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Abstract

We introduce a novel unsupervised algorithm for text segmentation. We re-conceptualize
text segmentation as a graph-partitioning task aiming to optimize the normalized-cut cri-
terion. Central to this framework is a contrastive analysis of lexical distribution that si-
multaneously optimizes the total similarity within each segment and dissimilarity across
segments.

Our experimental results show that the normalized-cut algorithm obtains performance
improvements over the state-of-the-art techniques on the task of spoken lecture segmenta-
tion. Another attractive property of the algorithm is robustness to noise. The accuracy of
our algorithm does not deteriorate significantly when applied to automatically recognized
speech. The impact of the novel segmentation framework extends beyond the text segmen-
tation domain. We demonstrate the power of the model by applying it to the segmentation
of raw acoustic signal without intermediate speech recognition.
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Chapter 1

Introduction

The limits of my language are the limits of my mind.

-Ludwig Wittgenstein

Natural language understanding is arguably one of the most compelling scientific fron-
tiers, only now beginning to be probed through advances in statistical natural language
processing, machine learning, linguistics, and cognitive science. In this thesis, we address
one of the structural pieces in the required scaffolding, the problem of text segmentation.

The task is to partition a text into a linear sequence of topically coherent segments and
thereby induce a content structure of the document. Apart from laying the groundwork
for the development of more realistic semantic models for natural language understanding,
the immediate applications of the derived structural information are broad, encompassing

information retrieval, question-answering, and text summarization.

1.1 Problem Motivation

Text segmentation is an active area of research in natural language processing. However,
until recently, much of the work has been hampered by strong oversimplifying assump-
tions about the distributional properties of the data, the availability of certain structural
‘information such as paragraph and sentence boundaries, and artificial restrictions on the
language domain. These assumptions have undercut the effectiveness of the models in more
challenging contexts.

A critical dimension that has received relatively little attention is the distinction between

15
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Figure 1-1: Synthetic Text Similarity Plot

topic and sub-topic segmentation. A substantial portion of the work on segmentation ad-
dresses the problem of recovering documents or fragments of different documents from a
stream of concatenated texts. In this case, the definition of a topic boundary is clear-cut,
because it corresponds to a document boundary. There are real-world problems where this
scenario is relevant. For example, research work has been conducted on broadcast news
segmentation, where the goal is to partition the broadcast news transcripts into a set of
distinct news segments (Beeferman et al., 1999; Allan et al., 1998). In more challenging
domains, such as spoken language segmentation, however, segmentation has to be executed
at the level of a sub-topic. This new objective makes it much more difficult to develop
effective models and also be able to evaluate these models, since the concept of a sub-topic
is much more fluid.

Following the first unsupervised segmentation approach by Hearst (1994), most ap-

proaches assume that variations in lexical distribution indicate topic changes. When docu-
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Figure 1-2: Spoken Lecture Transcript Similarity Plot

ments exhibit sharp variations in lexical distribution, these algorithms are likely to detect
segment boundaries accurately. For example, most algorithms achieve high performance
on synthetic collections, generated by concatenation of random text blocks (Choi, 2000).
The difficulty arises, however, when transitions between topics are smooth and distribu-
tional variations are subtle. Consider, for example, the pairwise sentence similarity plots in
Figures 1-1 and 1-2, computed for a synthetic text and a spoken lecture transcript, where
vertical lines indicate true segment boundaries. For clarity, in both of these plots only the
cosine similarity scores above the 90-th quantile were plotted. Clearly, the synthetic text
exhibits much more sharp transitions, while there is considerable lexical overlap between
segments in spoken language. This discrepancy is evident in the performance of existing
unsupervised algorithms on less structured datasets, such as spoken meeting transcripts

(Galley et al., 2003). Therefore, a more refined analysis of lexical distribution is needed.

Past models have typically been evaluated on written language or clean transcribed

17



data. It is not clear whether these models will be able to tolerate transcription errors and
spoken language irregularities. Segmentation in the spoken language domain is challenging
in several respects. Being less structured than written text, speech transcripts exhibit
digressions, disfluencies, and other artifacts of spontaneous communication. In addition,
the output of speech recognizers is fraught with high word error rates due to specialized
technical vocabulary and lack of in-domain spoken data for training.

In order to be able to segment transcripts of speech, it is also necessary to cast off
assumptions about available structural information. The segmentation approach by Hearst
(1994), for example, requires paragraph structure. Many of the other unsupervised and
supervised models require sentence-level segmentation. In the spoken language domain
these extra sources of information are not available.

In this thesis, we address these limitations by effectively expanding the coverage of
unsupervised segmentation models to new domains, while advancing the state-of-the-art in

text segmentation.

1.2 Our Approach

Most of the past unsupervised segmentation algorithms rest on intuitive notions of similarity
density. In this thesis, we formalize the empirical basis for segmentation by casting text
segmentation in a graph-theoretic framework. We abstract a text into a weighted undirected
graph, where the nodes of the graph correspond to sentences and edge weights represent
the pairwise sentence similarity. In this framework, text segmentation corresponds to a
graph partitioning that optimizes the normalized-cut criterion (Shi and Malik, 2000). In
contrast to previous approaches, the homogeneity of a segment is determined not only by
the similarity of its words, but also by their relation to words in other segments of the text.
Thus, our approach moves beyond localized comparisons and takes into account long-range
variations in lexical distribution. Global analysis enables us to detect subtle topical changes,

yielding more accurate segmentation results than local models.

1.3 Contributions

Below, we summarize the main contributions of our thesis.

18



e We formalize the text segmentation objective in a general, principled framework. With
this objective we are able to model the global characteristics of the lexical distribution
and simultaneously maximize within-segment similarity and minimize between-cluster

similarity, merging the strengths of different unsupervised approaches to segmentation.

o We attain the new state-of-the-art results in spoken lecture segmentation. In contrast
to much of the other work on unsupervised segmentation, we evaluate our algorithm
on a corpus of spoken lectures, with more subtle lexical variations. Our experiments
demonstrate that the minimum-cut segmentation approach yields superior perfor-
mance when compared to other state-of-the-art segmentation algorithms in the spo-
ken lecture domain. We outperform the method of Utiyama and Isahara (2001) by
9% P, measure and the method of Choi (2000) by 24.4% P measure.

e Another attractive property of the algorithm is robustness to noise. The accuracy
of our algorithm does not deteriorate significantly when applied to automatically

recognized speech.

o The impact of our novel segmentation framework extends beyond the text segmenta-
tion domain. We demonstrate the power of the model, by applying it to the segmenta-
tion of raw acoustic signal. We represent the acoustic signal by an inter-word-fragment
acoustic similarity matrix, and partition the resulting similarity matrix with the Min-

imum Cut segmentation algorithm.

1.4 Thesis Overview

This thesis is organized as follows. In the next chapter we provide an overview of linguistic
theory with connections to the segmentation problem. We review existing work on super-
vised and unsupervised approaches to text segmentation as well as related approaches in
vision segmentation.

We introduce the minimum cut algorithm in chapter 3. We first formulate the minimum
cut problem, and then describe how it can be applied naturally to the text segmentation
task. Finally, we flesh out the implementation details for the text segmentation system
based on the Minimum Cut model.

