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Abstract

We introduce a novel unsupervised algorithm for text segmentation. We re-conceptualize
text segmentation as a graph-partitioning task aiming to optimize the normalized-cut cri-
terion. Central to this framework is a contrastive analysis of lexical distribution that si-
multaneously optimizes the total similarity within each segment and dissimilarity across
segments.

Our experimental results show that the normalized-cut algorithm obtains performance
improvements over the state-of-the-art techniques on the task of spoken lecture segmenta-
tion. Another attractive property of the algorithm is robustness to noise. The accuracy of
our algorithm does not deteriorate significantly when applied to automatically recognized
speech. The impact of the novel segmentation framework extends beyond the text segmen-
tation domain. We demonstrate the power of the model by applying it to the segmentation
of raw acoustic signal without intermediate speech recognition.
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Chapter 1

Introduction

The limits of my language are the limits of my mind.

-Ludwig Wittgenstein

Natural language understanding is arguably one of the most compelling scientific fron-

tiers, only now beginning to be probed through advances in statistical natural language

processing, machine learning, linguistics, and cognitive science. In this thesis, we address

one of the structural pieces in the required scaffolding, the problem of text segmentation.

The task is to partition a text into a linear sequence of topically coherent segments and

thereby induce a content structure of the document. Apart from laying the groundwork

for the development of more realistic semantic models for natural language understanding,

the immediate applications of the derived structural information are broad, encompassing

information retrieval, question-answering, and text summarization.

1.1 Problem Motivation

Text segmentation is an active area of research in natural language processing. However,

until recently, much of the work has been hampered by strong oversimplifying assump-

tions about the distributional properties of the data, the availability of certain structural

information such as paragraph and sentence boundaries, and artificial restrictions on the

language domain. These assumptions have undercut the effectiveness of the models in more

challenging contexts.

A critical dimension that has received relatively little attention is the distinction between
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Figure 1-1: Synthetic Text Similarity Plot

topic and sub-topic segmentation. A substantial portion of the work on segmentation ad-

dresses the problem of recovering documents or fragments of different documents from a

stream of concatenated texts. In this case, the definition of a topic boundary is clear-cut,

because it corresponds to a document boundary. There are real-world problems where this

scenario is relevant. For example, research work has been conducted on broadcast news

segmentation, where the goal is to partition the broadcast news transcripts into a set of

distinct news segments (Beeferman et al., 1999; Allan et al., 1998). In more challenging

domains, such as spoken language segmentation, however, segmentation has to be executed

at the level of a sub-topic. This new objective makes it much more difficult to develop

effective models and also be able to evaluate these models, since the concept of a sub-topic

is much more fluid.

Following the first unsupervised segmentation approach by Hearst (1994), most ap-

proaches assume that variations in lexical distribution indicate topic changes. When docu-
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Figure50 1-2: Spoken Lecture ranscript Similarity Plot

segment boundaries accurately. For example, most algorithms achieve high performancements exhibit sharp variations in lexical distribution, these algorithms are likely to detectsegment boundaries accurately. For example, most algorithms achieve high performance
on synthetic collections, generated by concatenation of random text blocks (Choi, 2000).

The difficulty arises, however, when transitions between topics are smooth and distribu-

tional variations are subtle. Consider, for example, the pairwise sentence similarity plots in

Figures 1-1 and 1-2, computed for a synthetic text and a spoken lecture transcript, where

vertical lines indicate true segment boundaries. For clarity, in both of these plots only the

cosine similarity scores above the 90-th quantile were plotted. Clearly, the synthetic text

exhibits much more sharp transitions, while there is considerable lexical overlap between

segments in spoken language. This discrepancy is evident in the performance of existing

unsupervised algorithms on less structured datasets, such as spoken meeting transcripts

(Galley et al., 2003). Therefore, a more refined analysis of lexical distribution is needed.

Past models have typically been evaluated on written language or clean transcribed



data. It is not clear whether these models will be able to tolerate transcription errors and

spoken language irregularities. Segmentation in the spoken language domain is challenging

in several respects. Being less structured than written text, speech transcripts exhibit

digressions, disfluencies, and other artifacts of spontaneous communication. In addition,

the output of speech recognizers is fraught with high word error rates due to specialized

technical vocabulary and lack of in-domain spoken data for training.

In order to be able to segment transcripts of speech, it is also necessary to cast off

assumptions about available structural information. The segmentation approach by Hearst

(1994), for example, requires paragraph structure. Many of the other unsupervised and

supervised models require sentence-level segmentation. In the spoken language domain

these extra sources of information are not available.

In this thesis, we address these limitations by effectively expanding the coverage of

unsupervised segmentation models to new domains, while advancing the state-of-the-art in

text segmentation.

1.2 Our Approach

Most of the past unsupervised segmentation algorithms rest on intuitive notions of similarity

density. In this thesis, we formalize the empirical basis for segmentation by casting text

segmentation in a graph-theoretic framework. We abstract a text into a weighted undirected

graph, where the nodes of the graph correspond to sentences and edge weights represent

the pairwise sentence similarity. In this framework, text segmentation corresponds to a

graph partitioning that optimizes the normalized-cut criterion (Shi and Malik, 2000). In

contrast to previous approaches, the homogeneity of a segment is determined not only by

the similarity of its words, but also by their relation to words in other segments of the text.

Thus, our approach moves beyond localized comparisons and takes into account long-range

variations in lexical distribution. Global analysis enables us to detect subtle topical changes,

yielding more accurate segmentation results than local models.

1.3 Contributions

Below, we summarize the main contributions of our thesis.



* We formalize the text segmentation objective in a general, principled framework. With

this objective we are able to model the global characteristics of the lexical distribution

and simultaneously maximize within-segment similarity and minimize between-cluster

similarity, merging the strengths of different unsupervised approaches to segmentation.

* We attain the new state-of-the-art results in spoken lecture segmentation. In contrast

to much of the other work on unsupervised segmentation, we evaluate our algorithm

on a corpus of spoken lectures, with more subtle lexical variations. Our experiments

demonstrate that the minimum-cut segmentation approach yields superior perfor-

mance when compared to other state-of-the-art segmentation algorithms in the spo-

ken lecture domain. We outperform the method of Utiyama and Isahara (2001) by

9% Pk measure and the method of Choi (2000) by 24.4% Pk measure.

* Another attractive property of the algorithm is robustness to noise. The accuracy

of our algorithm does not deteriorate significantly when applied to automatically

recognized speech.

* The impact of our novel segmentation framework extends beyond the text segmenta-

tion domain. We demonstrate the power of the model, by applying it to the segmenta-

tion of raw acoustic signal. We represent the acoustic signal by an inter-word-fragment

acoustic similarity matrix, and partition the resulting similarity matrix with the Min-

imum Cut segmentation algorithm.

1.4 Thesis Overview

This thesis is organized as follows. In the next chapter we provide an overview of linguistic

theory with connections to the segmentation problem. We review existing work on super-

vised and unsupervised approaches to text segmentation as well as related approaches in

vision segmentation.

We introduce the minimum cut algorithm in chapter 3. We first formulate the minimum

cut problem, and then describe how it can be applied naturally to the text segmentation

task. Finally, we flesh out the implementation details for the text segmentation system

based on the Minimum Cut model.

In chapter 4, we analyze the performance of the minimum cut algorithm on spoken



lecture data and compare our system with other state-of-the-art text segmentation systems.

First, we explain the evaluation metrics used in our analysis and the human agreement

results on the data. Then we examine the effect of long-range lexical dependencies employed

by the model. In order to gauge its effectiveness, we compare our system with other leading

segmentation systems on synthetic and spoken lecture data-sets. We also examine the

effect of speech recognition error on segmentation accuracy. Finally, we experiment with

the problem of identifying lecture topic boundaries directly from acoustic features of the

speech signal.

In chapter 5, we conclude the thesis by highlighting the main points, outlining some of

the experimental extensions to the model that did not contribute to further performance

gains, and discussing future directions for the work.



Chapter 2

Related Work

Many of the assumptions underlying existing automatic segmentation methods were first

formulated in the context of linguistic theory. In this chapter we will outline these theories

and distill their connections to the segmentation problem. We then provide an overview

of the different computational approaches to text segmentation. We begin by surveying

developments in supervised segmentation. Then, we discuss previous work in unsupervised

text segmentation that relates most closely to our approach, and conclude by describing a

computational model for image segmentation which influenced our work.

2.1 Linguistic Foundations

2.1.1 Lexical Cohesion Theory

One common assumption that threads its way into the design of many segmentation al-

gorithms is the notion that lexical repetition indicates topic continuity, while changes in

lexical distribution signal topic changes.

This principle was first formalized in the linguistic work of Halliday and Hasan (1976) on

Cohesion Theory. The theory postulates that discourse is constrained by certain grammati-

cal and lexical cohesion requirements. At the semantic and syntactic level these constraints

include devices of reference, substitution, ellipsis, and conjunction. At the lexical level, the

narratives are tied together by way lexical cohesion or word repetition.

We illustrate these concepts with an analysis of a text fragment reproduced in Figure 2-1

from a transcribed Artificial Intelligence lecture, used in the evaluation of our segmentation



system. In the first paragraph, the speaker is giving an overview of agents, and then she

moves on to a route planning example. Content words repeated in the span of the text

fragment are shown in bold.

Last time we talked about different ways of constructing agents and why it is that you might want
to do some sort of on-line thinking. We have this idea that if you knew enough about the domain,
that off-line you could do all this compilation and figure out what the program that should go in
the agent and put it in the agent. And that's right. But, sometimes when the agent has a very
rich and complicated environment, it seems easier to leave some of that not worked out, to let the
agent work some of it out on-line. ...
The example problem that we'll use in looking at these methods is, for instance, route planning in
a map. If I give you a map, you know the world dynamics, because you know that you are in this
place and you travel down that road, then you're going to end up at this other place. The world
state is finite, again as an abstraction. If I give you a map that has dots on it, which are the
towns that they thought were big enough to merit a dot, somebody decided that was a good level
of abstraction to think about driving around this place. The world is deterministic. Again, in
the view of a map, there aren't probabilities that tell you how likely it is that if you're trying to go
here, you'll end up over there

Figure 2-1: Lecture extract from the Artificial Intelligence corpus illustrating lexical cohe-
sion.

Lexical cohesion in these two distinct segments can be observed at the surface level of

sentence realization through repetition of key topical words. For example, the word "agent"

is repeated in almost all of the sentences of the first paragraph. This is hardly surprising

since it is the subject under discussion in that segment. Note also that the word does

not reappear in the subsequent segment which moves on to a new topic. Likewise, "map"

is repeated several times in the second segment because it relates to the topic of route

planning, but it is absent from the first paragraph. In general, if the topics are sufficiently

different, it should be expected that the associated key topical words will be different as

well.

This property can be exploited for the differentiation of topics within text by preserv-

ing continuity of text spans where the lexical distribution is homogeneous and choosing

boundaries at locations of prominent change in lexical distribution. The analysis extends

to the recurrence of common word stems, synonyms, hyponyms, and word collocations. If

words tend to appear in similar contexts, then they are likely to be semantically related, as

demonstrated by the cooccurrence of closely related pair of words "program" and "compi-

lation" in the first segment. Despite being patently obvious, the idea of lexical cohesion is

very powerful, since the degree of lexical cohesion can be quantified through simple word



matching.

Besides lexical cohesion, Halliday and Hasan establish that the presence of certain se-

mantic devices in the text can crystallize the latent thematic structure. Conjunctions such

as "for example" in the above text, point to associations between adjoining clauses or sen-

tences. Referential links between anaphors and their antecedents also preserve continuity of

the spanned text fragments, because of the persistence of the underlying object. So, in the

first paragraph, "that" is referring to the previously mentioned idea. Finally, substitution

and ellipsis are also quite common devices that elicit cohesion. These correspond to cases

where certain word phrases are implicitly acknowledged to have been either replaced by

simpler referring expressions or removed altogether.

In the context of text segmentation, all of these devices can be used to eliminate or

identify potential segment boundaries. For example, lexical items and cue words that usually

tend to signal references, substitutions, and conjunctions can be readily identified. These

trigger words are often employed as lexical features in feature-based segmentation systems.

Reynar (1998) observes that anaphoric links tend to occur much more frequently within

segments than across different segments and registers the presence of anaphoric links as a

feature in his segmentation system. This analysis is consistent with the linguistic function

of reference in eliciting cohesion.

2.1.2 Empirical Basis for Lexical Cohesion

Lexical cohesion theory can be grounded empirically with simple graphical representations

of lexical distributions in text. Church (1993) achieves this by plotting the cosine similarity

scores between every pair of sentences in the text. The intensity of a point (i, j) on the plot

indicates the degree to which the i-th sentence is similar to the j-th sentence.

Figure 2-2 is a DotPlot for a lecture transcript from an undergraduate Physics class. The

true segment boundaries are denoted by vertical lines. This similarity plot reveals a block

structure where true boundaries delimit blocks of text with high inter-sentential similarity.

Sentences found in different blocks, on the other hand, tend to exhibit low similarity.

Under multiple domains in both written and spoken genres of language, this representa-

tion consistently bears out the claim that repetition of content words is a strong indicator of

thematic cohesion, while changes in the lexical distributions usually signal topic transitions.

In fact, the representation serves as a basis for many unsupervised algorithms, including
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aries.

the approach proposed in this thesis.

2.1.3 Models of Discourse Structure and Coherence

More refined linguistic representations of narratives also shed light on the conceptualization

of topic structure. Theories of discourse are concerned in the main with how natural lan-

guage fits together to produce coherent, easily interpretable narratives that convey meaning

and how that meaning is recovered. Approaches to the segmentation problem should be

able benefit from an insight into how the thematic structure of text is generated at a higher

semantic level of abstraction captured by the notion of coherence.

Textual coherence is a property that is imparted by the global semantic structure em-

bedded in text. For example, Rhetorical Structure Theory (Mann and Thompson, 1987)

posits that this sense of logical flow is pieced together by an implicit rhetorical tree of



relations among phrasal constituents, relations such as cause and elaboration. Grosz and

Sidner (1986), on the other hand, argue that beyond inter-segmental and thematic relations,

coherence is conveyed in how the thematic structure relates to the message that the speaker

intended to convey and how the target audience actually processes that information.

Even though there are many different discourse theories, the underlying idea of discourse

coherence has important implications for segmentation modeling. In general, the goal of

segmentation should be to provide the coherent constituent structural blocks, whereas most

current segmentation systems only aim to provide the set of cohesive segments in a text.

After all, we are interested in exposing the underlying semantic layers and not just the

surface grammatical or lexico-distributional regularities.

In theory, modeling coherence is much more powerful than merely being able to model

lexical cohesion. Many of the current segmentation systems fail to take into account the

global distributional properties of text that tie into coherence. The approach proposed

in this thesis provides part of the framework for modeling coherence by considering the

long-range lexical relationships. Since many theories suggest that segmentation should be

modeled hierarchically in order to capture the relational structure underlying coherence,

our approach could be used as the first step in full semantic relational parsing.

2.2 Supervised Methods

Although our focus in this thesis will be on unsupervised, similarity-based models for seg-

mentation, we will briefly highlight some of the supervised approaches. These methods

usually require large amounts of in-domain training, and are sensitive to noise, speech

recognition errors, and data sparsity. The supervised methods for segmentation typically

fall into one of the two classes, namely binary classification or sequential models.

2.2.1 Classification and Sequential Models

Under the classification framework, each candidate boundary location in the text is eval-

uated independently by the model, and then the top scoring candidate boundaries are

selected. Some of the approaches applied to text segmentation in this class of learning

algorithms in the past include Decision Trees (Passonneau and Litman, 1997; Gruenstein et

al., 2005), Maximum Entropy (Beeferman et al., 1999), Support Vector Machines (Kauchak



and Chen, 2005), and Boosting (Sporleder and Lapata, 2006). The strength of these models

lies in their ability to encode arbitrary local contextual features. However, the fact that

hypotheses are evaluated independently detracts from their effectiveness, since segment

boundaries are inter-dependent. For example, these types of models will not be able to

capture the fact that very short segments should be unlikely.

Sequential models, as the name implies, model sequences of decisions. Van Mulbregt

et al. (1999), Shriberg et al. (2000), and Ponte and Croft (1997) model text streams with

Hidden Markov Models over word sequences, with HMM states corresponding to boundary

and non-boundary states delimiting segments. Dielmann et al. (2005) employed Dynamic

Bayesian Networks for structured multi-party meeting segmentation. These approaches

typically require a lot of training data, and they are applied to highly structured domains.

2.2.2 Features

The effectiveness of supervised segmentation models often hinges on choosing a suitable

feature representation. In the written language domain, lexical cohesion and linguistically

motivated features are used. Cohesion features capture the underlying word distributions,

indicating whether segments are lexically cohesive. Beeferman et al. (1999) encode the log

likelihood of a context-sensitive and context-independent language model as a feature in

their model. Galley et al. (2003) incorporate cosine similarity scores between blocks of text.

The linguistic features may register the presence of referential noun phrases which indicate

topic continuity or cue words, which usually signal topic changes.

In spoken language segmentation, additional prosodic, acoustic, and discourse features

such as speaker activity, speaker overlap, and pause duration have been used to improve

segmentation quality (Shriberg et al., 2000; Gruenstein et al., 2005).

2.3 Unsupervised Methods

In this thesis, we focus on the development of unsupervised approaches to segmentation,

which tend to differ markedly from their supervised counterparts. Unsupervised segmenta-

tion methods can be characterized by the form of the optimization objective, the type of

contextual representation and smoothing, and finally by the decoding techniques used for

obtaining the segmentation.



2.3.1 Optimization Objective

The optimization objective for segmentation is usually defined either in probabilistic terms

or in terms of lexical similarity.

Probabilistic approaches Among approaches with probabilistically motivated objec-

tives, for example, the method developed by Utiyama and Isahara (2001) finds the maxi-

mum probability segmentation for the noisy channel model of segmentation. Given a word

sequence W = wIw 2 ... Wn and a segmentation S = ss2... Sm of W the approach aims

to maximize P(S W) = lsP(W). This is equivalent to finding the most likely sequence

of segments S = argmaxs P(WIS)P(S). In order to evaluate this objective, the authors

make the simplifying assumption that segments are statistically independent of each other,

and words within segments are conditionally independent given the segment. This allows

them to decompose the P(WIS) into a product of word emission probabilities, conditioned

on the topic:

m ni

P(W|S) = -[ P(wf I)7
i=1 j=1

where w2. is the j-th word in segment i or Si. Furthermore, P(WIS) is a defined as a

smoothed language modeling probability:

Pr(wlIS) - fi(w) + 1
Pr (w) I S") = Wi) +

where fi(wj) is the frequency of j-th word in the i-th segment and ni is the number of words

in segment i. Pr(S) is defined as a description length prior 2-1(s), where i(S) = m logn

is the description length, m is the number of words in the text, and n is the number of

segments. Putting all of these terms together, and taking the log of the posterior, we yield

the following objective:

log P(SW) = log fi(wj) + 1 m log n1: ni+k -mlogn
i=1 j=1

The assumptions of statistical independence for the segments and the conditional inde-

pendence of words are not borne out in real data. With very short segments, this model



will produce noisy estimates for the word emission probabilities. Also, it does not capture

the relative importance of words in the process of segmentation.

Other probabilistic models include the work of Purver et al. (2006), who propose a more

refined generative model of topic structure, which models the word distributions in segments

with a linear combination of distributions over topics.

Similarity-based approaches In many cases pattern recognition problems do not lend

themselves readily to a probabilistically-motivated objective, whereas the concept of ob-

ject or entity similarity may be quite natural. The notion of lexical similarity has been

extensively explored and applied in many other natural language tasks.

In the context of segmentation, text is usually decomposed into a series of sentences

or blocks, represented by vectors of word counts. Text similarity is measured in terms of

cosine similarity of adjacent blocks, si = (Wiw 2 ... Wn), where cosine similarity, S(si, sj), is

defined as:
si • sj

IIsill X 11jllA

In the equation above, si - sj is the dot product of two vectors and IIsill is the L 2 norm of

vector si.

Most unsupervised text segmentation algorithms assume that fragments of text with

homogeneous lexical distributions correspond to topically coherent segments. So, the ho-

mogeneity is typically computed by analyzing the similarity in the distribution of words

within a segment. The approaches that maximize self-similarity within a segment include

(Choi, 2000), (Reynar, 1998), (Kehagias et al., 2003), and (Ji and Zha, 2003). Other ap-

proaches determine segment boundaries by locating sharp changes in similarity of adjacent

blocks of text (Reynar, 1998; Hearst, 1994). Ideally, both of these objectives should be used

to evaluate segmentation quality.

