time.

If they want to adjust the value by a large amount, they must tilt, then wait for

the time-based updates to change the variable to the desired value. Even using an

update rate that is related to the degree of tilt, this can take some time. A non-linear

mapping from tilt to update rate may be the best time-based solution, however as

other researchers have found [87], overshoot is common using this method.

Tilt-to-value solution: modified instantaneous

The solution I designed is a modification of the direct angle-to-value mechanism.

In order to allow a value to be "locked in" without requiring a physical prop, I

created a shake-to-lock/unlock scheme. To begin, shaking the Siftable puts it into

107

Figure 4-16: A position tracking application sketch integrated the accelerometer data
to continuously estimate the two-dimensional position of the Siftable while the user
moved it across a tabletop. On the left is the filtered accelerometer output, and on
the right is estimated position.

value adjustment mode. While in this mode the direct angle-to-value mechanism is

engaged and visual feedback is shown on the screen. A second shake exits adjustment

mode. To mitigate the problem that the second shake inadvertently changes the

instantaneous tilt value, the value is taken from 0.5 seconds before the detection of

the shake event. This value was determined experimentally, and allowed the steady-

state tilt value to be determined accurately.

The node-edge program was a proof-of-concept that Siftables could support system

dynamics scenarios, and future work will explore these possibilities.

4.12.3 Position Estimation From Integrated Acceleration

Laura Harris was interested in the possibilities for using Siftables to navigate and

manipulate three-dimensional computer-aided design (CAD) models. As a building-

block, she wrote an application that processes the raw live accelerometer data to

continuously estimate the two-dimensional position of a Siftable as it is moved by a

user, and to display a representation of the estimated position on the computer screen

(see figure 4-16). We did not formally evaluate the accuracy of this application sketch,

but found that for short movements in the X/Y directions (where each movement

108

Figure 4-17: Color pouring application sketch. First, the user grasps the paint bucket
and receptacle Siftables (left). Then, the two Siftables are placed adjacent to each
other (center). Then, the paint bucket Siftable is tilted toward the receptacle Siftable,
and its color is "poured" into the receptacle, mixing with the existing color (right).

consisted of mostly X or mostly Y motion, but not both), the on-screen position

representation tracked the Siftable in a satisfactory manner. When movements were

longer, when they featured rotation of the Siftable, or featured significant motion on

both the X and Y axes, the on-screen position estimate diverged noticeably.

4.12.4 Pouring Colors

Jeevan Kalanithi created an application sketch that permits "pouring" a color from

one Siftable to another (see figure 4-17). In the simple version of this sketch, one

Siftable shows a photograph on its screen, while another Siftable shows a red paint

bucket. Placing the paint bucket Siftable adjacent to the image Siftable causes the

application to enter "pouring mode", which is visually indicated to the user by an

animation showing a drop of paint emerging from the bucket. In this mode, tilting

the paint bucket Siftable towards the image Siftable triggers a steady increase in

the amount of color "tinting" applied to the image, for as long at the paint bucket

Siftables is tilted. The tint is applied to the image in a pixel-by-pixel manner as the

image is sent to the screen for display, and as the tint value increases the image is

continually redrawn, giving the the user the impression that the color is being poured

into the image. To reverse the process, the user can tilt the image Siftable towards

the color Siftable, pouring the color back into the paint bucket Siftable.

The more complex version of the Pouring Colors application features three paint

buckets, each showing a different color. Each paint bucket Siftable can be used

109

Figure 4-18: The tilt-to-roll video sketch utilizes Muybridge's classic series of
photographs titled "The Horse In Motion." When the user tilts the Siftable to the
right (right image), the frames advance in the forward direction and a right-pointing
red arrow is superimposed. When tilted to the left (left image), they proceed in
reverse with a left-pointing arrow. When the Siftable is flat (center image), the "at
rest" image is displayed.

separately (as in the simple example) to apply its individual "tint" to a receptacle

Siftable, and the contribution of the poured colors are mixed in the receptacle. In this

version I did not use an image as the receptacle, instead a Siftable that started out

with no color on its screen. The receptacle Siftable becomes brighter as component

colors are added to it by pouring.

The pouring application could be abstracted away from the domain of color, and

this style of interaction could be used for adding any continuous amount of a given

property represented by one Siftable to another. For instance, in a game, extra

energy could be "poured" into a character Siftable to increase the character's health.

Pouring colors is an example of a real-world metaphor that was appropriated for use

as a multi-object gestural interaction technique.

4.12.5 Tilt-to-Roll Video

I created an application sketch that uses the X-axis tilt of a Siftable to control the

playback of a sequence of movie frames. The application utilizes twelve frames from

Muybridge's classic series of photographs called "The Horse In Motion" that are

stored in the Siftable's flash memory (see figure 4-18). When the Siftable is at rest

on a table or standing on its bottom edge the screen displays the "at rest" frame in

110

which the horse and rider are standing still. When the Siftable is tilted to the right, it

animates through the frames depicting the horse running in sequential order. When

the Siftable is tilted to the left, it animates through the same frames but in reverse.

The effect is somewhat informed by our experience with gravity: The user can tilt

the Siftable one way or the other to "roll" the footage in the desired direction.

111

Name C API Python API shake tilt acc neighbors drawing bitmaps variables sound screen

Equation Maker X X X X X X
Scraboggle X X X X X X X

Music Sequencer X X X X X
Attentionables X X X X X X

Maze Exploration X X X X X X
Simon (single) X X X X
Simon (multi) X X X X

Color...Drawing X X X X X
Fiddle Diddle... X X X X

Telestory X X X X X X X
Image Manip... X X X X X X X X

Grouping... X X X X
Node Edge... X X X X X

Position Est... X X X
Pouring Colors X X X X X
Tilt-to-Roll... X X X X X

Figure 4-19: A full listing of all applications and applications sketches, showing which capabilities were utilized. C API refers
to the application programming interface for on-Siftable firmware code, and Python API refers to the python library that runs
from an external computer and makes wireless connections to Siftables using Bluetooth. Shake, tilt, and neighbors refer to
events that can be detected by the Siftable. Acc refers to the raw accelerometer data. Drawing refers to the vector drawing
capabilities of the Siftable, and bitmaps are full images stored in the Siftable's flash memory. Variables are individual 16-bit
variables also stored in flash. Sound and screen refer to the use of the speakers or display of an external computer.

Chapter 5

Implementation

This chapter provides a discussion of the implementation details of the Siftables

platform. Included in the discussion is an overview of the hardware, the firmware

of the on-board operating system, and the application programming interface (API)

that allows a software program running on a computer to control a collection of

Siftables over a wireless connection.

5.1 Hardware

This section describes the hardware architecture of the individual Siftable devices

and charging modules. I iterated several times on the hardware design to achieve a

high degree of reliability, support for the interaction goals, power management, and

manufacturability. The following discussion will focus on the hardware design of the

final iteration.

5.1.1 Siftable Devices

Each Siftable device is a self-contained, battery powered interactive manipulative

measuring 44 x 44 x 16 mm. It features a color OLED display that can be set to

8 or 16 bits per pixel, two 8-bit microcontrollers, one three-axis accelerometer for

inertial sensing, 8 megabytes of non-volatile flash memory, four side-facing infrared

113

IR modules (4) "
display

accelerometer
radio

flash memory
ATMega644 ATMega88

Figure 5-1: Internals of a Siftable. On the left is an exploded-parts diagram that

shows (from top to bottom) the top case, display, battery, circuit board, and bottom

case. The center picture shows the bottom of the circuit board in more detail, and

on the right is the top of the circuit board, with display and battery attached.

communication modules (one pointed in each neighbor-facing direction), pushbuttons

for device hard-reset and power toggle, a Bluetooth radio for data communication,

separate pin headers for reprogramming each of the microcontrollers, a micro-USB

connector for charging and power, and a rechargeable Lithium-Polymer battery. See

figure 5-2 on the next page for an overview about how these parts are connected in

the current system, and figure 5-1 for a diagram showing the parts in context.

Main processor

The behavior of each Siftable is primarily determined by an Atmel ATMega644 (AVR)

microcontroller, clocked at 20MHz. The ATMega644 has an 8-bit reduced instruction

set computer (RISC) architecture with 64 kilobytes of flash memory for program

storage, 4 kilobytes (K) of static random access memory (SRAM), an 8-channel 10-

bit analog-to-digital converter (ADC), serial peripheral interface (SPI) and universal

asynchronous receiver-transmitter (UART) peripherals, and various other features

114

GRAPHICAL DISPLAY

INFRAREDTRANSCEIVER INFRAREDTRANSCEIVER

POWER
BUTTON

L RESET
SUTTON

BATTERY -D CHARGINGPORT

IFRARED TRANSCEER (baty powe r&acoponrs)

Figure 5-2: Block diagram of a single Siftable device

Figure 5-3: Siftables can communicate wirelessly over Bluetooth to a nearby computer
(A). They use infrared communication for peer-to-peer detection of neighboring

Siftables (B).

115

[5]. The duties of the main microcontroller include responding to commands from

the Bluetooth radio over the UART, fetching neighbor information from the sec-

ondary microcontroller when it has news to report, transmitting event data over the

Bluetooth radio, controlling the OLED display, reading and writing to flash memory,

sampling the accelerometer and monitoring the status of the battery. A full flowchart

of system behavior is shown in figure 5-6 on page 124

The AVR platform was chosen because it is a low-cost, capable microcontroller

that has a strong engineering and hobbyist community that has produced online

forums and example code for many common configurations. The development en-

vironment is mature and low-cost, with a free IDE from Atmel [5] that utilizes the

popular open-source GNU toolchain (GCC) [31] for preprocessing, compiling and

linking.

The ATMega644 has some notable limitations. For instance, the limited amount

of SRAM (4K) is not sufficient to hold a single frame buffer for the 128x128 pixel

screen, which would require 16,384 bytes even at its lowest bit-depth of 1 byte per

pixel. The implication of this is that the graphics possibilities for Siftables are limited

to displaying bitmap images that have been stored in flash or transmitted over the

radio, and to using the drawing API provided by the display itself, which includes

simple vector drawing commands, screen dimming and moving or copying chunks of

pixels from one region of the screen to another. Another basic limitation of the AVR

is that it is not capable of running a full operating system such as embedded Linux,

meaning that higher-level capabilities such as implementing a file system on the flash

memory chip had to be written from scratch rather than borrowed from a pre-existing

open-source codebase.

Despite its limitations, the ATMega644 does an acceptable job driving the dis-

play with bitmap data and vector drawing commands, listening for neighbor data,

accessing the flash memory, monitoring the battery level, sampling the accelerometer,

and communicating with a remote computer over the Bluetooth radio. The range of

interactive applications discussed in chapter 4 on page 85 that Siftables has proven

to be a flexible platform.

116

Infrared Communication and Secondary Processor

Each Siftable has four short-range infrared modules. Each module is directed in a

side-facing direction away from the Siftable through a rectangular hole in the body

that permits communication with neighboring Siftables. A Siftable can detect the

identity and orientation (i.e. which side of the neighbor is facing it) of other nearby

Siftables up to a distance of 3-4 centimeters.

A simple infrared communication protocol is used to transmit identifying infor-

mation between neighboring Siftables as a means of neighbor detection. Infrared

communication in each direction proceeds in a round-robin pattern, with an attempt

to initiate communication on each successive side every 2 msec. The transmitted

data includes the numeric identifier of the transmitting Siftable, and the identifier

specifying from which side of the Siftable the message originated. Although the

infrared modules are capable of supporting the popular IrDA protocol [4] used by

laptop computers and other personal digital devices, I have not implemented the

IrDA specification or any arbitrary data transmission.

Infrared communication is performed by a secondary microcontroller, an ATMega88.

When the secondary microcontroller has news to report such as the arrival or depar-

ture of a neighboring Siftable on a given side, it alerts the main microcontroller by

changing the level on a line. Upon detecting the alert, the main microcontroller

initiates a communication sequence using SPI to retrieve a message a data packet

from the secondary microcontroller. This division of labor offloads the task of com-

munication with neighbors to the secondary microcontroller, which was necessary due

to the timing-sensitive nature of the infrared communication protocol.

The transmit range of each infrared module is limited to 3-4 centimeters by putting

a 5K resistor in the current path to the transmitting LED. This limitation is deliber-

ate, since in the tabletop usage scenario, neighbor detection of Siftables that are not

immediately proximate to a given Siftable would likely be spurious and would make

topology reconstruction difficult or impossible. The ability to sense the continuous

distance between Siftables is a feature that was considered but not implemented.

117

Flash Memory

Each Siftable has a flash memory chip with 64 megabits (8MB) of data storage. The

flash is accessed by a SPI interface, and is used primarily to store program variables

and image data. A simple data organization scheme was implemented, described in

chapter C on page 211. In summary, the flash is primarily organized into image-sized

chunks. The first chunk is used for system and application variable bindings. Variable

names can be up to 31 characters long, and values are 16 bits (unsigned). The second

image-sized chunk is reserved for a memory map that tracks some state about how

the rest of the flash is being utilized. This map was not implemented. The third

chunk holds the Siftables logo, which is displayed for a few seconds after the device

powers up.

The idea of using a section of the flash as a frame buffer for the display was

discussed during the development cycle. However, since flash memory is slower to

write than SRAM, and it has a limited number of writes per address before breaking

down, this scheme was not implemented.

Accelerometer

Inertial sensing is accomplished by a 3-axis accelerometer made by Freescale [106] that

uses micro electro-mechanical systems (MEMS) technology. The accelerometer has

selectable sensitivity, meaning that its maximum reported values can be configured

to reflect different levels of absolute acceleration (±1.5g/2g/4g/6g). This feature

allows different applications to utilize the accelerometer flexibly, though most gesture-

oriented applications created to date have utilized the most sensitive (+1.5g) setting.

The signal from each axis is conditioned by a passive low pass filter before reaching

the microcontroller to reduce spurious noise. The analog signals produced by the

accelerometer are sampled at 100Hz by the main microcontroller's 10-bit Analog to

Digital Converter (ADC), and the lower 2 bits are discarded. This sampling strategy

results in a new 8-bit reading for each of the three axes every 10 msec.

One drawback of MEMS accelerometers is their fragility. Since a MEMS ac-

118

Figure 5-4: A close-up view of tiny cantilever beams inside a MEMS-based

accelerometer, which can deform if the device experiences a sharp impact. Photo

from [11].

celerometer utilizes tiny moving cantilever beams internally [11], a sharp impact to

the device may deform these parts, damaging the functionality of the device. The

accelerometer I used is drop-test rated to 1.8 meters onto concrete. Throughout this

work I have only one accelerometer that I suspect was damaged due to impact trauma.

OLED Display

The graphical display of a Siftable is a 128x128 pixel Organic Light Emitting Diode

(OLED) screen with a built-in controller circuit. The display is interfaced to the main

microcontroller using SPI. OLED display technology is newer than LCD technology

and thus the OLED display used is more expensive than comparable LCDs found in

mobile phones.

OLED displays differ from LCDs in two ways that are important to Siftables.

First, the visibility of an OLED display does not degrade with viewing angle as

with a LCD. This feature is advantageous for tabletop use, where a collection of

Siftables can be spread across the surface in such a way that the user's viewing

angle on some Siftables is quite low. With LCDs, a low viewing angle can result in

difficulty viewing the displayed graphics (an inversion of the colors, or total loss of

visibility can result), however this is not the case with an OLED display. Second,

119

e55lr

the OLED display contains separate light-emitting diodes for each pixel, and the

brightness and color results from the relative amount of current being allowed to flow

through each of a red, green, and blue LED 1. This means that the power usage of

the display varies depending on the characteristics of the image being shown. A pixel

that is displaying white at maximum intensity will consume far more power than one

displaying black, since to display black, a pixel just turns off its LEDs. For pixels

being driven with colors between white and black, power usage will vary depending

on the relative brightness of the component colors. Thus the design of the graphics

that are displayed on a Siftable impacts its power consumption. Graphics featuring

darker colors, especially ones that avoid the use of white pixels, will reduce the current

consumption of the display, extending the battery life of the Siftable. The display

can also be placed into a low-power sleep mode when it is not in use.

Battery and Power

Each Siftable contains a rechargeable Lithium-Polymer (LiPo) battery, with built-in

over-current and depletion protection circuitry. The capacity of the battery is 620

Milliamp Hours (mAh). The amount of time that a Siftable can run before needing to

be charged depends greatly on the application behavior, primarily on how the OLED

display is being used, and varies in practice from 4-10 hours (see section 5.1.1 on

the preceding page for details on power usage of the display). Testing with mostly-

white images being displayed on Siftables' screens found a worst-case performance

of 4 hours until shutdown, whereas testing with mostly black images achieved 10-12

hours of run-time. No optimization of the microcontrollers' programs were attempted

for either test, meaning that careful use of low-power sleep states could potentially

push the best-case run-time to even longer durations.

A voltage regulator converts the voltage of the battery to a stable 3.3 volts, the

level that most of the on-board electronics require. The output of the voltage regulator
1The amount of current allotted to each pixel may be modulated by pulse-width modulation, a

scheme for rapidly driving a signal high-to-low periodically and varying the percentage of time that
the signal spends in each state (i.e. varying the duty-cycle). Though this method only features two
states, completely on or completely off, the aggregate result to an LED being driven of different
duty-cycles is a change in brightness

120

can be enabled or disabled by the main microcontroller, and the microcontroller must

always keep the regulator in "on" mode in order for the Siftable to remain powered

on. If the microcontroller fails to hold the regulator's output enable (OE) line in

enabled state, the device will power off immediately. This allows the microcontroller

to deliberately power off the Siftable, for example when the battery gets low.