In chapter 4, we analyze the performance of the minimum cut algorithm on spoken

19



lecture data and compare our system with other state-of-the-art text segmentation systems.
First, we explain the evaluation metrics used in our analysis and the human agreement
results on the data. Then we examine the effect of long-range lexical dependencies employed
by the model. In order to gauge its effectiveness, we compare our system with other leading
segmentation systems on synthetic and spoken lecture data-sets. We also examine the
effect of speech recognition error on segmentation accuracy. Finally, we experiment with
the problem of identifying lecture topic boundaries directly from acoustic features of the
speech signal.

In chapter 5, we conclude the thesis by highlighting the main points, outlining some of
the experimental extensions to the model that did not contribute to further performance

gains, and discussing future directions for the work.
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Chapter 2

Related Work

Many of the assumptions underlying existing automatic segmentation methods were first
formulated in the context of linguistic theory. In this chapter we will outline these theories
and distill their connections to the segmentation problem. We then provide an overview
of the different computational approaches to text segmentation. We begin by surveying
developments in supervised segmentation. Then, we discuss previous work in unsupervised
text segmentation that relates most closely to our approach, and conclude by describing a

computational model for image segmentation which influenced our work.

2.1 Linguistic Foundations

2.1.1 Lexical Cohesion Theory

One common assumption that threads its way into the design of many segmentation al-
gorithms is the notion that lexical repetition indicates topic continuity, while changes in
lexical distribution signal topic changes.

This principle was first formalized in the linguistic work of Halliday and Hasan (1976) on
Cohesion Theory. The theory postulates that discourse is constrained by certain grammati-
cal and lexical cohesion requirements. At the semantic and syntactic level these constraints
include devices of reference, substitution, ellipsis, and conjunction. At the lexical level, the
narratives are tied together by way lexical cohesion or word repetition.

We illustrate these concepts with an analysis of a text fragment reproduced in Figure 2-1

from a transcribed Artificial Intelligence lecture, used in the evaluation of our segmentation
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system. In the first paragraph, the speaker is giving an overview of agents, and then she
moves on to a route planning example. Content words repeated in the span of the text

fragment are shown in bold.

Last time we talked about different ways of constructing agents and why it is that you might want
to do some sort of on-line thinking. We have this idea that if you knew enough about the domain,
that off-line you could do all this compilation and figure out what the program that should go in
the agent and put it in the agent. And that’s right. But, sometimes when the agent has a very
rich and complicated environment, it seems easier to leave some of that not worked out, to let the
agent work some of it out on-line. ...

The example problem that we’ll use in looking at these methods is, for instance, route planning in
a map. If I give you a map, you know the world dynamics, because you know that you are in this
place and you travel down that road, then you’re going to end up at this other place. The world
state is finite, again as an abstraction. If I give you a map that has dots on it, which are the
towns that they thought were big enough to merit a dot, somebody decided that was a good level
of abstraction to think about driving around this place. The world is deterministic. Again, in
the view of a map, there aren’t probabilities that tell you how likely it is that if you're trying to go
here, you’ll end up over there

Figure 2-1: Lecture extract from the Artificial Intelligence corpus illustrating lexical cohe-
sion.

Lexical cohesion in these two distinct segments can be observed at the surface level of
sentence realization through repetition of key topical words. For example, the word “agent”
is repeated in almost all of the sentences of the first paragraph. This is hardly surprising
since it is the subject under discussion in that segment. Note also that the word does
not reappear in the subsequent segment which moves on to a new topic. Likewise, “map”
is repeated several times in the second segment because it relates to the topic of route
planning, but it is absent from the first paragraph. In general, if the topics are sufficiently
different, it should be expected that the associated key topical words will be different as
well.

This property can be exploited for the differentiation of topics within text by preserv-
ing continuity of text spans where the lexical distribution is homogeneous and choosing
boundaries at locations of prominent change in lexical distribution. The analysis extends
to the recurrence of common word stems, synonyms, hyponyms, and word collocations. If
words tend to appear in similar contexts, then they are likely to be semantically related, as
demonstrated by the cooccurrence of closely related pair of words “program” and “compi-
lation” in the first segment. Despite being patently obvious, the idea of lexical cohesion is

very powerful, since the degree of lexical cohesion can be quantified through simple word
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matching.

Besides lexical cohesion, Halliday and Hasan establish that the presence of certain se-
mantic devices in the text can crystallize the latent thematic structure. Conjunctions such
as “for example” in the above text, point to associations between adjoining clauses or sen-
tences. Referential links between anaphors and their antecedents also preserve continuity of
the spanned text fragments, because of the persistence of the underlying object. So, in the
first paragraph, “that” is referring to the previously mentioned idea. Finally, substitution
and ellipsis are also quite common devices that elicit cohesion. These correspond to cases
where certain word phrases are implicitly acknowledged to have been either replaced by
simpler referring expressions or removed altogether.

In the context of text segmentation, all of these devices can be used to eliminate or
identify potential segment boundaries. For example, lexical items and cue words that usually
tend to signal references, substitutions, and conjunctions can be readily identified. These
trigger words are often employed as lexical features in feature-based segmentation systems.
Reynar (1998) observes that anaphoric links tend to occur much more frequently within
segments than across different segments and registers the presence of anaphoric links as a
feature in his segmentation system. This analysis is consistent with the linguistic function

of reference in eliciting cohesion.

2.1.2 Empirical Basis for Lexical Cohesion

Lexical cohesion theory can be grounded empirically with simple graphical representations
of lexical distributions in text. Church (1993) achieves this by plotting the cosine similarity
scores between every pair of sentences in the text. The intensity of a point (i, j) on the plot
indicates the degree to which the i-th sentence is similar to the j-th sentence.

Figure 2-2 is a DotPlot for a lecture transcript from an undergraduate Physics class. The
true segment boundaries are denoted by vertical lines. This similarity plot reveals a block
structure where true boundaries delimit blocks of text with high inter-sentential similarity.
Sentences found in different blocks, on the other hand, tend to exhibit low similarity.

Under multiple domains in both written and spoken genres of language, this representa-
tion consistently bears out the claim that repetition of content words is a strong indicator of
thematic cohesion, while changes in the lexical distributions usually signal topic transitions.

In fact, the representation serves as a basis for many unsupervised algorithms, including

23
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Figure 2-2: DotPlot for a Physics lecture, with vertical lines indicating true segment bound-
aries.

the approach proposed in this thesis.

2.1.3 Models of Discourse Structure and Coherence

More refined linguistic representations of narratives also shed light on the conceptualization
of topic structure. Theories of discourse are concerned in the main with how natural lan-
guage fits together to produce coherent, easily interpretable narratives that convey meaning
and how that meaning is recovered. Approaches to the segmentation problem should be
able benefit from an insight into how the thematic structure of text is generated at a higher
semantic level of abstraction captured by the notion of coherence.

Textual coherence is a property that is imparted by the global semantic structure em-
bedded in text. For example, Rhetorical Structure Theory (Mann and Thompson, 1987)

posits that this sense of logical flow is pieced together by an implicit rhetorical tree of
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relations among phrasal constituents, relations such as cause and elaboration. Grosz and
Sidner (1986), on the other hand, argue that beyond inter-segmental and thematic relations,
coherence is conveyed in how the thematic structure relates to the message that the speaker
intended to convey and how the target audience actually processes that information.