2.3.2 Contextual Dependencies

The earliest approaches to text segmentation only took into account local contextual in-

formation (Kozima, 1993; Hearst, 1994). For instance, Hearst developed the TexTiling

segmentation algorithm for the problem of partitioning expository texts. This approach

assumes that drops in the similarity profile of adjacent text blocks correspond to topic

changes and that topic changes occur in between paragraph breaks of the text. The Text-



Tiling algorithm determines boundaries by locating local minima in the sequence of cosine

similarity scores of adjacent blocks of text. It determines the target number of segments by

specifying a similarity cutoff threshold.

The weakness of this approach is that it only considers similarity between adjacent

blocks of text, and does not model longer-distance lexical ties. Also, a fixed cutoff for

determining boundaries is problematic, since texts may exhibit both sharp and attenuated

topic transitions in different parts of the narrative.

Other unsupervised segmentation approaches work with the DotPlotting text represen-

tation suggested by Church (1993) first used by Reynar (1994) for segmentation and later

adopted by Choi (2000), Kehagias et al. (2003), and Ji and Zha (2003).

These algorithms compute pairwise cosine similarity between every pair of sentences

sentences, so the resulting representation is much finer. Then they try to elicit the latent

block structure in the similarity matrix. This representation enables the approaches to

model long range cohesion dependencies, not just the local context. Our work draws part

of its strength from this latest line of research in unsupervised segmentation.

2.3.3 Smoothing and Lexical Weighing

Previous research on similarity-based segmentation methods has analyzed lexical weighting,

similarity computation, and smoothing (Hearst, 1994; Utiyama and Isahara, 2001; Choi,

2000; Reynar, 1998; Kehagias et al., 2003; Ji and Zha, 2003). In practice, smoothing has

delivered significant performance gains.

Choi (2000) uses similarity ranks in the local context instead of using the actual inter-

sentence similarity and further refines the similarity metric by incorporating lexical simi-

larity weights from Latent Semantic Analysis (Choi et al., 2001). Ji and Zha (2003) ap-

ply anisotropic diffusion smoothing to the sentence similarity matrix, achieving gains over

(Utiyama and Isahara, 2001; Choi, 2000) on a synthetic corpus of concatenated text blocks.

We will describe the latter smoothing approach in the next chapter in section 3.4.

The effectiveness of the smoothing approaches is often dependent on the segmentation

domain and the underlying characteristics of the segmentation algorithm. For instance,

lexical similarity scores obtained from Latent Semantic Analysis will be beneficial in the

synthetic domain, because the topics represented in the text are very different. However,

when much more subtle distinctions are required for the purpose of sub-topic segmentation,



Figure 2-3: (a) Original Image (b) Image segmented with the Normalized Cut Algorithm

this technique may actually degrade performance.

2.3.4 Decoding

The final distinction that can be made among unsupervised segmentation algorithms is

based on the type of decoding technique used. The decoding either involves a greedy ap-

proximation or performs exact inference. The former class includes the text segmentation

algorithm proposed by Reynar (1998), while most of the current state-of-the-art segmenta-

tion methods use dynamic programming to obtain the optimal segmentation (Choi, 2000;

Utiyama and Isahara, 2001; Kehagias et al., 2003; Ji and Zha, 2003).

2.4 Graph-Theoretic Approaches in Vision Segmentation

In addition to past text segmentation approaches, our model was influenced by the minimum-

cut-based segmentation algorithm developed for the problem of image segmentation (Shi

and Malik, 2000). The objective of image segmentation is to partition an image into mul-

tiple regions corresponding to the different objects and the background. For illustration

purposes, consider the original image in Figure 2-3(a) and its counterpart segmented into

five regions shown in Figure 2-3(b). The segmentation algorithm delineates the outlines of

Marylin Monroe and separates the background into four different regions.

Shi and Malik (2000) approach image segmentation through graph partitioning. Each

image pixel is represented as a node in the graph. The feature vectors for the pixels capture

intensity, color, and texture information. Edge weights, wij, between node pairs are defined



Figure 2-4: Normalized Cut Eigenvectors

as the product of a feature similarity term and a term corresponding to the spatial distance
-IIF(i)-F(j)[l

2  
-- |X(i)-X(j)1|

2

between the pixels i and j: wij = e 0' x e "x , where [- is the L 2

norm, F(i) is the feature vector for pixel i, X(i) is the spatial location of node i, and ar

and ax are parameters. The quality of the partitioning is measured by a new criterion,

the normalized-cut, described in the next chapter. Minimizing the normalized cut is NP-

complete. However, Shi and Malik reformulate the minimum cut problem in terms of a

generalized eigenvalue system subject to discrete constraints on the decision variables. If

the decision variables are allowed to take on continuous values, the system can be efficiently

solved by finding the second smallest eigenvector of the generalized eigensystem through

eigenvalue decomposition.

The cluster assignment is resolved by selecting a threshold such as the median of the

eigenvector components and assigning pixels below the threshold to one cluster and those

above the threshold to the other cluster. The assignments taken by discretizing the solutions

to the relaxed eigenvalue system are only approximate. In general, Shi and Malik show that

the eigenvector with the n-th smallest eigenvalue is the real-valued solution that optimally

subpartitions the first n- 1 parts of the overall image. Figure 2-4 shows the five eigenvectors

with the smallest eigenvalue.

We note, that one of the principal conceptual differences between text segmentation

and image segmentation is that in image segmentation segment boundaries can be drawn

up arbitrarily, whereas in text segmentation the boundaries form a linear partitioning of the

nodes, so that nodes between two closest boundaries have to belong to the same segment.
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Figure 2-5: Taxonomy of Text Segmentation Models

2.5 Our Approach

Figure 2-5 illustrates the overarching taxonomy of approaches to the segmentation prob-

lem. Our algorithm fits into the unsupervised, similarity-based class of approaches to text

segmentation. One of the contributions of our work is on the fundamental aspect of text

segmentation analysis - the impact of long-range cohesion dependencies on segmentation

performance. In contrast to previous approaches, the minimum cut algorithm simultane-

ously optimizes the similarity within each segment and the dissimilarity across segments.

Thus, the homogeneity of a segment is determined not only by the similarity of its words,

but also by their relation to words in other segments of the text. We show that optimiz-

ing our global objective refines the analysis of the lexical distribution and enables us to

detect subtle topical changes. Another advantage of this formulation is its computational

efficiency. Similarly to other segmentation approaches (Utiyama and Isahara, 2001; Choi,

2000; Reynar, 1998; Kehagias et al., 2003; Ji and Zha, 2003), we are able employ dynamic

programming to find the globally optimal solution, because of the linearity constraint on

text segmentation.



Chapter 3

Minimum Cut Segmentation

Whereas many of the past unsupervised approaches to segmentation rested on intuitive

notions of similarity density, we formalize the objective of text segmentation through cuts

on graphs. In this chapter, we first formulate the minimum cut problem, and then describe

how it can be applied naturally to the text segmentation task. Finally, we flesh out the

implementation details for the text segmentation system based on the Minimum Cut model.

3.1 Background

3.1.1 Minimum Cuts

0.2 0.4 0.4

0.3 0.7 0.1

Figure 3-1: Input: Weighted Undirected Graph

Let G = {V, E} be an undirected graph, where V is the set of vertices and E is the set

of weighted edges (See Figure B-1). We denote the edge weights between every connected

pair of vertices u and v by w(u, v). A graph cut is the partitioning of the graph into two

disjoint sets of nodes A and B.

The capacity of the cut is defined as the sum of crossing edge weights between A and

B. Figure 3-2 includes two possible cuts of the graph in Figure B-1. The edges severed by

this cut are shown in dotted lines. The capacity of the left cut in the figure is 0.1, and the



capacity of the right cut is 0.5. Note that for notational convenience, we will henceforth

refer to the cut capacity and the cut value interchangeably in the thesis.

We are interested in the problem of finding the minimum capacity cut or min cut, for

short. The minimum cut is a partitioning of the graph into two disjoint sets of nodes that

minimizes the cut capacity. In Figure, 3-2 the left cut is the minimum cut, because it is the

configuration that minimizes the sum of the crossing edges.

0.24 0.20.4 0.4

0. 

0.3 0.7 0.

Figure 3-2: Examples of Binary Cuts on a Graph

The minimum cut problem is important in clustering tasks among other applied prob-

lems. Wu and Leahy (1993), for example, formulate a method for clustering data with the

minimum cut criterion and demonstrate how it can be applied to image segmentation. If the

edge weights represent the degree of node similarity, then the capacity of a cut corresponds

to the extent of association between the two partitions. Minimizing the cut corresponds to

minimizing the degree of association between these partitions, thereby splitting the graph

into its two most dissimilar components.

3.2 Variations on the Minimum Cut Objective

There is a problem with the minimum cut objective in its unaltered form. When minimum

cuts are employed for clustering, they will often give rise to unbalanced partitions, which can

be problematic. Shi and Malik (2000) and Wu and Leahy (1993) observe that small clusters

of outlying nodes will tend to be separated from the rest of the graph in many clustering

scenarios. This is not a desirable feature for a clustering objective function. In order to

address the shortcomings, several alternative forms of the objective have been formulated.

We will use the normalized cut objective introduced by Shi and Malik (2000), because it is

superior to its alternatives in several important respects.



3.2.1 Normalized Cut

First, we will define the volume of a subset of the graph to be the sum of its edges to the

entire graph:

vol(A) = w(u, v)
uEA,vEV

Similarly, we can define the association, assoc(A) of a particular cluster of nodes as

follows:

assoc(A) = w(u, v)
uEA,vEA

Note that volume is simply the sum of the cut value (the sum of cross-partition edge

weights) and the association value (the sum of the interpartition edge weights). The new

normalized cut criterion (Ncut) is a result of normalizing the cut by the volume:

cut(A, B) cut(A, B)
Ncut(A, B) = +vol(A) vol(B)

For example, in Figure 3-2, the left segmentation has a cut value of 0.1 and the volume

of sets A and B is 1.7 and 0.5, respectively. This results in a normalized cut value of

1 + - = 0.2588. The right segmentation has a cut value of 0.5 and the volumes of the

two sets are 0.5 and 2.1, giving a normalized cut value of + -.5 = 1.2381. So, the left

partitioning has a smaller normalized cut value.

In general, this alternative form of the objective is sensible, because now the capacity

of a cut is measured as a fraction of the overall outgoing weight edges from each subset of

nodes. So, for clusters with a small number of points the cut capacity to volume ratio will

be large. Therefore, by minimizing this criterion we ensure that the partitions are balanced.

We can identify an even stronger property. Namely, by optimizing this objective we

simultaneously minimize the similarity across partitions and maximize the similarity within

partitions.

One natural alternative to minimizing the degree of similarity between clusters is to

maximize the degree of association within clusters. The normalized association criterion,



Nassoc, is defined as follows:

assoc(A)
Nassoc(A, B) assoc(A)

vol(A)

assoc(B)
vol(B)

We will now show that the normalized cut and the normalized association add up to a

constant.

Nassoc(A, B) + Ncut(A, B)

cut(A, B) + assoc(A)

vol(A)

Scut(A, B) cut(A, B)vol(A) vol(B)

+ [cut(A, B) + assoc(B)
L Vomt7

assoc(A)

vol(A)

vol(A)

vol(A)

This proves that minimizing the normalized cut criterion is equivalent to maximizing

the normalized association objective, as Ncut(A, B) = 2 - Nassoc(A, B).

3.2.2 Average Cut

Another alternative to the plain cut is to normalize the cut by the cardinality of a particular

cluster:

cut (A, B) cut(A, B)
Ncut(A, B)= +IAI IBI

This will ensure that the clusters are balanced. However, this criterion does not guar-

antee that the the clusters will have tight inter-cluster similarity.

3.2.3 Average Association

In order to have tight inter-cluster similarity, we can normalize the inter-cluster similarity

by the cardinality of a cluster:

assoc(A) assoc(B)
Nassoc(A, B) = A

IAI IBI

However, this objective will be prone to separating out small clusters with large inter-

cluster similarity.

assoc(B)
vol (B) I

vol(B)
vol(B)



Figure 3-3: Graph-based Representation of Text

3.3 Normalized Mincut Segmentation

We will now show why optimizing the normalized cut objective is a natural fit for the

text segmentation problem. Initially, we will consider the binary segmentation problem.

Therefore, we will assume that there are only two sections in the text to be segmented.

The nodes of the graph will denote adjacent sentences, and the edge weights, w(u, v), will

define a measure of similarity between pairs of sentences, where higher scores indicate higher

lexical similarity (See Figure 3-3).

Intuitively, we aim to jointly maximize the intra-segmental similarity and minimize the

similarity between different segments. In other words, we want to find the segmentation

with the most homogeneous set of segments that are also maximally different from each

other.

In Chapter 2, we showed an empirical basis for the computational objective of the

segmentation problem with the DotPlot representation. That is we observed that identifying

the block structure relates directly to the problem of maximizing within-block similarity

while minimizing the block similarity between clusters.

This segmentation goal corresponds naturally the normalized minimum cut criterion.

By obtaining a minimum cut we split the set of phrases into two maximally dissimilar

classes. As shown in the previous section, we simultaneously minimize the similarity across

partitions.

In text segmentation, the texts typically consist of more than two segments. Hence, by

extension we are interested not just in binary cuts but in multiway cuts on graphs. (See

figure 3-4). The normalized cut criterion is naturally extended to a k-way normalized cut:

cut(A1,V - Ai) cut(Ak,V - Ak) (31)
vol(Ai) vol(Ak)
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Figure 3-4: Multiway Cuts on Graphs

where A1 ... Ak form a partition of the graph, and V - Ak is the set difference between

the entire graph and partition k.

3.3.1 Decoding Algorithm

Papadimitriou proved that the problem of minimizing normalized cuts on graphs is NP-

complete (Shi and Malik, 2000). However, in our case, the multi-way cut is constrained

to preserve the linearity of the segmentation. By segmentation linearity, we mean that all

of the nodes between the leftmost and the rightmost nodes of a particular partition must

belong to that same partition.

With this constraint, the space of possible solutions to the minimum cut problem is

reduced considerably. In fact, it enables us to formulate a dynamic programming algorithm

to find the exact solution to the minimum normalized multiway cut problem in polynomial

time.

3.3.2 Dynamic Programming Fundamentals

We will first outline the structure of deterministic dynamic programming problems with

a finite number of stages (finite horizon). These problems can be decomposed into a set

of overlapping subproblems. The solutions to these subproblems are typically saved or

memoized, and are reused in later stages of the algorithm for solving larger subproblems.

Dynamic programming problems exhibit optimal substructure, meaning that finding the

optimal solutions to the subproblems enables us to find the globally optimal solution to the

overall problem.

More formally, we are given the following discrete-time system, specifying the progres-

0.22-- 0-4 *0.4



sion of states with respect to decisions made at discrete points in time (Bertsekas, 2001):

Zk+1 = fk(xk,uk) k = 0,1,...,N- 1,

where xk is the state of the system at stage or time index k, N (horizon) is the number of

stages that the system goes through starting at state x 0 , Uk are decision variables selected

at time k, and fk (k, Uk) are functions that specify how the state is updated on the basis

of the current state xk and the chosen decision variable uk.

The states xk are elements of space Sk, corresponding to each stage in the evolution of

the system. In general, the states are not constrained to be discrete-valued and may not be

bounded. The controls uk belong to the space Ck and are dependent on the current state,

xk. A cost function, c(xk, P(xk), maps the k-th state and its corresponding control to some

cost, c. A policy 7 is a set of functions pi over a span of stages or time points, mapping

states xi to their decision variables ui: 7rt = (Uo, ul,..., ut)

Assuming that the system starts out at state xo, the policy rt incurs a cumulative cost

J7, (xo) = J(x, uo, ul,... ut). So each transition incurs a cost, and the problem is to find

the optimal policy 7r* II that minimizes the overall cost:

J.(xo) = min J (xo),

where H is the set of all possible policies. In other words, the goal is to choose the optimal

sequence of decision controls to minimize the overall cost.

3.3.3 Bellman's Optimality Principle

Assume that the cost function is additive, meaning that the overall cost of a policy is the

sum of the costs incurred at each of the stages. More formally, the cost function is additive

if the objective function satisfies the following requirement:

T-1

J7 1(xo) = E Ck(Xk, Uk) + k~(XT), (3.2)
k=O

where kT(XT) is the terminal cost and ck (xk, Uk) corresponds to the individual transition

cost at time k, state xk and control uk.

Let 7r* = (u, u,..., u v-1) be an optimal policy; i.e. the policy minimizing the overall



cost. Consider the subproblem, where we wish to minimize the cost from time i to time

N. Let state xi be the starting point in this new subproblem, corresponding to time i.

Bellman's principle of optimality establishes that the truncated policy u', u, ... , u_ is

optimal for this subproblem (Bertsekas, 2001).

Intuitively, if the optimal sequence of states from the start to the end state hits state xi

at stage i, then the sub-policy from step i to N - 1 should be optimal. Otherwise, if there

is a policy with a lower cost, then we could combine it with the initial subsequence of the

optimal policy to get a policy with an even lower cost, which would lead to a contradiction.

3.3.4 Dynamic Program for Constrained Mincut

The constrained multiway normalized minimum cut objective can be shown to exhibit op-

timal substructure. Note that our problem involves a finite set of states (the last chosen

boundaries) and also a finite set of controls (the potential set of terminal segment bound-

aries). The cost to place a boundary at a given stage in the segmentation is only dependent

on the current state, captured by the location of the previous boundary. This is true, be-

cause of the linearity constraint on the segmentation. Since segments need to be contiguous,

the last boundary marks the start of the new segment. The control to be picked at this

stage corresponds to the location of the next boundary, which must be placed further along

the text.

Let Ck be the cost incurred at the k-th decision stage: c = cut(AkV- and k bevol(Ak , and uk be
the value of the decision variable at stage Uk. Again, since segments need to be contiguous,

Uk-1 < uk. So, choosing the i-th segment corresponds to choosing a single boundary point

to finish the segment. The term cut(Ak, V - Ak) can be computed from the current state

which is the value of the previous decision boundary and the current decision variable value.

Likewise, vol(Ak) can be computed from the current state and the decision variable.

The objective function is clearly additive, as it is the sum of individual costs incurred by

each of the segments. Hence, according to Bellman's optimality principle we can formulate

the following dynamic program to optimize the minimum cut objective:

S[i, ] = min Cut [Aj,k,V - Aj,k]1
[i, k] C [i - 1,j] + vol [A,k(3.3)
' j<k vol [Aj,k]



[ cut [Aj,k, V - Aj,k]1
B [i, k] = argmin [i - 1, j] +V - Aj,] (3.4)

j<k + vol [Aj,k

s.t. C [0, 1] = 0, C [0, k] = 00, 1 < k < N (3.5)

B[, k] =1, 1 < <N (3.6)

C [i, k] is the normalized cut value of the optimal segmentation of the first k sentences

into i segments. The i-th segment, Aj,k, begins at node uj and ends at node Uk. B [i, k] is

the back-pointer table from which we recover the optimal sequence of segment boundaries.

The initial conditions in Equations 3.5 and 3.6 capture the constraint that the first segment

starts with the first node.

The time complexity of the dynamic programming algorithm is O(KN 2 ), where K is

the number of partitions and N is the number of nodes in the graph or sentences in the

transcript.

3.4 Implementation Mechanics

The performance of our model depends on the underlying representation, the definition

of the pairwise similarity function for texts, and various other model parameters. In this

section we provide further details on the process of constructing the target graph that will

be partitioned into segments and implementing the overall segmentation system.

3.4.1 Text Preprocessing

Before building the graph, we apply standard text preprocessing techniques to the text.

We stem words with the Porter stemmer (Porter, 1980) to alleviate the sparsity of word

counts through stem equivalence classes. Since many frequently occurring words in the

text such as determiners or personal pronouns are poor indicators of the actual thematic

similarities between segments, we remove words matching a list of stop words. We make

use of the stop-words list used in several other segmentation systems (Choi, 2000; Utiyama

and Isahara, 2001) This stop-words list is reproduced in Appendix C.



3.4.2 Graph Construction

The normalized cut criterion considers long-term similarity relationships between nodes.

This effect is achieved by constructing a fully-connected graph. However, considering all

pairwise relations in a long text may be detrimental to segmentation accuracy. Therefore,

we discard edges between sentences exceeding a certain threshold distance. This reduction

in the graph size also provides us with computational savings.