There are two buttons on the side of the Siftable. Depressing the button closer to

the center of the edge puts the main microcontroller into RESET mode, which causes

all pins to float. The result is that the main microcontroller can no longer assert

the voltage regulator's OE line, and the device will immediately shut down. The

button closer to the corner is a soft power toggle button. When the device is turned

off, depressing this button manually asserts the voltage regulator's OE line, powering

up the system. Directly after power-on, the main microcontroller asserts the OE

line, keeping the device powered up. When the Siftable is turned on, depressing this

button triggers an interrupt on the main microcontroller. In servicing this interrupt

the Siftable waits until the button is released, then initiates the power-down sequence

which terminates in releasing the OE line, causing the powering down of the device.

5.1.2 Charging Dongle

The battery is charged through a micro-USB socket on the Siftable's circuit board.

A cable inserted into the socket connects the Siftable to a custom charging dongle,

which plugs directly into a computer's USB port or into a USB hub to draw power.

When a Siftable is connected to the charging dongle, the dongle provides power to the

charging circuit, and also directly powers the Siftable. During charging, the battery

is electrically disconnected from the rest of the Siftable's circuit by a MOSFET. See

the schematic in chapter B on page 199 for more detailed information.

5.2 Software

This section covers the software implementation, including the firmware that runs

on the microcontrollers on the Siftables, the ASCII language specification for basic

121

Figure 5-5: The charging dongle (left). The USB plug on the left side of the dongle

is inserted into a USB port on a computer or hub, and a micro-USB cable is inserted

into the socket on the right. On the right is a Siftable being charged. The LED on

the dongle indicates charging.

remote control of a Siftable, and the Python API that exposes Siftables access at a

higher level to provide a generic and cross-platform way for a software application to

interact with Siftables.

There are two options for how the behavior of an individual Siftable can be con-

trolled. A Siftable can be operated by a program that is installed directly in its

firmware, or by a software program running remotely on a computer that commu-

nicates with the Siftable wirelessly using its Bluetooth radio. These two models

for application development represent distinct options for developers, and a given

application may rely exclusively on one or the other, or may utilize both local and

remote code.

5.2.1 Firmware

The firmware of a Siftable comprises the basic operating system that provides data

services and monitors the device's state, and optionally a developer-created applica-

tion that can access this state and respond to OS-generated events.

122

Basic Operating System

A user powers on a Siftable (figure 5-6 on the following page) with a button-press.

While powered on, the OS on the main microcontroller is responsible for periodically

monitoring the battery status and sampling the accelerometer, communicating with

the secondary microcontroller when it is alerted about new neighbor information,

drawing graphics on the display and responding to other incoming commands over

the radio. If the battery level drops beneath a threshold or the "power off" command

is received over the radio, the main processor shuts the system power off, halting the

Siftable.

Analog values from each axis of the three-axis accelerometer are sampled at 100Hz

and the most significant eight bits are stored. The data is processed, and the results

are optionally reported over the radio. Each incoming frame of raw accelerometer

values is added to a buffer of previous values. From this buffer, higher-level pa-

rameters are computed, including the per-axis windowed mean and activity level,

tilt, and shaking state. If software running remotely has "subscribed" to the raw

accelerometer or activity level data, these values will be transmitted over the radio

at a rate of 100Hz. The current tilt and shake values are compared to the previously-

measured values from the last analysis cycle, and if the current values have crossed a

programmer-defined threshold compared to the previous values and remote software

has subscribed to events for either of these, the updated state is transmitted over the

radio. Hysteresis is implemented to prevent "jitter" that could result from activity

or tilt levels near the threshold.

A secondary processor figure 5.2.1 on page 126 is responsible for communicating

with nearby Siftables using short-range, directional infrared communication (see sec-

tion 5.1.1 on page 117 for hardware information). A Siftable that is close enough to

be in infrared communication range is considered a "neighbor". Neighbors can be

sensed in each of the four side-facing directions surrounding a Siftable. Transmitting

and listening behavior may be turned on or off by the main processor. To transmit,

the Siftable periodically "pings" an infrared pulse in each direction, and if a reply

123

OFFBATTERY MAIN PROCESSOR START
LEVEL FEEDBACK

level ok every time press power
through main loop button

INERTIAL DATA HANDLING STARTUPI MESSAGE
INITIALIZATION HANDLING

if remote e
TRANSMIT STORE LATEST every 10 msec received message from radio PARSESAMPLES a-pp subscribd ACCELEROMETER _ _ _RUNNINGJ___ _MESSAGE

OVER RADIO SAMPLES if unrecognized message

Icompute if valid

ifremote if local FB message

TRANSMIT ppsubscribed MEANHANDLING ON-SIFTABLE ACTON
MEAN OVER , - t

E D B C
s

RADIO 4-MFEEDBAC
RA compute
,variance if local FB IR

S cribed enabled ON-SIFTABLE microcontroller
VARIANCE subscribed HANDLING - FEEDBACK signals

OVER RADIO
new message

hake if local FB compare new
if remote hke if locl BneighborhoodTRANSMIT RAW app subscribed SHAKEHANDU enabled ON-SIFTABLEneighborhoo

RADIO MESSAGE HANDLING

' compute if remote app subscribedi

ifremote iflocal FB TRANSMIT
TRANSMIT RAW subscribed enabled ON-SIFTABLE NEIGHBORHOOD if localFB
TILTOVER app subscribed TILT HANDLING FEEDBACK OVER RADIO enabled
RADIO

Scompare shake, NEIGH BOR
I tiletoprevous iflocalFB NEIGHBOR ON-SIFTABLE

enabled ON-SIFTABLE HANDLING FEEDBACK
EVENT HANDLING FEEDBACK

if shake state if tilt state

changed, changed,
and remote and remote

app subscribes ,app subscribes

TRANSMITCURR TRANSMITCURR
SHAKE STATE TILT STATE On-Siftable feedback may include graphical display,
OVER RADIO OVER RADIO vibrational/haptic actuation, emission of sound, or

other output capabilities that may be added to the
siftable by a connected circuit.

Figure 5-6: Operation flowchart for a single Siftable (primary processor)

124

"ping" from a neighboring Siftable is received, it transmits a message to the neighbor,

communicating the Siftable's ID and from which side the message emanated. If a new

neighbor arrives on a side, the stored representation of the current neighborhood is

updated to reflect this addition and the updated state is immediately communicated

to the main processor. In order to reduce "jitter" in the form of spurious arrival or

departure messages to the main processor due to infrared message collisions or inter-

mittent failures in infrared communication, a departed neighbor must not be detected

for 0.5 seconds before it is considered gone and its departure is communicated to the

main processor. By this policy, new neighbor arrivals are communicated immediately,

and departures take slightly longer to be confirmed and communicated. The period

between infrared messaging attempts on a given side is 8 msec. The frequency of

communication results in a polling frequency that is high enough so that to an end

user both arrivals and departures seem nearly immediate to a user.

The main processor drives the color screen. One way to draw graphics is to load

bitmap images from the flash memory. Images can be loaded at a rate of up to 30Hz,

which is faster than necessary to create smoothly moving animations. The screen

can also respond to vector drawing commands such as line, rectangle, and circle.

The main processor can put the screen into a low-power sleep state, can adjust the

brightness and contrast, and can control a number of other display parameters.

Each Siftable has a 64 megabit (8 megabyte) flash memory module separate from

the microcontrollers. This memory can be written and read by the primary micro-

controller, initiated either directly by a program running on the microcontroller, or as

a result of communication over the radio from a remote software program. Arbitrary

data can be stored in this memory, such as images for display on the screen, variable

names and associated values, samples from the accelerometer, or other values that

an application requires. The operating system on the Siftable provides high-level

functions allowing the main microprocessor to retrieve a sequence of images stored

in this memory and display them sequentially on the screen, creating animations or

movies.

125

INFRARED HANDLING PROCESSOR START
OFF

Spower
applied

START UP
INITIALIZATION

listening enabled, and . every 2 msec, if

REPLYTO heard remote ping broadcast enabled IR PING ON
PING RUNNINGI CURRENT SIDEno message received

got message no heard
reply reply

COMPUTE
NEIGHBORHOOD, UPDATE + BROADCAST ON

rI CURRENT SIDE CURRENT SIDE

NOTIFY MAIN
PROCESSOR, SEND message from main
NEIGHBORHOOD processor

INTERPRET
MESSAGE,
ACT, REPLY

Messages from the main processor to the infrared
processor may be to enable or disable infrared
listening or broadcast behavior, to update broadcast
information such as the siftable's numerical ID or
broadcast period, to query information from the
infrared processor, or to command the infrared
processor to perform some other duty, such as
user-directed feedback that it may be configured
to perform.

Figure 5-7: Operation flowchart for a single Siftable (secondary processor)

126

C API for In-Firmware Applications

The Siftable OS includes an event-driven handler system in the C API that provides

a modular approach to adding behavior. To build an application, a developer does

not need to replace all the code running on the Siftable; they can safely ignore most

of it. Rather, they only need to edit one file where event-handler functions are defined

and initialized. The C API includes a template for this file that developers can edit,

using their own functions or functions from the rest of the C API.

The basic model for creating a firmware-based application is as follows. First,

the developer writes an event-handling function and an initialization function for

their desired behavior in siftables-user-application-template. c. Then, they modify the

InitUserApplication function in the same file to call their initialization function and to

install their event-handling function by passing it as a function pointer to the appro-

priate handler-installer function. Finally, they can turn on handler dispatch behavior

by changing the flag for the given event type, also within InitUserApplication. This

last step puts the OS into a state where it will call the handling function whenever

the given condition arises. See figure 5-8 on the next page for a usage example of the

C API.

5.2.2 ASCII Language

Radio communication with a Siftable utilizes the Bluetooth radio. This can take

the form of a serial-over-Bluetooth link in which the Bluetooth connection appears

like a serial port to the operating system (Windows, MAC), or it can use the more

low-level RFCOMM API available in the PyBluez Python module (Windows, Linux).

Communication using the ASCII language uses a human-readable protocol that can

be typed interactively from a computer keyboard. The use of ASCII commands

results in a language that is not as compact as it would be if it used binary opcodes

and values, but the ability to type characters from a keyboard and view the results

immediately sometimes makes it easier to interact with a Siftable during program

development and debugging. A few commands do require binary data, such as image

127

// siftables-user-application-template.c

// this variable tracks of the current image index
uintl6_t img_idx;

// a user-defined init function for any necessary initialization
void init_AdvanceImageWhenShaken(void)
{

img_idx = 3;

DisplayImage(imgidx);

}

// a user-defined handler function for shake events
void AdvanceImageWhenShaken(uint8_t *shakestate)
{

if (shake_state[X AXIS] == SHAKING) {
img_idx++;

DisplayImage(imgidx);

}

// in InitUserApplication, the programmer inits the user-defined
// variables, installs the handler, then enables callback behavior
void InitUserApplication(void)
{

initAdvanceImageWhenShaken();

setNeighborEventsHandlerFn(AdvanceImageWhenShaken);

EnableAccelShakeEventsHandler();

}

Figure 5-8: C API usage example: Shake event handling. In this example, a
handler function for shake events is installed. Each time the Siftable is shaken,
the AdvancelmageWhenShaken function will be called. If the Shake was along the
Siftable's X axis, the index of the currently displayed image will be incremented and
the current image displayed on the screen.

128

import the library
from Siftable import *

allocate a Siftable object (makes the connection)
sift = Siftable. Siftable(bt name='Siftable-v4-027')

create a simple callback function that just prints
def handle_tilt(event):

print "data: " + str(event.data)

register the callback function
sift. install_listener_tiltevents(handletilt)

enable tilt events
sift. acc_eventstilt (True)

Figure 5-9: Python API usage example: Tilt event handling. This example code will
make a Bluetooth connection to a Siftable, then create and install a tilt-handling
function. Finally, the callback behavior is enabled, so that the tilt-handling function
will be called on tilt events.

uploading and miscellaneous debugging functions.

The ASCII language is a layer beneath the more often-used Python API, but it

can be useful when debugging the Python API itself. In most cases it remains an

intermediate building block, not directly used by the programmer. The next section

will discuss the Python API.

5.2.3 Python API for Remote-Control Application Develop-

ment

The Python API is the most high-level way to develop applications for Siftables. It is

a library that provides high-level object-based access to the entire ASCII Language

for interacting with Siftables.

129

Motivation for the Python API

The motivation to create the Python API came from difficulties encountered during

my early experiences programming Siftables with ASCII Language. The fundamental

problem was due to the asynchronous nature of socket communication, and the most

obvious drawback was the following: For each ASCII command a Siftable receives,

it generates an ASCII reply. Therefore, the simplest way for a program to manage

communication with a Siftable was to send a command, then block, reading bytes

from the communication channel until a full reply arrived, and to assume that the

received reply was in response to the command. As long as there was a one-to-one

correspondence between messages sent to the Siftable and messages received from

the Siftable, this strategy worked: outgoing and incoming messages remained in sync

from the remote software's point of view. However, Siftables can be put into event-

reporting modes (reporting raw accelerometer readings, variance, tilt events, neighbor

events, etc..) in which they generate messages that are not in response to a direct

query from the software, meaning that the number of outgoing messages generated

by a Siftable will be greater than the number of incoming messages received. In

practice this resulted in rapid misalignment of messages on the computer end, since

it was difficult to track which incoming message was a reply to a particular outgoing

message.

Another problem that complicated Siftable programming before the development

of the Python API was that the exact text string of any given command had to

be explicitly formulated by the application. Correspondingly, any reply from the

Siftable had to be parsed by the Python application. For instance, in order to query

the current accelerometer calibration values, the command from Python (pre-API)

would look like this:

sock.write("acc curr calib\r\n")

result = siftutil.recv(sock) # collects incoming characters until the \r\n

[x,y,zl = map(int, result.split("calib") [1].strip().split())

130

This model made it easy for programmers to make mistakes such as misspelling a

command string. Python development environments are not able to detect this class

of mistake since it is the command string (not the method name) that is misspelled,

but at run-time the Siftable would not parse the result successfully. Moreover, the

task of parsing the reply string was also left to the programmer, introducing more

opportunities for errors. The Python API, described in the next section, converts the

aforementioned command to the following syntax:

[x,y,z] = sift.acc_curr_calib()

The Fix: Overview of the Python API

The solution to the message misalignment problem was to change the mechanism for

sending commands to the Siftable. Rather than directly pushing an ASCII command

into a socket and waiting for the reply to appear in return, the Python API allows a

program to invoke a single function call to transmit any Siftable-directed message and

receive the reply as a return value. The library encapsulates the sending, receiving,

and bookkeeping of messages, creating a convenience layer of function call access to

control Siftable behavior.

The key to bookkeeping outgoing and incoming messages between software and a

Siftable over the Bluetooth channel was actually quite simple. I created a message-

numbering scheme that allows incoming messages from the Siftable to be matched to

the outgoing message that triggered them. On initialization, a Python Siftable object

creates a separate thread that blocks on incoming data from the Siftable. Using a

thread allows the Siftable object to remain responsive to user input even if it is waiting

to hear back from the remote Siftable. Messages sent to the Siftable are prefixed with

a numeric ID. Each message that comes back from the Siftable is prefaced with the

ID of the request that triggered it, allowing the Siftable object to match incoming

messages with outgoing requests. Event messages that are not the result of a request

have no such prefix, and are handled by a callback mechanism, described in the next

paragraph.

131

Application Layer I Application code

Figure 5-10: This diagram shows the layers of the software and firmware that permit programming Siftables. The callout on
the right contains the on-siftable firmware layers, and on the left (Software Layer) is the Python API.

w

while True:

wait for something to happen (neighbor event, shake, etc..)
this_event = wait_forevent()

update our model of the game state and respond to the new state
current_state = process_event(this_event)

optional program response to new current_state

Figure 5-11: Python application template main loop. The programmer implements
their desired application behavior in the process_event function, and optionally in
code inserted into the main loop directly after the call to process_event.

Asynchronous messages from the Siftable can be generated in response to events

such as neighbors arriving or departing, tilting, shaking, or new accelerometer or

variance data. The Python API defines a callback mechanism to allow programs to

handle these events. The developer writes a function to receive the event, registers

the function as a listener for the given event type, then enables reporting of that

event type. Whenever a message of the given event type arrives from the Siftable,

the supplied event handler callback function will be invoked, with the event passed

as its argument. See figure 5-9 on page 129 for an example, and Appendix chapter A

on page 183 for a full API listing.

Python Application Template

I created an application template based on the Scraboggle application that handles

many common tasks for a Python-based Siftables application. These tasks include

connecting to a set of Siftables, instantiating data structures to keep application-

specific data associated to each Siftable object, setting screen brightness to the maxi-

mum level, and entering a main loop where events are handled (see figure 5-11). This

template was the starting point for most applications created after Scraboggle.

133

Font Library

Rick Mancuso developed a fixed-width, single-size font library. The library is written

entirely in Python, and it supports drawing characters onto the Siftable's screen.

The characters supported are the 26 letters of the alphabet, the digits from 0-9,

and assorted punctuation. The library can write up to seven characters across each

line, and up to four lines of text onto a Siftable's screen. The font library has been

subsequently used during debugging, and in applications such as the music sequencer

(section 4.3 on page 88).