Even though there are many different discourse theories, the underlying idea of discourse
coherence has important implications for segmentation modeling. In general, the goal of
segmentation should be to provide the coherent constituent structural blocks, whereas most
current segmentation systems only aim to provide the set of cohesive segments in a text.
After all, we are interested in exposing the underlying semantic layers and not just the
surface grammatical or lexico-distributional regularities.

In theory, modeling coherence is much more powerful than merely being able to model
lexical cohesion. Many of the current segmentation systems fail to take into account the
global distributional properties of text that tie into coherence. The approach proposed
in this thesis provides part of the framework for modeling coherence by considering the
long-range lexical relationships. Since many theories suggest that segmentation should be
modeled hierarchically in order to capture the relational structure underlying coherence,

our approach could be used as the first step in full semantic relational parsing.

2.2 Supervised Methods

Although our focus in this thesis will be on unsupervised, similarity-based models for seg-
mentation, we will briefly highlight some of the supervised approaches. These methods
usually require large amounts of in-domain training, and are sensitive to noise, speech
recognition errors, and data sparsity. The supervised methods for segmentation typically

fall into one of the two classes, namely binary classification or sequential models.

2.2.1 Classification and Sequential Models

Under the classification framework, each candidate boundary location in the text is eval-
uated independently by the model, and then the top scoring candidate boundaries are
selected. Some of the approaches applied to text segmentation in this class of learning
algorithms in the past include Decision Trees (Passonneau and Litman, 1997; Gruenstein et

al., 2005), Maximum Entropy (Beeferman et al., 1999), Support Vector Machines (Kauchak
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and Chen, 2005), and Boosting (Sporleder and Lapata, 2006). The strength of these models
lies in their ability to encode arbitrary local contextual features. However, the fact that
hypotheses are evaluated independently detracts from their effectiveness, since segment
boundaries are inter-dependent. For example, these types of models will not be able to
capture the fact that very short segments should be unlikely.

Sequential models, as the name implies, model sequences of decisions. Van Mulbregt
et al. (1999), Shriberg et al. (2000), and Ponte and Croft (1997) model text streams with
Hidden Markov Models over word sequences, with HMM states corresponding to boundary
and non-boundary states delimiting segments. Dielmann et al. (2005) employed Dynamic
Bayesian Networks for structured multi-party meeting segmentation. These approaches

typically require a lot of training data, and they are applied to highly structured domains.

2.2.2 Features

The effectiveness of supervised segmentation models often hinges on choosing a suitable
feature representation. In the written language domain, lexical cohesion and linguistically
motivated features are used. Cohesion features capture the underlying word distributions,
indicating whether segments are lexically cohesive. Beeferman et al. (1999) encode the log
likelihood of a context-sensitive and context-independent language model as a feature in
their model. Galley et al. (2003) incorporate cosine similarity scores between blocks of text.
The linguistic features may register the presence of referential noun phrases which indicate
topic continuity or cue words, which usually signal topic changes.

In spoken language segmentation, additional prosodic, acoustic, and discourse features
such as speaker activity, speaker overlap, and pause duration have been used to improve

segmentation quality (Shriberg et al., 2000; Gruenstein et al., 2005).

2.3 Unsupervised Methods

In this thesis, we focus on the development of unsupervised approaches to segmentation,
which tend to differ markedly from their supervised counterparts. Unsupervised segmenta-
tion methods can be characterized by the form of the optimization objective, the type of
contextual representation and smoothing, and finally by the decoding techniques used for

obtaining the segmentation.
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2.3.1 Optimization Objective

The optimization objective for segmentation is usually defined either in probabilistic terms

or in terms of lexical similarity.

Probabilistic approaches Among approaches with probabilistically motivated objec-
tives, for example, the method developed by Utiyama and Isahara (2001) finds the maxi-
mum probability segmentation for the noisy channel model of segmentation. Given a word
sequence W = wyws ... w, and a segmentation S = $183...5,, of W the approach aims
to maximize P(S|W) = ﬂ.‘ﬂlﬁﬁ(ﬁl This is equivalent to finding the most likely sequence
of segments S = arg maxg P(W|S) (S). In order to evaluate this objective, the authors
make the simplifying assumption that segments are statistically independent of each other,
and words within segments are conditionally independent given the segment. This allows
them to decompose the P(W|S) into a product of word emission probabilities, conditioned

on the topic:

m N

pw1s) = [T I Pwilsy),

i=1j=1

where w’ is the j-th word in segment i or S;. Furthermore, P(W|S) is a defined as a

smoothed language modeling probability:

fi(w;) +1

Priwls) = =7

b

where f;(w;) is the frequency of j-th word in the i-th segment and n; is the number of words
in segment i. Pr(S) is defined as a description length prior 2745) where {(S) = m logn
is the description length, m is the number of words in the text, and n is the number of
segments. Putting all of these terms together, and taking the log of the posterior, we yield

the following objective:
m ng
log P(S|W) = ZZ] fz(wj)+ —mlogn

i=1 j=1

The assumptions of statistical independence for the segments and the conditional inde-

pendence of words are not borne out in real data. With very short segments, this model
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will produce noisy estimates for the word emission probabilities. Also, it does not capture
the relative importance of words in the process of segmentation.

Other probabilistic models include the work of Purver et al. (2006), who propose a more
refined generative model of topic structure, which models the word distributions in segments

with a linear combination of distributions over topics.

Similarity-based approaches In many cases pattern recognition problems do not lend
themselves readily to a probabilistically-motivated objective, whereas the concept of ob-
ject or entity similarity may be quite natural. The notion of lexical similarity has been
extensively explored and applied in many other natural language tasks.

In the context of segmentation, text is usually decomposed into a series of sentences
or blocks, represented by vectors of word counts. Text similarity is measured in terms of
cosine similarity of adjacent blocks, s; = (wyws ... wy), where cosine similarity, S(s;, s;), is

defined as:

;- 8j
S = el lll

In the equation above, s; - s; is the dot product of two vectors and ||s;|| is the Ly norm of
vector s;.

Most unsupervised text segmentation algorithms assume that fragments of text with
homogeneous lexical distributions correspond to topically coherent segments. So, the ho-
mogeneity is typically computed by analyzing the similarity in the distribution of words
within a segment. The approaches that maximize self-similarity within a segment include
(Choi, 2000), (Reynar, 1998), (Kehagias et al., 2003), and (Ji and Zha, 2003). Other ap-
proaches determine segment boundaries by locating sharp changes in similarity of adjacent

blocks of text (Reynar, 1998; Hearst, 1994). Ideally, both of these objectives should be used

to evaluate segmentation quality.

2.3.2 Contextual Dependencies

The earliest approaches to text segmentation only took into account local contextual in-
formation (Kozima, 1993; Hearst, 1994). For instance, Hearst developed the TexTiling
segmentation algorithm for the problem of partitioning expository texts. This approach
assumes that drops in the similarity profile of adjacent text blocks correspond to topic

changes and that topic changes occur in between paragraph breaks of the text. The Text-

28



Tiling algorithm determines boundaries by locating local minima in the sequence of cosine
similarity scores of adjacent blocks of text. It determines the target number of segments by
specifying a similarity cutoff threshold.