Also, note that in the formulation above we use sentences as our nodes. However, we

can represent graph nodes with non-overlapping blocks of words of fixed length. This is

desirable, since the lecture transcripts lack sentence boundary markers, and short utterances

can skew the cosine similarity scores. The optimal length of the block is tuned on a heldout

development set.

3.4.3 Similarity Computation

In computing pairwise sentence similarities, sentences are represented as vectors of word

counts and the objective is to identify sentences with similar semantic content. So, we

have to make sure that the semantically salient words are given predominant weight in the

computation. Previous research has shown that weighting schemes play an important role

in segmentation performance (Ji and Zha, 2003; Choi et al., 2001). Apart from being able

to distinguish between functional and content-bearing words, particularly important are

words that may not be common in general English discourse but that occur throughout the

text for a particular lecture or subject.

For example, in a lecture about support vector machines, the occurrence of the term

"SVM" is not going to convey a lot of information about the distribution of sub-topics, even

though it is a fairly rare term in general English and bears much semantic content. The

same words can convey varying degrees of information across different lectures, and term

weighting specific to individual lectures becomes important in the similarity computation.

In order to address this issue, we introduce a variation on the tf-idf scoring scheme

used in the information-retrieval literature (Salton and Buckley, 1988). A transcript is split

uniformly into N chunks; each chunk serves as the equivalent of documents in the tf-idf

computation. In equation 3.7, ni is the number of chunks in which word i appears, idfi is

the inverse segment frequency of word i in the transcript, and tfi,j is the term frequency of



word i in chunk j. The lexical weights are computed separately for each transcript, since

topic and word distributions vary across lectures.

w(i,j) = tfilj x idfi, where idfi = log( ) (3.7)

After determining the lexical weights, we compute cosine similarity scores between every

sentence pair with word frequencies weighted by their tf-idf weights:

sim(x,y) >= -k [fx,j x w(k, cid(x)) x fy,j x w(k, cid(y))]sim(×, y) =-(3.8)

In equation 3.8, fx,j is the frequency of word j in sentence x, wuT is the vector of weights

for sentence x, and cid(x) is the word chunk index containing the sentence.

Finally, in computing the actual edge weight, eij between nodes i and j in the graph,

the exponent of the cosine similarity score is used to accentuate differences between low

and high lexical similarities.

ei,j - esim(i j ) (3.9)

3.4.4 Smoothing

The similarity matrix, specifying edge weights between nodes in the graph, will capture the

similarity profile at the sentence level. Even though similarity scores of sentences belonging

to the same segment will tend to be higher than scores of sentence pairs belonging to different

segments, the individual scores are highly variable. This is problematic, because it is not

always possible to tell whether a sudden shift in scores in the vicinity of a sentence signifies

a transition or it is really just an artifact of the data and the similarity computation.

Consider the case when a sentence is a sequence of stop words and very infrequent

lexical items. The similarity score between this and other sentences will be set to the

minimum possible score, even though the immediate context may share many content words

in common with other parts of the text. Without proper smoothing, these cases will lead

the system astray. We considered two smoothing approaches - the Exponentially Weighted

Moving Average (EWMA) smoothing and Anisotropic Diffusion.



EWMA The exponentially weighted moving average smoothing developed by S. W.

Roberts (Roberts, 1959) is computed by adding counts of words that occur in adjoining

sentences to the current sentence feature vector. These counts are weighted in accordance

to their distance from the current sentence: 9i = E e-(U-i)sj, where si are vectors of

word counts, and a is a parameter that controls the degree of smoothing. Hence, when

computing the similarity between two sentences, we effectively take into account similarity

between their immediate neighborhoods. Empirically, we found that incorporating only

previous words in the neighborhood works better than incorporating words on both sides

of the target word in the text.

Anisotropic Diffusion Anisotropic diffusion smoothing is a technique developed for im-

age enhancement (Perona and Malik, 1990), and it has been applied previously to lexical

smoothing in the context of text segmentation (Ji and Zha, 2003). The method is based on

the anisotropic heat diffusion equation (Equation 3.10), which describes temperature as a

function of time and space.

I(x, y, t) = (c(, y, t)V 2 1 + Vc VI) I(x,y) (3.10)

In equation 3.10, I is the brightness or intensity function, c(x, y, t) is the space-dependent

diffusion coefficient at time t corresponding to the point (x, y) in the space, V is the gradient

and V 2 the Laplacian operator, both with respect to the space variables.

On a square lattice, or a gray scale image with nodes corresponding to pixels, the above

equation is discretized by approximating the Laplacian with 4-nearest neighbor differences.

In Equation 3.11, the term 17 indicates the nearest neighbor differences in appropriate

directions (North, South, East, or West corresponding to subscripts N, S, E, W), and ct are

the corresponding heat diffusion coefficients. The diffusion flow conduction coefficients are

chosen locally to be the inverse of the magnitude of the gradient of the brightness function,

because then the flow increases in homogeneous regions which have small gradients.

±,1 + [ 7Ni,j N , + CsiJ . Vslj + CEij " EIj + CEj " VwIy] (3.11)
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The particular function g(.) in Equation 3.12 was chosen by Perona and Malik to favor

diffusion in wide regions over smaller ones.

Anisotropic diffusion has the effect of increasing flow in homogeneous regions and pre-

venting flow across region boundaries in the image. Again, this is consistent with the idea

of minimizing between-block similarity and maximizing within-block similarity in the simi-

larity matrix. In practice, our experiments showed that the anisotropic diffusion smoothing

technique is much more stable and effective in smoothing the similarity matrices. We use

it in the final configuration of the Min Cut system. This method takes as input the K and

A parameters, as well as the desired number of iterations. The parameters are tuned on the

development set.

3.5 Min Cut Segmentation Pseudo-Code

We conclude this chapter by providing the implementation pseudo-code for the Min Cut

segmentation system.



Function: ComputeTfIdfWeights ( WordFrequencyMap, text, nSegments)

Returns : map of sentences and word types to word counts

begin
TfldfMap +- makeNewMap () ;

segmentedText *- generateUnif ormSegmentat ion (text, nSegments) ;

/* Compute chunk count of each word type in the text */

foreach segment in segmentedText do

foreach wordType in segment do
documentFrequency(wordType) - documentFrequency(wordType) + 1 ;

end

end

/* Compute word token counts in each chunk and the tfIdf weights */

foreach segment in segmentedText do

foreach word in segment do
termFrequency(word,segment) +- termFrequency(word) + 1;

end

foreach wordType in getWordTypes (segment) do
idf +- log (nSegments + documentFrequency(wordType));

TfldfMap(wordType, segment) <- termFrequency(word,segment) x idf;

end

end

return TfldfMap ;

end



Function: MinCutSeg(text, nSegments, params)

Returns : the optimal segmentation of the text into the target number of segments

begin
text +- Stem(text) ;

WordFrequencyMap + ComputeWordFrequencies (text) ;

TfldfWeights - ComputeTfIdfWeights( WordFrequencyMap, text) ;

WeightedrequencyMap - ApplyTf Idf Weights( WordFrequencyMap, TfldfWeights) ;

SentenceVectorNorms <- Compute SentenceVectorNorms ( WeightedFrequencyMap) ;

foreach sentencei in text do

foreach sentencej in text do
s - 0 ;

foreach wordType in getWordTypes(sentencei) n getWordTypes(sentencej) do
s +- s + WeightedFrequencyMap(sentencei,wordType) x

WeightedFrequencyMap(sentencej ,wordType) ;

end

s +- s + [SentenceVectorNorms(sentencei) x SentenceVectorNorms(sentencej)] ;

SimilarityMatrix(sentencei, sentencej) - e s ;

end

end

S +- ApplyAnisotropicDif fusion(SimilarityMatrix,params) ;

return ComputeOptimalSegmentation(S, nSegments) ;

end



Function: ApplyAnisotropicDiffusion(S, params)

Returns : apply anisotropic diffusion smoothing to the similarity matrix

begin
numRows +- getNumRows(S) ;

-- params.K ;

A -- params.A;

U - makeNewMatrix(numRows, numRows) ;

Temp +- makeNewMatrix (numRows, numRows) ;

for t - 0 to params.nIterations do

for i +- 0 to numRows do

for j +- 0 to numRows do
dN- dS +- dE +- dE +- cN +- cS - cE cW - 0 ;

if i > 0 then dN +- S(i-l,j) - S(i,j) else dN <- S(i-1,j) - S(i,j)

if i + 1 < numRows then dS - S(i + 1,j) - S(i,j) else dS -- -S(i, j)

if j + 1 < numRows then dE - S(i,j + 1) - S(i,j) else dE - -S(i,j)

if j > 0 then dW -- S(i,j - 1) - S(i,j) else dW ~ -S(i,j)

cN - 1 / (1 + (dN 2) /(K2))

cS - 1 / (1 + (dS2 ) /(K 2 ))

cE - 1 / (1 + (dE 2) /(K 2))

cW - 1 / (1 + (dW 2 ) /(K
2

))

U(i,j) - S(i,j) + A - (cN. dN + cS - dS + cE - dE + cW + dW) ;

/* Swap the matrix for the previous iteration with the updated

similarity matrix

Temp + S ;

S U;

U Temp ;

end

end

end

return S;

end



Function: ComputeOptimalSegmentation (S, nSegments)

Returns : the optimal segmentation of the text into the target number of segments. The

boundary indices specify the index of the sentence before which the boundary is

placed. The indices are 0-based, and the last boundary is always placed after the

last sentence. The boundary before the first sentence is implicit.

begin
nCutTable - precomputeNormalizedCuts(S);

backTraceTable -- runDynamicProgramming (nCut Table, nSegments) ;

nRows +- getNumRows (backTrace Table) ;

nCols - getNumCols(backTraceTable) ;

seg = makeNewVector() ;

seg.add(nCols) ;

i <-- nRows -1;

j +- nCols -1;

/* The backtrace indices are inclusive: i j ==> Ii .. jI

So, add 1: i j ==> Ii .. .jlj+1*

while i > 0 do
j -- backTraceTable(i,j);

seg.add(j +1);

i -i-1;

end

reverseArray(seg) ;

return seg ;

end



Function: precomputeNormalizedCuts (S)

Returns : the precomputed matrix of partial normalized cut terms cut[Aj,k,V-Aj,k]
vol[Aj,k]

begin
nRows +- getNumRows ;

nCols <- getNumCols ;

nCutsTable +- makeNewMatrix (nRows,nCols) ;

columnSum - makeNewVector (nCols) ;

for i <- 0 to nCols do

for j +- 0 to numRows do
columnSum(i) +- columnSum + S(j,i) ;

end

end

/* Sum of entries S(startIndex:endIndex, startIndex:endIndex) *

intraSegmentVolume +- 0 ; lastIntraSegmentVolume +- 0 ;

/* The Sum of columns from startIndex to endIndex *

volume +- 0 ; lastVolume - 0 ;

for startIndex +- 0 to nRows-1 do

for endlndex +- 0 to numRows-1 do

if endlndex = startlndex then
lastVolume +- 0; lastIntraSegmentVolume +- 0;

end

intraSegmentVolume - 0 ;

for i -- startlndex to endlndex-2 do
intraSegmentVolume +- intraSegmentVolume + S(endIndex,i) ;

end

intraSegmentVolume - intraSegmentVolume * 2;

intraSegmentVolume +- intraSegmentVolume + lastIntraSegmentVolume +

S(endIndex,endIndex) ;

/* volume = assoc(A,V): associativity score of intraClass nodes and

all other nodes in the graph *,

volume +- lastVolume + columnSum(endIndex) ;

cutValue +- volume - intraSegmentVolume ;

nCutsTable(startIndex,endIndex) +- cutValue / volume ;

lastIntraSegmentVolume -- intraSegmentVolume ;

lastVolume - volume ;

end

end

return nCutsTable ;

end



Function: runDynamicProgramming (nCuts Table, numCuts)

Returns : The backTrace matrix which contains the optimal Normalized Cut segmentation

begin
nRows <-- getNumRows (nCuts Table); nCols ~ getNumCols (nCuts Table) ;

costMatrix +- makeNewMatrix (numCuts+1,nRows);

backTrace <- makeNewMatrix (numCuts+l,nRows) ;

for i +- 0 to nRows-1 do

for j -- 0 to numCuts+l do
costMatrix(j,i) - MAX_VALUE;

backTrace(j,i) +--1;

end

end

for i +- 0 to nCuts-1 do

for j - 0 to nRows-1 do

if i = 0 then

/* Assume first boundary is before the first sentence */

startIndex -- 0 ; endIndex - j ;

costMatrix(i,j) -- nCutsTable(startIndex,endIndex) ;

backTrace(i,j) - 0;

continue;

end

if j = 0 and i > 0 then continue;

scoreList +- makeNewVector () ;

for k +- 0 to j-1 do
cost <- costMatrix(i - 1,k) ;

startIndex -- k + 1 ;

endIndex - j ;

updatedCost - cost + nCutsTable(startIndex,endIndex) ;

pair <-- makeNewPair(k, updatedCost) ;

scoreList.add(pair) ;

end

minPair = f indMin(scoreList) ;

costMatrix(i,j) minPair.getValue() ;

backTrace(i,j) *- minPair.getKey() ;

end

end

return backTrace;

end
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Chapter 4

Experimental Results

In this chapter, we will analyze the performance of the minimum cut algorithm on spoken

lecture data and compare our system with other state-of-the-art text segmentation systems.

First, we explain the evaluation metrics used in our analysis and the human agreement

results on the data. Then we examine the effect of long-range lexical dependencies employed

by the model. In order to gauge its effectiveness, we compare our system with other leading

segmentation systems on synthetic and spoken lecture data-sets. We also examine the effect

of speech recognition error on segmentation accuracy. We conclude by experimenting with

the problem of identifying lecture topic boundaries directly from acoustic features of the

speech signal.

4.1 Evaluation Metrics

The scoring of text segmentation systems can be problematic in several respects. First,

the true segment boundaries against which a hypothesized segmentation is to be scored

may not be the only sensible way of partitioning a text. Different human subjects may

segment a text at different levels of granularity and rely on different subjective criteria in

judging whether a given text fragment constitutes a coherent topic. By choosing a single

reference segmentation, we may penalize the system for not adhering to one segmentation

standard among many admissible alternatives. We can control for this factor by looking

at the extent of human agreement on spoken lecture data. This problem will be further

explored in section 4.3 on human agreement analysis.

A second challenge is that the evaluation measures must be discriminating enough to



pick up small differences between systems. For text segmentation, traditional classification

evaluation measures such as precision and recall will be too coarse-grained to capture cases

where there is a near mismatch between hypothesized and reference boundaries. It is

necessary to employ a more flexible penalty measure, which will not use the zero-one loss

to penalize near misses. We follow past segmentation literature in scoring the segmentation

systems with the Pk and WindowDiff measures (Beeferman et al., 1999; Pevzner and Hearst,

2002). We also plot the Receiver Operating Characteristic (ROC) Curve to measure system

performance at a finer level of discrimination (Swets, 1988).

4.1.1 Pk Measure

We can decompose the segmentation problem into a set of sub-tasks which aim to establish

whether pairs of sentences from the text belong to the same segment. With this interpre-

tation, a natural error metric is the probability that there would be a mismatch in the

way that the hypothesis and the reference associate or disassociate a randomly chosen pair

of sentences. We can compute this probability by marginalizing the joint probability of

error and sentence pairs, si and sj, conditioned on the reference (ref) and hypothesis (hyp)

segmentations:

P(error ref, hyp)= P(error, si, sj Iref, hyp)= (4.1)
i,j

P(si, sj Iref, hyp) - P(errorlsi, sj, ref, hyp) (4.2)
ij

In order to compute this probability, we need to define a distribution over possible

sentence pairs. One possible candidate is the uniform distribution. In practice, however,

it is not desirable to assign equal weight to mistakes on pairs with different spans. For

example, consider that sentences at different ends of a lecture will be classified correctly

by most segmentation systems. Hence, a distribution for sentence pairs is chosen so that

all probability mass will be distributed equally among word pairs that are exactly k words

apart. Another common modification is to define the error metric over pairs of words, since

sentences tend to vary markedly in length.

The Pk measure then is the probability that a randomly chosen pair of k words apart



in the text is incorrectly classified. That is if in the hypothesis, the two words belong to

the same segment, while in the reference they belong to different segments or vice versa.

Since P(errorjls, sj, ref, hyp) is either 1 in case of mismatch or 0 in case of a match, and

P(si, sj Iref, hyp) is uniform over words placed k words apart, equation 4.2 reduces to the

following formula:

N-k

Pk(ref,hyp) N-k (ref(i, i + k) 5 6hyp(i,i + k)) (4.3)
i=l

where T is the xnor operator (it evaluates to 1 only if the two arguments are not

equal), N is the number of words in the text. 6ref(i, j) and 6hyp(i, j) are indicator functions

which evaluate to 1 if the two word indices fall within the same segment in the reference

and hypothesis segmentations and 0 otherwise. k is a parameter typically set to half the

average segment length. We follow Choi (2000) and compute the mean segment length used

in determining the parameter k on each reference text separately

Intuitively, formula 4.3 can be interpreted as follows. We shift a window of k words

across the text and determine if the terminal words at the ends of the window belong to

the same segment for the reference and hypothesis segmentations. The overall penalty is

the fraction of cases where the two indicator functions disagree.

In practice, the Pk measure exhibits high variability on real data. In fact, the notion

of statistically significant difference in the Pk measure mean is ill-defined, because, strictly

speaking, the Pk measure score is not comparable across two different transcripts with

different mean segment lengths. Nevertheless, in order to be able to compare with past

segmentation results we take the average of Pk measure scores across all the individual

transcripts.

4.1.2 WindowDiff

Pevzner and Hearst (2002) presented a critique of the Pk measure. One of the problems

they identify is that with greater variation in segment length, the measure becomes more

lenient. The primary reason for this is that a penalty is registered only if the reference

and hypothesis differ in their assignment of the word pair to the same segment or to two

different segments. This approach will not identify errors where both the reference and



the hypothesis assign words to different segments, yet in one segmentation there are more

intervening segments than in the other. In other words, false positives or false negatives

near actual boundaries may not be penalized.

To remedy this problem, Pevzner and Hearst introduced a variant on the Pk measure,

the WindowDiff metric, which exacts a penalty only if the number of boundaries between

positions i and j placed in the reference segmentation conflicts with the number of bound-

aries in the same span of the hypothesized segmentation. In other words, the new criterion

becomes:

N-k

WindowDiff(ref, hyp) = N k Z(bref (i,i + k) - bhyp(i,i + k) > 0),
i=1

where b(i, i + k) represents the number of boundaries placed between the positions i and

i + k in the text.

4.1.3 Receiver Operating Characteristic Curve

Receiver Operating Characteristic (ROC) Curves are one of the standard ways of evaluating

binary classifiers in machine learning literature (Swets, 1988). We apply this criterion for

the evaluation of segmentation quality to yield a more refined analysis than the one possible

with WindowDiff and Pk metrics.

Most classifiers assign test instances a score and decide the actual class of the instance by

comparing this score against a threshold. As the threshold is adjusted to allow for more true

positives, the false positives rate also goes up. The ROC plot is the plot of the true positive

rate against the false positive rate for various settings of a decision threshold. Ideally, the

true positive rate will increase at the cost of a minimal increase in false positives. So sharper

ROC curves with larger areas under the curve indicate better discrimination performance.

In our case, the concept of a true positive and a false positive is not as straightforward

as in many other settings, since the output of the system is not a single binary classification

decision, but an entire set of boundaries. To be able to make use of this metric we take

the threshold to be the distance from the original hypothesized boundaries within which

all of the word positions will be considered hypothesized boundaries. In our case, the true

positive rate is the fraction of boundaries correctly classified, and the false positive rate is

the fraction of non-boundary positions incorrectly classified as boundaries. At zero distance



Segments per Total Word ASR WER
Corpus Lectures Lecture Tokens Accuracy
Physics 33 5.9 232K 19.4%

AI 22 12.3 182K x

Table 4.1: Lecture Corpus Statistics

the original boundaries are taken as the set of hypotheses, and the raw true positive and

false positive rates are computed. As the threshold distance is increased more and more

of the reference boundaries will fall within the range of the hypothesized spans, but the

number of false positives will increase as well. The advantage of the ROC curve is that it

allows us to aggregate the error statistics from all of the test hypotheses and to visualize

the correspondence between increasing accuracy and false positives.