134

Chapter 6

Evaluation

This chapter describes the user studies that I carried out using Siftables to better

understand the possibilities and limitations of embodied media. I collected both

quantitative and qualitative data, in an effort to adequately characterize these qual-

ities.

6.1 Evaluating Novel User Interface Systems

Novel user interface systems can be difficult to evaluate quantitatively. The basic

assumptions underlying formal comparative user studies are that the utility of a new

system can be measured quantitatively, and that a useful way to evaluate its utility is

to compare its performance to another similar system along some measurable axis.

The problem with these assumptions is that it is not always clear that an existing

system is an appropriate comparison to a new user interface, nor that the measurable

performance metric is a particularly informative indicator of the utility of the new

interface. The new system may provide affordances that are simply different than

existing systems, in which case gaining an understanding of user performance along

an axis that is relevant to the new system may be the best way to quantify its

advantages and limitations. Several recent papers in the human-computer interaction

community attest to a growing acknowledgement of this problem [64] [37]. Further-

more, differences that are numerically measurable may not be the most important

135

factors in the user experience, so it is valuable to supplement quantitative feedback

with qualitative feedback [20]. In light of these thoughts, the evaluation of Siftables

both quantitatively and qualitatively in two separate studies was to provide a more

comprehensive analysis of the possibilities and limitations. My decision to compare

Siftables-based interaction against the mouse/GUI is because the WIMP desktop is

the most widely-used interface today.

Although comparative evaluations can be problematic, it is important to under-

stand the efficiency that a new user interface permits users to achieve. The literature

on pointer-based systems (i.e. mouse, touchpad, touchscreen) for example, is replete

with studies of target-acquisition and dragging-times that reference Fitt's Law, a

measure that relates the size of the target and distance that the cursor must travel

to these values. This measure has proven to be quite useful for understanding the

efficiency of pointer-based interfaces. The cognitive science literature reviewed in

section 2.2.1 on page 28 suggests that allowing the solution space to be explored

more efficiently by the user enables them to achieve more and better results. The

content-organization task, which I describe in the next section, measured the efficiency

of individuals and pairs in a Siftables-based interaction.

6.2 Ordering and Grouping Study

It is known from the distributed cognition literature discussed in section 2.2.1 on

page 28 that the efficiency of manipulating a problem representation that an interface

permits can impact the approach that users take, and the resulting quantity and

quality of their results. I evaluated the efficiency characteristics of Siftables for sorting

and categorization activities because in everyday computer usage we often group and

order digital content items, for instance when we create folders and sort files into

them, make slides for a presentation, or sequence a video from individual clips.

136

Figure 6-1: Two participants in the content-organization study have just finished

separating a set of Siftables into groups based on the color shown on their screens

(left). A solo participant uses the mouse to separate on-screen icons into two groups

based on the color (right).

Figure 6-2: Typical before and after states for the three content types in the GUI

version of the content-organization task. The content types were (from left to right)

alphabet characters, colors, and digits. For each content type, the top image shows

the configuration before arrangement, and the bottom image shows the configuration
after.

137

6.2.1 Method

I conducted a grouping and ordering experiment with a 2X2 design. The experimental

conditions were pairs of participants versus single participants, and Siftables versus

a mouse/GUI interface. The study involved a total of 18 participants, with 6 in

the solo condition and 6 pairs of 2 in the pairs condition. Participation was within-

participants with respect to the interface used, meaning that each participant or pair

of participants interacted with both the Siftables and the mouse/GUI experimental

conditions. The order of condition presentation between the mouse/GUI experimental

conditions was randomized.

I created a pair of corresponding applications, one using Siftables, and one using

the mouse/GUI, that required participants to linearly arrange and spatially group

individual items. In the Siftables condition, participants manipulated Siftables show-

ing images on their screens. In the GUI condition, participants used the mouse to

drag and drop on-screen icons. The applications utilized three types of content:

alphabetic characters, numeric digits between 0-9, and colors (red and green). In

the alphabet and digits conditions, participants arranged the items sequentially in

order of increasing alphabetic or numeric value. In the colors condition, participants

moved the items into two distinct groups, organizing them by color (for an example

see figure 6-2 on the preceding page).

In the pairs condition I encouraged participants to cooperate, but did not give

them any specific instructions about how to divide the labor. Within a single ex-

perimental condition (for instance, single-participant, mouse), each activity type was

featured once as practice followed by a series of timed trials. The stimuli sequence

alphabet, colors, digits was repeated three times during a single condition, and com-

pletion time for each trial was recorded.

6.2.2 Results

The results of this study can be summarized as follows: Participants completed the

task more quickly using Siftables than with the mouse for all activity types and in

138

U mouse (solo) 0 mouse(pair) N siftables (solo) 4 siftables (pair)

16

; 14-

. 10

S8-

E 6

0
alpha colors digits

Figure 6-3: Completion time results from the content organization study. Both

Siftables conditions (solo, pairs) have lower average completion time than both

mouse/GUI conditions. Pairs in the Siftables condition had lower average completion

time than solo participants. In the mouse/GUI condition however, pairs versus solo

participants did not have significantly different averages.

both solo and pair conditions. Furthermore, using Siftables pairs were significantly

faster than solo participants. Using the mouse, pairs and solo were not significantly

different. See figure 6-3 for more information.

6.2.3 Discussion

The faster task completion time in the Siftables conditions of the grouping and order-

ing task indicate that independent physical manipulatives such as Siftables offer an

efficiency advantage over mouse/GUI-based manipulation of on-screen icons for linear

ordering and rough grouping activities. This efficiency advantage would be shared

by any system of physical manipulatives such as a number of tabletop systems that

exist today, but Siftables' mobility opens up possibilities for use in a wider variety

of locations and activity contexts. This result suggests that Siftables can permit

more effective and flexible problem-solving than a mouse/GUI system for activities

involving ordering and grouping, because greater efficiency will allow users to explore

the solution space more effectively, finding more and better solutions.

139

In addition to the performance advantage offered by Siftables over the mouse/GUI

in the grouping and ordering task, I found that pairs of people working together were

more efficient than single participants. Collaboration between participants in the

mouse/GUI condition did not offer a similar advantage, which was not a surprise

since the mouse is fundamentally a one-person interface. This result validates an

intuition that motivated Siftables in the first place, namely that Siftables can enhance

the ability of groups of people to work together collaboratively.

During the content-manipulation study I observed variability in the style of co-

operation between pairs when using the Siftables interface. Some pairs talked to

each other to determine strategies for efficient action, while others did not. A typical

strategy for the linear ordering activities (alphabet, digits) was for one participant

to collect the tiles from the lower half of the sequence, while the other participant

collected the higher ones. Since the pairs were seated next to each other, this strategy

allowed them to "divide and conquer", each participant arranging half of the solu-

tion before they cooperatively placed the two sequences next to each other. In the

color-grouping activity, a typical strategy was for one participant to collect Siftables

showing red and the other collect Siftables showing green. I also observed variability

in the number of hands used by participants, noting that often one participant would

use two hands while the other used only one. These observations are anecdotal, but

they suggest that a system of independent physical manipulatives like Siftables can

be effectively used by more than one person. Further observation could provide more

detailed information about how pairs collaborate with an interface like Siftables.

6.3 Image Manipulation Study

To measure the effectiveness of Siftables as a tool for both sequential arrangement

and fine adjustment of information or control items, I created an application that

allows users to manipulate digital images by specifying the inclusion, ordering and

magnitude of image-processing effects such as Blur, Brightness and Hue.

140

"-
Figure 6-4: An original image (left), the original image with effects Threshold then

Blur applied (middle), and the original image with effects Blur then Threshold applied

(right). The order of the effects makes a difference to the end result.

6.3.1 Description of the Application

For a full description of the image manipulation application, see section 4.11 on

page 101. The conceptual model of the image manipulation application is a signal

chain, wherein a source image is processed by a sequence of filters that can be engaged

and adjusted by the user. The filtering operates in an accumulative manner, meaning

that the result of the first effect is fed as input to the second effect, and so on.

Five effects are included in the application: Blur, Saturation, Threshold, Bright-

ness and Hue. I chose these particular effects because each produces a result that

is visually salient and quite different from the others. The order of certain effect

combinations can make a perceptible difference; for instance Blur before Threshold

looks quite different than Threshold before Blur (see figure 6-4 for an example).

Threshold before or after Saturation or Hue renders all but the Threshold effect

imperceptible.

6.3.2 Method

Each subject was presented with a sequence of image pairs shown side-by-side on the

15-inch display of a laptop computer. The participant manipulated the right-hand

"result" image to look as similar as possible to the left-hand "reference" image. The

"reference" image of each pair was pre-processed by a sequence of 1- 3 effects, and the

141

"result" image was processed in real-time by the effects that the participant engaged

and adjusted (see figure 6-5 on the facing page).

The study featured two experimental conditions, Siftables versus mouse/GUI. The

experimental design was within-participants, and the order of the two conditions was

randomized across participants. Within each experimental condition, I first presented

participants with a single "practice" image pair, followed by five "real" image pairs.

The participant was told that they could spend as much time as they wanted exploring

the practice pair to get used to the system, then during the real pairs they should

be as expedient as possible. I instructed them to adjust the image to be similar to

the pre-processed image, to their satisfaction. When ready to proceed, participants

used the mouse to click an on-screen button labeled "DONE" to advance to the next

image pair. Completion time was measured for each image pair.

A survey after each condition asked participants to rate their agreement with

statements about the system on a 7-point Likert scale. At the end of the study

participants answered a series of comparative questions in which they reported which

system they preferred or felt was superior in various ways or for various types of

activities.

Condition A: Mouse/GUI

In the mouse condition (see figure 6-5 on the next page), participants used a mouse to

drag effect icons in and out of an on-screen representation of the active effect chain.

The effect chain was represented by a sequence of gray boxes located just underneath

the pair of images, beginning with an image thumbnail showing the picture being

manipulated. When an effect was dragged and dropped onto one of the gray boxes, it

would "snap" into place on top of the box. When an effect was dragged and dropped

anywhere else in the GUI, it would "snap" back to its original home location. Each

effect icon had a linear slider situated horizontally across its bottom edge. The

participants could drag the slider left and right to adjust the magnitude of the effect.

These sliders were initially set to the effect's neutral point (see figure 6-5 on the facing

page), and the effect icons were initially placed out of the effect chain.

142

WH m
Figure 6-5: The mouse/GUI version of the image manipulation application. On the

left, a participant interacts with the mouse/GUI version of the image manipulation

application. On the right is a screen capture in which Hue and Brightness are engaged.

The Hue of the "result" image (right) has been adjusted to match the "reference"

image, but Brightness has not.

Condition B: Siftables

In the Siftables condition (see figure 6-6 on the next page), participants manipu-

lated Siftables to specify the order and to adjust the magnitude of the effects. One

Siftable displayed a thumbnail image of the unmodified source picture, and each

image-processing effect was represented by a separate Siftable. The effect Siftables

showed either a text label of the effect's name or a live preview of the effect, or both

(see the descriptions of the pilot and full study for details). Participants could insert

an effect into the active sequence by placing the associated Siftable adjacent to the

thumbnail Siftable. Any number of the available effects could be sequenced in this

manner, and the effects accumulated in a left-to-right manner. To remove an effect

from the active sequence, the participant separated it from the sequence of Siftables

adjacent to the thumbnail Siftable. To adjust the magnitude of an effect, participants

tilted the Siftable to the left or right. When an effect Siftable was tilted past a thresh-

old (15 degrees from horizontal), it began to periodically increment or decrement the

effect magnitude until the tilt returned to horizontal. See the descriptions of the Pilot

and Full studies for differences in effect increment and decrement behavior.

143

Figure 6-6: The Siftables version of the image manipulation application. On the left,
a participant has lifted the Blur Siftable off the table, and tilted it to the left to adjust
the value. In the center, the value is being adjusted as a result of the tilt (note that
the on-screen visuals have changed to an effect preview). On the right the participant
is applying an effect to the image by placing the effect Siftable to the right of the
image Siftable, inserting it into the active effect chain.

6.3.3 Feedback from Pilot Study

A pilot study was conducted with seven participants between the ages of 18-40 to

collect early feedback about the image manipulation application. All participants

completed both conditions, and the order of the two conditions was randomized. In

the following sections certain implementation and interface details are discussed that

were changed for the final study based on feedback collected during the pilot.

Pilot Feedback: On-Screen Effect Icons in the Siftable Condition

In the Siftables condition of the pilot study, the arrangement and parameter adjust-

ment of the Siftables was mirrored on-screen by the effect icons. When a participant

placed an effect Siftable next to the thumbail Siftable, the corresponding on-screen

icons would "jump" into place in the correct sequence. When a Siftable was removed

from the active sequence and set aside, the on-screen icon would "jump" back into

the non-active area.

Some users reported that the on-screen effect icons were distracting, and they

would prefer to just see the large image pair on the computer screen rather than

having the position of the Siftables mirrored on the screen. See section 6.3.4 on

page 149 for how this was addressed in the full study.

144

Pilot Feedback: Keeping the Effect Sequence Intact During Parameter

Adjustment

In the Siftables condition of the pilot study, when a user picked up a Siftable to adjust

its parameter, the system would attempt to keep the effect sequence intact until they

either replaced the effect into the active sequence or set the effect down outside of

the sequence. This feature was designed to allow the user to adjust a parameter

without removing it from the active sequence so that the "result" image on the

large screen could provide useful real-time feedback about the effect manipulation.

The algorithm used shake and tilt-detection configured to be extremely sensitive

to determine whether the user was actively holding a Siftable. When the system

estimated that the Siftable had been completely stationary for a period of one second,

the Siftable was assumed to be resting on the tabletop, and if it was no longer detected

in the active sequence it would be removed, updating the active sequence.

The problem that users experienced was that the system's estimation of ongoing

active manipulation was not perfect. Sometimes if the participant was holding an

effect Siftable very still, the system would estimate that the Siftable was no longer

being manipulated, and that effect would be removed from the active sequence. The

effect could be re-introduced by simply placing it back into the sequence briefly, but

the lack of reliability was an annoyance to some users who reported that it made

the system feel difficult to control. See section 6.3.4 on page 150 for how this was

addressed in the full study.

Pilot Feedback: Real-Time Preview: On-Screen versus On-Siftable

In the mouse condition of the pilot study, during parameter adjustment the user

would see a live preview of the individual manipulated effect (not the accumulation)

applied to the current image on the effect icon itself. When they stopped adjusting the

effect (i.e. when the mouse button was released), the effect icon's appearance would

revert to showing a text label of the effect's name. If the effect was in the active

sequence during the manipulation, the user would also see the result of the entire

145

Figure 6-7: Split attention: Some participants in the pilot study complained that the
distance between the laptop screen and the work area on the table where they used
the Siftables was too large. They didn't like having to shift their gaze repeatedly
back and forth.

effect sequence, including the manipulated-effect, on the "result" image in real-time.

In the Siftables condition, the real-time accumulated image preview was also present

on the large display. However, the feedback on the Siftable's screen was only a

progress-bar that stretched across the lower portion of the screen.

Some participants suggested that the progress-bar on the screen of the Siftable

was not very useful compared to the (more literal) image-based feedback on the large

display. Several participants proposed that the application should put more literal

(i.e. effect-preview) feedback on the screen of the Siftable itself. See section 6.3.4 on

page 150 for how this was addressed in the full study.

Pilot Feedback: Split Attention: Where to Look

In the pilot study, there was a relatively large difference in viewing angle between

the image on the laptop display and the work area on the table where participants

manipulated the Siftables (see figure 6-7). This gap was due to the side-by-side images

being aligned to the top of the screen, leaving a space at the bottom of the screen,

followed by the laptop's keyboard further separating the images and the Siftables.

Participants complained of having to keep shifting their attention back and forth.

146

One participant suggested that it would be helpful to use Siftables atop a projected

surface or a horizontal display, allowing the manipulated image to be directly un-

derneath or closer to the Siftables so both could be viewed simultaneously. Another

participant claimed that the separation between the on-screen images and the physical

Siftables was awkward, and suggested a Siftable-only version of the application with

no large display. See section 6.3.4 on page 151 for how this was addressed in the full

study.

Pilot Feedback: Tilt-To-Scroll: Responsiveness and Control

The Siftables condition of both the pilot and the full study featured a tilt-based

input technique for adjusting the continuous effect parameters. In the pilot study,

effect incrementing and decrementing was handled in Python on the PC. The Python

program registered itself as a listener for tilt events and raw accelerometer data, and

whenever the Siftable was tilted, the Python program would periodically increment or

decrement the effect value based on the direction of tilt. The rate of update depended

on the degree of tilt; I implemented two update speeds, fast (10 updates / second)

and slow (1 update / second). A threshold value in the center of the active tilt range

(about 30 degrees off-horizontal) determined whether the slow or fast rate would be

used. At each effect value update, the Python program would also send drawing

commands to the Siftable to update its on-screen progress bar.