The weakness of this approach is that it only considers similarity between adjacent
blocks of text, and does not model longer-distance lexical ties. Also, a fixed cutoff for
determining boundaries is problematic, since texts may exhibit both sharp and attenuated
topic transitions in different parts of the narrative.

Other unsupervised segmentation approaches work with the DotPlotting text represen-
tation suggested by Church (1993) first used by Reynar (1994) for segmentation and later
adopted by Choi (2000), Kehagias et al. (2003), and Ji and Zha (2003).

These algorithms compute pairwise cosine similarity between every pair of sentences
sentences, so the resulting representation is much finer. Then they try to elicit the latent
block structure in the similarity matrix. This representation enables the approaches to
model long range cohesion dependencies, not just the local context. Our work draws part

of its strength from this latest line of research in unsupervised segmentation.

2.3.3 Smoothing and Lexical Weighing

Previous research on similarity-based segmentation methods has analyzed lexical weighting,
similarity computation, and smoothing (Hearst, 1994; Utiyama and Isahara, 2001; Choi,
2000; Reynar, 1998; Kehagias et al., 2003; Ji and Zha, 2003). In practice, smoothing has
delivered significant performance gains.

Choi (2000) uses similarity ranks in the local context instead of using the actual inter-
sentence similarity and further refines the similarity metric by incorporating lexical simi-
larity weights from Latent Semantic Analysis (Choi et al., 2001). Ji and Zha (2003) ap-
ply anisotropic diffusion smoothing to the sentence similarity matrix, achieving gains over
(Utiyama and Isahara, 2001; Choi, 2000) on a synthetic corpus of concatenated text blocks.
We will describe the latter smoothing approach in the next chapter in section 3.4.

The effectiveness of the smoothing approaches is often dependent on the segmentation
domain and the underlying characteristics of the segmentation algorithm. For instance,
lexical similarity scores obtained from Latent Semantic Analysis will be beneficial in the
synthetic domain, because the topics represented in the text are very different. However,

when much more subtle distinctions are required for the purpose of sub-topic segmentation,
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Figure 2-3: (a) Original Image (b) Image segmented with the Normalized Cut Algorithm

this technique may actually degrade performance.

2.3.4 Decoding

The final distinction that can be made among unsupervised segmentation algorithms is
based on the type of decoding technique used. The decoding either involves a greedy ap-
proximation or performs exact inference. The former class includes the text segmentation
algorithm proposed by Reynar (1998), while most of the current state-of-the-art segmenta-
tion methods use dynamic programming to obtain the optimal segmentation (Choi, 2000;
Utiyama and Isahara, 2001; Kehagias et al., 2003; Ji and Zha, 2003).

2.4 Graph-Theoretic Approaches in Vision Segmentation

In addition to past text segmentation approaches, our model was influenced by the minimum-
cut-based segmentation algorithm developed for the problem of image segmentation (Shi
and Malik, 2000). The objective of image segmentation is to partition an image into mul-
tiple regions corresponding to the different objects and the background. For illustration
purposes, consider the original image in Figure 2-3(a) and its counterpart segmented into
five regions shown in Figure 2-3(b). The segmentation algorithm delineates the outlines of
Marylin Monroe and separates the background into four different regions.

Shi and Malik (2000) approach image segmentation through graph partitioning. Each
image pixel is represented as a node in the graph. The feature vectors for the pixels capture

intensity, color, and texture information. Edge weights, w;;, between node pairs are defined
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Figure 2-4: Normalized Cut Eigenvectors

as the product of a feature similarity term and a term corresponding to the spatial distance
. . —IFE-FG)I? ~IX@)=XG)|1? )
between the pixels i and j: wi; = e 1 X e 7X , where || - || is the Lo

norm, F'(i) is the feature vector for pixel i, X (i) is the spatial location of node i, and o
and ox are parameters. The quality of the partitioning is measured by a new criterion,
the normalized-cut, described in the next chapter. Minimizing the normalized cut is N P-
complete. However, Shi and Malik reformulate the minimum cut problem in terms of a
generalized eigenvalue system subject to discrete constraints on the decision variables. If
the decision variables are allowed to take on continuous values, the system can be efficiently
solved by finding the second smallest eigenvector of the generalized eigensystem through

eigenvalue decomposition.

The cluster assignment is resolved by selecting a threshold such as the median of the
eigenvector components and assigning pixels below the threshold to one cluster and those
above the threshold to the other cluster. The assignments taken by discretizing the solutions
to the relaxed eigenvalue system are only approximate. In general, Shi and Malik show that
the eigenvector with the n-th smallest eigenvalue is the real-valued solution that optimally
subpartitions the first n—1 parts of the overall image. Figure 2-4 shows the five eigenvectors

with the smallest eigenvalue.

We note, that one of the principal conceptual differences between text segmentation
and image segmentation is that in image segmentation segment boundaries can be drawn
up arbitrarily, whereas in text segmentation the boundaries form a linear partitioning of the

nodes, so that nodes between two closest boundaries have to belong to the same segment.
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Figure 2-5: Taxonomy of Text Segmentation Models

2.5 Our Approach

Figure 2-5 illustrates the overarching taxonomy of approaches to the segmentation prob-
lem. Our algorithm fits into the unsupervised, similarity-based class of approaches to text
segmentation. One of the contributions of our work is on the fundamental aspect of text
segmentation analysis — the impact of long-range cohesion dependencies on segmentation
performance. In contrast to previous approaches, the minimum cut algorithm simultane-
ously optimizes the similarity within each segment and the dissimilarity across segments.
Thus, the homogeneity of a segment is determined not only by the similarity of its words,
but also by their relation to words in other segments of the text. We show that optimiz-
ing our global objective refines the analysis of the lexical distribution and enables us to
detect subtle topical changes. Another advantage of this formulation is its computational
efficiency. Similarly to other segmentation approaches (Utiyama and Isahara, 2001; Choi,
2000; Reynar, 1998; Kehagias et al., 2003; Ji and Zha, 2003), we are able employ dynamic
programming to find the globally optimal solution, because of the linearity constraint on

text segmentation.

32



Chapter 3

Minimum Cut Segmentation

Whereas many of the past unsupervised approaches to segmentation rested on intuitive
notions of similarity density, we formalize the objective of text segmentation through cuts
on graphs. In this chapter, we first formulate the minimum cut problem, and then describe
how it can be applied naturally to the text segmentation task. Finally, we flesh out the

implementation details for the text segmentation system based on the Minimum Cut model.

3.1 Background

3.1.1 Minimum Cuts

0.2 0.4 0.4

N
03 \_/ 07 \_/ o1

Figure 3-1: Input: Weighted Undirected Graph

Let G = {V, E} be an undirected graph, where V is the set of vertices and E is the set
of weighted edges (See Figure B-1). We denote the edge weights between every connected
pair of vertices u and v by w(u,v). A graph cut is the partitioning of the graph into two
disjoint sets of nodes A and B.