4.2 Data

We evaluate our segmentation algorithm on three sets of data. Two of the datasets we use

are new segmentation collections that we have compiled for this study, and the remaining set

includes a standard collection previously used for evaluation of segmentation algorithms. In

Appendix A, we provide examples of segmented transcripts from each of these sets. Various

corpus statistics for the new datasets are presented in Table 4.1. Below we briefly describe

each corpus.

4.2.1 Physics Lecture Corpus

Our first corpus consists of spoken lecture transcripts from an undergraduate Physics class.

In contrast to other segmentation datasets, our corpus contains much longer texts. A typical

lecture of 90 minutes has 500 to 700 sentences with 8500 words, which corresponds to about

15 pages of raw text. We have access both to manual transcriptions of these lectures and

also output from an automatic speech recognition system. A speaker-dependent model of

the lecturer was trained on 38 hours of lectures from other courses using the MIT Summit

Speech Recognition System (Glass, 2003). The word error rate for the latter system on

Physics lecture data is 19.4%, which is representative of state-of-the-art performance on

lecture material (Leeuwis et al., 2003; Furui, 2003; Cettolo et al., 2004; Fugen et al., 2006).



In section 4.6, we will analyze the effect of speech recognition error on segmentation accuracy

with speaker independent models.

The Physics lecture transcript segmentations were produced by the teaching staff of the

Physics course at the Massachusetts Institute of Technology. Their objective was to facilitate

access to lecture recordings available on the class website. This segmentation conveys the

high-level topical structure of the lectures. On average, a lecture was annotated with six

segments, and a typical segment corresponds to two pages of a transcript.

4.2.2 AI Lecture Corpus

Our second lecture corpus differs in subject matter, lecturing style, and segmentation gran-

ularity. The graduate Artificial Intelligence class has, on average, twelve segments per

lecture, and a typical segment is about half of a page. One segment roughly corresponds to

the content of a slide. This time the segmentation was obtained from the lecturer herself.

The lecturer went through the transcripts of lecture recordings and segmented the lectures

with the objective of making the segments correspond to presentation slides for the lectures

that she intended to use the next time that she was going to teach the class. Due to the low

recording quality, we were unable to obtain the ASR transcripts for this class. Therefore,

we only use manual transcriptions of these lectures.

4.2.3 Synthetic Corpus

Also as part of our analysis, we used the synthetic corpus created by (Choi, 2000) which

is commonly used in the evaluation of segmentation algorithms. This corpus consists of a

set of concatenated segments randomly sampled from the Brown corpus. The length of the

segments in this corpus ranges from three to eleven sentences. Again, it is important to

underscore that the lexical transitions in these concatenated texts are very sharp, since the

segments come from texts written in widely varying language styles on completely different

topics.

4.3 Human Agreement Analysis

In order to be able to reliably score systems on the non-synthetic data, there needs to be a

well-defined and consistent notion of a reference segment boundary.



O A B C
MEAN SEGMENT COUNT 6.6 8.9 18.4 13.8
MEAN SEGMENT LENGTH 69.4 51.5 24.9 33.2

SEGMENT LENGTH STD. DEV. 39.6 37.4 34.5 39.4

Table 4.2: Annotator Segmentation Statistics for the first ten Physics lectures.

REF/HYP O A B C
0 0 0.243 0.418 0.312
A 0.219 0 0.400 0.355
B 0.314 0.337 0 0.332
C 0.260 0.296 0.370 0

Table 4.3: Pk annotation agreement between different pairs of annotators. Note that the
measure is not symmetric.

Spoken lectures are very different in style from other corpora used in human segmen-

tation studies (Hearst, 1994; Galley et al., 2003). We are interested in analyzing human

performance on a corpus of lecture transcripts with much longer texts and a less clear-cut

concept of a sub-topic.

As part of our human segmentation analysis, we asked three annotators to segment

the Physics lecture corpus. These annotators had taken the class in the past and were

familiar with the subject matter under consideration. We wrote a detailed instruction

manual for the task,' with annotation guidelines for the most part following the model

used by Gruenstein et al. (2005). The annotators were instructed to segment at a level

of granularity that would identify most of the prominent topical transitions necessary for

a summary of the lecture. The annotators used the NOMOS annotation software toolkit,

developed for meeting segmentation (Gruenstein et al., 2005).

The annotators were provided with recorded audio of the lectures and the corresponding

text transcriptions. We intentionally did not provide the subjects with the target number

of boundaries, since we wanted to see if the annotators would converge on a common

segmentation granularity.

Table 4.2 presents the annotator segmentation statistics. We see two classes of segmen-

tation granularities. The original reference (0) and annotator A segmented at a coarse

1The instructions are included in appendix A



level with an average of 6.6 and 8.9 segments per lecture, respectively. Annotators B and

C operated at much finer levels of discrimination with 18.4 and 13.8 segments per lecture

on average. We conclude that multiple levels of granularity are acceptable in spoken lec-

ture segmentation. This is expected given the length of the lectures and varying human

judgments in selecting relevant topical content.

Following previous studies, we quantify the level of annotator agreement with the Pk

measure (Gruenstein et al., 2005).2 Table 4.3 shows the annotator agreement scores between

different pairs of annotators. The majority of the three annotators agree on the exact

placement of a third of all of the boundaries, not counting the boundaries at the very

beginning and end of the texts.

Pk measures ranged from 0.24 and 0.42. We observe greater consistency at similar levels

of granularity, and less so across the two classes. Note that annotator A operated at a

level of granularity consistent with the original reference segmentation. Hence, the 0.24

Pk measure score serves as the benchmark result with which we can compare the results

attained by segmentation algorithms on the Physics lecture data. As an additional point

of reference we note that the uniform and random baseline segmentations attain 0.469 and

0.493 Pk measure, respectively, on the Physics lecture set. From the agreement results, we

can conclude that the lecture segmentation problem is difficult even for humans. However,

the task exhibits a high degree of regularity, and most cases of disagreement correspond

either to different conceptions of granularity or different approaches of addressing spoken

discourse artifacts such as off-topic remarks, audience-speaker interaction, or non-topical,

presentational changes. Barring these peculiarities, the concept of a topic is uncontroversial

and quite natural.

4.3.1 Setup and Parameter Estimation

A heldout development set of three lectures is used for estimating the optimal window

length, the distance thresholds for discarding node edges, the number of uniform chunks for

estimating Tf-Idf lexical weights, and the anisotropic diffusion smoothing parameters which

2 Kappa measure would not be the appropriate measure in this case, because it is not sensitive to
near misses, and we cannot make the required independence assumption on the placement of boundaries.
Cochran's Q test used previously to assess agreement in text segmentation also is not applicable here. Pas-
soneau and Litman (1997) assume that annotators assign a fixed number of boundaries, which does not hold
in our case.



include the lambda and kappa parameters, and the target number of iterations.

One problem is that we do not have access to derivatives of the Pk or WindowDiff

metric with respect to the parameters. The functional dependence between these metrics

and parameters is a step function with discontinuities at every point of change in the

dependent variable. What's more this function is highly non-linear and sensitive to the

features of the data. Nevertheless, there are several search and optimization algorithms

which could potentially be used, including line search and simulated annealing. One point

to keep in mind is that each evaluation of the objective function involves the evaluation of

the Minimum Cut algorithm on three development lectures, which may take up to a second.

So, the number of evaluations should ideally be kept to a minimum.

We use a greedy search procedure for optimizing the parameters, because it has a small

footprint in terms of both time and memory requirements. Each parameter is optimized on

a grid of parameters values, with other parameters kept fixed. After all of the parameters

have been optimized, the search is repeated on a refined grid, until the objective value

converges to a local minimum. Apart from computational efficiency, an added advantage of

this method is that it will be unlikely to overfit the parameters on the development data.

Finally, in our experiments, the number of target segments is set to that of the reference

segmentation for both the Minimum Cut system and the baselines.

4.4 Long-Range Dependency Analysis

We first determine the impact of long-range pairwise similarity dependencies on segmen-

tation performance. Our key hypothesis is that considering long-distance lexical relations

contributes to the effectiveness of the algorithm. To test this hypothesis, we discard edges

between nodes that are more than a certain number of sentences apart. We test the system

on a range of data sets, including the Physics and Al lectures and the synthetic corpus

created by Choi (2000).

The results in Table 4.4 confirm our hypothesis - taking into account non-local lexical

dependencies helps across different domains. On manually transcribed Physics lecture data,

for example, when the algorithm takes into account edges separated by up to a hundred

sentences, it yields 26% lower Pk measure (0.279) than when it considers dependencies up

to ten sentences (0.380). Figure 4-1 shows the ROC plot for the segmentation of the Physics



Table 4.4: Edges between nodes separated beyond a certain threshold distance are removed.

lecture data with different cutoff parameters, again demonstrating clear gains attained by

employing long-range dependencies. As Table 4.4 shows, the improvement is consistent

across all spoken lecture datasets. We note, however, that after some point increasing the

threshold may degrade performance, because it introduces too many spurious dependencies

(see the last column of Table 4.4). The speaker will occasionally return to a topic described

at the beginning of the lecture, and this will bias the algorithm to put the segment boundary

closer to the end of the lecture.

Long-range dependencies do not improve the performance on the synthetic dataset. This

is expected since the segments in the synthetic dataset are randomly selected from widely-

varying documents in the Brown corpus, even spanning different genres of written language.

So, effectively, there are no genuine long-range dependencies that can be exploited by the

algorithm.

4.5 Comparison with Local Models

We compare our system with the state-of-the-art similarity-based segmentation system de-

veloped by Choi(2000). We use the publicly available implementation of the system and

optimize the system on a range of mask-sizes and different parameter settings described

in (Choi, 2000) on a heldout development set of three lectures. To control for segmentation

granularity, we specify the number of segments in the reference segmentation for both our

system and the baseline. Table 4.5 shows that the Minimum Cut algorithm consistently

outperforms the similarity-based baseline on all the lecture datasets. We attribute this

EDGE CUTOFF

10 25 50 100 200 NONE

PHYSICS (MANUAL)

PK 0.3802 0.3527 0.3149 0.2788 0.3034 0.3200
WD 0.3927 0.3632 0.3292 0.2962 0.3281 0.3505

AI

PK 0.4375 0.3893 0.3610 0.3680 0.4035 0.3936
WD 0.4515 0.4046 0.3799 0.3892 0.4296 0.4186

CHOI

PK 0.1483 0.1693 0.1830 0.1855 0.1855 0.1855
WD 0.1840 0.2104 0.2347 0.2337 0.2337 0.2337



Table 4.5: Performance analysis of different algorithms on the corpora, with three lectures
heldout for development.

gain to the presence of more attenuated topic transitions in spoken language. Since spoken

language is more spontaneous and less structured than written language, the speaker needs

to keep the listener abreast of the changes in topic content by introducing subtle cues and

references to prior topics in the course of topical transitions. Non-local dependencies help

to elucidate shifts in focus, because the strength of a particular transition is measured with

respect to other local and long-distance contextual discourse relationships.

Our system does not outperform Choi's algorithm on the synthetic data. This again can

be attributed to the discrepancy in distributional properties of the synthetic corpus which

lacks coherence in its thematic shifts and the lecture corpus of spontaneous speech with

smooth distributional variations. We also note that we did not try to adjust our model

to optimize its performance on the synthetic data. The smoothing method developed for

lecture segmentation may not be appropriate for short segments ranging from three to eleven

sentences that constitute the synthetic set.

We also compared our method with another state-of-the-art algorithm which does not

explicitly rely on pairwise similarity analysis. This algorithm (UI) computes the optimal

segmentation by estimating changes in the language model predictions over different parti-

tions (Utiyama and Isahara, 2001). We used the publicly available implementation of the

system that does not require parameter tuning on a heldout development set.

Again, our method achieves favorable performance on a range of lecture data sets (See

Table 4.5), and both algorithms attain results close to the range of human agreement scores.

CHOI UI MINCUT

PHYSICS (MANUAL)

PK 0.372 0.310 0.281
WD 0.385 0.323 0.301

AI

PK 0.445 0.374 0.378
WD 0.478 0.420 0.393

CHOI

PK 0.110 0.105 0.133
WD 0.121 0.116 0.154
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Figure 4-1: ROC plot for the Minimum Cut Segmenter on thirty Physics Lectures, with
edge cutoffs ranging from one to hundred sentences.

SD SI+ SI-
%WER 18.4 32.7 44.9

Table 4.6: Word Error Rates for different ASR Models

4.6 Effect of Speech Recognition Accuracy

In order to determine how robust our method is in the presence of transcription errors, we

analyzed its performance on Automatic Speech Recognition (ASR) transcripts with various

levels of word error.

The three speech recognition models used to generate these transcript sets were the

speaker-dependent model (SD), the speaker independent model (SI + ) with speech samples

of the speaker included in the training data, and finally the speaker independent model

(SI-) with all instances of the test speaker's utterances removed from training (See Table

4.6 for for their respective word error rates).



SYSTEM SD SI +  SI-

Pk MEASURE

MINCUT 0.3023 0.3329 0.3302
UI 0.3220 0.3183 0.3527

WINDOWDIFF MEASURE

MINCUT 0.3183 0.3469 0.3474
UI 0.3369 0.3324 0.3664

Table 4.7: Segmentation Results on transcripts with different levels of word error

The MinCut and the UI segmentation system were tested on each of these ASR transcript

sets. The results in Table 4.7 show that the minimum cut system is robust in noisy speech

environments. In fact for two of the three test conditions it outperforms the UI baseline,

and it comes close to the results derived from the manually transcribed data.

4.7 Speech Segmentation Experiments

In this section, we demonstrate that our algorithm is not only applicable in settings where

words and lexical similarity information is available. We include a proof-of-concept exper-

iment with segmentation of acoustic signal without any intermediate speech recognition

processing.

4.7.1 Unsupervised Pattern Discovery in Speech

We obtain the representation of speech from automatically derived word clusters, generated

by Park's unsupervised word acquisition method (Park, 2006). We note that we only use

the intermediate similarity representation derived from this method, as the actual word

clusters computed would be too sparse to give us a rich enough representation which could

enable us to discern changes in lexical distribution. Many of the words occurring only a few

times in the text are pruned away by this method, even though the cumulate sum of these

items is enough to have a dramatic impact on the results. Below, we outline the steps for

the feature extraction approach.

Signal Processing The speech is converted into a time series of Mel-scale cepstral co-

efficients (MFCCs), the representation most commonly used in speech recognition. The



Table 4.8: Aligned Word Paths

SUMMIT speech recognizer front-end is used for signal processing (Glass, 2003).

This process can be summarized as follows. After capturing the acoustic signal as

a digital waveform sampled at a rate of 16 kHz, the waveform mean and magnitude is

normalized. The short-time Fourier transform is taken with a frame interval of 10 ms, a 25.6

ms Hamming window, and a 256 point discrete Fourier transform. The spectral energy from

the Fourier Transform then is weighted by the Mel-frequency filters, and finally the discrete

cosine transform of the log of Mel-frequency spectral coefficients is computed, yielding a

series of 14-dimensional MFCC vectors.

Segmental DTW A variation of the Dynamic Time Warping algorithm is used to align

most similar fragments of speech in the lecture (Park and Glass, 2006). First, the distance

matrix is generated by computing distances between the MFCC vectors for pairs of utter-

ances. The matrix is cut into diagonal bands with a fixed width to limit the amount of

distortion in the aligned paths. Optimal paths with the lowest distortion cost through the

bands are found by the Dynamic Time Warping Algorithm. Each path is then trimmed

to the least average subsequence (See Figure 4-2). The average of the sequence distortion

profile is subtracted from the maximum distortion, yielding a similarity profile over time.

Table 4.8 shows some examples of aligned word paths in a Physics transcript.

4.7.2 Speech Minimum Cut

Once the highest scoring paths are extracted for each pair of utterances and the similarity

score is computed, we employ this information to develop a suitable representation for the

Target Words
direction half seconds acceleration

Aligned Words
direction which per second acceleration
direction and per second squared acceleration
that action a second square acceleration
y direction seconds explanation
direction the per second squared rotation
direction trays calculation
direction acceleration



Utterance I

W

Figure 4-2: Illustration of Dynamic Time Warping from (Park and Glass, 2006).

mincut algorithm. In its original form the similarity profile is too sparse There are gaps

between aligned utterance fragments and they also differ in duration.

In order to use our system, we quantize the data by splitting the lecture into contiguous

time blocks to make the nodes in the similarity profile more uniform. We aggregate the

similarity scores for paths that fall within these time blocks. More formally if S(pi,pj) is

the similarity score for the aligned paths pi and pj, and B(pi) is the index of the time block

within which the start-time of path pi falls, then the similarity between the time blocks

is computed as follows: S(bi, bj) = EpiEA,pjEB S(pi,pj), where A = {pijB(p) = bi} and

B = {pilB(pj) = bj}.

After quantization, we use the anisotropic diffusion method proposed in (Perona and

Malik, 1990) to smooth the similarity matrix (See section 3.4). A sample lecture similarity

matrix is shown in figure 4-3. Since the matrix is symmetric, only the upper portion of

the matrix is shown. Each element of the matrix corresponds to a rectangular patch in the

image. The matrix entries determine the color of each patch. The values are scaled to the

range of a colormap ranging from blue to red. The intensity of the red color indicates the

degree of acoustic similarity. Vertical lines in the image are reference segment boundaries.

Again, here we see that concentrated patches of similarity correspond to topical segments

in a lecture.
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Figure 4-3: Smoothed word-fragment similarity matrix of a Physics lecture. The degree
of block similarity is captured by the intensity of the color, ranging from blue (lowest
similarity) to red (highest similarity).

We tuned the number of quantized blocks as well as the kappa, lambda parameters, and

the number of iterations in the anisotropic algorithm on a heldout set of three development

lectures.

With the target number of segments set to the reference number of segments, the min-

imum cut segmenter on the set of 33 Physics lectures yields 0.38 average Pk measure and

0.3933 average WindowDiff measure. This result is significantly better than the scores at-

tained by uniform and random segmentations, and is close to the performance of the Choi

baseline on the Physics lecture set. In some of the individual lectures, the resulting seg-

mentation actually improved on the minimum cut text segmentation result, but the overall

result is worse perhaps owing to noise and acoustic irregularities.

We note that it would not be possible to incorporate the acoustic similarity information

for the UI baseline, because this algorithm operates over text ngrams.



4.8 Conclusion

In this chapter, we layed out the the experimental basis for the effectiveness of our algorithm.

In particular, we showed that the task of spoken lecture segmentation is qualitatively differ-

ent from previous segmentation tasks with written language on synthetic corpora. The new

features of this problem are not well modeled by the previous algorithms, which principally

relied on assumptions of locality in lexical similarity changes to discern boundaries. Our re-

sults show that being able to exploit the global characteristics of the similarity distribution

is critical in our ability to model spoken discourse topics.

Our new framework attains the new state-of-the-art baseline in spoken lecture segmen-

tation. Moreover, we demonstrate that the method is applicable in a variety of other

segmentation scenarios where object similarity information is available. We show that our

framework allows us to find topics from raw acoustic information, which is a highly promis-

ing result, since it obviates the need for any intermediate speech recognition.
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Chapter 5

Conclusions and Future Work

In this thesis we presented a novel framework for domain-independent text segmentation.

We modeled text segmentation as a graph-partitioning task aiming to simultaneously opti-

mize the total similarity within each segment and dissimilarity across various segments. We

showed that our method is able to handle long-range lexical dependencies through global

analysis of lexical distribution and is robust in the presence of recognition errors. Combining

this type of analysis with advanced methods for smoothing (Ji and Zha, 2003) and weighting

could further boost the performance of algorithms on the problem of lecture segmentation.

We analyzed variations in the segmentation performance on a range of testing conditions.

Not surprisingly, the performance of the algorithms depends on the distributional properties

of the input text. We found that the segmentation accuracy on the synthetic set is not

predictive of the performance on real data. These results strongly suggest that segmentation

algorithms have to be evaluated on a collection of texts displaying real-world variability.

In the course of our work we experimented with techniques for refining the lexical simi-

larity measure with Latent Semantic Analysis, more powerful lexical weighting techniques,

and various clustering methods. We also tested ways of merging unsupervised and super-

vised models for text segmentation. However, we were not able to improve upon the current

segmentation system. These ideas are worth further exploration.

Our current implementation also does not automatically determine the granularity of a

resulting segmentation. This issue has been explored in the past (Ji and Zha, 2003; Utiyama

and Isahara, 2001), and we will explore the existing strategies in our framework. We believe

that the algorithm has to produce segmentations for various levels of granularity, depending



on the needs of the application that employs it.