Based on observing participants and reading their comments, I determined that

the tilt-to-scroll affordance was difficult to control. Participants would sometimes

overshoot their target value. I identified two related technical problems; round-trip

latency and response jitter. Round-trip latency was due to the fact that accelerometer

data had to be transmitted across the Bluetooth radio to the PC where the Python

code would calculate updates then send drawing commands back across the Bluetooth

to the Siftable. The minimum round-trip latency was approximately 250 milliseconds,

a value clearly perceptible by participants, and at least partially responsible for their

tendency to overshoot. Variability in this latency was one cause of jitter; from time

to time updates on a Siftable could get "stuck" for a second or more due to Bluetooth

147

buffering, producing an experience of non-responsiveness. The other source of jitter

was the dual update speeds. When the Siftable was tilted at an angle near the thresh-

old between fast and slow, the update speed could jump back and forth across the

threshold unpredictably due to small movement variations or normal accelerometer

noise, causing the update to proceed fitfully. Along with the baseline latency, this

jitter also made the interface feel difficult to control. See section 6.3.4 on page 151

for how I addressed these problems in the full study.

Pilot Feedback: Other Comments and Suggestions

Participants in the pilot study made a number of other suggestions and observations

that are summarized in this section. I did not implement these suggestions in the full

user study due to time constraints or limitations of the current platform, but they

are presented here as ideas for future improvements.

One participant pointed out that an "undo" or "waypoint" feature would be help-

ful since it would allow him to explore effect configurations and adjustment levels

more freely, while being able to revert easily to an earlier saved state. See chapter 7

on page 161 for a discussion of how this request might be accommodated.

One participant liked the image-manipulation application, but suggested that its

advantage was primarily in the effect-chain metaphor, and that they didn't care

much whether they used a mouse or Siftables as an interface. They reported that

the ability to easily examine the current effect-chain, and to arrange and re-arrange

effects felt better than existing applications such as Photoshop [52] that feature a

history+UNDO model. This participant suggested further that the ratings for the

Siftables condition might suffer because it was competing with a GUI version of the

same (already-improved) task model. Overall he preferred the interaction model in

the image manipulation application to Photoshop.

One participant suggested that the means of applying effects should be connected

more literally to individualized spatial gestures where possible. He gave the example

of placing the Siftable representing Hue in a radial position around the perimeter of

the thumbnail Siftable. The position around the thumbnail Siftable would correspond

148

to a location in the color wheel, which would set the value of the effect.

Another participant suggested that that Siftables were better suited to playful

interactions, and that a work / productivity context such as the image-manipulation

application was not a good fit for the interface.

Finally, several participants commented that their feeling of control using the

mouse came (at least partially) from years of experience with the desktop interface,

and that with more time they would develop similar virtuosity with Siftables.

6.3.4 Changes Made to the Application

A study was conducted with 19 participants between the ages of 18-40 in order to

better understand the subjective experience of interaction with an embodied media

system through the lens of an updated version of the image manipulation application.

The task and experimental conditions of the study are the same as described in

section 6.3.2 on page 141 (within-participants, randomized condition order). In the

following sections the changes to the application from the Pilot study are discussed,

along with brief discussion of the impact of each change on the user experience.

On-Screen Effect Icons in the Siftable Condition

In the Siftables condition of the full study, the mirroring of the Siftables on the large

screen was removed.

The benefit of this change was less on-screen visual clutter, reducing the number of

places to focus attention to only two (on the images, or on the Siftables themselves)

rather than the previous three (images, Siftables, or on-screen effect-chain). The

drawback of this change is a reduction in feedback that the given sequence of Siftables

is actually engaged. I noted this ambiguity when some participants reported being

unsure about the integrity of the sequence when effects were set to neutral points and

thus were not visibly contributing to the "result" image.

A refinement for future systems could be to include visual feedback on the Siftable

screens to indicate when they are in the active sequence.

149

Keeping the Effect Sequence Intact During Parameter Adjustment

The activity-estimation heuristic from the pilot version that attempted to preserve

the effect sequence during Siftable-based parameter manipulation was removed for

the full study to achieve greater predictability. In the full study, as soon as an effect

Siftable was removed from the active signal chain, the sequence would be recomputed

without the given Siftable.

The benefit of this change was that it improved the predictability of the system.

The drawback was that it became nearly impossible, and definitely impractical to

have real-time feedback during effect adjustment. Some participants found that they

could keep the effect chain intact during parameter adjustment by lifting all Siftables

together at the same time and tilting them. This would permit real-time feedback on

the large display. However, this solution was not optimal because it prevented effects

from being adjusted independently.

A possible solution for future systems would be a way to manipulate the effect in-

place without disturbing the effect sequence, such as a touch screen or knob on each

of the effect Siftables. Another possibility would be a better strategy for knowing

when a user is holding a Siftable. This strategy could be an improved heuristic that

utilized motion data, or could involve touch or proximity sensing built into the body

of the device.

Real-Time Preview: On-Screen or On-Siftable

In the full study the effect Siftables showed a realistic pre-computed preview of their

effect applied to a sample image, with a monochromatic progress-bar overlaid on top

of the preview. The graphical preview would adjust dynamically during tilting so that

the user could see a sample of the effect as it was applied to the thumbnail image.

After tilting had ceased for a period of one second, the screen on the Siftable would

revert to showing a textual label with a red progress bar.

This effect preview was a more direct representation of the effect than the red

progress bar alone. However, a software bug during the experiment resulted in the

150

same image preview being used for every image pair that participants edited. The

mismatch between the preview image and the image being manipulated is likely to

have diminished some of the advantage of the realistic on-Siftable effect preview,

though the feedback on the Siftable's screen was still a more literal representation of

the effect compared to a progress bar alone.

Split Attention: Where to Look

In the Siftables condition of the full study, the laptop computer was turned upside-

down and placed in such a way that the left and right-hand images on the display were

close to the work area where participants manipulated the Siftables. The screen was

at a 30-degree angle from the table surface, and the images were rotated 180 degrees

and their positions switched so that the left and right-hand positions remained as

before (see figure 4-12 on page 102).

The advantage of this configuration was that participants did not have to adjust

their gaze as far to switch their attention between the Siftables and the on-screen

graphics.

Other solutions that could have achieved a similar advantage would have been

to use Siftables atop a projected surface, or to show the result of the accumulated

effects on the screens of the Siftables themselves. The current data bandwidth over

Bluetooth between the PC and the Siftables prevented the latter, but such a strategy

may be interesting future work.

Tilt-To-Scroll: Responsiveness and Control

In the full study, all parameter incrementing and decrementing logic was moved to

the firmware of the Siftable itself, and the effect value updates were transmitted

asynchronously over Bluetooth to the software application on the PC. The firmware

code only implemented a single update speed, at a rate of about 2 ticks / second, in

five-percent increments.

Moving the effect update code to the device's firmware removed the problem of

round-trip latency, allowing the on-Siftable graphics to update more quickly and

151

Figure 6-8: Image manipulation study, comparison ratings. After completing both

conditions of the study, participants chose which interface they preferred along the

given dimensions. For each comparison, they could choose Siftables, mouse/GUI, or
no difference.

eliminating the jitter due to irregularities in the Bluetooth latency. Furthermore, the

single update rate eliminated jitter due to tilt values near the threshold between slow

and fast. These changes made the system feel more reliable, though still not as easy

to control as the mouse. The disadvantage of a single update rate is that it takes

longer than before to move the effect value greater distances.

Other options to solve the jitter problem that came from the dual-rate-threshold

would be the inclusion of hysteresis around the threshold, or non-linear variable up-

date rate related to the degree of tilt. Looking further, the best solution would be to

completely eliminate tilt-to-scroll, as mentioned in section 6.3.4 on page 150.

6.3.5 Results

Averaging across all image pairs and participants, the study revealed a greater av-

erage completion time per image pair for the Siftables condition compared to the

mouse/GUI condition (81.4 sec per image pair for Siftables versus 61.3 sec for mouse/GUI).
Qualitative feedback suggests that the mapping of a tilting gesture to set continuous

effect values was difficult for participants to control, which probably explains this

difference.
difference.

152

Smoum lsiftabls

explore
e*ffct order

quick sequencing

final sequencing

explore
parameter setting

quick parameters

Figure 6-9: Image manipulation study, overall ratings. Participants favored Siftables
over the mouse/GUI for ordering and sequencing, but favored the mouse for
parameter-setting. Responses are on a scale from 1-7, and error bars show the
standard error, calculated as STDEV(values)/fii

153

The mouse/GUI interface was rated higher on the 7-point questions with respect

to exploration of parameter setting, quick parameter setting, and final parameter set-

ting. In the comparison questions, mouse/GUI was rated by a greater number of

participants as their preferred interface with respect to control, UI learnability, and

efficiency. See figure 6-9 on the preceding page and figure 6-8 on page 152.

Siftables were rated more highly than the mouse/GUI interface on the 7-point

questions with respect to exploration of effect order and quick sequencing. The ratings

also suggest a preference for Siftables for final sequencing of effects, although this

preference is weaker (see figure 6-9 on the preceding page for details) Additionally, in

the comparison questions Siftables was rated by more participants as their preferred

interface with respect to enjoyability, expressivity, and domain learning (with respect

to the domain of image manipulation). See figure 6-9 on the previous page and

figure 6-8 on page 152.

6.3.6 Discussion

Participant reaction to the Siftables interface in the Image Manipulation study was

mixed. As discussed in chapter 6 on page 135, whereas Siftables were preferred for

exploration of effect ordering, quick sequencing, enjoyability, expressivity and domain

learning, the mouse/GUI was preferred for parameter setting, learnability, efficiency

and control.

Complaints about the tilt-based affordance for adjusting effect magnitude were

found in the free-response feedback at the end of the survey. Many participants

reported difficulty achieving precision when tilting, particularly when they wanted

to adjust the parameter only by a small amount. The greater average completion

time for the Siftables condition is consistent with other work [28] [87] that reports

interaction difficulties arising from the use of tilting a handheld device to adjust a

continuous parameter. Translational movement (like mouse interaction), or a touch-

sensitive on-screen fader would likely be more natural ways to implement continuous

input. See section 7.2 on page 171 for ideas about spatial positioning of Siftables,

which could be an alternative to tilt for setting continuous parameters.

154

Siftables were also rated more poorly than mouse with respect to ease of learning,

which I attribute primarily to the problematic nature of tilt as a continuous input.

Several subjects observed however that their lifetime of mouse usage gave the mouse a

usability advantage for them, and that with more practice the tilt-to-adjust affordance

might also become natural and more controllable. It is reasonable that in the context

of a short user study with a novel user interface, participants may encounter some

difficulty learning to use a system that would become second nature with time. Thus

a new system may useful even if users report that it is difficult to learn initially. Doug

Englebart (the inventor of the mouse) dedicated much of his career to the development

of interfaces that were not walk-up-and-use, but rather required skill acquisition. As

an example from another domain, most musical instruments require years of practice

before the player reaches their expressive potential.

The positive reviews for Siftables with respect to experimentation with effect

order and arrangement suggest that Siftables are useful for activities that involve

the grouping and/or ordering of collections of digital items. A common activity that

involves grouping (but not ordering) is the organization of files into folders, or the

application of a tag/label to a group of files. Common activities that involve ordering

include the creation of media sequences that unfold in time such as image slideshows,

video sequences or musical compositions. Other activities where both grouping and

ordering matters include the manipulation of gantt charts, system-dynamics models,

or even seating guests at an event like a wedding. Furthermore many possibilities

exist for educational activities such as word-building from individual letters (each

represented by a Siftable), or chemistry or mathematics puzzles where the participant

must arrange chemical elements or equation terms (each displayed on a Siftable) into

correct sequences. Although applications were built to explore some of these ideas,

evaluations would be required to fully understand the efficacy of Siftables on their

educational potential.

155

more direct
than WIMP

more direct
than multi-

touch

more direct
than tangible

pucks

1 2 3 4 5 6 7

Figure 6-10: Developers' ratings of directness of Siftables as compared to other UI
categories, on a scale from 1 (strongly disagree) to 7 (strongly agree), and error bars
show the standard error, calculated as STDEV(values)/ /h-

Increased
interest In HCI

expanded ideas
about HCI possibilities

creates new
UI possibilities

1 2 3 4 5 6 7

Figure 6-11: Developers' agreement with statements that Siftables creates new UI
possibilities, that Siftables increased their interest in HCI, and that Siftables expanded
their ideas about HCI, on a scale from 1 (strongly disagree) to 7 (strongly agree), and
error bars show the standard error, calculated as STDEV(values)/ /

156

-- 1 C I II-l ----r~ -I ------- -~--- ---- I-----~----- --

6.4 Developer Feedback

Since one goal of this work was to create a reusable development platform that would

enable other developers to create applications for Siftables, I created an online WIKI

to host instructions for getting started, API documentation, code downloads, hints,

and known bugs. A successful deployment of an embodied media user interface in the

world would likely require a community of developers to create applications, and the

members of the Siftables development WIKI are thus a microcosm of such a future

community. I sent a web survey by email to the 29 users of the Siftables developer

WIKI to collect feedback about their experiences developing with Siftables and their

impressions of the potential of the platform. I received 14 complete responses. The

respondents are all involved in Siftables application development in some capacity.

Four responses were from colleagues and undergraduate researchers at MIT, eight were

from engineers and managers in industry, and two were from academic collaborators

from other universities.

Respondents rated their impression of the directness of Siftables-based interac-

tion compared to other paradigms, including Windows/Icon/Menu/Pointer (WIMP),

multi-touch and tangible-pucks interfaces. The question asked variations of the fol-

lowing: "Please rate your level of agreement with the following statement: Siftables

can be used to create a user interface (UI) that allows users to feel that they are

interacting more directly with digital media than a mouse-based WIMP interface."

On the scale from 1 (strongly disagree) to 7 (strongly agree), the average ratings of

direct-ness were as follows: compared to WIMP (5.9), compared to multi-touch (5.3),

and tangible pucks (4.4).

Respondents rated their level of agreement with statements about whether Sifta-

bles created UI possibilities and expanded their ideas about HCI possibilities, as well

as about whether Siftables increased their interest in HCI, on a 7-point Likert-style

scale. The results, at 5.8, 5.6 and 5.5, suggest that developers do feel that Siftables

create new UI possibilities, and that working with Siftables increases their ideas about

HCI, and increases their interest in HCI.

157

6.4.1 Developer Survey Discussion

The feedback from the developer survey is interesting insofar as it reveals attitudes

that future developers might have regarding Siftables or another embodied media

platform. The fact that developers felt Siftables created new UI possibilities and

expanded their ideas about HCI possibilities in general offers evidence of the platform's

utility in pushing the boundaries of how computers can become better tools for human

beings. The fact working with Siftables increased their interest in HCI was personally

interesting because it suggests that Siftables inspired them, which I believe is an

important characteristic in order to build an enthusiastic developer community.

Developers' feeling that Siftables offer increased directness in interaction as com-

pared to mouse/GUI and multi-touch interfaces is perhaps not surprising, given the

physical nature of the manipulatives. I interpret this result as additional evidence

that Siftables offer possibilities that are substantively different than other existing

user interfaces.

6.5 Summary of Results

In summary, I conducted a pilot study and two full studies. From a simple content

sequencing and grouping study, I learned that Siftables allowed for faster task com-

pletion than the mouse/GUI, and that pairs of participants using Siftables worked

more quickly than solo participants. Given that small differences in the efficiency

of a tool can have profound effects on the strategies that users employ, these results

indicate that Siftables are a useful system for representing classes of problem-solving

activities involving one or more users that can be easily mapped to grouping and

sequencing of elements.

The pilot study was an early version of the image manipulation study, and feed-

back pointed out a number of interaction shortcomings, some of which I addressed

before the second full study. From the full image manipulation study, I learned that

while participants preferred Siftables for effect-ordering, they preferred mouse/GUI

for fine adjustment of parameters. Participants also preferred mouse/GUI in terms

158

of UI learnability, efficiency and control; however, participants preferred Siftables in

terms of enjoyability, expressivity and domain learning. Participants' preference for

Siftables in terms of enjoyability and expressivity suggests their use for playful and

creative activities like gaming and music. The reported preference for Siftables for

domain learning is interesting, but requires further study.

Finally, developers reported that Siftables enabled them to create user interfaces

that are more direct than WIMP or multi-touch, and that Siftables create new UI

possibilities. Developers also reported that working with Siftables increases their

ideas about, and their interest in HCI. These reports suggest that researchers and

developers are enthusiastic about Siftables, and that embodied media systems extend

their capabilities to push the boundaries of human-computer interaction.

6.6 Outside Interest in Siftables

Representatives from more than ten sponsor companies have requested a development

kit for their engineers to work with. At this time, eight companies have paid for and

received development kits containing from three to twelve Siftables. My impression

of this interest, based on many conversations at the Media Lab and via phone and

email correspondence, is that while the companies are familiar with the parts in a

Siftable (all common components in today's consumer electronics devices) they are

intrigued by the novelty of how the combination of these parts produces new user

interface possibilities. Feedback from the developers currently working with Siftables

was summarized in the Developer Feedback section.

Researchers in academia have also expressed interest in using Siftables as a plat-

form to support their own work. Hartmann and Klemmer in the Stanford Computer

Science Department experimented with Siftables used as dynamic graphical labels

that they could place atop other physical user interface controls, such as faders on

a musical mixer used as a digital input device [43]. Seth Hunter, a colleague at the

Media Lab, built a series of four separate applications to teach language and reading

skills to children using Siftables, some of which are described in chapter 4 on page 85.

159

A number of other ongoing conversations with academics indicates a clear interest in

the new UI possibilities that Siftables offer.

A Google search today (May 1, 2009) on the terms "Siftables" results in about

26, 000 hits, and a video of my presentation about Siftables at the TED conference

has been viewed more than a million times.