The capacity of the cut is defined as the sum of crossing edge weights between A and
B. Figure 3-2 includes two possible cuts of the graph in Figure B-1. The edges severed by
this cut are shown in dotted lines. The capacity of the left cut in the figure is 0.1, and the

33



capacity of the right cut is 0.5. Note that for notational convenience, we will henceforth

refer to the cut capacity and the cut value interchangeably in the thesis.

We are interested in the problem of finding the minimum capacity cut or min cut, for
short. The minimum cut is a partitioning of the graph into two disjoint sets of nodes that
minimizes the cut capacity. In Figure, 3-2 the left cut is the minimum cut, because it is the

configuration that minimizes the sum of the crossing edges.

0.2 0.4

0.3

Figure 3-2: Examples of Binary Cuts on a Graph

The minimum cut problem is important in clustering tasks among other applied prob-
lems. Wu and Leahy (1993), for example, formulate a method for clustering data with the
minimum cut criterion and demonstrate how it can be applied to image segmentation. If the
edge weights represent the degree of node similarity, then the capacity of a cut corresponds
to the extent of association between the two partitions. Minimizing the cut corresponds to
minimizing the degree of association between these partitions, thereby splitting the graph

into its two most dissimilar components.

3.2 Variations on the Minimum Cut Objective

There is a problem with the minimum cut objective in its unaltered form. When minimum
cuts are employed for clustering, they will often give rise to unbalanced partitions, which can
be problematic. Shi and Malik (2000) and Wu and Leahy (1993) observe that small clusters
of outlying nodes will tend to be separated from the rest of the graph in many clustering
scenarios. This is not a desirable feature for a clustering objective function. In order to
address the shortcomings, several alternative forms of the objective have been formulated.
We will use the normalized cut objective introduced by Shi and Malik (2000), because it is

superior to its alternatives in several important respects.
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3.2.1 Normalized Cut

First, we will define the volume of a subset of the graph to be the sum of its edges to the

entire graph:

’UOl(A) = Z w(u, ’U)

u€EAVEV

Similarly, we can define the association, assoc(A) of a particular cluster of nodes as

follows:

assoc(A) = Z w(u, v)

u€AvEA

Note that volume is simply the sum of the cut value (the sum of cross-partition edge
weights) and the association value (the sum of the interpartition edge weights). The new

normalized cut criterion (Ncut) is a result of normalizing the cut by the volume:

cut(A,B)  cut(A, B)

Neut(A, B) = =y + ~0al(B)

For example, in Figure 3-2, the left segmentation has a cut value of 0.1 and the volume
of sets A and B is 1.7 and 0.5, respectively. This results in a normalized cut value of
%—; + g% = 0.2588. The right segmentation has a cut value of 0.5 and the volumes of the

5

two sets are 0.5 and 2.1, giving a normalized cut value of 22 + %3 — 1.9381. So, the left
05 " 21

partitioning has a smaller normalized cut value.

In general, this alternative form of the objective is sensible, because now the capacity
of a cut is measured as a fraction of the overall outgoing weight edges from each subset of
nodes. So, for clusters with a small number of points the cut capacity to volume ratio will

be large. Therefore, by minimizing this criterion we ensure that the partitions are balanced.

We can identify an even stronger property. Namely, by optimizing this objective we
simultaneously minimize the similarity across partitions and maximize the similarity within

partitions.

One natural alternative to minimizing the degree of similarity between clusters is to

maximize the degree of association within clusters. The normalized association criterion,
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Nassoc, is defined as follows:

assoc(A)  assoc(B)

Nassoc(A, B) = vol(4) vol(B)

We will now show that the normalized cut and the normalized association add up to a

constant.

Nassoc(A, B) + Neut(A, B) [cut(A,B) cut(A,B)] [assoc(A) assoc(B)

vol(A) vol(B) vol (A) vol(B)

=2

cut(A, B) + assoc(A) cut(A, B) + assoc(B)| _ wol(A) = wol(B)
vol(A) } [ vwl(B) ] = wi(4) T val(B)

This proves that minimizing the normalized cut criterion is equivalent to maximizing

the normalized association objective, as Ncut(A, B) = 2 — Nassoc(A, B).

3.2.2 Average Cut

Another alternative to the plain cut is to normalize the cut by the cardinality of a particular

cluster:

cut(A,B) cut(A,B
Ncut(A,B) = |(A| ) + |(B| )

This will ensure that the clusters are balanced. However, this criterion does not guar-

antee that the the clusters will have tight inter-cluster similarity.

3.2.3 Average Association

In order to have tight inter-cluster similarity, we can normalize the inter-cluster similarity

by the cardinality of a cluster:

assoc(A)  assoc(B)

Nassoc(A, B) = ] ¥

However, this objective will be prone to separating out small clusters with large inter-

cluster similarity.
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Figure 3-3: Graph-based Representation of Text
3.3 Normalized Mincut Segmentation

We will now show why optimizing the normalized cut objective is a natural fit for the
text segmentation problem. Initially, we will consider the binary segmentation problem.
Therefore, we will assume that there are only two sections in the text to be segmented.
The nodes of the graph will denote adjacent sentences, and the edge weights, w(u,v), will
define a measure of similarity between pairs of sentences, where higher scores indicate higher
lexical similarity (See Figure 3-3).

Intuitively, we aim to jointly maximize the intra-segmental similarity and minimize the
similarity between different segments. In other words, we want to find the segmentation
with the most homogeneous set of segments that are also maximally different from each
other.

In Chapter 2, we showed an empirical basis for the computational objective of the
segmentation problem with the DotPlot representation. That is we observed that identifying
the block structure relates directly to the problem of maximizing within-block similarity
while minimizing the block similarity between clusters.

This segmentation goal corresponds naturally the normalized minimum cut criterion.
By obtaining a minimum cut we split the set of phrases into two maximally dissimilar
classes. As shown in the previous section, we simultaneously minimize the similarity across
partitions.

In text segmentation, the texts typically consist of more than two segments. Hence, by
extension we are interested not just in binary cuts but in multiway cuts on graphs. (See

figure 3-4). The normalized cut criterion is naturally extended to a k-way normalized cut:

cut(Ar,V — Ay) P cut(Ag,V — Agp)

Nceutp(V) = vol(A7) vol(AQ)

(3.1)
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Figure 3-4: Multiway Cuts on Graphs

where A; ... A form a partition of the graph, and V — A is the set difference between

the entire graph and partition k.

3.3.1 Decoding Algorithm

Papadimitriou proved that the problem of minimizing normalized cuts on graphs is N P-
complete (Shi and Malik, 2000). However, in our case, the multi-way cut is constrained
to preserve the linearity of the segmentation. By segmentation linearity, we mean that all
of the nodes between the leftmost and the rightmost nodes of a particular partition must
belong to that same partition.

With this constraint, the space of possible solutions to the minimum cut problem is
reduced considerably. In fact, it enables us to formulate a dynamic programming algorithm
to find the exact solution to the minimum normalized multiway cut problem in polynomial

time.

3.3.2 Dynamic Programming Fundamentals

We will first outline the structure of deterministic dynamic programming problems with
a finite number of stages (finite horizon). These problems can be decomposed into a set
of overlapping subproblems. The solutions to these subproblems are typically saved or
memoized, and are reused in later stages of the algorithm for solving larger subproblems.
Dynamic programming problems exhibit optimal substructure, meaning that finding the
optimal solutions to the subproblems enables us to find the globally optimal solution to the

overall problem.