Finally, we would like to test our system on the other spoken language corpora, and

attempt to model hierarchical segmentation within the minimum cut framework.

Our ultimate goal is to be able to summarize spoken lectures. We will explore how

the interaction between the segmentation and content selection, ordering and generation

components can improve the performance of such a system as a whole.



Appendix A

Physics and AI Lecture Examples

A.1 Physics Lecture

1 <section 1>

2 In physics, we explore the very small to the very large.

The very small is a small fraction of a proton and the very large is the

3 universe itself.

4 They span 45 orders of magnitude-- a 1 with 45 zeroes.

5 To express measurements quantitatively we have to introduce units.

And we introduce for the unit of length, the meter; for the unit of time,
6 the second; and for the unit of mass, the kilogram.

Now, you can read in your book how these are defined and how the definition

7 evolved historically.

Now, there are many derived units which we use in our daily life for

8 convenience and some are tailored toward specific fields.

9 We have centimeters, we have millimeters kilometers.

o10 We have inches, feet, miles.

Astronomers even use the astronomical unit which is the mean distance

between the Earth and the sun and they use light-years which is the
11 distance that light travels in one year.

We have milliseconds, we have microseconds we have days, weeks, hours,
12 centuries, months-- all derived units.

13 For the mass, we have milligrams, we have pounds we have metric tons.

14 So lots of derived units exist.

1i Not all of them are very easy to work with.

16 I find it extremely difficult to work with inches and feet.



17 It's an extremely uncivilized system.

I don't mean to insult you, but think about it-- 12 inches in a foot, three

18 feet in a yard.

19 Could drive you nuts.

I work almost exclusively decimal, and I hope you will do the same during

20 this course but we may make some exceptions.

21 </section 1>

22 <section 2>

23 I will now first show you a movie, which is called The Powers of Ten.

24 It covers 40 orders of magnitude.

It was originally conceived by a Dutchman named Kees Boeke in the early

25 '50s.

This is the second-generation movie, and you will hear the voice of

26 Professor Morrison, who is a professor at MIT.

27 The Power of Ten-- 40 Orders of Magnitude.

28 Here we go.

29 MORRISON: 1 October.

30 We begin with a scene 1 meter wide which we view from just 1 meter away.

Now, every 10 seconds we will look from 10 times farther away and our field

31 of view will be 10 times wider.

This square is 10 meters wide and in 10 seconds, the next square will be 10

32 times as wide.

Our picture will center on the picnickers even after they have been lost to

33 sight.

34 100 meters wide-- the distance a man can run in 10 seconds.

35 Cars crowd the highway, powerboats lie at their docks.

36 The colorful bleachers are Soldiers' Field.

This square is a kilometer wide-- 1,000 meters-- the distance a racing car

37 can travel in 10 seconds.

38 We see the great city on the lake shore.

10 to the fourth meters-- 10 kilometers the distance a supersonic airplane
39 can travel in 10 seconds.

40 We see first the rounded end of Lake Michigan then the whole Great Lake.

10 to the fifth meters-- the distance an orbiting satellite covers in 10
41 seconds.

42 Long parades of clouds, the day's weather in the middle west.

43 10 to the sixth-- a 1 with six zeros, a million meters.



44 Soon the Earth will show as a solid sphere.

We are able to see the whole Earth now just over a minute along the

45 journey.

Earth diminishes into the distance but those background stars are so much

46 farther away they do not yet appear to move.

47 A line extends at the true speed of light.

48 In one second, it half crosses the tilted orbit of the moon.

Now we mark a small part of the path in which the Earth moves about the

49 Sun.

50 Now the orbital paths of the neighbor planets.

51 Venus... and Mars... then Mercury.

Entering our field of view is the glowing center of our solar system,

the Sun followed by the massive outer planets swinging wide in their big

52 orbits.

53 That outer orbit belongs to Pluto.

54 A fringe of a myriad comets too faint to see completes the solar system.

10 to the 14th-- as the solar system shrinks the one bright point in the

55 distance our sun is plainly now only one among the stars.

Looking back from here we note four southern constellations still much as

56 they appear from the far side of the Earth.

This square is 10 to the 16th meters, one light-year not yet out to the

57 next star.

58 Our last 10-second step took us 10 light-years further.

59 The next will be a hundred.

Our perspective changes so much in each step now that even the background

60 stars will appear to converge.

61 At last, we pass the bright star Arcturus and some stars of the Dipper.

Normal but quite unfamiliar stars and clouds of gas surround us, as we

62 traverse the Milky Way galaxy.

Giant steps carry us into the outskirts of the galaxy and as we pull away,

63 we begin to see the great flat spiral facing us.

The time and path we chose to leave Chicago has brought us out of the

64 galaxy along a course nearly perpendicular to its disc.

The two little satellite galaxies of our own are the Clouds of Magellan--

65 10 to the 22nd power, a million light-years.

66 Groups of galaxies bring a new level of structure to the scene.

Glowing points are no longer single stars but whole galaxies of stars seen
67 as one.

68 We pass the big Virgo cluster of galaxies, among many others.



69 100 million light-years out.

70 As we approach the limit of our vision we pause to start back home.

71 This lonely scene, the galaxies like dust is what most of space looks like.

72 This emptiness is normal.

73 The richness of our own neighborhood is the exception.

The trip back to the picnic on the lakefront will be a sped-up version

reducing the distance to the Earth's surface by one power of 10 every two

74 seconds.

In each two seconds, we will appear to cover 90% of the remaining distance

75 back to Earth.

Notice the alternation between great activity and relative inactivity a

rhythm that will continue all the way into our next goal-- a proton in the

nucleus of a carbon atom beneath the skin on the hand of the sleeping man

76 at the picnic.

10 to the ninth meters... 10 to the eighth... seven... six... five...

77 four... three... two... one.

78 We are back at our starting point.

79 We slow up at 1 meter, 10 to the zero power.

Now we reduce the distance to our final destination by 90% every 10

so seconds, each step much smaller than the one before.

At 10 to the minus two-- 1/100th of a meter, one centimeter-- we approach

81 the surface of the hand.

In a few seconds, we'll be entering the skin crossing layer after layer

82 from the outermost dead cells into a tiny blood vessel within.

Skin layers vanish in turn-- an outer layer of cells, felty collagen a

83 capillary containing red blood cells and a ruffly lymphocyte.

84 We enter the white cell.

85 Among its vital organelles the porous wall of the cell nucleus appears.

The nucleus within holds the heredity of the man in the coiled coils of

86 DNA.

As we close in, we come to the double helix itself a molecule like a long,

twisted ladder whose rungs of paired bases spell out twice in an alphabet

87 of four letters the words of a powerful genetic message.

88 At the atomic scale, the interplay of form and motion becomes more visible.

We focus on one commonplace group of three hydrogen atoms bonded by

89 electrical forces to a carbon atom.

90o Four electrons make up the outer shell of the carbon itself.

91 They appear in quantum motion as a swarm of shimmering points.



At 10 to the minus 10 meters, one angstrom we find ourselves right among

92 those outer electrons.

93 Now we come upon the two inner electrons held in a tighter swarm.

As we draw toward the atom's attracting center we enter upon a vast inner

94 space.

95 At last, the carbon nucleus.

So massive and so small this carbon nucleus is made up of six protons and

96 six neutrons.

97 We are in a domain of universal modules.

There are protons and neutrons in every nucleus electrons in every atom

98 atoms bonded into every molecule, out to the farthest galaxy.

As a single proton fills our scene we reach the edge of present

99 understanding.

100 Are these some quarks at intense interaction?

101 Our journey has taken us through 40 powers of 10.

If now the field is one unit then, when we saw many clusters of galaxies

102 together it was 10 to the 40th, or 1 and 40 zeroes.

103 </section 2>

104 <section 3>

I already introduced, as you see there length, time and mass and we call

105 these the three fundamental quantities in physics.

I will give this the symbol capital L for length capital T for time, and

106 capital M for mass.

All other quantities in physics can be derived from these fundamental

107 quantities.

108 I'll give you an example.

109 I put a bracket around here.

110 I say [speed] and that means the dimensions of speed.

The dimensions of speed is the dimension of length divided by the dimension

111 of time.

112 So I can write for that: [L] divided by [TI.

113 Whether it's meters per second or inches per year that's not what matters.

114 It has the dimension length per time.

115 Volume would have the dimension of length to the power three.

Density would have the dimension of mass per unit volume so that means
116 length to the power three.

117 All-important in our course is acceleration.



118 We will deal a lot with acceleration.

119 Acceleration, as you will see, is length per time squared.

120 The unit is meters per second squared.

121 So you get length divided by time squared.

122 So all other quantities can be derived from these three fundamental.

123 </section 3>

124 <section 4>

So now that we have agreed on the units-- we have the meter, the second and

125 the kilogram-- we can start making measurements.

Now, all-important in making measurements which is always ignored in every

126 college book is the uncertainty in your measurement.

Any measurement that you make without any knowledge of the uncertainty is

127 meaningless.

128 I will repeat this.

129 I want you to hear it tonight at 3:00 when you wake up.

Any measurement that you make without the knowledge of its uncertainty is

130 completely meaningless.

My grandmother used to tell me that... at least she believed it... that

131 someone who is lying in bed is longer than someone who stands up.

132 And in honor of my grandmother I'm going to bring this today to a test.

I have here a setup where I can measure a person standing up and a person

133 lying down.

134 It's not the greatest bed, but lying down.

I have to convince you about the uncertainty in my measurement because a

135 measurement without knowledge of the uncertainty is meaningless.

136 And therefore, what I will do is the following.

I have here an aluminum bar and I make the reasonable, plausible assumption

that when this aluminum bar is sleeping-- when it is horizontal-- that it

137 is not longer than when it is standing up.

If you accept that, we can compare the length of this aluminum bar with

138 this setup and with this setup.

139 At least we have some kind of calibration to start with.

140 I will measure it.

141 You have to trust me.

142 During these three months, we have to trust each other.

143 So I measure here, 149.9 centimeters.

144 However, I would think that the... so this is the aluminum bar.



145 This is in vertical position.

149.9. But I would think that the uncertainty of my measurement is probably

146 1 millimeter.

147 I can't really guarantee you that I did it accurately any better.

148 So that's the vertical one.

Now we're going to measure the bar horizontally for which we have a setup

149 here.

150 Oop!

151 The scale is on your side.

152 So now I measure the length of this bar.

153 150.0 horizontally.

154 150.0, again, plus or minus 0.1 centimeter.

So you would agree with me that I am capable of measuring plus or minus 1

155 millimeter.

156 That's the uncertainty of my measurement.

Now, if the difference in lengths between lying down and standing up if

157 that were one foot we would all know it, wouldn't we?

You get out of bed in the morning you lie down and you get up and you go,
158 clunk!

159 And you're one foot shorter.

160 And we know that that's not the case.

161 If the difference were only one millimeter we would never know.

Therefore, I suspect that if my grandmother was right then it's probably

162 only a few centimeters, maybe an inch.

And so I would argue that if I can measure the length of a student to one

163 millimeter accuracy that should settle the issue.

164 So I need a volunteer.

165 You want to volunteer?

166 You look like you're very tall.

I hope that... yeah, I hope that we don't run out of, uh... You're not
167 taller than 178 or so?

168 What is your name?

169 STUDENT: Rick Ryder.

170 LEWIN: Rick-- Rick Ryder.

171 You're not nervous, right?

172 RICK: No!



173 LEWIN: Man!

174 ( class laughs ) Sit down.

175 ( class laughs ) I can't have tall guys here.

176 Come on.

177 We need someone more modest in size.

178 Don't take it personal, Rick.

179 Okay, what is your name?

Iso STUDENT: Zach.

181 LEWIN: Zach.

182 Nice day today, Zach, yeah?

183 You feel all right?

184 Your first lecture at MIT?

185 I don't.

186 Okay, man.

187 Stand there, yeah.

188 Okay, 183.2. Stay there, stay there.

189 Don't move.

190 Zach... This is vertical.

191 What did I say?

192 180?

193 Only one person.

194 183?

195 Come on.

196 .2-- Okay, 183.2. Yeah.

And an uncertainty of about one... Oh, this is centimeters-- 0.1

197 centimeters.

198 And now we're going to measure him horizontally.

Zach, I don't want you to break your bones so we have a little step for you

199 here.

200 Put your feet there.

201 Oh, let me remove the aluminum bar.

202 Watch out for the scale.

203 That you don't break that, because then it's all over.



204 Okay, I'll come on your side.

205 I have to do that-- yeah, yeah.

206 Relax.

207 Think of this as a small sacrifice for the sake of science, right?

208 Okay, you good?

209 ZACH: Yeah.

210 LEWIN: You comfortable?

211 ( students laugh ) You're really comfortable, right?

212 ZACH: Wonderful.

213 LEWIN: Okay.

214 You ready?

215 ZACH: Yes.

216 LEWIN: Okay.

217 Okay.

218 185.7. Stay where you are.

219 185.7. I'm sure... I want to first make the subtraction, right?

220 185.7, plus or minus 0.1 centimeter.

221 Oh, that is five... that is 2.5 plus or minus 0.2 centimeters.

222 You're about one inch taller when you sleep than when you stand up.

223 My grandmother was right.

224 She's always right.

225 Can you get off here?

226 I want you to appreciate that the accuracy... Thank you very much, Zach.

That the accuracy of one millimeter was more than sufficient to make the

227 case.

If the accuracy of my measurements would have been much less this

228 measurement would not have been convincing at all.

229 So whenever you make a measurement you must know the uncertainty.

230 Otherwise, it is meaningless.

231 </section 4>

232 <section 5>

Galileo Galilei asked himself the question: Why are mammals as large as
233 they are and not much larger?



234 He had a very clever reasoning which I've never seen in print.

But it comes down to the fact that he argued that if the mammal becomes too

massive that the bones will break and he thought that that was a limiting

235 factor.

Even though I've never seen his reasoning in print I will try to

236 reconstruct it what could have gone through his head.

237 Here is a mammal.

238 And this is one of the four legs of the mammal.

239 And this mammal has a size S.

240 And what I mean by that is a mouse is yay big and a cat is yay big.

241 That's what I mean by size-- very crudely defined.

The mass of the mammal is M and this mammal has a thigh bone which we call

242 the femur, which is here.

243 And the femur of course carries the body, to a large extent.

244 And let's assume that the femur has a length 1 and has a thickness d.

245 Here is a femur.

246 This is what a femur approximately looks like.

So this will be the length of the femur... and this will be the thickness,

247 d and this will be the cross-sectional area A.

I'm now going to take you through what we call in physics a scaling

248 argument.

I would argue that the length of the femur must be proportional to the size

249 of the animal.

250 That's completely plausible.

If an animal is four times larger than another you would need four times

251 longer legs.

252 And that's all this is saying.

253 It's very reasonable.

It is also very reasonable that the mass of an animal is proportional to

254 the third power of the size because that's related to its volume.

And so if it's related to the third power of the size it must also be

proportional to the third power of the length of the femur because of this

255 relationship.

256 Okay, that's one.

257 Now comes the argument.

Pressure on the femur is proportional to the weight of the animal divided

258 by the cross-section A of the femur.

259 That's what pressure is.



And that is the mass of the animal that's proportional to the mass of

the animal divided by d squared because we want the area here, it's

260 proportional to d squared.

261 Now follow me closely.

262 If the pressure is higher than a certain level the bones will break.

Therefore, for an animal not to break its bones when the mass goes up by

a certain factor let's say a factor of four in order for the bones not to

263 break d squared must also go up by a factor of four.

264 That's a key argument in the scaling here.

265 You really have to think that through carefully.

266 Therefore, I would argue that the mass must be proportional to d squared.

267 This is the breaking argument.

268 Now compare these two.

The mass is proportional to the length of the femur to the power three and

269 to the thickness of the femur to the power two.

Therefore, the thickness of the femur to the power two must be proportional

to the length 1 and therefore the thickness of the femur must be

270 proportional to 1 to the power three-halfs.

271 A very interesting result.

272 What is this result telling you?

It tells you that if I have two animals and one is ten times larger than

the other then S is ten times larger that the lengths of the legs are ten

times larger but that the thickness of the femur is 30 times larger because

273 it is 1 to the power three halves.

If I were to compare a mouse with an elephant an elephant is about a

hundred times larger in size so the length of the femur of the elephant

would be a hundred times larger than that of a mouse but the thickness of

274 the femur would have to be 1,000 times larger.

And that may have convinced Galileo Galilei that that's the reason why the

275 largest animals are as large as they are.

Because clearly, if you increase the mass there comes a time that the

276 thickness of the bones is the same as the length of the bones.

277 You're all made of bones and that is biologically not feasible.

278 And so there is a limit somewhere set by this scaling law.

279 Well, I wanted to bring this to a test.

After all I brought my grandmother's statement to a test so why not bring

280 Galileo Galilei's statement to a test?

And so I went to Harvard where they have a beautiful collection of femurs

281 and I asked them for the femur of a raccoon and a horse.



A raccoon is this big a horse is about four times bigger so the length of

282 the femur of a horse must be about four times the length of the raccoon.

283 Close.

284 So I was not surprised.

285 Then I measured the thickness, and I said to myself, "Aha! "

If the length is four times higher then the thickness has to be eight times

286 higher if this holds.

And what I'm going to plot for you you will see that shortly is d divided

by 1, versus 1 and that, of course, must be proportional to 1 to the power

287 one-half.

288 I bring one 1 here.

So, if I compare the horse and I compare the raccoon I would argue that

the thickness divided by the length of the femur for the horse must be the

289 square root of four, twice as much as that of the raccoon.

And so I was very anxious to plot that, and I did that and I'll show you

290 the result.

291 Here is my first result.

292 So we see there, d over 1.

293 I explained to you why I prefer that.

294 And here you see the length.

295 You see here the raccoon and you see the horse.

And if you look carefully, then the d over 1 for the horse is only about

296 one and a half times larger than the raccoon.

297 Well, I wasn't too disappointed.

298 One and a half is not two, but it is in the right direction.

299 The horse clearly has a larger value for d over 1 than the raccoon.

300 I realized I needed more data, so I went back to Harvard.

I said, "Look, I need a smaller animal, an opossum maybe maybe a rat, maybe
301 a mouse," and they said, "okay. "

302 They gave me three more bones.

They gave me an antelope which is actually a little larger than a raccoon
303 and they gave me an opossum and they gave me a mouse.

304 Here is the bone of the antelope.

305 Here is the one of the raccoon.

306 Here is the one of the opossum.

307 And now you won't believe this.



308 This is so wonderful, so romantic.

309 There is the mouse.

310 ( students laugh ) Isn't that beautiful?

311 Teeny, weeny little mouse?

312 That's only a teeny, weeny little femur.

313 And there it is.

314 And I made the plot.

315 I was very curious what that plot would look like.

316 And... here it is.

317 Whew !

318 was shocked.

319 I was really shocked.

320 Because look-- the horse is 50 times larger in size than the mouse.

321 The difference in d over 1 is only a factor of two.

322 And I expected something more like a factor of seven.

And so, in d over 1, where I expect a factor of seven I only see a factor

323 Of two.

324 So I said to myself, "Oh, my goodness.

325 Why didn't I ask them for an elephant? "

The real clincher would be the elephant because if that goes way off scale

maybe we can still rescue the statement by Galileo Galilei and so I went

326 back and they said "Okay, we'll give you the femur of an elephant. "

327 They also gave me one of a moose, believe it or not.

328 I think they wanted to get rid of me by that time to be frank with you.

329 And here is the femur of an elephant.

330 And I measured it.

331 The length and the thickness.

332 And it is very heavy.

333 It weighs a ton.

334 I plotted it, I was full of expectation.

335 I couldn't sleep all night.

336 And there's the elephant.

There is no evidence whatsoever that d over 1 is really larger for the

337 elephant than for the mouse.



These vertical bars indicate my uncertainty in measurements of thickness

and the horizontal scale, which is a logarithmic scale... the uncertainty

of the length measurements is in the thickness of the red pen so there's no

338 need for me to indicate that any further.

339 And here you have your measurements in case you want to check them.

340 And look again at the mouse and look at the elephant.

The mouse has indeed only one centimeter length of the femur and the

341 elephant is, indeed, hundred times longer.

So the first scaling argument that S is proportional to 1 that is certainly

what you would expect because an elephant is about a hundred times larger

342 in size.

343 But when you go to d over 1, you see it's all over.

The d over 1 for the mouse is really not all that different from the

elephant and you would have expected that number to be with the square

root of 100 so you expect it to be ten times larger instead of about the

344 same.