160

Chapter 7

Discussion and Future Work

At the outset of this thesis I introduced the concept of embodied media, a new

model for distributed, physically embodied user interfaces. In the second chapter

I discussed related previous work that set the stage for the brainstorm and design

discussion of Siftables and gesture language possibilities related in the third chap-

ter. In the fourth chapter I enumerated a number of applications that have been

implemented using Siftables, and the fifth chapter covered the technical details of

the system. The sixth chapter described a pilot and two user studies that investi-

gated some efficiency characteristics of embodied media to the mouse/GUI and the

attitudes of users and developers that have worked with Siftables, finding that study

participants preferred Siftables in terms of enjoyability, expressivity, domain learning,

and for exploratory/quick arrangement of content items, and that Siftables offered an

advantage for task completion time (particularly when participants worked in pairs).

This chapter begins with a discussion that summarizes the benefits of embodied

media, outlining the types of applications to which it is particularly well-suited. It

continues by identifying a number of specific lessons regarding the interactive possibili-

ties, design techniques for applications, and recommendations for developers creating

embodied media user interfaces such as Siftables. From there, I look forward to

features that could be incorporated into the next generation of the Siftables platform

and some open questions, and finish with thoughts on the future of our interactions

with collections of networked smart objects.

161

7.1 Summary: What is Embodied Media Good For?

User feedback from the applications that I and others have created suggests that

an embodied media user interface platform like Siftables is a compelling and useful

advancement of the state of the art in human-computer interaction. The following

section enumerates properties that are characteristic of activities that are typically

accomplished today using desktop computers, but that an embodied media interface

is intrinsically well-suited to support.

7.1.1 Characteristic Properties of Well-Suited Applications

* Involves spatial arrangement of items: Physical manipulatives can be arranged

into spatial configurations as an input. For instance, language, science or math-

ematics tools using embodied media could allow learners to compose words,

molecules, or equations from component parts and receive real-time feedback

about the correctness or implications of their solution. Distributed cognition

predicts the advantages of manipulating the physical position of items in these

interactions. The current Siftables instantiation permits two-dimensional ar-

rangements, but this limitation could be lifted in future versions of Siftables or

other embodied media instantiations.

* Involves iterative definition of relationships between content items: A distributed

physical interface that can be manipulated efficiently permits quick experimen-

tation with the relationships between items. Visual on-manipulative feedback

allows the assignment of content to each manipulative to be legible to the user.

In addition to the distributed cognition advantages of spatial layout, educational

interactions are particularly well-suited to embodied media due to the presence

of on-manipulative feedback. Furthermore, there is a strong connection between

educational interactions and gaming. Embodied media is also a promising inter-

action paradigm for puzzle, action, and narrative oriented games, particularly

given its ability to support the face-to-face, social play patterns of classic games

like dominos, board or card games.

162

* Benefits from collaborative interaction: The collection of independent manipu-

latives enables groups of people to interact simultaneously with an embodied

media application in a manner that is difficult or impossible with a typical

desktop system. Multi-person collaboration is an important human way of

working and playing, so interfaces like embodied media that support parallel

interaction are compelling and valuable.

* Users are children or special needs community: Embodied media manipulatives

can have a similar size and physical interaction style as traditional wooden

manipulatives; they offer accessibility to children who are not yet proficient with

the mouse and/or keyboard. Additionally, the embodied media interaction style

may make computer use accessible to special needs users with physical or mental

disabilities (I have been told this by several parents of children with learning

disabilities; however I have not tested Siftables with these populations).

* Involves non-precise multi-manipulative gestural input: Tilt-to-adjust was diffi-

cult for users to control, but the Wii demonstrates playful interactions can be

designed in such a way that the lack of precision is acceptable. The effects in the

music sequencer application were more satisfying in informal tests, and there

are many other possibilities for expressive, continuous multi-object gesture that

have still not yet been explored thoroughly. Live music and video performance

settings are one such promising context of use. The expressive potential of

three-dimensional gesture with a collection of separate devices, each producing

a different sound or effect type, could make for a compelling stage show. Data

visualization and search is another domain of practice where multiple "handles"

can be advantageous, and if the interaction style is designed to accommodate

non-precise input, the operator may be virtuosic, efficient, and effective.

* Involves content manipulation, not entry: Embodied media is good for arrang-

ing and adjusting content, but not as useful for data entry. Consider a mind-

mapping application for example: manipulatives will not replace text input

techniques such as the keyboard or speech recognition, however they can offer a

163

benefit when the user needs to define and adjust the relationships between the

concepts. Said another way: While I wouldn't want to use Siftables instead of

my laptop computer to write an email to a friend, I would rather use them to

determine the seating arrangements at my wedding, to teach my child how to put

sentences together, or to quickly try twenty different search term combinations

to learn which produces the best results! As we have more and more digitized

information on hand, we will need more effective ways to sift and sort our

way through the mountains of data, and interfaces that leverage our existing

physical-world skills can provide an advantage.

There are certain application characteristics that are not well-suited to embodied

media, or that at least must be designed with caution and strong user testing. Appli-

cations that split the user's attention between the manipulatives and a larger display

are one problematic example, since the user may not know where to look at a given

moment or may tire of shifting their gaze back and forth. Another example is the use

of tilt as an input for an application that requires fine continuous control.

7.1.2 Takeaway Lessons: Design Opportunities and Recom-

mendations

The set of diverse applications for Siftables that have been implemented by myself

and by other developers is further validation of the contribution of embodied media.

From user feedback and my own experience with these applications I now distill

some lessons learned about the unique possibilities that embodied media provide for

application development, and some specific design techniques that have proven useful.

Multi-Person Collaboration Around Collections

The potential to enable collaborative work is shared with other tabletop and multi-

touch systems, but the combination of physical manipulatives, anywhere tabletop

interaction (see below), and on-object graphical feedback gives embodied media some

unique possibilities for collaborative interaction with collections of information and

164

media content. Specifically, the on-object content depiction and feedback and ges-

ture/neighbor sensing with minimal-infrastructure requirements opens up possibilities

for collaborators to change their venue if needed (mobility), to use the physical envi-

ronment more readily (non-electronic props), and to keep their attention focused on

the manipulated items (rather than on a separate display).

Two-Handed, Physical Manipulation

Two-handed, physical manipulation is a characteristic embodied media shares with

tabletop and multi-touch systems. However, neighbor sensing and three-dimensional

interaction enable a richer set of possibilities for how two hands can be used together

to interact. When grouping, sequencing and arranging, shaking or tilting, the use of

both hands is natural and efficient. Taking this idea further, a greater degree of bodily

interaction is enabled by multiplicity of manipulatives in an interaction, for instance

when using a forearm to number of Siftables across a desktop at the same time.

Anywhere Tabletop Interaction

As discussed in chapter 2 on page 25, tabletop interfaces have recently become quite

popular in the research community. The advantage of fully self-contained manipula-

tives such as Siftables is that they can implement some of the same interactions while

obviating the need for the (typically) non-mobile sensing and display infrastructure

of most tabletop systems. This allows an embodied media system like Siftables to be

mobile in a way that large multi-touch surfaces or tangible pucks systems are not.

3D interaction

Another limitation typical of tabletop interfaces that an embodied media interface

such as Siftables overcomes is the constraint of two-dimensional planar interaction.

Although only simple three-dimensional gestures have been explored in the scope of

this thesis (shaking, tilting), sensing of three-dimensional gestures of greater com-

plexity is possible to implement. This allows for spatial interaction possibilities that

would not be feasible with multi-touch or tangible pucks systems.

165

Multi-Object Gestures

Work with siftables has enabled the exploration of several interesting multi-object

gestures. For instance, the way that the player can "dump" their character from

one tile to the next in the Maze Exploration game, and the "color pouring" interac-

tion sketch both involve more than one device being used gesturally together. The

"thump" gesture offers a way to interact with a group of Siftables in parallel, the way

that shouting can attract the attention of a group of people in a single instant. The

distributed, physical nature of embodied media interafaces permits three-dimensional

gestural interactions with collections of manipulatives.

New Opportunities for Action-Borrowing

The aforementioned multi-object gesture examples (dumping, pouring, thumping)

highlight a key property of embodied media: as physical-digital tools acquire more

sophisticated ways to sense each other and to sense the world around them, designers

acquire an expanded set of possibilities for how actions can be borrowed from our

everyday interactions and implemented metaphorically (for instance transferring an

item from one container to another).

Design Rules for Tilt: Two Interaction Strategies

The different tilt strategies I used for sample effects versus global effects in the music

sequencer application resulted from different interaction needs for these two manipu-

lations. Sample effects (such as filter) are manipulated with expressive intent, which

made a direct instantaneous-tilt-to-value mapping appropriate. A global effect (such

as volume), however, was more likely to be used in a non-expressive manner, where

it would be adjusted to a certain value then left at that value. This usage suggested

the "deadband-on-flat" strategy whereby no adjustment would be made when the

Siftable was laid flat on the table.

Other designers might have different sensibilities about the categorization of these

particular effects, but the general principle of using instantaneous tilt for expressive

166

manipulation versus deadband-based tilt for "set and leave" manipulation should be

a useful principle in future embodied media instantiations. As discussed already, the

embodied media designer should carefully consider the usability of tilt as compared to

other affordances for setting continuous values, such as knobs or touch screen controls.

See section 4.12.2 on page 105 for more information and background related to

the design problem of tilt-based input.

Shake-to-Lock/Unlock: A Method for Button-Free Direct Tilt Mode En-

able/Disable

The node-edge graph creation tool combined a direct instantaneous-tilt-to-value af-

fordance with a shake-detection-based way to enter and exit the direct tilt-based

interaction mode (see section 4.12.2 on page 105 for more information and background

to the design problem).

The key design insight that made this scheme work was that the value should be

taken from about 0.5 seconds before the shake event is detected, thus capturing the

steady-state tilt angle before the motion of the shake event perturbs it. This design

pattern may be useful for other embodied media user interfaces that require mode-

switching into and out of direct tilt-based input (or another motion-sensing mode)

without the use of buttons.

Exploring Larger Content With Smaller Screens

The Maze Exploration application provides an example of how an embodied media

interface with at least two small screens can be used to explore a spatial problem

or a digital content item that is too large to be fully represented on their screens at

a single moment. Even a single Siftable could be used as a window onto a larger

territory, for instance using the nudge-based traversal idea outlined in section 3.4.1

on page 69. This progressive disclosure approach to overcoming the limitation of a

small screen could be useful to other mobile device scenarios, particularly ones with

a narrative or puzzle element.

167

A related idea that I do not find particularly compelling, but that many people

have suggested when they first encounter Siftables, is the possibility of using a collec-

tion of embodied media manipulatives placed together into a grid to display a single

larger image or video that is too large to display on their individual screens. Yes, this

would totally be possible.

Importance of On-Manipulative Feedback

Since the ability for Siftables to detect their spatial arrangement and sequencing with

respect to each other is not based on physical contact, there are conditions in which,

without appropriate feedback, the user may be uncertain whether adjacent Siftables

have successfully recognized each other. This uncertainly primarily occurs when the

two manipulatives are spaced far enough from each other so that they are right at

the edge of their ability to communicate using infrared. In this situation, as well as

in the less common scenario in which a communication error allows adjacent devices

to "miss" each other, some on-screen indication that the two manipulatives are aware

of each other's presence is useful. Furthermore, in practice such responsive feedback

based on adjacency seems to be pleasing to users.

On-Manipulative Hints

A feature that Fiddle Diddle Make a Riddle explores is just-in-time graphical hints

that are displayed on the manipulative when the user appears to be stuck. This

approach could be useful for many games or puzzle applications where the location

of feedback is important. This self-description is akin to the already-noted possibility

that embodied media devices can represent problem constraints graphically (see the

following section).

Distributed Cognition Advantages

As discussed in chapter 2 on page 25, Kirsh and Maglio's finding [71] highlights the

utility of physically arranging Scrabble tiles. Siftables in Scraboggle leverage this

utility since they are also physical and can be rearranged, but there is even more

168

to explore regarding the use of the manipulatives' screens to represent relational

constraints. For instance, in an application that features a node-edge topology such as

a project-planning tool, compatible connections between items could be represented

visually by matching colors or shapes at the edge of the displays that are visually

similar or that suggest interlock to indicate their compatibility (borrowing the look of

male and female puzzle-piece connections is one possible design). A simpler example

would be an extension to the music sequencer application that would draw the left

and right edges of the sequence Siftables differently than the top and bottom edges,

to indicate the potential to connect the left-right edges to other sequence Siftables. In

general, embodied media manipulatives can use their screens to dynamically represent

the ongoing state of a problem or partial solution as a user interacts with the system.

Predictability is Key

A challenge that many gesture-based interactive systems encounter is the difficulty

of responding in a way that seems completely predictable to a user. My discussion of

the Theremin in chapter 2 on page 25 pointed out a problem of free-gesture, namely

that it is difficult for a person to move their body in exactly the same way twice.

Since gesture detection algorithms (even simple ones such as the detection of tilt

past a threshold) must respond to the user's imprecise body motion, there are ample

opportunities for gesture-based systems to feel unreliable or unpredictable.

An example of prioritizing predictability over responsiveness was my "downgrade"

of the tilt-to-adjust method in the image manipulation application from dual-rate in

the pilot to single-rate in the full study. Although the pilot method and the full study

method were not compared directly against each other, after trying both I can say

that the single-rate method felt more predictable and reliable. In general, systems

that afford multi-object gesture should strive to be as predictable as possible if the

designer wishes them to feel reliable.

169

Split Attention Problems With Large Screens

A takeaway from both the image manipulation study and our observations of children

using Telestory is that interaction with a mixture of manipulatives and a large dis-

play must be designed carefully. In the image manipulation task, some participants

complained about having to look back and forth repeatedly, and the children using

Telestory hardly looked at the Siftables at all, keeping their attention focused almost

exclusively on the large screen except when looking for another manipulative to pick

up. The children's behavior is not surprising, given that in Telestory all of the action

happened on the large screen, and its size made it an easier (and perhaps more

appealing) location for visual focus. However, the difficulty in getting the children to

look at the manipulative instead of at the large screen seemed to increase the amount

of intervention required to teach the children about the tilt-based on-device menu.

One solution would be to remove the large screen from these interactions com-

pletely, locating all visual information and feedback on the manipulatives' screens.

This may be appropriate for activities in which the content does not require high

resolution graphics or close inspection. However, for activities that do need a large

screen, tighter and more granular temporal coordination between the activity on the

large and small screens may be a solution. For instance, a character on the large

screen could audibly tell the user to look at a given manipulative, then disappear

from the large screen and appear on the device's screen to continue the instruction

from there. This transition could guide the user's attention, handing it off from the

large screen to the device, and a similar transition could guide their attention back

to the large screen.

Feedback Latency: Short-Circuit when possible

As with all interactive systems, latency matters a lot, and lower is better. The

implication for embodied media is that certain feedback displays may work better if

they operate as a "short circuit" that directly connects an interaction sensed by the

manipulative to a corresponding visual display. The latency for such feedback can

170

be lower if it doesn't have to first go across the radio, then incur processing on the

computer, then return over the radio before appearing.

The decision to "short-circuit" the feedback in the image manipulation application

greatly reduced the latency between tilting to adjust the value and the length of the

on-screen feedback bar changing. Neighbor detection is another embodied media

scenario that suggests short-circuiting is feedback, for instance showing an on-screen

marker when a neighbor exists on a given side.

7.2 Future Work

Although the end of this thesis approaches, the story of embodied media continues. In

this section I first examine the ongoing work that is in progress at MIT through spon-

sor collaborations and student investigations. I then look forward to how Siftables

might develop in the future, followed by some open questions about embodied media

that could be answered with further study. Finally, I conclude with a discussion of

the big picture, looking towards the kind of user interface that my work with Siftables

suggests but that is still some years off.

7.2.1 Iterating on Siftables

There is ongoing momentum around Siftables at MIT. One aspect is the number of

collaborations with research groups at our sponsor companies that seek to explore

a range of application possibilities and extend the capabilities of the platform. One

laboratory is interfacing a vibrotactile actuator to each of their Siftables in order to

provide feedback to a user holding them. Another team is building an application

to allow their customer service representatives and customers to work together more

effectively. This application uses Siftables in face-to-face sales situations, to allow the

staffer to work with the customer to better understand their financial situation and

investment goals. Other research and development groups are pursuing their own

application ideas. All together, close to one hundred Siftables have been distributed

to eight separate development groups in our sponsor community.

171

Student work at the MIT Media Lab will also carry Siftables development forward.

My colleague Seth Hunter has created a number of narrative-oriented applications for

children, as discussed in chapter 4 on page 85, and plans to continue to work with

Siftables. Other students at MIT are actively involved as well, currently prototyping

a richer equation editing tool and extensions to online social networks.

My own work, as well as the explorations of developers at sponsor companies, and

my colleagues at MIT, has brought both the capabilities and limitations of the current

Siftables platform info sharp relief. The following sections suggest a number of novel

not-yet-implemented capabilities that are under consideration for future development.

Locomotion

Interaction possibilities would be enhanced if Siftables had the ability to move them-

selves across a surface. Small tractor-style treads, wheels, or even hair-like cilia

coupled with the ability to vibrate could allow Siftables to arrange themselves into

different spatial configurations. This would enable, for instance, an UNDO capability

that could put the manipulatives back into a previous configuration.