More formally, we are given the following discrete-time system, specifying the progres-
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sion of states with respect to decisions made at discrete points in time (Bertsekas, 2001):
Tpr1 = fulzg,up) k=0,1,...,N -1,

where xy, is the state of the system at stage or time index k, N (horizon) is the number of
stages that the system goes through starting at state xg, uy are decision variables selected
at time k, and fi(zk, ur) are functions that specify how the state is updated on the basis
of the current state zy and the chosen decision variable u.

The states xj, are elements of space Sk, corresponding to each stage in the evolution of
the system. In general, the states are not constrained to be discrete-valued and may not be
bounded. The controls u; belong to the space C and are dependent on the current state,
xg. A cost function, c(xk, u(xk), maps the k-th state and its corresponding control to some
cost, ¢. A policy 7 is a set of functions y; over a span of stages or time points, mapping
states z; to their decision variables u;: m = (uo,uy, ..., us)

Assuming that the system starts out at state zg, the policy 7, incurs a cumulative cost
Jr(20) = J(2,u0,u1,...ut). So each transition incurs a cost, and the problem is to find

the optimal policy 7* € II that minimizes the overall cost:
y - = min J,
™ (‘TO) £I'HEH W(x0)7

where II is the set of all possible policies. In other words, the goal is to choose the optimal

sequence of decision controls to minimize the overall cost.

3.3.3 Bellman’s Optimality Principle

Assume that the cost function is additive, meaning that the overall cost of a policy is the
sum of the costs incurred at each of the stages. More formally, the cost function is additive
if the objective function satisfies the following requirement:

T-1

Tx(x0) = Y ex(an,wr) + kr(ar), (3.2)
k=0

where k7 () is the terminal cost and ¢ (g, ux) corresponds to the individual transition
cost at time k, state 23 and control wy.

Let m* = (ug,ui,...,u}y_;) be an optimal policy; i.e. the policy minimizing the overall
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cost. Consider the subproblem, where we wish to minimize the cost from time i to time
N. Let state z; be the starting point in this new subproblem, corresponding to time 3.
Bellman’s principle of optimality establishes that the truncated policy u},uj,...,u}_, is
optimal for this subproblem (Bertsekas, 2001).

Intuitively, if the optimal sequence of states from the start to the end state hits state x;
at stage 4, then the sub-policy from step i to N — 1 should be optimal. Otherwise, if there
is a policy with a lower cost, then we could combine it with the initial subsequence of the

optimal policy to get a policy with an even lower cost, which would lead to a contradiction.

3.3.4 Dynamic Program for Constrained Mincut

The constrained multiway normalized minimum cut objective can be shown to exhibit op-
timal substructure. Note that our problem involves a finite set of states (the last chosen
boundaries) and also a finite set of controls (the potential set of terminal segment bound-
aries). The cost to place a boundary at a given stage in the segmentation is only dependent
on the current state, captured by the location of the previous boundary. This is true, be-
cause of the linearity constraint on the segmentation. Since segments need to be contiguous,
the last boundary marks the start of the new segment. The control to be picked at this
stage corresponds to the location of the next boundary, which must be placed further along
the text.

Let Cj be the cost incurred at the k-th decision stage: ¢; = %@, and wug be
the value of the decision variable at stage u. Again, since segments need to be contiguous,
ug—1 < ug. So, choosing the i-th segment corresponds to choosing a single boundary point
to finish the segment. The term cut(Ay,V — Ag) can be computed from the current state
which is the value of the previous decision boundary and the current decision variable value.
Likewise, vol(Ag) can be computed from the current state and the decision variable.

The objective function is clearly additive, as it is the sum of individual costs incurred by
each of the segments. Hence, according to Bellman’s optimality principle we can formulate

the following dynamic program to optimize the minimum cut objective:

t[A; — A,
Cli,k] = min |Cfi —1,j] + = [Ajik, V — Aji]

i<k vol [A; 1) (3:3)
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cut [Aj,k, vV — Aj’k]

. ) L 3.4
Bli, k] argrjngﬂl Cli—1,j]+ vl (A7) (3.4)
st. C0,1]=0,C[0,k] =00, 1< k<N (3.5)
Bl0,k]=1, 1<k<N (3.6)

C'[i, k] is the normalized cut value of the optimal segmentation of the first k sentences
into 7 segments. The i-th segment, A;, begins at node «; and ends at node ux. B [i,k] is
the back-pointer table from which we recover the optimal sequence of segment boundaries.
The initial conditions in Equations 3.5 and 3.6 capture the constraint that the first segment
starts with the first node.

The time complexity of the dynamic programming algorithm is O(K N?), where K is
the number of partitions and N is the number of nodes in the graph or sentences in the

transcript.

3.4 Implementation Mechanics

The performance of our model depends on the underlying representation, the definition
of the pairwise similarity function for texts, and various other model parameters. In this
section we provide further details on the process of constructing the target graph that will

be partitioned into segments and implementing the overall segmentation system.

3.4.1 Text Preprocessing

Before building the graph, we apply standard text preprocessing techniques to the text.
We stem words with the Porter stemmer (Porter, 1980) to alleviate the sparsity of word
counts through stem equivalence classes. Since many frequently occurring words in the
text such as determiners or personal pronouns are poor indicators of the actual thematic
similarities between segments, we remove words matching a list of stop words. We make
use of the stop-words list used in several other segmentation systems (Choi, 2000; Utiyama

and Isahara, 2001) This stop-words list is reproduced in Appendix C.
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3.4.2 Graph Construction

The normalized cut criterion considers long-term similarity relationships between nodes.
This effect is achieved by constructing a fully-connected graph. However, considering all
pairwise relations in a long text may be detrimental to segmentation accuracy. Therefore,
we discard edges between sentences exceeding a certain threshold distance. This reduction

in the graph size also provides us with computational savings.

Also, note that in the formulation above we use sentences as our nodes. However, we
can represent graph nodes with non-overlapping blocks of words of fixed length. This is
desirable, since the lecture transcripts lack sentence boundary markers, and short utterances
can skew the cosine similarity scores. The optimal length of the block is tuned on a heldout

development set.

3.4.3 Similarity Computation

In computing pairwise sentence similarities, sentences are represented as vectors of word
counts and the objective is to identify sentences with similar semantic content. So, we
have to make sure that the semantically salient words are given predominant weight in the
computation. Previous research has shown that weighting schemes play an important role
in segmentation performance (Ji and Zha, 2003; Choi et al., 2001). Apart from being able
to distinguish between functional and content-bearing words, particularly important are
words that may not be common in general English discourse but that occur throughout the
text for a particular lecture or subject.

For example, in a lecture about support vector machines, the occurrence of the term
“SVM” is not going to convey a lot of information about the distribution of sub-topics, even
though it is a fairly rare term in general English and bears much semantic content. The
same words can convey varying degrees of information across different lectures, and term
weighting specific to individual lectures becomes important in the similarity computation.