345 </section 5>

346 <section 6>

I now want to discuss with you what we call in physics dimensional

347 analysis.

I want to ask myself the question: If I drop an apple from a certain height

and I change that height what will happen with the time for the apple to

348 fall?

Well, I drop the apple from a height h and I want to know what happened

349 with the time when it falls.

350 And I change h.

So I said to myself, "Well, the time that it takes must be proportional to

351 the height to some power alpha. "

352 Completely reasonable.

If I make the height larger we all know that it takes longer for the apple

353 to fall.

354 That's a safe thing.

I said to myself, "Well, if the apple has a mass m "it probably is also

355 proportional to the mass of that apple to the power beta. "

I said to myself, "Gee, yeah, if something is more massive it will probably

356 take less time. "

357 So maybe m to some power beta.

358 I don't know alpha, I don't know beta.

And then I said, "Gee, there's also something like gravity that is the

359 Earth's gravitational pull-- the gravitational acceleration of the Earth.



So let's introduce that, too and let's assume that that time is also

proportional to the gravitational acceleration-- this is an acceleration;

360 we will learn a lot more about that-- to the power gamma.

Having said this, we can now do what's called in physics a dimensional

361 analysis.

On the left we have a time and if we have a left... on the left side a time

362 on the right side we must also have time.

363 You cannot have coconuts on one side and oranges on the other.

364 You cannot have seconds on one side and meters per second on the other.

365 So the dimensions left and right have to be the same.

366 What is the dimension here?

367 That is [T] to the power one.

That T... that must be the same as length to the power alpha times mass

to the power beta, times acceleration-- remember, it is still there on the

blackboard-- that's dimension [L] divided by time squared and the whole

368 thing to the power gamma so I have a gamma here and I have a gamma there.

369 This side must have the same dimension as that side.

370 That is nonnegotiable in physics.

371 Okay, there we go.

372 There is no M here, there is only one M here so beta must be zero.

There is here [L] to the power alpha, [L] to the power gamma there is no

373 [L] here.

374 So [L] must disappear.

375 So alpha plus gamma must be zero.

There is [T] to the power one here and there is here [T] to the power -2

376 gamma.

377 It'S minus because it's downstairs.

378 So one must be equal to -2 gamma.

379 That means gamma must be minus one half.

380 That if gamma is minus one half, then alpha equals plus one half.

381 End of my dimensional analysis.

I therefore conclude that the time that it takes for an object to fall

equals some constant, which I do not know but that constant has no
dimension-- I don't know what it is-- times the square root of h divided

382 by g.

Beta is zero, there is no mass h to the power one half-- you see that
383 here-- and g to the power minus one half.



This is proportional to the square root of h because g is a given and c is

384 a given even though I don't know c.

I make no pretense that I can predict how long it will take for the apple

385 to fall.

386 All I'm saying is, I can compare two different heights.

I can drop an apple from eight meters and another one from two meters and

the one from eight meters will take two times longer than the one from two

387 meters.

The square root of h to two, four over two will take two times longer,

388 right?

If I drop one from eight meters and I drop another one from two meters then

389 the difference in time will be the square root of the ratio.

390 It will be twice as long.

391 And that I want to bring to a test today.

392 We have a setup here.

We have an apple there at a height of three meters and we know the length

393 to an accuracy... the height of about three millimeters, no better.

And here we have a setup whereby the apple is about one and a half meters

394 above the ground.

And we know that to about also an accuracy of no better than about three

395 millimeters.

396 So, let's set it up.

I have here... something that's going to be a prediction-- a prediction of

the time that it takes for one apple to fall divided by the time that it

397 takes for the other apple to fall.

398 </section 6>

399 <section 7>

H one is three meters but I claim there is an uncertainty of about three

400 millimeters.

401 Can't do any better.

And h 2 equals 1.5 meters again with an uncertainty of about three

402 millimeters.

So the ratio h one over h two... is 2.000 and now I have to come up with an

uncertainty which physicists sometimes call an error in their measurements

403 but it's really an uncertainty.

And the way you find your uncertainty is that you add the three here and

404 you subtract the three here and you get the largest value possible.

405 You can never get a larger value.



And you'll find that you get 2.006. And so I would say the uncertainty is

then.006. This is a dimensionless number because it's length divided by

406 length.

And so the time tl divided by t2 would be the square root of hi divided by

407 h2.

408 That is the dimensional analysis argument that we have there.

And we find if we take the square root of this number we find 1.414, plus

409 or minus 0.0 and I think that is a two.

410 That is correct.

411 So here is a firm prediction.

412 This is a prediction.

413 And now we're going to make an observation.

So we're going to measure tl and there's going to be a number and then

414 we're going to measure t2 and there's going to be a number.

I have done this experiment ten times and the numbers always reproduce

415 within about one millisecond.

416 So I could just adopt an uncertainty of one millisecond.

417 I want to be a little bit on the safe side.

418 Occasionally it differs by two milliseconds.

So let us be conservative and let's assume that I can measure this to an

419 accuracy of about two milliseconds.

420 That is pretty safe.

So now we can measure these times and then we can take the ratio and then

we can see whether we actually confirm that the time that it takes is

421 proportional to the height to the square root of the height.

422 So I will make it a little more comfortable for you in the lecture hall.

423 That's all right.

424 We have the setup here.

425 We first do the experiment with the... three meters.

426 There you see the three meters.

And the time... the moment that I pull this string the apple will fall, the

427 contact will open, the clock will start.

428 The moment that it hits the floor, the time will stop.

429 I have to stand on that side.

430 Otherwise the apple will fall on my hand.

431 That's not the idea.



432 I'll stand here.

433 You ready?

434 Okay, then I'm ready.

435 Everything set?

436 Make sure that I've zeroed that properly.

437 Yes, I have.

438 Okay.

439 Three, two, one, zero.

440 781 milliseconds.

So this number... you should write it down because you will need it for

441 your second assignment.

442 781 milliseconds, with an uncertainty of two milliseconds.

443 You ready for the second one?

444 You ready?

445 You ready?

446 Okay, nothing wrong.

447 Ready.

448 Zero, zero, right?

449 Thank you.

450 Okay.

451 Three, two, one, zero.

452 551 milliseconds.

453 Boy, I'm nervous because I hope that physics works.

454 So I take my calculator and I'm now going to take the ratio tl over t2.

The uncertainty you can find by adding the two here and subtracting the two
there and that will then give you an uncertainty of, I think,.0... mmm,.08.

455 Yeah,.08. You should do that for yourself--.008. Dimensionless number.

456 This would be the uncertainty.

457 This is the observation.

458 781 divided by 551.

459 One point... Let me do that once more.

460 Seven eight one, divided by five five one... One four one seven.

461 Perfect agreement.



Look, the prediction says 1.414 but it could be 1 point... it could be two
462 higher.

463 That's the uncertainty in my height.

464 I don't know any better.

And here I could even be off by an eight because that's the uncertainty in
465 my timing.

466 So these two measurements confirm.

467 They are in agreement with each other.

468 You see, uncertainties in measurements are essential.

469 Now look at our results.

470 We have here a result which is striking.

We have demonstrated that the time that it takes for an object to fall is
471 independent of its mass.

472 That is an amazing accomplishment.

Our great-grandfathers must have worried about this and argued about this
473 for more than 300 years.

474 Were they so dumb to overlook this simple dimensional analysis?

475 Inconceivable.

476 Is this dimensional analysis perhaps not quite kosher?

477 Maybe.

Is this dimensional analysis perhaps one that could have been done
478 differently?

479 Yeah, oh, yeah.

480 You could have done it very differently.

481 You could have said the following.

You could have said, "The time for an apple to fall "is proportional to the
482 height that it falls from to a power alpha. "

483 Very reasonable.

We all know, the higher it is, the more it will take-- the more time it
484 will take.

And we could have said, "Yeah, it's probably proportional "to the mass
485 somehow.

486 If the mass is more, it will take a little bit less time.

487 Turns out to be not so, but you could think that.

But you could have said "Well, let's not take the acceleration of the Earth
488 but let's take the mass of the Earth itself. "



489 Very reasonable, right?

I would think if I increased the mass of the Earth that the apple will fall
490 faster.

491 So now I will put in the math of the Earth here.

492 And I start my dimensional analysis and I end up dead in the waters.

493 Because, you see, there is no mass here.

There is a mass to the power beta here and one to the power gamma so what

you would have found is beta plus gamma equals zero and that would be end

494 of story.

Now you can ask yourself the question well, is there something wrong with

495 the analysis that we did?

496 Is ours perhaps better than this one?

497 Well, it's a different one.

We came to the conclusion that the time that it takes for the apple to fall

498 is independent of the mass.

499 Do we believe that?

500 Yes, we do.

On the other hand, there are very prestigious physicists who even nowadays
do very fancy experiments and they try to demonstrate that the time for an

apple to fall does depend on its mass even though it probably is only very

501 small, if it's true but they try to prove that.

And if any of them succeeds or any one of you succeeds that's certainly
502 worth a Nobel Prize.

503 So we do believe that it's independent of the mass.

However, this, what I did with you, was not a proof because if you do it
504 this way, you get stuck.

On the other hand, I'm quite pleased with the fact that we found that the

505 time is proportional with the square root of h.

506 I think that's very useful.

507 We confirmed that with experiment and indeed it came out that way.

508 So it was not a complete waste of time.

509 But when you do a dimensional analysis, you better be careful.

I'd like you to think this over, the comparison between the two at dinner
and maybe at breakfast and maybe even while you are taking a shower whether

510 it's needed or not.

It is important that you digest and appreciate the difference between these
511 two approaches.

It will give you an insight in the power and also into the limitations of
512 dimensional analysis.



This goes to the very heart of our understanding and appreciation of

513 physics.

514 It's important that you get a feel for this.

515 You're now at MIT.

516 This is the time.

517 Thank you.

518 See you Friday.

519 </section 7>

A.2 AI Lecture

1 <section 1>

2 If you're going to teach an AI course, it's useful to ask: "What's AI?".

3 It's a lot of different things to a lot of different people.

Let's go through a few things that AI could be and that it usefully is

and situate the ways we will look at AI and situate it within the broader

picture of ways of thinking about AI One thing it could be is "Making

4 computational models of human behavior".

Since you figure that humans are intelligent and therefore models of

5 intelligent behavior must be AI.

There's a great paper by Turing who really set up this idea of AI as making

6 models of human behavior (link).

7 In this way of thinking of AI, how would you proceed as an AI scientist?

One way, which would be a kind of cognitive science is to do experiments on

humans, see how they behave in certain situations and see if you could make

8 computers behave in that same way.

Imagine that you wanted to make a program that played poker, instead of
making the best possible poker-playing program, you would make one that

9 played poker like people do.

10 Another way is to make computational models of human thought processes.

11 This is a stronger and more constrained view of what the enterprise is.

It is not enough to make a program that seems to behave the way humans do;
12 you want to make a program that does it the way humans do it.

A lot of people have worked on this in cognitive science and in an area
13 called cognitive neuro-science.

The enterprise is to affiliate with someone who does experiments that
reveal something about what goes on inside people's heads and then build

14 computational models that mirror those kind of processes.



So here, it is an interesting and a hard question to decide at what level

15 to mirror what goes on inside people's heads.

Someone might try to model it a very high-level, for example, saying that

there's a memory and a vision module, and this kind of module or that kind

of module and so they try to get the modularity to be accurate but they

16 don't worry too much about the details.

17 Other people might pick, e.g.

a neuron, as a kind of computational unit that feels like it's justified in

terms of neurophysiology and then they take that abstract neuron and they

18 make computational mechanisms out of that neuron.

19 They feel "That's cool since brains as made up of neurons."

But, then if you talk to people that study neurons you find that they argue
a lot about what neurons can and can't do computationally and whether they

are a good abstraction or whether you might want to make your models at a
20 lower level.

So, there's a tricky business here about how you might want to try to
match up what we know about brains and how it is that you might make

21 computational models.

22 This is not what we will be doing here.

Another thing that we could do is computational systems that behave
23 intelligently.

24 What do we mean here?

When we talked about human behavior, we said that was intelligent because

humans are intelligent (sort of by definition) so what humans do has to be
25 intelligent.

In this view, we say that there might be other ways of being intelligent
26 besides the way humans do it.

And so what we might want to do is make computational systems drawn from
27 this larger class.

But then you get into terrible trouble because you have to say what it
28 means to behave intelligently.

We might feel that although we can't define what is intelligent, we can
29 recognize it when we see it.

We'll punt on trying to decide what intelligence is and spend our time
30 thinking about rationality.

31 What might it mean to behave rationally?

32 We'll get into that in more detail later.

So, the perspective of this course is that we are going to build systems
that behave rationally - that do a good job of doing what they're supposed

33 to do in the world.

But, we're not going to feel particularly bound to respect what is known
34 about how humans behave or function.



35 Although we're certainly quite happy to take inspiration from what we know.

There's another part of AI that's closer to what we will talk about in this

36 class that's fundamentally about applications.

Some of these applications you might not want to call "intelligent" or

"rational" but it is work that has traditionally been done in the field of

37 AI.

And usually what they are are problems in computer science that don't feel

well specified enough for the rest of the computer science community to

38 want to work on.

For instance, compilers used to be considered AI, because you were writing

down statements in a high-level language and how could a computer possibly

39 understand that stuff.

Well, you had to do work to make a computer understand that stuff and that

40 was taken to be AI.

Now that we understand compilers and there's a theory of how to build

41 compilers and lots of compilers out there, well it's not AI any more.

So, AI people have a chip on their shoulders that when they finally get

42 something working it gets co-opted by some other part of the field.

43 So, by definition, no AI ever works; if it works, it's not AI.

But, there are all kinds of applications of AI, many of these are

applications of learning, which is my field of research and for which I

44 have a soft spot in my heart.

For example, NASDAQ now monitors trades to see if insider trading is going

on, Visa now runs some kind of neural network program to detect fraudulent

transactions, people do cell-phone fraud detection through AI programs,
scheduling is something that used to be AI and is now evolving out of AI

(and so it doesn't really count) but things like scheduling operations in

big manufacturing plants; NASA uses all kind of AI methods (similar to the

ones we're going to explore in the first homework) to schedule payload

bay operations, so getting the space shuttle ready to go is a big and

complicated process and they have to figure out what order to do all the

45 steps.

46 There's all kinds of applications in medicine.

For example, managing a ventilator, a machine that is breathing for a

patient, there is all kinds of issues of how to adjust various levels of

gases, monitor pressure, etc. Obviously, you could get that very badly
47 wrong and so you want a system that's good and reliable.

48 Obviously, if they field these systems they must be ok.

49 There's no end of examples; AI applications are viable.

We're going to spend most of our times thinking, or at least feeling
50o motivated, by computational systems that behave rationally.

But a lot of the techniques that we will be talking about will end up
51 serving a wide variety of application goals as well.



52 That's my story about what we're up to.

53 </section 1>

54 <section 2>

55 We're going to be talking about agents.

56 This word used to mean something that acts.

Way back when I started working on AI, agent meant something that took

57 actions in the world.

Now, people talk about Web agents that do things for you, there's publicity
58 agent, etc. When I talk about agents, I mean something that acts.

So, it could be anything from a robot, to a piece of software that runs

in the world and gathers information and takes action based on that

information, to a factory, to all the airplanes belonging to United
59 Airlines.

60 So, I will use that term very generically.

When I talk about computational agents that behave autonomously, I'll use
61 agent as a shorthand for that.

62 So, how do we think about agents?

63 How can we begin to formalize the problem of building an agent?

Well, the first thing that we're going to do, which some people object
to fairly violently, is to make a dichotomy between an agent and its

64 environment.

There are people in AI that want to argue that that is exactly the wrong
thing to do, that I shouldn't try to give an account of how I work by
separating me from the world I work in, because the interface is so big

65 and so complicated.

66 And that may be right.

That I can't get exactly right a description of how I need to operate in
67 the world by separating me from the world.

But, it gives me a kind of leverage in designing the system that I need
68 right now because I'm not smart enough to consider the system as a whole.

69 </section 2>

70 <section 3>

71 Here's a robot and the world it lives in.

The robot is going to take actions that affect the state of the environment
and it's going to receive percepts somehow that tell it about what's going

72 on in the environment.

73 So it ??

loop where the agent does something that changes the state of the
environment then it somehow perceives some new information about the state

74 of the environment.



There's a whole question of how to draw the line between the agent and the

75 environment.

In this class, we'll entirely spend our time thinking about the agent as a

76 computational entity.

77 SO, I should really draw this cartoon differently.

Since we're going to be thinking about what is going on in the agents head

and so the actions instead of going like this are going to be going from

the agent's head to its wheels and the percepts are coming from the camera

78 into its brain.

79 And, so, here's another view of the world.

We're going to be thinking about the agent as the software that runs some

so big hardware system.

That is not to make light of or say that it's easy to design the hardware

part and depending on how the hardware part has been designed your problem

81 could be made arbitrarily easier or harder.

82 An example of this is making a walking robot.

83 How hard that job is depends on the design of the hardware.

There are these great walking robots that are called "compass walkers"

that are just two legs hinged together and when you set them on an inclined

plane they will walk down the hill (if you get it balanced right); so you

84 don't need any computation at all to do that walking.

So, the computation, the intelligence or whatever is in the design of the
85 hardware.

On the other hand, you could imagine building a great big contraption (like

one at CMU) with six or eight legs and is taller than this room and it

runs a whole complicated planning algorithm to decide where to place each

foot, so that's the opposite extreme of putting all the intelligence in the

86 brain, instead of in the hardware.

We're going to try to be agnostic about the design of the hardware and

work with people who do a good job of that and take as given computational
87 problems.

ss How can we formalize a computational problem of building an agent?

s89 Here's a formal model.

90 </section 3>

91 <section 4>

What do we need to write down when we talk about the problem of making an
92 agent.

93 How can we specify it really carefully?

94 Well, we're going to need an action interface.



These all the things that my agent can do, it might be continuous, it might

be very high dimensional but there's some space of possible actions that

95 the agent can take in the world.

And there's a percept space, same sort of thing, what are all the things

96 that the agent can perceive in the world.

These spaces can be continuous; you can imagine that the agent can perceive

how high its arm is raised or the temperature in some reaction vessel or

97 something.

98 But, we're going to assume discrete time, or at least discrete events.

I drew this picture of the interaction between the agent and its

environment and I said that the agent takes an action and the environment

99 updates its state and then the agent observes.

You could imagine modeling this as a set of coupled differential equations

and there are people who do that for fairly simple and low-level systems;

we're going to think of things rather more discretely and combinatorially

and so we're going to model the interaction between the agent and the

100 environment as a turn-taking thing that happens on some cycle.

In the discrete time view you say that every one second, or two seconds or

101 ten seconds or ten minutes there is this kind of turn taking.

In the discrete event view, time marches on contibuously but there are

events of I do this action sort of in an impulse and the world changes

102 state some time later and then I do another action some time after that.

103 You can imagine continuous time with discrete events embedded in it.

104 (20:58) ??

10s discrete-time case.

Time won't enter too much in the stuff we'll talk about but it will a

bit and it's something that's really important to keep in the back of our

106 minds.

So we have a set of actions and a set of percepts and the we need the

107 environment.

We need, in order to say what the problem is for our agent, to describe the

108 world that the agent lives in.

At the most detailed level, we can think of the environment as being a

109 mapping of strings of actions into percepts.

11no You could say, what does the environment do?

Well, there's some history of actions that the agent has done to it and

111 every time the agent does a new action, it generates a percept.

112 That's not a very helpful way of thinking about it.

Usually we'll think of the environment as having some internal state which

113 may not be visible to the agent.



You could think of the envoronment something that instead includes a

mapping from state to percepts, something that says when the world is in

this state what the agent gets to see and another mapping from situations

114 and actions into situations.

115 These things describe how the world works.

We'll call these the world dynamics and sometimes this get called the

116 perception function.

Later on we'll talk about the fact that these things may not be

117 deterministic and they may not really be known.

Suppose you wanted to make a robot that could vacuum the hallways or

118 something in this building.

You'd like not to have to completely specify how this building is laid out

119 and where the chairs are and who has a backpack on the floor today.

So, in fact, rather tahn giving a complete, perfectly nailed down

description of how the environment works, in general when we specify the

problem of designing an agent we'll give some constraints, some parts of an

120 specification of how the environment works.

121 We'll leave a lot to be determined in a lot of cases.

122 One more thing.

123 This so far has no value judgements.

124 We're describing a set of worlds that the agent has to work in.

125 </section 4>

126 <section 5>

And we also have to say what we want the agent to do, what constitutes good

127 or bad behavior of the agent in the environment.