Absolute Position Sensing

Autonomous movement would be most useful if it were combined with absolute posi-

tion sensing. The existing neighbor detection supports problems that can be mapped

to sequences, chunks of contiguous 2D topologies or groupings of content items. How-

ever, continuous sensing of position (or even continuous sensing of the distance be-

tween manipulatives) would allow the distance between Siftables to be used as an

input, for instance in the manner that Audiopad utilizes a sound-clip puck's distance

from the "microphone" puck to control its volume. A number of technical approaches

could provide Sfitables with the ability to sense absolute position, one of which is

discussed in the next section.

172

Microphone(s) and speaker(s) on board

The inclusion of one or more microphones and speakers on each Siftables would open

up several interesting possibilities. The primary interaction opportunity would be for

sound recording through the microphones, either in the form of spoken commands or

capturing and responding to the ambient sonic environment. A multi-modal approach

that allowed users to interact by voice and gesture together could create further in-

teraction efficiencies or accessibility-related affordances for disabled users. Language-

learning applications could especially benefit from this. A speaker on each Siftable

would permit localized auditory feedback that could emanate from the manipulatives

themselves rather than from a nearby computer as in the current setup. A secondary

opportunity that the inclusion of several microphones and at least one speaker could

enable is absolute positioning. Research in the distributed sensor networks community

has explored the use of audible or ultrasonic "chirps" to allow a collection of sensor

nodes to collaboratively understand their spatial layout. Such an algorithm could

allow Siftables to locate each other precisely in space while preserving their minimal

reliance on environmentally installed infrastructure.

Mesh Network Architecture

For the purposes of understanding the interaction implications of Siftables, true mesh

networking capabilities were not necessary. However, for more realistic deployments

a mesh architecture could be an advantage, as it would allow Siftables to more fully

leverage state-of-the-art advances in wireless sensor networks. It could also enable

applications that that do not require a wireless connection to a computer to be cre-

ated more easily. In order to create mesh-capable Siftables, the type of radio used

would have to be changed. Rather than Bluetooth, which is optimized for point-to-

point "cable-replacement" scenarios, a ZigBee-capable or other mesh-oriented radio

technology would be appropriate.

173

Electronic Ink / Reflective Display

One of Siftables' most notable departures from wireless sensor network architectures

is power usage. Rather than permitting days or weeks of run-time on a single battery

charge, Siftables last from 4-10 hours before needing to be recharged. The most

significant consumer of power is the graphical display. Although the current OLED

display is capable of being used in a power-thrifty manner, reflective display technolo-

gies would permit much lower power usage overall without necessarily compromising

graphics usage. Certain types of reflective displays [23] only draw power when the

displayed image is being changed, which could mean significant energy savings for

applications that do not require constant screen refresh. Examples include Siftables

versions of card or token-based games like Pokemon or Dominos.

Graphics in the Spaces Between Manipulatives

Another limitation of the current platform is the confinement of graphical feedback

to the Siftables' screens. For applications with an underlying graph representation

(i.e. nodes + edges), graphical edges drawn between the nodes would help the user

understand the connectivity of the graph. One straightforward way to solve this

problem would be to combine Siftables with a larger graphical display, such as the

type of projected surfaced used in tangible tabletop interfaces. I may try this, however

this solution introduces infrastructure that would limit the mobility of the interface.

An alternative solution recently proposed by a colleague for the Siftables themselves

to project visual feedback; for instance, low-power lasers could be leveled horizontally

and aimed toward other Siftables to illuminate paths of interconnectivity between the

devices. This would require spatial positioning capabilities.

Non-Contact Free Gesture Sensing

It would be interesting to allow Siftables to sense the proximity of a user's hand. This

could be accomplished by capacitive or optical ranging, and would allow Siftables to

respond to hand gestures that the user makes in the air above a Siftable. For instance,

174

a row of Siftables could become a continuous fader as the user moves their hand back

and forth above them. Such sensing would provide an alternate input modality, and

could also allow Siftables to enact anticipatory feedback when they are about to be

picked up or moved by the user.

Alternate Form Factors

Siftables currently feature a generic square tile form factor. Compared to tangible

interfaces that build interaction affordances or constraint representations into the

shapes of the physical interfaces themselves, Siftables' rectangular tiles offer only a

generic physicality, similar to that of the "pucks" found in most tangible tabletop

interfaces. Their current ability to conform to heterogeneous task domains comes

largely from their graphics capabilities. However, I am interested to experiment with

variably-shaped manipulatives that can be used together.

Shape-Changing and Actuation

Related to the point about alternate form factors, I would also like to explore ways

that a single Siftable might change its shape dynamically to fit specific interaction

roles or represent problem constraints. For instance, such a "shape-changing" Siftable

might become taller to indicate an increase in the quantity that it represents, or morph

its edge profile like a puzzle piece to allow interlock with a matching type of edge

profile on other Siftables.

The ability to change shape or actuate physically could also allow Siftables to

push other Siftables or other objects away from them, which could be used to enforce

problem constraints. For instance, in the task of seating guests at a dinner this feature

could be used to disallow certain people being placed side-by-side. The feature could

also be achieved with embedded electromagnets, which could allow a complimentary

"stickiness" that would bind certain manipulatives to each other based on the problem

state.

175

Higher level authoring

Authoring coordinated behavior for a distributed system is known to be a challenging

problem. One of the side-effects of my work on Siftables has been the creation of a

relatively high-level framework for wirelessly controlling individual manipulatives.

This framework, however, is really only a mid-level abstraction architecture. The

current API permits a star topology, where the computer acts as the control node,

with a single bidirectional connection to each Siftable. It should be possible in the

future to reach even higher levels of behavioral abstraction.

A question that came up during the early development of Siftables was the fol-

lowing: what would a higher-level API for embodied media be like? An analogy to

other application development frameworks provided useful ways to think about this

question. For instance, graphical dataflow authoring environments such as Max/MSP

and Pure Data have lowered the barrier to entry for many interaction designers and

computer music enthusiasts. The key factor underlying the success of these environ-

ments was that the dataflow representation was well-suited to implementing certain

types of programmatic behavior. Similarly, the Flash authoring environment has

allowed multimedia developers to create interactive programs without requiring much

in the way of procedural programming skills. Given the success of these environments

that offer high-level, alternative representations for programming, the question can

be posed as: what would "PD" or "Flash" for embodied media look like? Specifically,

what alternative representation of embodied media behavior could dramatically lower

the difficulty level in authoring complex coordinated behavior for the platform?

Beginning with some infrastructure that was developed for my own applications,

I can suggest a few possibilities for alternate representations for programming an em-

bodied media system like Siftables. The first is sequence-detection, an infrastructure

piece that I built for the Scraboggle application. I wrote a function that abstracts the

task of determining rows or columns of Siftables that the user has created, returning

a list of such row/columns. This abstraction encapsulates the numerous individual

topology change messages that are conveyed each time a Siftables gains or loses a

176

neighbor. Here is a simple example: When Siftables A and B are placed side-by-side,

A generates a message saying B is now on my right, and B generates a message saying

A is now on my left. The sequence-detection function coalesces these messages and

returns the string "AB" as a result. Of course the number of such messages scales up

with the number of Siftables involved, and the benefit of such an abstraction becomes

clear.

An obvious extension to the sequence-detection abstraction would be a function

that returns all instantaneous 2-dimensional topologies of a set of embodied media

manipulatives. This would facilitate a greater number of application possibilities,

since simple topology detection would not be limited to 1-dimensional patterns. An

event-driven architecture for detecting topological patterns with certain properties

could also be a useful abstraction. Specifically, it might simplify the programmer's

task if they could provide a callback function that would be executed whenever certain

topological conditions were met. A flexible language for describing such conditions

could be extremely valuable.

Sequence and topology detection abstractions are specific examples of the more

general notion of gesture-detection. Defined broadly, gestures might consist of user

actions on a single embodied media manipulative or multiple manipulatives, as dis-

cussed in chapter 3 on page 47. An architecture for specification of compound gestures

would permit great flexibility and would be a useful abstraction, particularly if cou-

pled with the event-driven model already articulated. For instance, a programmer

could implement user-initiated pairing behavior by shared synchronous motion by

installing a callback listener function that would initiate a pairing attempt whenever

two manipulatives were moved similarly at the same time.

Another tool that could make embodied media programs more easy to author

could be a program-by-example tool for specifying system behavior. Building a de-

tector for a particular gesture could be accomplished by executing the gesture on

a set of manipulatives. To disambiguate which properties of the gesture and/or

manipulatives involved, a representation of the detected action could be displayed in

the programmer's development environment and they could indicate which features

177

were important (i.e. Was the specific motion important, or would any motion do?

Should any three manipulatives being placed in a row be considered important, or is

some feature of this particular three important). The disambiguation interface would

not be trivial to create, but could greatly streamline the creation of gesture-driven

behavior.

Finally, it would be interesting to enable end-users to program their set of embod-

ied media manipulatives. For example, a gamer could program the response of their

virtual character to different gestures, devising mappings that the game designer may

never have anticipated. A child could help their parent learn to use a computer by

creating personalized gestures that are easy for their parent to enact with their ma-

nipulatives. Such accessible customization would create exciting future possibilities

for embodied media.

Gesture Possibilities

The work in this dissertation has explored relatively simple single-manipulative ges-

tures (i.e. shaking, tilting). However, as mentioned in section 3.4.3 on page 73,

the inertial motion-sensing capabilities of Siftables (and other future embodied me-

dia manipulatives) create compelling possibilities for expressive and nuanced three-

dimensional gesture. Recognition of user-defined, complete gesture shapes a direction

that I explored in my master's thesis [78] [80]. A user-defined language of more

granular gesture "atoms" and an accessible way to easily string them together would

be an interesting and useful abstraction for embodied media development.

Mapping expressive continuous gesture to music or video control is another possi-

bility for future work. It is beneficial for assigned mappings to be displayed graphically

as in the music sequencer application described in section 4.3 on page 88, but it would

be interesting to explore more nuanced sound generation techniques like granular

synthesis. For instance, grain size and density could be mapped to the forces sensed

on different axes of a manipulative. An idea for video performance is that a stack

of effect-manipulatives could be assembled on top of a manipulative representing the

currently playing video clip, as a way to apply the stacked effects to the clip. The

178

user's gestural movements of the stack would control their parameters in real-time,

or each could be removed and gestured with by itself. With either audio or video

performance, the gesturally-sensitive effect manipulatives could be attached to the

performer's body to enable dance to impact the media output.

Earlier work in shared synchronous motion was discussed in section 2.7.5 on page 46,

and an embodied media interface could leverage this principle in interesting and novel

scenarios. I suggested a heuristic based on this work for detecting a user's grouping

action in chapter 3 on page 47 that would monitor the inertial patterns of an entire set

of manipulatives. I did not explore this, but the application of this known technique

to an arbitrary number of interactive manipulatives would be a useful building block

for future application design.

7.2.2 Open Questions For Future Investigation

In the course of this dissertation I have attempted to make a broad range of contri-

butions surrounding the definition, characterization, instantiation and evaluation of

the embodied media design concept. The studies that I ran indicate efficiency and

collaborative use advantages for a simple sorting task and user preference for Siftables

over the mouse/GUI in terms of enjoyability, expressivity, domain learning, and for

exploratory/quick arrangement of content items.

However, there are other properties of user interaction with embodied media that

would be interesting to measure in the future. For instance, quantifying the interac-

tion characteristics of each action in the gestural language described in section 3.4 on

page 65 (shake, tilt, thump, etc.) in terms of learnability and user performance would

give application designers more guidance when determining appropriate mappings

from these actions to application scenarios. Relatedly, precise measurement of the ca-

pabilities and limitations of the position estimation interaction sketch (section 4.12.3

on page 108) could provide guidance about what types mappings are appropriate

for this technique and what feedback is necessary to make the interaction easily

controllable.

Longitudinal studies with an application such as the image manipulation tool or

179

the music sequencer would shed light on how user attitudes and performance changes

with longer-term use of embodied media. It would be interesting to learn how practice

would impact users' performance when controlling a tilt-based interaction, and if their

frustration would diminish over time regarding shifting their visual attention back and

forth between the Siftables and a large screen.

It would also be valuable to quantitatively measure the effectiveness of embod-

ied media as an educational tool, compared to current methods in education. This

data would be useful to designers of educational applications for Siftables and other

embodied media platforms. Finally, I suspect that there are age-related differences

in how embodied media applications should be constructed for maximum efficiency,

including a minimum age at which the manipulatives are effective at all. Studies

that could produce age-specific design recommendations would be useful to creators

of both educational and game applications.

7.2.3 Physical Interactions with Collections of Networked Smart

Objects

The future of information and media technology will increasingly contain collections

of interactive, wirelessly-networked "smart" electronic objects. Predicted for at least

a decade by researchers and analysts in ubiquitous computing, we can see the first

wave of this future upon us in the ever-present mobile phone. Patterns of decreasing

technology costs including Moore's law have moved us from the paradigm of many

people using one computer (many to one), through the one person per computer

(one to one) model of the late 1990's. The emergence of personal digital assistant

devices and mobile phones pushed the pattern further along the same trajectory, to

today's world in which one person with several devices (one to many) is common.

The typical young person in the developed world today owns a laptop computer, a

mobile phone, and a personal music player. She probably owns a number of other

wirelessly-connected computers that she may not even recognize as such, for instance

a bicycle odometer that receives data wirelessly from a wheel sensor, a Bluetooth

180

headset that communicates wirelessly with her phone, or a "key fob" that remotely

opens the doors of her automobile. While this stereotype is not yet representative

of the overall worldwide population, it does not seem outrageous to consider her a

leading indicator of tomorrow's world.

Although an individual in a developed country can already afford to own a multi-

plicity of computing devices, the pattern is set to continue. The cost of making silicon

chips is still decreasing, and device-fabrication techniques are becoming ever more

efficient. With upcoming advances in portable power, we are likely to find ourselves

surrounded by at least order of magnitude, and ultimately more, digital devices.

Wireless communication standards will enable heterogeneous classes of devices to

communicate with each other, autonomously gathering and sharing information about

weather, the sonic environment, the movement of vehicles, and people's interactions

with them, thus becoming an extension of our collective sensory apparatus.

Critics of ubiquitous computing suggest that this future may become increasingly

inconvenient, even hostile to its human inhabitants. We will find ourselves ever more

frequently at the mercy of poorly-designed or malfunctioning devices, for instance

locked out of card-access areas when the power goes out [38] or spending more and

more time managing the files and emails on computers. They contend that we will

become simultaneously dependent on, and beleaguered by, a world full of interactive

technology that demands our attention and controls our activity patterns.

Although I understand the critic's point, I am more optimistic. To avert the

inconvenient and possibly hostile future, I believe that the most important direction

to focus our future work in ubiquitous computing technology is toward better design of

the user interfaces that we create for it. The positive outcome of a growing population

of technology devices in our everyday lives is the possibility of ever more engaging

and valuable interaction opportunities; sensor network technology can implement a

functional fabric around us that we interact with to instantly access information

and to connect with other people in ways that our parents and grandparents never

imagined. Whereas much of the ubiquitous computing community sees this functional

fabric being built into the spaces that we inhabit and the garments that we wear, I

181

envision many new interactive systems that allow us to directly manipulate digital

information and media content with our hands, in the timeless style of craft.

I believe that the world needs hand-tools for the digital age, and embodied media

is a step in this direction. These tools will draw upon a long history of interaction with

physical objects, but will be easily portable and generalizable across many different

tasks. They will become a new ecosystem of instruments for interacting with digital

information and media in ways that are a better fit to how our our brains and bodies

evolved. When we as technologist-designers creatively blend physicality with flexible

input and output possibilities, we can enable interactions with digital content that

are useful and compelling, though tools that bend to meet our needs, rather than

bending us to meet their limitations.

182

Appendix A

Python API

This appendix contains a listing of the Python API that was used to implement many

of the applications for the Siftables platform.

__init(self, conn=None, bt_name=", btid=", serialport=")

siftable constructor

if a connection is passed in, the constructor will use that connection

if a btname is passed in, the constructor will attempt to make a connec-

tion to that name using a pybluez RFCOMM connection. (Windows/Linux

only)

acc_calibrate(self)

calibrates the accelerometer. note: this takes more than a second

acccurrcalib(self)

returns the current accelerometer calibration values

acccurrframe(self)

returns the current raw accelerometer data frame. format is [x,y,z], where

each value is on [0-255]

183

acccurrshake(self)

returns the current shake state. format is [x,y,z], where each value is 0

(not shaking) or 1 (shaking)

acc_curr_tilt (self)

returns the current tilt state. format is [x,y,z], where the value is:

on x: 2 is tilted left, 1 is neutral, and 0 is tilted right

on y: 0 is tilted up, 1 is neutral, 2 is tilted down

on z: 1 is right-side up, 0 is upside-down

note: accelerometer must be calibrated before this command will work.

see acccalibrate

acc_currvar(self)

returns the current accelerometer variance frame. format is [x,y,z], where

each value is on [0-255]. note: this may be a bug, since variance values

are 16-bit unsigned

acc_events_shake(self, command)

turns reporting of shake events on or off. you should have a handler

installed before turning this on, or the events will be discarded. (takes

True/False)

acceventstilt (self, command)

turns reporting of tilt events on or off. you should have a handler installed

before turning this on, or the events will be discarded. (takes True/False)

acc_get_sensitivity(self)

184

Sets the sensitivity of the sensitivity by altering the gain on the input

stage of the device.