In order to address this issue, we introduce a variation on the tf-idf scoring scheme
used in the information-retrieval literature (Salton and Buckley, 1988). A transcript is split
uniformly into N chunks; each chunk serves as the equivalent of documents in the tf-idf
computation. In equation 3.7, n; is the number of chunks in which word i appears, idf; is

the inverse segment frequency of word i in the transcript, and ¢ fij is the term frequency of
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word ¢ in chunk j. The lexical weights are computed separately for each transcript, since

topic and word distributions vary across lectures.

N
w(i, J) = tfi; x idf;, where idf; = log(

7‘1;) (3.7)

After determining the lexical weights, we compute cosine similarity scores between every

sentence pair with word frequencies weighted by their ¢f-idf weights:

. Dok ey x w(k, cid(z)) x fy; x w(k,cid(y))]
sim(z,y) = S5 e % ||u7:]g1| (3.8)

In equation 3.8, f; ; is the frequency of word j in sentence x, u, is the vector of weights
for sentence x, and cid(z) is the word chunk index containing the sentence.

Finally, in computing the actual edge weight, e; ; between nodes i and j in the graph,
the exponent of the cosine similarity score is used to accentuate differences between low

and high lexical similarities.
€ij = €8im(i’j) (3.9)

3.4.4 Smoothing

The similarity matrix, specifying edge weights between nodes in the graph, will capture the
similarity profile at the sentence level. Even though similarity scores of sentences belonging
to the same segment will tend to be higher than scores of sentence pairs belonging to different
segments, the individual scores are highly variable. This is problematic, because it is not
always possible to tcll whether a sudden shift in scores in the vicinity of a sentence signifies
a transition or it is really just an artifact of the data and the similarity computation.

Consider the case when a sentence is a sequence of stop words and very infrequent
lexical items. The similarity score between this and other sentences will be set to the
minimum possible score, even though the immediate context may share many content words
in common with other parts of the text. Without proper smoothing, these cases will lead
the system astray. We considered two smoothing approaches - the Exponentially Weighted
Moving Average (EWMA) smoothing and Anisotropic Diffusion.
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EWMA The exponentially weighted moving average smoothing developed by S. W.
Roberts (Roberts, 1959) is computed by adding counts of words that occur in adjoining
sentences to the current sentence feature vector. These counts are weighted in accordance
to their distance from the current sentence: §; = 3 5"% e~*U~%s;, where s; are vectors of
word counts, and « is a parameter that controls the degree of smoothing. Hence, when
computing the similarity between two sentences, we effectively take into account similarity
between their immediate neighborhoods. Empirically, we found that incorporating only
previous words in the neighborhood works better than incorporating words on both sides

of the target word in the text.

Anisotropic Diffusion Anisotropic diffusion smoothing is a technique developed for im-
age enhancement (Perona and Malik, 1990), and it has been applied previously to lexical
smoothing in the context of text segmentation (Ji and Zha, 2003). The method is based on
the anisotropic heat diffusion equation (Equation 3.10), which describes temperature as a

function of time and space.

I(z,y,t) = (c(@,y, t)V’I + Ve - V)| 4y (3.10)

In equation 3.10, I is the brightness or intensity function, ¢(z, y, t) is the space-dependent
diffusion coefficient at time ¢ corresponding to the point (z,%) in the space, V is the gradient

and V? the Laplacian operator, both with respect to the space variables.

On a square lattice, or a gray scale image with nodes corresponding to pixels, the above
equation is discretized by approximating the Laplacian with 4-nearest neighbor differences.
In Equation 3.11, the term v/ indicates the nearest neighbor differences in appropriate
directions (North, South, East, or West corresponding to subscripts N, S, E, W), and ¢! are
the corresponding heat diffusion coefficients. The diffusion flow conduction coefficients are
chosen locally to be the inverse of the magnitude of the gradient of the brightness function,

because then the flow increases in homogeneous regions which have small gradients.

1
Iit,er = I%'t,j + /\[Cgvi,j ' VNIE,J' + C*tgi,j ) vSIit,j + CtEi,j ’ vEIl]ij + CtEi,j ’ VWIZFJ] (3.11)
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Vnliy = Licyj— 1L Cﬁvi,j = 9(| vy If,j|)
Velij = ILiy1j—1Iij ¢s,, = 9(vsI,l)
Veliy = Lijn—1Lij Cfgm. = g(lvg D)
Vwliy = Lij1—1; Cfxvi,j = 9(|Vw If,jl)
g(VI) = S — (3.12)
1 (I

The particular function g(.) in Equation 3.12 was chosen by Perona and Malik to favor
diffusion in wide regions over smaller ones.

Anisotropic diffusion has the effect of increasing flow in homogeneous regions and pre-
venting flow across region boundaries in the image. Again, this is consistent with the idea
of minimizing between-block similarity and maximizing within-block similarity in the simi-
larity matrix. In practice, our experiments showed that the anisotropic diffusion smoothing
technique is much more stable and effective in smoothing the similarity matrices. We use
it in the final configuration of the Min Cut system. This method takes as input the x and
A parameters, as well as the desired number of iterations. The parameters are tuned on the

development set.

3.5 Min Cut Segmentation Pseudo-Code

We conclude this chapter by providing the implementation pseudo-code for the Min Cut

segmentation system.
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Function: ComputeTfIdfWeights( WordFrequencyMap, text, nSegments)
Returns : map of sentences and word types to word counts

begin
TfldfMap « makeNewMap() ;

segmented Text «— generateUniformSegmentation(text, nSegments) ;
/* Compute chunk count of each word type in the text */
foreach segment in segmentedText do

foreach wordType in segment do
documentFrequency(wordType) «— documentFrequency(wordType) + 1 ;

end
end
/* Compute word token counts in each chunk and the tfIdf weights */
foreach segment in segmentedText do

foreach word in segment do
termFrequency(word,segment) «— termFrequency(word) + 1 ;

end

foreach wordType in getWordTypes (segment) do
idf « log (nSegments + documentFrequency(wordType));

TfldfMap(wordType, segment) « termFrequency(word,segment) x idf ;
end
end

return TfldfMap ;

end
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Function: MinCutSeg(text, nSegments, params)
Returns : the optimal segmentation of the text into the target number of segments

begin
text «— Stem(text) ;

WordFrequencyMap « ComputeWordFrequencies (text) ;

TildfWeights «— ComputeTfIdfWeights( WordFrequencyMap, text) ;
WeightedFrequencyMap «— ApplyTfIdfWeights( WordFrequencyMap, TfIdfWeights) ;
SentenceVectorNorms « ComputeSentenceVectorNorms ( WeightedFrequencyMap)
foreach sentence; in teat do

foreach sentence; in tezt do
s — 0;

foreach wordType in getWordTypes (sentence;) N getWordTypes (sentence;) do
s < s + WeightedFrequencyMap(sentence;,word Type) x

WeightedFrequencyMap(sentence,wordType) ;

end

s < s + [SentenceVectorNorms(sentence;) x SentenceVectorNorms(sentence;)] ;
SimilarityMatrix(sentence;, sentence;) « e° ;

end
end

S « ApplyAnisotropicDiffusion(SimilarityMatriz,params) ;

return ComputeOptimalSegmentation(S, nSegments) ;
end
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Function: ApplyAnisotropicDiffusion(S, params)
Returns : apply anisotropic diffusion smoothing to the similarity matrix

begin
numRows «— getNumRows (S) ;