128 We need an utility function.

That;s typically thought of a mapping from states in the world to real

129 values, or maybe sequences of states into real values.

This is just to say, "Agent, these are the states of the world and this how

130 valuable they are from your perspective."

131 SO that kind of tells the agent what you want it to do.

Now, our problem as people who want to design AI systems is to build the

132 agent (the software) in such a way as to get a lot of utility.

133 SO, now is just an optimization problem - that doesn't seem so hard.

134 We'll it's going to turn it to be really quite hard.

135 But, at this level of abstraction, it's straightforward what we want to do.

We want to put the program in the head of the agent that does as well as it

can subject to this specification of how the world works and what we want

136 in the world.



137 </section 5>

138 <section 6>

Let's talk about rationality, since I said that what we wanted to do was to

139 make rational agents.

140 So, what do I mean by that?

The standard definition of rationality is: A rational agent takes actions

141 it believes to achieve its goals.

This is all in high-level pseudo-psychological talk that makes some people

142 nervous.

We can cache it out into something more concrete in a minute but the idea

is that you're rational if you do things that are consistent with what you

143 are trying to do in the grand scheme of things.

Let's say that I don't like to be wet and so when I come out of my office

144 in the morning, I bring an umbrella.

145 Is that rational?

Depends on the weather forecast and whether I've heard the weather
146 forecast.

If I heard the weather forecast and I'm disposed to believe them and I

147 think it's going to rain then it's rational to bring my umbrella.

Whether it's going to rain or not, whether you think it's dumb for me to

want to stay dry or various things like that, given what I'm trying to do

and given what I know we'll say an action is rational if it would lead to

148 doing a good job of what I'm trying to do.

149 Rationality is not omniscient.

For example, some time ago I rode my bike in to work, not knowing that it
was going to snow like crazy and I was going to run into a car on the way

150 home.

You can still argue that it was rational for me to ride my bike, maybe

at some grander level it was irrational not to have watched the weather
151 forecast the night before.

But, given what I knew it was ok to ride my bike, even though it turned out
152 be dumb at some level, because I didn't know what was happening.

153 Also, rationality is not the same as succesful.

Imagine that I take my umbrella, I know that it's nice and sunny out and I
154 take the umbrella anyway, which was irrational of me.

155 But, then I use the umbrella to fend off a rabid dog attack.

You might say, well it was rational of her to take the unbrella because
it saved her from the rabid dog, but that wouldn't be right beacuse it was

156 done for the wrong reason.

Even though it was successful and useful; we would not have said that was
157 rational.
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158 So this limits the scope of what we want our agents to do.

They don't have to be succesful and they don't have to know everything,

159 they just have to do a good job given what they know and what they want.

160 </section 6>

161 <section 7>

This is still not a good enough notion to decide what goes in the head of

162 our agent or our robot.

DO you see any potential problem with this as a criterion for behavior in

163 real systems?

164 You might not be able to compute the best thing to do.

165 There's a notion that the philosophers have pursued and so have AI people.

People talk instead of complete or perfect rationality, of limited

166 rationality.

And that means exactly "acting in the best way you can subject to the

167 computational constraint that you have."

SO, here we are with soft squishy brains that can't compute very well or

very fast and so, for instance, humans are irrational because they're bad

at doing task X or Y or Z; they just can't compute the optimal response in

168 certain circumstances.

That we know; there's no question, but yet you might be able to argue that

169 given their squishy brains that's the best they can do.

Or, maybe you want to argue that for this idea of limited rationality that

you need to put a program in the agent's head that's going to last for the

170 agent's whole range of things it has to do and life it has to live.

And it might be that brain could conceivably compute the optimal action in

171 one circumstance, it may not in another.

So, we might be able to make a robot that's the end-all and be-all chess

172 player but it might not be able to cross the street.

173 SO, that's probably not ok.

SO, when we think about rationality we may we want to think about it in a

much broader context: given all the things that you have to do, given all

the circumstances that you're likely to be faced with in the environment

174 that you;ve been put in, how can you respond the best in the aggregate.

SO, any individual response may not be the best, the optimal response, even

given your hardware, it may be that the program you're running is the best

possible program when measured in an aggregate over all the things that yo

175 have to do.

176 What we're need to make is an agent program.

An agent program is, given all that stuff, we want to find the best

possible mapping from P* to A (sequences of percepts to actions) that

subject to our computational constraints does the best job it can as

177 measured by our utility function.



178 </section 7>

179 <section 8>

Let's imagine that someone was able to write down a specification of the

180 environment that we want our agent to work in.

181 You could say: "Oh, but you can't do that.

This is all pretty silly because how is it that anyone could specify the

182 domain that the agent is going to work in?"

AT some level I am sympathetic to that complaint, but at some other level I

am entirely unsympathetic to that complaint because if you ask me to solve

183 a problem then you have to tell me what problem you want me to solve.

So, you might imagine that this whole process is going to operate in a much

184 larger context that's iterative.

You give me a specification of the environment you want the robot to

work in; I work away to give you the maximally rational robot given your

specification, we start running it and then you tell me "Darn, I forgot to

185 tell you about not vacuuming the cat."

186 Then you would have to go back and recompute the robot.

187 In any real application you have this cycle at a high level.

But, I don't think you can get out of saying: "Here's what I want the

188 system to do."

Given a specification for all this stuff, it seems like our problem is

189 "just" one of coming up with a program that satisfies some specifications.

190 So, you could go study that in software engineering (maybe).

191 But, why not?

192 Why is this not just software engineering?

Any of us would be hard-pressed, given all the pieces of the space shuttle

and constraints on how they go together, to sit in a chair and write the

193 program that is optimal given all those constraints.

The problem is that, although information theoretically this is

an specification for the correct program, it is not an effective

194 specification.

195 It's not a specification that the computer can use.

There is a huge gap between the specification for what you want the thing

196 to do and what you can write down in a program and actually have run.

197 How do we bridge this gap?

There is a part of AI that still goes on (in some places) but people don't
198 talk about much, called "automatic programming".

In fact, quite a while ago there was a project going on here in the AI Lab
called "The programmer's assistant" which was supposed to enable you to say

199 "I need a linked list that would do whatever..."
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200 or "Put these things in a hash table..."

You would give it instructions at that level and it was supposed to write

201 the code to do that for you.

But, the idea in automatic programming was that you would go from some

declarative specification of what you wanted the system to do to actual

202 code to do it.

203 But, it's a really hard problem and most people have given up on it.

204 But it seems that's the problem we are faced with here.

205 But, we're not going to do this automatically.

206 So, what's the enterprise that we're going to be engaged in?

We're going to look at classes of environment specifications and utility

functions and try to map from classes of environments to structures of

207 programs.

To try to say that "if you need an agent to try to solve this class of

problem in that kind of environment, then here is a good way to structure

208 the computation."

209 </section 8>

210 <(section 9>

211 This doesn't feel a lot like AI.

We have this idea that AI is about agents thinking in their heads figuring

212 out what they're supposed to do.

213 This feels like it's off-line.

214 Someone (God?)

215 doing all the figuring and blasting the program into the head of the robot.

216 The question we want to ask ourselves is "Why is it ever useful to think?"

If all these thought processes could happen off-line and you could just be

217 endowed with the optimal set of reflexes then who needs cogitation?

Why can't we (for you or a big complicated factory) compile a whole table

218 of reactions?

219 Let's even imagine that the environment is not changing.

220 The problem is that the table is too big.

If P is any size at all or if you live for very long, the table is way too

221 big.

222 Way, way too big.

There are too many ways the world could be, there are too many sequences of

223 percepts that you could have of the world.

224 There is no way that you could off-line anticipate them.
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225 Actually, for some domains you can.

226 It's interesting to know where this line gets drawn.

This is my version of what the direction that we're going to take in this

227 class relate to the direction that Embodied AI takes.

228 There are two fundamental differences.

One is that the Embodied AI people actually take as one of their

constraints that the mechanims that they develop are somewhat related to

229 the mechanisms that go on in nature.

Another difference is that they entertain a different class of problems and

the class of problems that they entertain are amenable to something like

230 this approach.

It's not turned out quite so formally, but the way it works is that a human

thinks about a problem, thinks hard about, figures out what the program

231 ought to be structured like and writes the program.

But that program when it runs is pretty direct, it pretty much gets the

232 percepts and computes an action.

It doesn't feel like it thinks (whatever that might mean to us); it doesn't

233 entertain alternative realities.

There is certainly a class of problems for which it feels like you can't

make a table but you can write a fairly compact program that would do the

234 job of being the table.

But there are other domains in which you quite clearly can't do that and

235 those are the domains that we are going to focus on.

The domains where you can't think of a compact way to write this program

236 down, this mapping from strings of perceptions to actions.

237 So, we'll have to think of other ways to construct this program.

And the other ways of constructing this program are going to take advantage

238 of the fact that the vast majority of the things that could happen - don't.

Think of all the ways the world could be, there are a lot of percept

sequences that you could conceivably have and no matter how long you live

you are going to have only the most minuscule fraction of all the percepts

239 you could possibly have.

So, the work that Nature does for you is that there's no reason to have

precomputed and stored reactions for what happens if an elephant flies

240 through the window - we don't have to worry about that.

So, you probably don't have precompiled reactions for what happens if

an elephant flew in through the window, on the other hand if one did you

wouldn't be totally incapcitated (like you would be if you were under the

241 elephant).

You'd say "oh, my gosh" and then your brain would kick in and you'd start

242 figuring out what to do about it.
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So, you could be very flexible to a very broad range of stimuli but there's

243 some way that you could have canned your responses to those ??

244 (44:10).

245 </section 9>

246 <section 10>

Let me talk a bit about learning; we're going to talk about learning

247 towards the end of this class.

248 So, what happens when the environment changes?

249 When I talk to people about why it's important to build systems that learn.

I say "maybe you don't know very much about the environment when you start

250 out or maybe the environment changes" and so you have to do learning.

And it seems that I haven't accounted for that in this framework, but I

want to say that I have accounted for it because I've said so very little

251 about what this kind of specification might be.

252 So, let's take a very simple case.

Imagine that we're sending a robot to Mars and we don't know the

coefficient of friction of the dust it's going to land on; they don't know
253 what it feels to drive around in that stuff.

I could still say: "Look, I know something about this place we're going to

254 send the vehicle to.

It's going to have gravity, I know what the gravity is going to be like,

I know what's going to go on there; I know a lot about the vehicle but I

255 don't know the coefficient of friction of the dust.

Instead of giving the complete world dynamics; I'm going to have to leave

a free parameter or some disjunction (the world is either going to be like

256 this or like that and I don't know which).

And then part of my job as the agent is, based on the sequence of percepts

that I have, to kind of estimate or to learn or to gather information about

257 the dynamics of the world.

If this specification doesn't have to be full then I'm allowed to learn

258 something about how the world works.

Similarly, I can build into this specification that there is a coefficient
259 of friction that changes over time but I don't know how it changes.

260 So, learning can fit into this framework too.

This is a framework that in the end isn't really that informative in the

261 sense that it isn't that constraining.

In some sense learning isn't very different from perception, they're both
262 about learning something about the world by virtue of your experience.

And we tend to call "learning" things that happen on larger time-scale;
263 things that seem more permanent.
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And we tend to call perception, things that like noticing where I am with

respect to a wall, things that are on a shorter time scale things that

264 don't seem so built-in.

But there is no hard and fast distinction between learning and perceiving

265 where I am relative to the wall.

266 </section 10>

267 <section 11>

Let's think about environments and the different kinds of environments that

268 our agents might need to work in.

Now, there's a whole enterprise in this course that will be thinking

about particular properties of the environment that we know hold and what

consequences they might have on how it is that we would design an agent to

269 perform well in that environment.

So this is a nice list that comes out of Russell & Norvig (textbook) - a

270 nice way of thinking about environments.

One dimension along which it is useful to categorize environments is

271 whether they are "accessible".

What they mean by accessible (vs inaccessible) is "Can you see the state of

272 the world directly?".

Most real environments are inaccessible; I can see some aspects of the

state of the world, but I don't know what's happening right out there or

who's opening the door etc. So, my world is not accessible but some kinds

273 of toy worlds are accessible and maybe some kinds of applications.

Imagine I am thinking of where to route all the airplanes for United

274 Airlines.

I like to think that they know where all the airplanes are all the time, so

275 maybe that's an accessible domain.

276 Another dimension is "deterministic" vs "non-deterministic".

Over here I talked about world dynamics, the mapping between a current

state of the world an the action that an agent takes into another state of

277 the world.

278 In some domains that's usefully thought of as being deterministic.

The only domains that are really deterministic are artificial ones, like

279 games.

Even clicking on a link and going to a Web page, you know that doesn't

280 always work.

Most things are not entirely deterministic, some things are reasonably

281 modeled as being deterministic.

And, we'll spend about the second half of this class thinking about

282 non-deterministic environments.

The first half we'll think about deterministic models really as an

283 abstraction and in the second half we'll think about probabilistic models.
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284 Another dimension for describing environments is static vs dynamic.

285 Again, one can argue that everything is dynamic but let's talk about it.

286 It has to do with whether the world can change while you're thinking.

If the world can't change while you're thinking, then the whole limited

rationality thing does not matter as much, because you can think and think

287 until you come up with the best possible thing to do.

288 But, usually the world is changing.

If you compute the optimal trajectory for avoiding the truck but you're a

289 little late, it's no good.

290 You have to really worry about the dynamic property of the environment.

291 And then there's "discrete" vs "continuous".

Most of these are not really intrinsic properties of the environment but

292 more properties of how we choose to model the environment.

So, you can think of your perceptions of the world in different cases as

293 being discrete or continuous.

294 </section 11>

295 <section 12>

296 Let's talk about some environments.

297 Let's talk about playing backgammon.

298 </section 12>

299 <section 13>

300 For an agent playing backgammon, what's the action space?

301 The action space is the set of backgammon moves, e.g.

302 I put a white piece on that point.

303 But you're want to think of the moves in some fairly logical way.

You probably don't want to think of the move as the x-y location of the
304 stone on the board.

305 You could.

306 But, that doesn't feel so useful.

If you were building the robot to move the pieces, you would have to think
of the x-y location; you would have to think of the motor voltages that
you send to the joints in order for the arm to move where it needs to go in

307 order to put the stone where it goes on the point on the board.

So, this gets to what I said about not worrying about the very best way to
frame a problem, the very best way to divide the pieces up - although when

308 we talk about execution we'll talk about that a bit.
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But, it's an interesting question "how are we going to define the action

spaces" do you want to define it in terms of motor voltages, are you going

to define it in terms of x-y locations or are you going to define it in

309 terms of how many guys I have on the board point on my side of the board.

310 There's logical descriptions of the actions and similarly the percepts.

Your percepts might be images of the backgammon board, they might be

x-y locations of the stones, they might be the facial expression of your

311 oponent or they might be a logical description of where the stones are.

For any one of those levels of description of the environment and of the

312 problem you're supposed to solve, you'd write the software differently.

Let's take for now the very abstracted view of playing backgammon, the view

313 that backgammon books take.

Which is the moves are putting the stones somewhere, the percepts are where

314 (again at a logical level) the stones are.

315 </section 13>

3 L6 <section 14>

Backgammon is one of those few domains that is accessible; you can see

317 everything there is to know about the state of a backgammon board.

318 Is it deterministic?

319 No. There are two issues about backgammon that make it non-deterministic.

320 One is the dice.

321 The other is your oponent.

322 Actually, games are not very well modeled in this mode.

There is a nice chapter in the book on games; but we're not going to do it

323 - there's too much of it to cover.

324 Certainly, there is no way to predict what your oponent will do.

The typical game theory thing to do is to assume that your opponent is

325 infinitely smart and predict what he's going to do on that basis.

326 But, there are problems with that.

327 He might not be.

Then you get into learning models where you say, ok my opponent is not
infinitely smart but I am going to learn what my opponent is like so that
I can predict what he might do and react but still you are not going to be

328 able to make deterministic predictions.

329 Is backgammon static or dynamic?

33o Static unless you have a time limit.

331 Discrete vs continuous?
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Depends on how you choose to model the percepts and the actions but it is

332 usually thought of as a pretty continuous type game.

333 Why is not discrete "move by move"?

3:34 But, what if our percepts are images?

They are discrete (quantized) but so fine grained that it is useful to

335 think of them as continuous and what if our actions are motor voltages?

But, if we are thinking about the stones and the points, then it is

3:36 completely discrete.

The point is that it depends on how you choose the space of actions and
337 percepts.

There are domains (like images) that are discrete, very big and ordered
where it is useful to treat them as continuous because you can get certain
kinds of compactness in the program by treating the image pixels as being

338 related to each other in space as if there's a cntinuous axis.

Sometimes, computer scientists have this reflexive tendency to given a
continuous problems to make it discrete because it's in a domain that they

339 can cope with.

But sometimes it is useful to take a discrete problem and make it

continuous; it gives you certain kinds of generalizations that you might
340 not otherwise have.

311 This will come up again when we talk about learning.

342 </section 14>

343 <section 15>

344 Driving a taxi.

There's so many things to think about here it's hard to know where to
315 begin.

Suppose you wanted to make a taxi driver, how would you even think about
346 it?

347 What would you want the action space to be?

34s There are many levels that it could be.

349 It could be steering angle, accelerator and brake.

350 What other levels of description of the action space might you want to use?

351 Physical position.

352 Addresses.

As we go in this direction, it becomes harder and harder to map one of
353 these commands into the lowest level of how to turn the steering wheel.

354 That's ok.

109



We might want to say that we really need to think about the problem as

going from addresses to addresses and then I'll hire somebody else to

figure out how to take the command to go to an address and cache that out

355 into which way am I going to turn the steering wheel.

We'll have multiple dimensions - like speech (some taxi drivers speak and

356 other listen).

In perception, there's going to be an analogous range of ways that we can

357 think about the problem.

There's another way of thinking about driving, in terms of lane changes

and passing etc. Earlier I made light of framing and specifying the domain

but that's at least as hard (or harder) than solving the problem once it is

358 written down.

359 And the key questions are: "How do you think about the action spaces?",

360 "How do you think about the percept spaces?"

I can think about the percepts being images; I can think of them as being

361 "there's a red car to my left".

Another thing you have to control (and this is something that comes up

362 often) is where you're looking.

For example, in a car you can look in your rear-view mirror and that tells

you something of where people are around you that is useful to know, for

363 example for lane changes.

But, of course, you can't look in the rear view mirror all the time becuase

364 then you don't know what is happening in front of you.

So, you also have to think about when you should look in the rear-view

365 mirror versus when you should look straight ahead.

So you also have in your action space things that will give you information

366 about the world.

In an inaccessible environment, you may have to do things to find something

367 out.

You have to stop to ask directions, or buy a map or call someone on the

368 telephone to get directions.

369 So, there's an enormous range of actions that you may want to take.

370 </section 15>

371 <section 16>

372 Let me go through a couple of structures of agents.

373 We talked about a table-based agent.

We'll talk a bit more about what the book calls a simple-reflex agent

374 (sometimes called "reactive").

But, there's this huge amount of literature on things called reactive -

reactive robots, reactive planning, and it's gotten to the point that this

375 word means so many things to so many people that it does not mean anything.
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The most coherent interpretation is that the structure of the agent is that

it gets percepts in and it generates actions and it only ever maps a single

376 percept to an action and so it has no memory.

377 So, the basic thing here is that there is no memory.

Remember that we've said that in general an agent maps strings of percepts

378 into actions.

379 It could integrate information about time.

380 THere aren't a lot of problems that you can solve in this way.

Maybe you can solve backgammon in this way; maybe you can solve te problem

381 of driving down the hallway and not running into the wall this way.

You look and you see that wall too close and you move away from it, etc.

382 So, there are a bunch of things you can do reactively.

Clearly if the world is accessible (you can see everything there is to see

in one shot) this means that you don't need any memory, you can just look a

383 see where everything is.

384 Doesn't this depend on how complex the goals are?

The programming here has to be kind of complicated and so calling it a

reflex agent might not be right anymore but certainly it doesn't need to

385 have memory (in the sense of remembering previous percepts).

It needs to have memory in the traditional sense that computer programs

386 need to have memory in the VonNeumann model.

387 If the environment is accessible, then everything is visible at once.

This is not usual except in domains like backgammon and perhaps some kinds

388 of information retrieval problems.

If it matters how the environment got into the state it's in; then that has

389 to be part of the state.

FOr example, let's imagine that you arrive somewhere with more or less

390 gasoline.