The values that will be returned by acc_getsensitivity are:

'1.5g'

'2g'

'4g'

'6g'

acc_set _sensitivity(self, sensitivity)

these are the values to feed to accsetsensitivity

siftable.ACCSENSITIVITYlp5G

siftable.ACC _SENSITIVITY__2G

siftable.ACC_SENSITIVITY_4G

siftable.ACCSENSITIVITY__6G

accsetshake_thresholdall(self, threshold)

sets the shake threshold for the x, y, and z axes to the same value, on

[0-65535]

accsetshake_thresholdx(self, threshold)

sets the shake threshold for the x axis, on [0-65535]

acc_set_shake_threshold_y(self, threshold)

sets the shake threshold for the y axis, on [0-65535]

acc_set_shake_thresholdz (self, threshold)

sets the shake threshold for the z axis, on [0-65535]

accsmooth(self, command)

185

turns on smoothing for the accelerometer data, which is implemented by

a running-average style low pass filter. (takes True/False)

acc stream(self, command)

turns on streaming of the raw accelerometer data. you should have a

handler installed before turning this on, or the frames will be discarded.

(takes True/False)

accstream_var (self, command)

turns on streaming of the raw variance data. you should have a handler

installed before turning this on, or the frames will be discarded. (takes

True/False)

app_count(self)

returns the number of apps in the flash

app_delete_all(self)

deletes all apps from the flash

appdelete_atslot (self, slot)

deletes the app at the given slot in the flash

app_delete_withname (self, name)

deletes the app with the given name from the flash

app existsatslot (self, slot)

returns 1 if an app exists at the given slot, 0 otherwise

appexistswithname (self, name)

186

returns 1 if an app exists with the given name, 0 otherwise

app get _current _name(self)

retrns the name of the currently selected app

appget _current _slot (self)

returns the slot of the currently selected app

appget _nameatslot (self, slot)

returns the name of the app at the given slot

app get _slot _withname(self, name)

returns the slot where the app with the given name resides

appnewatslot_withname(self, slot, name)

creates a new app in the flash, at the given slot, and with the given name

appnewwithname(self, name)

creates a new app in the flash, at the next available slot, with the given

name

app_reset _withname(self, name)

restarts the application with the given name

app_restartatslot (self, slot)

restarts the application at the given slot

apprestart current (self)

restarts the current application, re-reading any initialization information

from the flash

187

app set_current_atslot (self, slot)

sets the current app to be the one at the given slot

app_set current _withname (self, name)

sets the current app to be the one with the given name

appset nameatslot (self, slot, name)

sets the name of the app at the given slot to the given name

close(self)

attempts to shut down the Bluetooth connection to the Siftable

colorget_depth(self)

returns the current color depth being used for graphics

colorset_both(self, r, g, b)

sets both outline and fill colors to the same value. r, g, and b are on

[0-255]

colorset depth(self, depth)

sets color depth for graphics. allowed values are 8 and 16

color_setfill(self, r, g, b)

sets the fill color for shape drawing. r, g, and b are on [0-255]

color_setoutline(self, r, g, b)

sets the outline color for shape drawing. r, g, and b are on [0-255]

draw_allborder(self)

188

draws a border all the way around the siftable's screen, using the current

colors

draw_border(self, side)

draws a rectangle that spans the given side

draw_circle(self, col, row, radius)

draws a circle at the given row and col, with the given radius

draw_line(self, coll, rowl, col2, row2)

draws a line. note: co12 must be greater than coll, and row2 must be

greater than rowl

drawneighbormarker(self, side)

draws a simple marker in the center of the given side. useful for debugging,

when you want to show that the siftable is aware of a given neighbor

drawpixel(self, col, row)

draws a single pixel. note: currently uses the draw-rect routine internally

- not efficient

draw_rect(self, coll, rowl, col2, row2)

draws a rectangle. note: co12 must be greater than coll, and row2 must

be greater than rowl

draw_testpattern(self)

draws a simple test pattern to the screen

echo(self, command)

189

toggles character echo behavior for terminal access. (takes True/False)

flash_getstatusbyte(self)

returns the current status byte of the off-board flash memory

flash_setbinary(self)

sets the off-board flash memory to use a power-of-two page size. all sifta-

bles should be configured with this option already, so you should not need

to use this command

handler_00hz(self, command)

turns the internal (C firmware API) handler on the 100hz interval on or

off. (takes True/False)

handler_10hz(self, command)

turns the internal (C firmware API) handler on the 10hz interval on or

off. (takes True/False)

handler_lhz (self, command)

turns the internal (C firmware API) handler on the 1hz interval on or off.

(takes True/False)

handler 25hz(self, command)

turns the internal (C firmware API) handler on the 25hz interval on or

off. (takes True/False)

handler_50hz(self, command)

turns the internal (C firmware API) handler on the50hz interval on or off.

(takes True/False)

190

handler_5hz (self, command)

turns the internal (C firmware API) handler on the 5hz interval on or off.

(takes True/False)

handleracc_data(self, command)

turns the internal (C firmware API) handler for accelerometer data on or

off. (takes True/False)

handleraccshake_events (self, command)

turns the internal (C firmware API) handler for shake events on or off.

(takes True/False)

handleracc_tilt _events (self, command)

turns the internal (C firmware API) handler for tilt events on or off. (takes

True/False)

handlerneighborevents (self, command)

turns the internal (C firmware API) handler for neighbor events on or off.

(takes True/False)

idget (self)

returns the numeric ID of the siftable

idset (self, new-id)

sets the ID of a siftable to a new value. note: ids can be in the range of

[0-255]. all existing siftables have an ID already, so you should not need

to do this. note also that this will NOT change the Bluetooth name of

the sift to reflect the new ID. you should not need to use this function!

191

imageanimate(self, start_idx, end_idx, delayms=O)

animates through images stored in the flash memory, from startidx to

end_idx, with a short delay between each. note: delayms is currently

ignored

image_display(self, idx)

instructs the siftable to display the image at the given index. note that

image indexing depends on the current color depth. we recommend that

you stick to a single color depth for images stored on a given siftable

imageset_current (self, idx)

sets the 'current image' to the given index.

note: this is only used with neighbor-marking behavior

image_stream(self, im)

streams the passed-in image to the siftable's screen

imageupload(self, im, idx, force=False)

uploads the passed-in image to the given index. note that image indexing

depends on the current color depth. we recommend that you stick to a

single color depth for images stored on a given siftable. to upload images

to slots 0, 1, or 2 you have to pass force=True, since these are system-

reserved areas of the flash

install_listener_custom_events (self, listener, event _namestring)

install listener function for custom events

install_listenerneighbor_events(self, listener)

install a listener function for neighbor events

192

installlist ener_raw_acc _data (self, listener)

install a listener function for raw accelerometer data frames

installlistener_raw_var_data(self, listener)

install a listener function for accelerometer variance data frames

installlistenershakeevents (self, listener)

install a listener function for shake events

installlistenertilt _events (self, listener)

install a listener function for tilt events

led_green(self, command)

turn the green LED on or off. (takes True/False).

on the current siftables, the LEDs are not visible, so this command is not

very useful anymore.

ledgreen_toggle(self)

Toggles the green LED. on the current siftables, the LEDs are not visible,

so this command is not very useful anymore

led_red(self, command)

turn the red LED on or off. (takes True/False).

on the current siftables, the LEDs are not visible, so this command is not

very useful anymore.

ledredtoggle (self)

Toggles the red LED. on the current siftables, the LEDs are not visible,

so this command is not very useful anymore

193

neighborbroadcast(self, command)

turns broadcasting of this siftable's ID and side on/off (takes: True/False)

neighborevents (self, command)

turns event-reporting for neighborhood changes on or off (takes: True/False)

neighbormarkers (self, command)

turns neighbor markers on or off (takes: True/False)

note: neighbor-marking behavior utilizes the current image as a back-

ground

neighbor_snapshot (self)

returns an array representing the current neighborhood, as tracked by the

siftable.

the format of this array is: [neighborTOP_id, neighborTOP side, ...]

the order is TOP, LEFT, RIGHT, BOTTOM

a sample return value is: [0,0,25,1,0,0,42,0]

meaning that: siftable 25 is to the left, and its left side is facing, and

siftable 42 is to the bottom, and its top side is facing

ping(self)

just lets you know that the sift is ok. returns: 'ping'

poweroff(self)

immediately powers off the siftable. note: use of this function typically

makes it difficult to detach cleanly from the Bluetooth radio.

see powershutdownwithdelay for a better way to do this

power_shutdown_cancel (self)

194

cancels a pending power_shutdown_withdelay command

power-shutdown_withdelay(self, delay)

shuts down after the given number of seconds. use this to allow your code

to cleanly disconnect from the siftable before it shuts off

powerstatus (self)

returns the status of the power_good line on the main micro. if you get a

reply, the value will be 1

remove_listenercustomevents (self, event_namestring)

remove_listener_neighborevents (self)

remove the listener function for tilt events

remove_listenerrawacc_data(self)

remove the current listener function for raw accelerometer data frames

remove_listener_rawvar _data(self)

remove the listener function for accelerometer variance data frames

remove_listenershakeevents (self)

remove the listener function for shake events

remove_listenertilt events (self)

remove the listener function for tilt events

returnacks(self, ackson)

195

determines whether the siftable library will returns acknowledgements from

the siftable, such as: 'ok acc calibrate'

communication with the siftable will be much faster if acknowledgement

returning is off. (takes True/False)

screenawake(self)

puts the screen into awake mode (also see screen_sleep)

screenbright_max(self)

sets the screen brightness to its maximum value

screenbrightmin(self)

sets the screen brightness to its minimum value

screenbrightval (self, val)

sets the screen brightness to a given value on [0-255]

screenclear (self)

clears any graphics on the screen, returning it to all black pixels

screensleep (self)

puts the screen into power-saving sleep mode (also see screen_awake)

send_packet (self, data, return_result=True)

varcount (self)

returns the number of variable / value bindings on the current application

page

var_delete(self, name)

196

removes a variable / value binding from the current application page. if

there is no such binding, returns an error

var_get (self, name)

returns the value associated with a given variable name, if that binding

exists on the current application page. if there is no variable with that

name, returns None

varset(self, name, val)

writes a variable / value binding to the flash memory, on the current

application page

197

198

Appendix B

Siftable Hardware Schematics and

Circuit Board Layout Designs

199

RESONATO R

12 PD3(PCINT27ANT1)

13 PD4(PCINT28/0Cl)

14 PD5 (PCINT29/OCIA)

15 P06 (PCINT30OC28/ICP)

16 PD7 (PCINT3I/002A)

17 VC

18 060

19 PC0 (PCINT16/SCL)

20 PCi (PCINT17ISDA)

21 PC2 (PCINT1 8/TCK)

22 PC3 (PCINT19fTMS)

CO co z4 03 32 3 w P.

> > ~ 0 0)

32 0 0

0
Q

0 mr

LEDs

(-SS/OCOBPCINT12) PB4 44

S(AIN1iOCOA/PCINT11) P83 43

(AINO/INT2/PCINT10) P82 42

(TlICLKOIPCINT9) P81 41

(XCKOrTOIPCINT8) P80 40

GN0 39

VOC 38

(ADGO/PCINTO) PAO 37

S (ADClIPCINT1) PA 36

S (AD02/PCINT2) PA2 35
0

(A003/PINTS) PA3 34

oied-,cs

oled-Ok

oledjes

AT88

1 PD3 PC1 24
2 PD4 PCO 23
3 GND ADC7 22
4 VOC GND 21
5 GND AREF 20
6 VOo AD6 19
7PBB AVOOC 18
8PB7 SCKPB5 17
ATKEGA88

l Cl ("
Co T T C LEFT

U$24 RIGHT

4 AO3SD

6 RESET 1v2

PROGHEAD 6 SPI I
SFEADER FOR PRORAANG TH AT AE8

S
GP2WO116YPS

Z GND -SHARP-IRDA-
IOh5 TRANSCEIVER

luF

GND

Figure B-2: Schematic diagram for the secondary microcontroller and infrared
communication circuitry

201

ACCELEROMETER
VDD SLEEP

G-SELECT1 X-OUT
G-SELECT2 Y-OUT

Z-OUT

VSS
GND

644 RESET BUTTON (POWER DOWN)
< -644RESET 3 U1i

,)3 s , 1 1(~

4

PANASQNIC-EVOQPIJ

GND

o

ATMega644 PROG/DEBUG
HEADER

FORCEREACTOR

GND ~644RESET Pas
< JTAGTCK P

_JTAGTMS Pas
SJTAGTDO as
SJTAGTDI

GND

Figure B-3: Schematic diagram for the main microcontroller's programming header,
the power toggle button, accelerometer and signal conditioning circuitry, and tactile
actuation driver circuit (not used)

202

I
1
2
3
4

6
7

I

OLED V BOOST

DMACIRCUIT
BUS_SW

+12V

AT45DB642D

Figure B-4: Schematic diagram for the voltage boost circuit for the OLED display,
the Direct Memory Access circuit that allows images to be fetched at high speeds
from the flash to the display, and the flash memory IC

203

CLL

GND

BUTTON-POST D 01 uF

GND

POWER-ON

GND

PINS THAT NEED CONNECTION TO uC
RES -> OLEDRES
DO -> SCK OLEDVSL

OD1 -> MOSI (SDIN)
CS -> CS o
D/C -> D/C

0C

EDVPB S

EDVBRE 1U F lU lu 4.7uF 31

C18 C1 C1 C28 C29 100uF

GND

b0
I O

uF

GND

BLUETOOTH

GND

Figure B-7: Schematic diagram for the Bluetooth radio

206

GND

VCC
VCC

GND
GND
GND
GND

Figure B-8: Printed circuit board layout (top layer)

207

0OO
OOO× 6 o

O 0

0 0

0 0

0 0O

0000

0
0

0

0o o 0
0 _ e_

00
007

0
O O O

0 Qo

Figure B-9: Printed circuit board layout (internal layer 1)

208

0 0
0

0
00

0

0
= o

O==0

0

0

(

0
O

0

00

Figure B-10: Printed circuit board layout (internal layer 2)

209

0000000

O O0

oI

0 0

00

0

O

0 O

00
0

Figure B-11: Printed circuit board layout (bottom layer)

210

Appendix C

Siftable Flash Memory

Organization

211

Siftables Flash Memory

0

I page 16 I

page 8191*I

page*890

Image-sized chunks breakdown:

131w
0

*

*
*50
0

Total flash memory size is 8192 pages = 8388

Page [0] is for server-use only
[1-15] is space for variables and values
for up to 15 applications

memory map (for system use)

Siftables logo bitmap

free-form image/data space,
reservable by applications, in
image-sized chunks

608 bytes Atmel AT45DB642D 64-megabit flash

Figure C-1: Organization of the 64-mbit flash memory

212

N

.E -
u

Bibliography

[1] Ableton AG. Ableton live. http://www.ableton. com.

[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.

Wireless sensor networks: a survey. Computer Networks, 38(4):393-422, 2002.

[3] Jussi Angesleva, Sile O'Modhrain, Ian Oakley, and Stephen Hughes. Body
mnemonics: Portable device interaction design concept. In UIST '03,
Vancouver, Canada, 2003.

[4] Infrared Data Association. http: //www. irda. org/.

[5] Atmel. Atmel website. http: //atmel. com/.

[6] Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan Borchers. istuff mobile:
rapidly prototyping new mobile phone interfaces for ubiquitous computing. In

CHI '07: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1107-1116, New York, NY, USA, 2007. ACM.

[7] Bandai. Tamagotchi. http://www.tamagotchi.com/.

[8] Dave Baum. Dave Baum's Definitive Guide to LEGO Mindstorms (Technology
In Action). APress LP, 2002.

[9] Ari Benbasat. An inertial measurement unit for user interfaces. Master's thesis,
Massachusetts Institute of Technology, School of Architecture and Planning,
Program in Media Arts and Sciences, 2000.

[10] Jeffrey Traer Bernstein. Tangible sequencer, 2007. http://www.
tangiblesequencer. com/.

[11] Jonathan Bernstein. An overview of mems inertial sensing technology. Sensors
Online, 2003. http: //www. sensorsmag. com/articles/0203/14/.

[12] Rick Borovoy, Brian Silverman, Tim Gorton, Matt Notowidigdo, Brian Knep,
Mitchel Resnick, and Jeff Klann. Folk computing: revisiting oral tradition as a
scaffold for co-present communities. Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 466-473, 2001.

[13] Joel Brandt, Noah Weiss, and Scott R. Klemmer. Designing for situations with
limited attention. Technical report, Stanford University, 2007.

213

[14] Jeff Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya
Ramanathan, Sasank Reddy, and Mani Srivastava. Participatory sensing. A CM
Sensys World Sensor Web Workshop, 2006.

[15] William Butera. Programming a paintable computer. PhD thesis, Massachusetts
Institute of Technology, School of Architecture and Planning, Program in Media
Arts and Sciences, 2002.

[16] Bill Buxton. Sketching user experiences: getting the design right and the right
design. Morgan Kaufmann, 2007.

[17] Bill Buxton. Multi-touch systems that i have known and loved, August 2008.
http: //www. billbuxton. com/multitouchOverview.html.

[18] John Horton Conway. The game of life. Scientific American, 223:120-123, 1970.

[19] Enrico Costanza, S. B. Shelley, and J. Robinson. d-touch: A consumer grade
tangible interface module and musical applications. In Conference on Human-
Computer Interaction (HCI03), Bath, 2003.

[20] John W. Creswell. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. Sage Publications, Inc., 2008.

[21] Delphi. Delphi bi-directional key fob. http://delphi. com/manufacturers/
auto/controls/security/bi-directional_keyfob/.

[22] Analog Devices. Analog devices. http: //www. analog. com/.

[23] EInk. Electronic paper displays. http://www. eink. com/.

[24] Engadget. Hitachi h001 with 3d display leads up kddi au's
spring 2009 lineup. http: //www. engadget .com/2009/01/29/
hitachi-h001-with-3d-display-leads-up-kddi-aus-spring-2009-line/.

[25] Douglas C. Engelbart and William K. English. A research center for augmenting
human intellect. AFIPS Conference Proceedings of the 1968 Fall Joint
Computer Conference, 33:395-410, 1968.

[26] Irfan A. Essa. Ubiquitous sensing for smart and aware environments. Personal
Communications, IEEE, 7(5):47-49, 2000.

[27] Assaf Feldman, Emmanuel Munguia Tapia, Sajid Sadi, Pattie Maes, and
Chris Schmandt. Reachmedia: On-the-move interaction with everyday
objects. Proceedings of the Ninth IEEE International Symposium on Wearable
Computers, 2005.

[28] Kenneth P. Fishkin, Anuj Gujar, Beverly L. Harrison, Thomas P. Moran,
and Roy Want. Embodied user interfaces for really direct manipulation.
Communications of the ACM, 43(9):74-80, 2000.

214

[29] George W. Fitzmaurice. Graspable User Interfaces. PhD thesis, University of
Toronto, 1997.

[30] George W. Fitzmaurice, Hiroshi Ishii, and William Buxton. Bricks: Laying the
foundations for graspable user interfaces. Proceedings of CHI'05, pages 422-449,
1995.

[31] Free Software Foundation. Gcc, the gnu compiler collection. http://gcc.gnu.
org/.

[32] Ben Fry and Casey Reas. Processing. http://processing.org/.

[33] Radica Games. Cube world. http://www. radicagames. com/cubeworld/.

[34] Albert Vincent Glinsky. The Theremin in the Emergence of Electronic Music.
PhD thesis, New York University, 1992.

[35] Matthew G. Gorbet, Maggie Orth, and Hiroshi Ishii. Triangles: tangible
interface for manipulation and exploration of digital information topography. In
CHI '98: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 49-56, New York, NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[36] Wayne D. Gray and Deborah A. Boehm-Davis. Milliseconds matter: an
introduction to microstrategies and to their use in describing and predicting
interactive behavior. Journal of Experimental Psychology: Applied, 6(4):322-
35, 2000.

[37] Saul Greenberg and Bill Buxton. Usability evaluation considered harmful (some
of the time). In CHI '08: Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems, pages 111-120, New York,
NY, USA, 2008. ACM.

[38] Adam Greenfield. Everyware: The dawning age of ubiquitous computing.
Peachpit Press Berkeley, CA, USA, 2006.

[39] Jefferson Y. Han. Low-cost multi-touch sensing through frustrated total internal
reflection. In Proceedings of UIST'05, pages 115-118, New York, NY, USA,
2005. ACM Press.

[40] Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos Mochon, and
Roy Want. Squeeze me, hold me, tilt me! an exploration of manipulative
user interfaces. Proceedings of the SIGCHI conference on Human factors in
computing systems, 1998.

[41] Bjorn Hartmann, Scott R. Klemmer, Michael Bernstein, Leith Abdulla,
Brandon Burr, Avi Robinson-Mosher, and Jennifer Gee. Reflective physical
prototyping through integrated design, test, and analysis. Proceedings of the
19th annual ACM symposium on User interface software and technology, pages
299-308, 2006.

215

[42] Bj6rn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer.
Programming by a sample: Rapidly prototyping web applications with d. mix.
In Proceeding of the 20th Symp. on User Interface Software and Technology
(UIST07). Newport, RI, USA, 2007.

[43] Bj6rn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R.
Klemmer. Design as exploration: creating interface alternatives through parallel
authoring and runtime tuning. Proceedings of the 21st annual A CM symposium
on User interface software and technology, pages 91-100, 2008.

[44] Ken Hinckley. Haptic issues for virtual manipulation. PhD thesis, University
of Virginia, 1997.

[45] Ken Hinckley. Synchronous gestures for multiple persons and computers. In
Proceedings of UIST'03, pages 149-158, New York, NY, USA, 2003. ACM Press.

[46] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. Passive
real-world interface props for neurosurgical visualization. Proceedings of the
SIGCHI conference on Human factors in computing systems: celebrating
interdependence, pages 452-458, 1994.

[47] Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele, Petteri Alahuhta,
Michael Beigl, and Hans Gellersen. Smart-its friends: A technique for
users to easily establish connections between smart artefacts. Proceedings of
UbiComp'01, pages 116-122, 2001.

[48] Michael S. Horn and Robert J. K. Jacob. Tangible programming in the
classroom with tern. In CHI '07: CHI '07 extended abstracts on Human factors
in computing systems, pages 1965-1970, New York, NY, USA, 2007. ACM.

[49] Edwin Hutchins. Cognition in the wild. MIT Press, 1995.

[50] Adobe Inc. Adobe flash. http://www. adobe. com/products/f lash/.

[51] Nintendo Inc. Nintendo wii website. http://www.nintendo. com/wii.

[52] Adobe Systems Incorporated. Adobe photoshop. http: //www. adobe. com/.

[53] Apple Incorporated. iphone. http: //www. apple. com/iphone/.

[54] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless interfaces
between people, bits, and atoms. Proceedings of CHI'97, pages 234-241, 1997.

[55] S. Jorda. Sonigraphical instruments: from fmol to the reactable. Proceedings
of the 2003 conference on New interfaces for musical expression, pages 70-76,
2003.

216

[56] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
mobile networking for "smart dust". Proceedings of the 5th annual A CM/IEEE
international conference on Mobile computing and networking, pages 271-278,
1999.

[57] David Kirsh. The intelligent use of space. Artificial Intelligence, 73(1-2):31-68,
1995.

[58] Scott R. Klemmer, Bj6rn Hartmann, and Leila Takayama. How bodies matter:
five themes for interaction design. Proceedings of the 6th conference on
Designing Interactive systems, pages 140-149, 2006.

[59] Scott R. Klemmer, Jack Li, James Lin, and James A. Landay. Papier-mache:
toolkit support for tangible input. CHI '04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 399-406, 2004.

[60] Scott R. Klemmer, Mark W. Newman, Ryan Farrell, Mark Bilezikjian, and
James A. Landay. The designers' outpost: a tangible interface for collaborative
web site. Proceedings of the 14th annual ACM symposium on User interface
software and technology, pages 1-10, 2001.

[61] Kwindla Hultman Kramer. Moveable objects, mobile code. Master's thesis,
Massachusetts Institute of Technology, School of Architecture and Planning,
Program in Media Arts and Sciences, 1998.

[62] Bug Labs. Bug. http://www.buglabs.net.

[63] Jonathan Lester, Blake Hannaford, and Gaetano Borriello. "are you with me?" -
using accelerometers to determine if two devices are carried by the same person.
Pervasive Computing, pages 33-50, 2004.

[64] Henry Lieberman. The tyranny of evaluation. ACM CHI Fringe, 2003.
http://web.media.mit.edu/ lieber/Misc/Tyranny-Evaluation.html.

[65] Joshua Lifton, Michael Broxton, and Joseph A. Paradiso. Experiences
and directions in pushpin computing. Proceedings of the 4th international
symposium on Information processing in sensor networks, 2005.

[66] Joshua Lifton, Deva Seetharam, Michael Broxton, and Joseph A. Paradiso.
Pushpin computing system overview: A platform for distributed, embedded,
ubiquitous sensor networks. Pervasive Computing, pages 139-151, 2002.

[67] Benny P.L. Lo, Surapa Thiemjarus, Rachel King, and Guang-Zhong Yang. Body
sensor network-a wireless sensor platform for pervasive healthcare monitoring.
The 3rd International Conference on Pervasive Computing, 2005.

[68] ALPS Electric Company LTD. Alps glidepoint. http: //www. alps. com/.

217

[69] Wendy E. Mackay. Is paper safer? the role of paper flight strips in air
traffic control. ACM Transactions on Computer-Human Interaction (TOCHI),
6(4):311-340, 1999.

[70] Paul P. Maglio and David Kirsch. Epistemic action increases with skill.
Proceedings of the Eighteenth Annual Conference of the Cognitive Science
Society, pages 391-396, 1996.

[71] Paul P. Maglio, Teenie Matlock, Dorth Raphaely, Brian Chernicky, and David
Kirsch. Interactive skill in scrabble. Proceedings of the Twenty-first Annual
Conference of the Cognitive Science Society, pages 326-330, 1999.

[72] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. Proceedings of the
1st ACM international workshop on Wireless sensor networks and applications,
pages 88-97, 2002.

[73] Raluca Marin-Perianu, Mihai Marin-Perianu, Paul Havinga, and Hans Scholten.
Movement-based group awareness with wireless sensor networks. Pervasive
Computing, 4480:298, 2007.

[74] MatthewWright and Adrian Freed. Open sound control: A new protocol for
communicating with sound synthesizers, 1997.

[75] Scott McMillan. Upper body tracking using the polhemus fastrak. Technical
Report NPSCS-96-002, January 1996.

[76] Nimish Mehta. Flexible machine interface. Master's thesis, University of
Toronto, 1982.

[77] David A. Mellis, Massimo Banzi, David Cuartielles, and Tom Igoe. Arduino:
An open electronic prototyping platform. CHI: ACM Conference on Human
Factors in Computing Systems, 2007.

[78] David Merrill. Flexigesture: A sensor-rich real-time adaptive gesture and
affordance learning platform for electronic music control. Master's thesis,
Massachusetts Institute of Technology, School of Architecture and Planning,
Program in Media Arts and Sciences, 2004.

[79] David Merrill, Jeevan Kalanithi, and Pattie Maes. Siftables: towards sensor
network user interfaces. Proceedings of the 1st international conference on
Tangible and embedded interaction, pages 75-78, 2007.

[80] David Merrill and Joseph A. Paradiso. Personalization, expressivity, and
learnability of an implicit mapping strategy for physical interfaces. Extended
Abstracts of the Conference on Human Factors in Computing Systems (CHIO5),
2005.

[81] MITS. Altair 8800. http: //en. wikipedia. org/wiki/Altair_8800.

218

[82] Stacy J. Morris and Joseph A. Paradiso. Shoe-integrated sensor system for

wireless gait analysis and real-time feedback. Proceedings of the 2nd Joint

IEEE EMBS (Engineering in Medicine and Biology Society) and BMES (the
Biomedical Engineering Society) Conference, pages 2468-2469, 2002.

[83] Roderick Murray-Smith, John Williamson, Stephen Hughes, and Torben

Quaade. Stane: synthesized surfaces for tactile input. CHI '08: Proceeding
of the twenty-sixth annual SIGCHI conference on Human factors in computing
systems, pages 1299-1302, 2008.

[84] Henry Newton-Dunn, Hiroaki Nakano, and James Gibson. Block jam. In

SIGGRAPH '02: A CM SIGGRAPH 2002 conference abstracts and applications,
pages 67-67, New York, NY, USA, 2002. ACM.

[85] Nintendo. Dsi. http://www.nintendodsi.com/.

[86] D.A. Norman. Things That Make Us Smart: Defending Human Attributes In
The Age Of The Machine. Basic Books, 1994.

[87] Ian Oakley and Sile O'Modhrain. Tilt to scroll: evaluating a motion based
vibrotactile mobile interfaces. Eurohaptics Conference, 2005 and Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005.
World Haptics 2005. First Joint, pages 40-49, 2005.

[88] Maura Sile O'Modhrain. Incorporating Haptic Feedback into Computer-Based
Musical Instruments. PhD thesis, Stanford University, 2000.

[89] Leysia Palen, Marilyn Salzman, and Ed Youngs. Going wireless: behavior &
practice of new mobile phone users. Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 201-210, 2000.

[90] Joseph A. Paradiso. Electronic music: new ways to play. Spectrum, IEEE,
34(12):18-30, 1997.

[91] Amanda Parkes, Vincent LeClerc, and Hiroshi Ishii. Glume: exploring
materiality in a soft augmented modular modeling system. In CHI '06: CHI '06
extended abstracts on Human factors in computing systems, pages 1211-1216,
New York, NY, USA, 2006. ACM.

[92] J. Patten and H. Ishii. Mechanical constraints as computational constraints in
tabletop tangible interfaces. Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 809-818, 2007.

[93] James Patten. Mechanical constraints as common ground between people and
computers. PhD thesis, Massachusetts Institute of Technology, School of
Architecture and Planning, Program in Media Arts and Sciences, 2004.

219

[94] James Patten, Hiroshi Ishii, Jim Hines, and Gian Pangaro. Sensetable: A
wireless object tracking platform for tangible user interfaces. In Proceedings of
CHI'01, pages 253-260, Seattle, WA, 2001. ACM Press.

[95] Percussa. Audiocubes. http://www.percussa. com/.

[96] Antti Pirhonen, Stephen Brewster, and Christopher Holguin. Gestural and
audio metaphors as a means of control for mobile devices. Proceedings of the
SIGCHI conference on Human factors in computing systems: Changing our
world, changing ourselves, 2002.

[97] Polhemus. Polhemus patriot. http: //www.polhemus. com/?page=Motion_
Patriot.

[98] Ivan Poupyrev, Shigeaki Maruyama, and Jun Rekimoto. Ambient touch:
designing tactile interfaces for handheld devices. Proceedings of the 15th annual
ACM symposium on User interface software and technology, 2002.

[99] Miller Puckette. Pure data: another integrated computer music environment.
Proceedings of the Second Intercollege Computer Music Concerts, pages 37-41,
1996.

[100] Hayes Solos Raffle, Amanda J. Parkes, and Hiroshi Ishii. Topobo: a constructive
assembly system with kinetic memory. In CHI '04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 647-654, New York,
NY, USA, 2004. ACM.

[101] Jun Rekimoto. Gesturewrist and gesturepad: Unobtrusive wearable interaction
devices. In 5th IEEE International Symposium on Wearable Computers, 2001.

[102] Jun Rekimoto, Brygg Ullmer, and Haruo Oba. Datatiles: a modular platform
for mixed physical and graphical interactions. In Proceedings of CHI '01, pages
269-276, New York, NY, USA, 2001. ACM Press.

[103] Edward Sazonov, Kerop Janoyan, and Ratan Jha. Wireless intelligent sensor
network for autonomous structural health monitoring. Smart Structures/NDE
2004, 2004.

[104] R.R. Schaller. Moore's law: past, present and future. Spectrum, IEEE, 34(6):52-
59, 1997.

[105] Carsten Schwesig, Ivan Poupyrev, and Eijiro Mori. Gummi: a bendable
computer. CHI '04: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 263-270, 2004.

[106] Freescale Semiconductor. Accelerometers. http: //www. freescale. com/.

[107] Dr. Seuss and Theodore Geisel. Hop on Pop. Random House Childrens Books,
2003.

220

[108] Claude E. Shannon. Communication in the presence of noise. Proceedings of

the IRE, 37(1):10-21, 1949.

[109] Scott S. Snibbe, Karon E. MacLean, Rob Shaw, Jayne Roderick, William L.

Verplank, and Mark Scheeff. Haptic techniques for media control. Proceedings
of the 14th annual ACM symposium on User interface software and technology,
pages 199-208, 2001.

[110] Steve Stiles. "dial-up" icd interrogation keeps the doctor away, May 2004.

http://www.theheart.org/article/142905.do.

[111] Ivan Edward Sutherland. Sketchpad: A man-machine graphical communication

system. PhD thesis, Massachusetts Institute of Technology, 1963.

[112] Synaptics. Touchpad. http://www.synaptics. com/solutions/products/

touchpad.

[113] DeLiang Wang and David Terman. Image segmentation based on oscillatory
correlation. Neural Computation, 9(4):805-836, 1997.

[114] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The active badge
location system. ACM Transactions on Information Systems, 10(1), 1992.

[115] Reynold Weidenaar, Brian Lehrer, and Barbara Blegen. Magic Music from the
Telharmonium. Scarecrow Press, 1995.

[116] Marc Weiser. The computer for the twenty-first century. Scientific American,
265(3):94-104, 1991.

[117] P. Wellner. Interacting with paper on the digitaldesk. Communications of the

ACM, 36(7):87-96, 1993.

[118] Stephen Wolfram. Theory and applications of cellular automata. Advanced

Series on Complex Systems, Singapore: World Scientific Publication, 1986,
1986.

[119] J. Zhang, G. Harbottle, C. Wang, and Z. Kong. Oldest playable musical
instruments found at jiahu early neolithic site in china. Nature, 401(6751):366-
368, 1999.

[120] Jiajie Zhang and Donald A. Norman. Representations in distributed cognitive
tasks. Cognitive Science, 18(1):87-122, 1994.

[121] Jamie Zigelbaum, Michael S. Horn, Orit Shaer, and Robert J.K. Jacobs. The
tangible video editor: collaborative video editing with active tokens. Proceedings
of the 1st international conference on Tangible and embedded interaction, pages
43-46, 2007.

221

[122] Oren Zuckerman, Tina Grotzer, and Kelly Leahy. Flow blocks as a conceptual
bridge between understanding the structure and behavior of a complex causal
system, 2006.

[123] Orit Zuckerman. Spotlight. http://web.media.mit. edu/-orit/.

222