Now, there's two way of knowing how much gas you have, one is to remember

391 how much driving you've done and the other is to look at the gas gage.

If you have a gas gage then the state of the tank is accessible to you and

392 you don't need to remember how long you've been driving.

393 Accessible and predictable are not the same.

You can read the gas gage but have no idea an hour from now what the gage

394 will say.

395 In that case, we would still say that the environment is accessible.

You do have a problem if the world dynamics is much faster than your
396 interaction with the world, e.g.

397 if you look at the gage only once an hour.

398 COnsider deciding where I should stop for gas.



It may only depend on the reading on the gas gauge and where the gas
399 stations are.

But, it feels like it requires something other than reflex, that it

requires looking into the future, which is something we'll get to in a

minute, simulating possible trajectories about how the world works but it

400 doesn't require remembering more stuff about the past.

This little distinction about whether an agent is reflexive (or reactive vs

non-reactive) depends on whether you have to remember something about the

401 past.

402 </section 16>

403 <section 17>

404 Here's an agent with memory.

Everybody who has taken theory of computation is familiar with this

405 picture.

You can take any finite state machine that you want to and decompose it
406 like this.

The idea is that you have some part that gas feedback and you grab all the

407 feedback and put it together and that's how you get to remember stuff.

Then you have some part that says "given what I remember, what should I

408 do?"

409 We'll often call this mapping from whatever I know to actions a "policy".

410 And so here we would call this part the policy and this part the memory.

But, another way to think about it is that it is an estimate of the state

411 of the world, it is a distilled picture of what's going on outside.

It's what I've chosen to remember about the history of percepts that I've
412 had in the world.

413 In some fields, such as control theory, this is called a state estimator.

Whatever it is, it takes the sequence of percepts you've had over time and

the sequence of actions that you've had over time and somehow remembers

414 something about it.

Another way of thinking about it is that it takes whatever you knew before,
what you just saw and what you just did and maps that into whatever you

415 know now.

416 SO, it is in charge of keeping your mental state updated.

Then you can say that the problem of behavior is "given my mental state
(whatever I remember of what I've seen in the world) what action should I

417 take".

418 </section 17>

419 <section 18>

420 Let's talk about planning for a minute.



So this exactly about the question: What about deciding when to stop for

421 gas??.

Your choice of actions depend not just on what's going on right now but

422 what's going to happen in the future.

423 Intuitively, "should I do this or should I not?"

424 Well, it depends on what downstream events it's going to cause.

425 I want to argue that this is completely consisten with this view.

There is still some mapping between what I see right now into what I'm

426 supposed to do.

But, it's maybe that the justification you have to give for why this is a

427 good thing to do depends on what is going to happen in the future.

But you don't have access to what's going to happen in the future; there's

428 no input here from the oracle.

SO, you're still taking action based on what's happening right now but the

429 way you justify them is in virtue of what they'll cause to happen.

430 Let's look at what I would call a planning agent.

You can imagine an agent which still has the state estimation part, there

still the part that distills what we've seen into a picture of what's going

on in the world, but now the policy (big box) involves a search (you've

431 probably all seen a search tree).

That is, we take the state from the state estimator and imagine "what if

we take actioni, what if we take action2, etc. Then, after we take actioni,

what if we take action2, etc. I just had a flat tire, what if I call AAA -

432 then wait 6 hours.

What if I fix it myself, probably get fixed in 1/2 hour but I'd get covered

433 in mud.

So, there's different consequence that you can spin out of different ways

434 of doing things.

435 And, how do you evaluate these consequences?

436 With U, you take your utility function and you apply it.

How good is it to be covered in mud but ready to go in 1/2 hour, but first

437 how good is to be here for five hours but clean as can be.

438 Maybe one, maybe another.

439 But, given an utility function we can help pick which is the best.

So, you can imagine spinning out these consequences, picking which is the

440 best and committing to one of these actions.

You pick the action the immediate action that's on the path that looks
411 best.

This computation is really no different than that computation that I
drew over there, it's just a particular way to organize a computation of

442 choosing an action to take next.
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But it's a way of organizing it in terms of what you think is going to

443 happen downstream.

Karl Popper was a philosopher of science and he thought about falsification

444 of theories and so on.

But, he says an advantage of being human (I would say of being a planning

445 agent) is that you can let your hypotheses die in your stead.

Rather than jumping off the cliff you can think about what it would be like

446 and not do it.

447 </section 18>
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Appendix B

Segmentation Study Instructions

Part I: Task Definition

I. Introduction

The ultimate goal of this research is to be able to automatically generate summaries for

spoken lectures. Text segmentation is the first step towards this goal. It involves parti-

tioning a text into a set of coherent segments which reveal the topics discussed in the text.

Knowing the underlying topical structure of text simplifies extraction of information and

summarization.

A. Task Overview

Your task is to partition a set of transcribed lectures into a sequence of coherent segments

and provide short topical descriptions for these segments. These descriptions should then

be able to provide a high-level overview of the lecture content and enable easy access to the

relevant sections covered in the lecture. The target number of segments for each transcript

will not be given to you in advance, so you will need to segment the lecture into as many

segments as you see fit and natural to convey the overall structure of the lecture.

For your task, you will need to:

e Indicate the major and minor topic breaks (consult Section 4 for further segmentation
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guidelines)

* Label each resulting topic with a short title

* Take notes about the lecture, recording any noteworthy lecture characteristics

Each lecture is about an hour long, and it may take up to 2 to 3 hours to segment, so

allocate enough time to be able to segment each transcript without interruptions.

B. Lecture Materials

You will be asked to segment a set of lectures from an undergraduate Physics class. Recorded

audio and a transcript of each lecture will be provided. The segmentation annotation soft-

ware described in Part II will enable you to listen to the audio and examine the correspond-

ing transcript concurrently. Note that the transcripts may contain occasional omissions or

mistakes. When listening to the audio and reading through the transcripts try to under-

stand the lecture content to the best of your ability, even if the material may be unfaimiliar

to you.

II. Segmentation Guidelines

During your segmentation task you will be identifying places in the transcript where the

topics change. Implicitly, you are also splitting the lecture into segments or blocks of text.

After you locate the transitions, the segments are defined as the spans of text in between

each neighboring pair of boundaries. Note that the words "segment" and "topic" are used

interchangeably in this manual, since each segment is supposed to convey a topic.

It often happens that clear-cut transitions may not delimit substantive and coherent

topics. For example, a brief digression may interrupt the flow of the main narrative, but

in itself it provides little relevant information that contributes to the overall goal of the

segment. Thus, while you need to identify strong transitions, you also need to verify that

the segments that are thus defined convey a clear, prominent topic or goal.

Topic segmentation can be done at various levels of granularity. In the course of your

segmentation, you may come upon transitions that denote minor subtopics and digressions

that are not essential for a high-level summary. These subtopics can be a source of con-

fusion. To make the task more explicit, we introduce an extra segmentation requirement.
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In placing the segment boundaries you will need to distinguish between major and minor

topic transitions.

A. Major Topics

The major topic transitions signify changes in important subject matter. The objective

should be to place major boundaries only when a prominent topic under discussion changes

to some other prominent topic. In addition, every segment needs to be cohesive and to a

great extent self-contained. A topic change is prominent or significant enough to merit a

major boundary when disregarding it impairs high-level understanding of the structure and

the content of the lecture.

The sequence of major segments that is delimited by the transitional boundaries is

contiguous. In other words, there are no gaps between major topics.

Brief statements that introduce the major segment belong inside the segment. For

example, if the speaker says "Now I will talk about ..", then this statement needs to be

included in the subsequent discussion of the topic. Likewise, brief concluding statements

belong inside the major segment. For example, a speaker may say "So, I showed that ...",

and this comment will need to be incroporated into the previous discussion.

B. Minor Topics

The minor topics are used for sub-topics related to the major topic, digressions, remarks,

and other prominent transitions that are not crucial to understanding the high-level content

of the lecture. These transitions need to be nested inside the major segments, so they can

not span two major segments.

It is important that you introduce minor topic only when there is a clear-cut topical

transition. You should not mark minor topic breaks after every couple of sentences. The

span between boundaries must satisfy segment length constraints (see section 4.4). The

minor transitions should not occur much more often than the major transitions.

In general the major/minor topic distinction corresponds to the prominence of a topic.

C. Topic Descriptions

To make sure that the segments are really self-contained and cohesive you are asked to

provide descriptions for each of the segments.
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In order to come up with a segment description, try to fill in one of the following

statements with a specific topical noun phrase:

In this segment, the lecturer talks about

OR

In this segment, the lecturer presents

Some examples of appropriate descriptions could be "gravity", "centripetal acceleration",

"a proof of Theorem A", "an application of principle B".

In a lecture entirely about biology, it would be inappropriate to provide the "biology"

label for a segment, since it is too general. In general, if two consecutive segments have the

same description, then either the descriptions are problematic, or the segments need to be

merged.

In selecting descriptions you need to give preference to conceptual descriptions over de-

scriptions that have to do with presentational or administrative issues. For example, if the

lecturer draws a diagram that explains a particular phenomenon, then it is more appropriate

to provide the name of the phenomenon then a "diagram" segment description.

If you are having difficulties coming up with a specific topical description for the segment

distinguishing it from previous segments, then the segment may be a continuation of a

previous segment. It can also be the case that the lecturer simply rambles on without a

particular subject in mind, and you need to come up with a unifying description that ties

all of the closely related topics that the speaker mentions.

Wherever appropriate you should also make use of 2 predefined topic labels: INTRO

and END. END identifies a section after the point where you deem the lecture has ended.

For example, there may be some background noise or an extended pause. This content of

this section will be ignored in later analysis. Likewise, INTRO signifies the section from

the beginning of the audio recording until the point where the actual lecture begins.
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D. Segment Length

Segments have to be at least 5 sentences long, but they can range anywhere from 5 to more

than 100 sentences. It is unlikely that you will encounter more than 3 consecutive short

segments. So, segment with these length constraints in mind.

E. Tips

a. Read several sentences after the boundary in question before making the candidate

boundary, because it might sound like a boundary, but the topic really continues

b. Look for trigger words that can signal transitions in topic such as "Now I will talk

about ..."

c. Use the following test for determining whether to place segment boundaries: if you

can remove one utterance/sentence and make the surrounding text cohesive, do not place

a boundary before or after this intervening sentence.

Part II: Annotation Software

The following software user manual is an edited version of meeting segmentation instruc-

tions by Alexander Gruenstein and John Niekrasz.

(http://godel.stanford.edu/twiki/bin/view/Public/NomosMainPage)

I. Introduction

For segmentation annotation you will be using Annotate! or Nomos, an annotation tool

created by Alexander Gruenstein and John Niekrasz at the Stanford Center for the Study of

Language and Information (CSLI) for marking discourse features in transcripts of recorded

meetings and/or lectures.

Ultimately, the annotations entered by the human annotator will be used to train a

computer program to recognize the same discourse features in other recorded lectures. The

basic format of Annotate! is straightforward. The tool plays the audio of the recorded

lecture and simultaneously shows the transcript. Each speaker's individual transcript is
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Figure B-1: Screenshot of the NOMOS Annotation System

shown in its own row, and the rows are stacked vertically to show all participants in the

conversation. The utterances appear in white segment boxes staggered according to when

they occur during the flow of the conversation. During play, a vertical red cursor keeps

track of the time location within the lecture. There are also a number of features in the

tool that allow the annotator to mark the transcript for discourse features, to take notes,

to manipulate the play of the recording, etc.

A. Topic Breaks and Hierarchies

Topic boundaries are marked in the Annotate! tool at the beginning and end of each topic

region. If the topic has yet to be named and restricted in its length, it will appear with the

label "NAME ME!" and cover the temporal and visual space in the transcript that hasn't

yet been manipulated by the annotator. A boundary between topics is shown as a vertical
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line that extends through all speaker channels.

In Annotate! there are two kinds of topics: major and minor. A major topic appears as

either a dark or light blue background (the color alternates) behind the transcribed speech.

A minor topic appears as a set of smaller light or dark grey bands within the boundaries of

the major topic. A major topic can include several minor topics, but minor topics cannot

extend from one major topic to the next. While major topics are necessarily contiguous,

minor topics need not be followed directly by another minor topic. Major topics are also

necessarily continuous; no part of the discourse will be without a major topic, even if it

is unnamed. The topic hierarchy appears in a window to the upper left of the transcript.

Topics appear in chronological order, and those majors containing minors appear as folders

with the minors listed below.

You can make use of predefined topic labels, selected from the drop-down menu when

marking a shift. The predefined topic labels are always in capital letters to distinguish them

from the custom labels given by the annotator. At this point you should only make use of

the predefined topics: INTRO and END. These topics are all considered major.

B. Lecture Notes

Under the Edit menu, you will find Lecture Notes, a list of general notes or impressions

compiled by the transcriber during their task. There is also a space where you as the

annotator should include your own notes about the lecture. Examples of useful notes

are the annotator's impression of the difficulty of the annotation task for the lecture, the

presence of an agenda, whether the lecture had any troublesome patches (either technically

or conceptually), or any items of interest from which others could benefit.

C. Aids to the annotator

The annotator is also expected to take notes about the lecture, recording its level of difficulty,

presence of an agenda, degree of structure, or any noteworthy occurrences.

1. The Annotate! tool allows annotators to leave notes to themselves within the tran-

script. These "reminders" appear as dark pink vertical lines wherever the annotator

tags and selects the REMINDER option. The reminder list appears in a window in
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the upper right part of the tool, organized chronologically. Since determining topic

shifts and action items is often difficult the first time the annotator goes through the

lecture, REMINDER is useful for marking a place that the annotator wishes to revise

or reconsider later. In particular, these help for marking possible topic shifts so you

can go back and formally mark topic shifts and action items as needed.

2. Also under the Edit menu, the Search Annotations option allows you to search the

topics in a set of lectures for an annotator-defined regular expression. Once the

annotator name is selected and the search string entered, the search returns a list of

topics containing the expression, each one listed with the lecture in which it occurs,

the start and end times, the annotator's name, and the corpus containing the lecture.

III. USING ANNOTATE!

A. Opening a lecture for annotation:

1. Run Annotate!

2. Choose your name from the list of annotators. If it's not there, create a new one.

3. Click on File- Open to get a list of lectures and select the one you wish to annotate.

B. Transcript tools

There are number of buttons near the bottom of the Annotate! tool used for maneuvering

around the transcript.

1. HIDE: This button hides the white segment boxes containing the utterances. This is

useful when looking at multiple annotations in the comparison mode since it allows

annotators to compare the agreement of the topic shifts and action items without

the visual clutter of the utterance segments. Once the segments have been hidden,

they can be made to reappear by clicking on the same button again, this time labeled

SHOW.

2. TAG: This button allows the annotator to mark a major or minor topic shift or a

reminder "on the fly" that is, at the moment the button is clicked. This same action
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can be performed by left clicking the mouse in the transcript at the desired moment

followed by clicking the TAG button.

3. FOCUS: This button will focus the screen on the red vertical cursor. This is a quick

way to bring the screen back to the moment of play from another point. This button

is useful for returning to a particular place if the annotator has left that spot to look

at (but not listen to) another part of the lecture.

4. PLAY/PAUSE: This button controls the play of the audio files and the scroll of the

transcript. Pressing the button when it says PLAY will cause the play to begin, and

pressing the button when it says PAUSE will pause the play at that moment.

5. STOP: This button returns the cursor to where it was before the previous click on

PLAY.

6. REPEAT: This button pulls the cursor back six seconds.

7. SKIP: This button moves the cursor forward two seconds.

8. SAVE: The SAVE button is self-explanatory. It should be used often. This button

appears normal when changes have been made to the transcript and not saved, and

dims to grey when all changes have been saved. It is a good idea to make sure that

the button dims when clicked. If it does not, it may mean that your work has not

been saved.

9. LEFT-CLICK ACTION: These radio buttons switch the mode of the tool so that the

left click performs different tasks. 'Audioi is the standard mode. In this mode, left-

clicking will stop play if the lecture is playing and will move the cursor to that point.

'Action itemi mode means that left-clicking on utterances will include them in the list

of action items. The item under which the utterance will be listed depends on what

item is currently selected in the action item list above the transcript. Right-clicking

in either mode gives the annotator the option of tagging a topic shift, action item, or

reminder at that moment.

Lastly, there are two more features you can use to manipulate the visuals:

1. Scroll bar: click and drag on the scroller to move around in the transcript.
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2. Zoom slider: click and drag up/down to zoom in/out. This feature allows you to view

large, non-detailed portions of the transcript, and is especially useful for comparing

the results of different annotators in Comparison Mode.

C. Marking Topic Breaks

Topics are marked by clicking the TAG button below the transcript or by right-clicking

on the moment of shift and making a selection. Whenever a major or minor topic has

concluded, the annotator should name it using the dialogue box that appears for editing

the topic label. These labels should be composed by the annotator according to his or her

best estimation of the subject matter of the topic, and can be edited at any time. The labels

are intended to help the annotator conceptualize the topic relationships, and will not be used

in future analysis. If a topic changes but the discussion later returns to the same subject

matter, the multiple topic regions should be given the exact same labels. Interrupting a

previous topic region by marking a new one gives the option of naming the region that just

ended (and in the case of major topic boundaries, the region to follow). The annotator can

either make a new label or select from the drop-down menu, which includes the predefined

topics and the topics the user has already marked (allowing the annotator to informally

link section's by using the same name for them). Ending a major topic always starts a new

major, but upon ending a minor topic you can either return to the major containing it or

start a new minor topic.

The Topic Breaks window has several buttons to help the annotator manipulate the

organization of topics.

1. REMOVE: removes the topic. A major with minors within it cannot be removed.

2. SHOW: brings the start of that topic to the center of the transcript window.

3. CURSOR: the same as "Show", but moves the cursor to the center as well.

4. EDIT: used to change the name of the topic.

5. MERGE: unifies two topics under the same name. In order to merge, both topics must

be highlighted (use the Ctrl button to highlight more than one topic at a time). The
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user must then select a name for the new larger topic. Merging two majors retains

their minor topics.

6. PROMOTE: turns a minor topic into a major. If there are minors following it within

major topic "A", promoting it will keep those later minors in topic "A".

7. DEMOTE: turns a major into a minor, incorporating it into either the previous major

or the following major.

D. Marking Reminders

A reminder can be marked by clicking the TAG button or by right-clicking at the desired

moment, then selecting REMINDER. Once marked, a dialogue box will appear and ask

the annotator to label the reminder. The annotator should label it with any phrase or key

words that will help him or her. The buttons in the 'Remindersi window have the same

function as those of the same name in the 'Topic Breaksi window.

E. Keyboard Shortcuts

Some actions can be made easier with the help of the keyboard (NOTE: these shortcuts

can only be used while the PLAY/PAUSE button is highlighted):

1. Enter/Return: the same as TAG. (Used to mark topic boundaries and reminders.)

2. Right arrow: the same as SKIP.

3. Left arrow: the same as REPEAT.

4. Spacebar: pauses or restarts the play of the transcript.
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Appendix C

Stop Words List
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yes becomes every ie not somehow un
no becoming everyone if nothing someone under

said been everything in now something until
n't before everywhere inc nowhere sometime up
'm beforehand except indeed of sometimes upon
's behind few interest off somewhere us
're being fifteen into often still versa
'11 below fify is on such very
a beside fill it once system via

about besides find its one take vice
above between fire itself only ten was
across beyond first keep onto than we
after bill five last or that well

afterwards both for latter other the were
again bottom former latterly others their what

against but formerly least otherwise them whatever
all by forty less our themselves when

almost call found ltd ours then whence
alone can four made ourselves thence whenever
along cannot from many out there where

already cant front may over thereafter whereafter
also co full me own thereby whereas

although computer further meanwhile part therefore whereby
always con get might per therein wherein

am could give mill perhaps thereupon whereupon
among couldnt go mine please these wherever

amongst cry had more put they whether
amoungst de has moreover rather thick which
amount describe hasnt most re thin while



an detail have mostly same third whither
and do he move see this who

another done hence much seem those whoever
any down her must seemed though whole

anyhow due here my seeming three whom
anyone during hereafter myself seems through whose
anything each hereby name serious throughout why
anyway eg herein namely several thru will

anywhere eight hereupon neither she thus with
are either hers never should to within

around eleven herself nevertheless show together without
as else him next side too would
at elsewhere himself nine since top yet

back empty his no sincere toward you
be enough how nobody six towards your

became etc however none sixty twelve yours
because even hundred noone so twenty yourself
become ever i nor some two yourselves

Table C.1: Continuation of the Stop Words List
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