K «— params.x ;
A« params.) ;

U +— makeNewMatrix (numRows, numRows) ;
Temp «+ makeNewMatrix(numRows, numRows) ;

for ¢t — 0 to params.nlterations do

1

for i — 0 to numRows do

for j — 0 to numRows do
dN « dS « dE «+ dE « ¢N «— ¢S «— cE «— ¢cW « 0 ;

if i > 0 then dN « S(i-1,j) - S(i,j) else dN « S(i-1,j) - S(i,j)
if i +1 < numRows then dS « S(i +1,j) - S(,j) else dS — —S(i,5)
if j +1 < numRows then dE « S(i,j + 1) - S(4,j) else dE «— —5(i,5)
if j > 0 then dW — S(i,j — 1) - S(i,j) else dW «— —S(i, 5)
N 1/ (L+ (dN?) /(x%)) ;
eS8 1/ (1+ (dS?) /(x%) :
cE 1/ (1+ (dE?) /(x?)) ;
W — 1/ (14 (dW?) /() ;
U(i,j) « S(3,7) + A (eN -dN + ¢S - dS + cE - dE + cW + dW) ;
/* Swap the matrix for the previous iteration with the updated
similarity matrix */
Temp «— S ;
S—U;
U «— Temp ;
end
end

end

return S;

end

48



Function: ComputeQptimalSegmentation(S, nSegments)

Returns : the optimal segmentation of the text into the target number of segments. The
boundary indices specify the index of the sentence before which the boundary is
placed. The indices are O-based, and the last boundary is always placed after the
last sentence. The boundary before the first sentence is implicit.

begin
nCutTable — precomputeNormalizedCuts(S) ;

backTraceTable «— runDynamicProgramming(nCutTable, nSegments) ;
nRows « getNumRows (backTraceTable) ;
nCols «— getNumCols (backTraceTable) ;

seg = makeNewVector() ;

seg.add(nCols) ;

i« nRows-1;

j < nCols -1;

/* The backtrace indices are inclusive: i j ==> |i .. jl| ;

So, add 1: i j == |1 ...jlj+1 */

while i > 0 do
j « backTraceTable(i,j);

seg.add(j +1);
ie—i-1;
end

reverseArray (seq) ;

return seg ;

end
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Function: precomputeNormalizedCuts(S)

Returns : the precomputed matrix of partial normalized cut terms %’W
begin

nRows «— getNumRows ;

nCols «— getNumCols ;

nCutsTable «— makeNewMatrix (nRows,nCols) ;
columnSum «— makeNewVector (nCols) ;

for i — 0 to nCols do

for j — 0 to numRows do
columnSum(i) + columnSum + S(j,i) ;

end
end
/* Sum of entries S(startIndex:endIndex, startIndex:endIndex) */
intraSegmentVolume «— 0 ; lastIntraSegmentVolume « 0 ;
/* The Sum of columns from startIndex to endIndex x/
volume « 0 ; lastVolume « 0 ;
for startIndex « 0 to nRows-1 do

for endIndex — 0 to numRows-1 do

if endIndex = startIndex then
lastVolume — 0; lastIntraSegment Volume «— 0;

end
intraSegmentVolume « 0 ;

for i — startIndex to endIndex-2 do
intraSegmentVolume «— intraSegmentVolume + S(endIndex,i) ;

end

intraSegmentVolume « intraSegmentVolume * 2 ;

intraSegmentVolume « intraSegmentVolume + lastIntraSegmentVolume +

S(endIndex,endIndex) ;

/* volume = assoc(4,V): associativity score of intraClass nodes and
all other nodes in the graph */

volume « lastVolume + columnSum(endIndex) ;

cutValue < volume - intraSegment Volume ;

nCutsTable(startIndex,endIndex) < cutValue / volume ;

lastIntraSegmentVolume « intraSegment Volume ;

last Volume «— volume ;

end

end

return nCutsTable ;

end
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Function: runDynamicProgramming (nCutsTable, numCuts)

Returns : The backTrace matrix which contains the optimal Normalized Cut segmentation

begin
nRows « getNumRows (nCutsTable); nCols — getNumCols (nCutsTable) ;

costMatrix <+ makeNewMatrix(numCuts+1,nRows);
backTrace <+ makeNewMatrix(numCuts+1,nRows) ;
for ¢ «— 0 to nRows-1 do

for j — 0 to numCuts+1 do
costMatrix(j,i) « MAX_VALUE ;

backTrace(j,i) « -1;
end
end
for ¢ — 0 to nCuts-1 do
for j — 0 to nRows-1 do
if i = 0 then
/* Assume first boundary is before the first sentence
startIndex «— 0 ; endIndex « j ;
costMatrix(i,j) « nCutsTable(startIndex,endIndex) ;
backTrace(i,j) < 0 ;

continue;

end
if j = 0 and { > 0 then continue ;
scoreList «— makeNewVector() ;

for K —0to j-1 do
cost «— costMatrix(i - 1,k) ;

startlndex «— k + 1 ;

endIndex « j ;

updatedCost « cost + nCutsTable(startIndex,endIndex) ;
pair « makeNewPair (k, updatedCost) ;

scoreList.add(pair) ;

end
minPair = findMin (scoreList) ;
costMatrix(i,j) < minPair.getValue() ;

backTrace(i,j) < minPair.getKey() ;

end

end

return backTrace ;

end
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Chapter 4

Experimental Results

In this chapter, we will analyze the performance of the minimum cut algorithm on spoken
lecture data and compare our system with other state-of-the-art text segmentation systems.
First, we explain the evaluation metrics used in our analysis and the human agreement
results on the data. Then we examine the effect of long-range lexical dependencies employed
by the model. In order to gauge its effectiveness, we compare our system with other leading
segmentation systems on synthetic and spoken lecture data-sets. We also examine the effect
of speech recognition error on segmentation accuracy. We conclude by experimenting with
the problem of identifying lecture topic boundaries directly from acoustic features of the

speech signal.

4.1 Evaluation Metrics

The scoring of text segmentation systems can be problematic in several respects. First,
the true segment boundaries against which a hypothesized segmentation is to be scored
may not be the only sensible way of partitioning a text. Different human subjects may
segment a text at different levels of granularity and rely on different subjective criteria in
judging whether a given text fragment constitutes a coherent topic. By choosing a single
reference segmentation, we may penalize the system for not adhering to one segmentation
standard among many admissible alternatives. We can control for this factor by looking
at the extent of human agreement on spoken lecture data. This problem will be further
explored in section 4.3 on human agreement analysis.

A second challenge is that the evaluation measures must be discriminating enough to
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pick up small differences between systems. For text segmentation, traditional classification
evaluation measures such as precision and recall will be too coarse-grained to capture cases
where there is a near mismatch between hypothesized and reference boundaries. It is
necessary to employ a more flexible penalty measure, which will not use the zero-one loss
to penalize near misses. We follow past segmentation literature in scoring the segmentation
systems with the P, and WindowDiff measures (Beeferman et al., 1999; Pevzner and Hearst,
2002). We also plot the Receiver Operating Characteristic (ROC) Curve to measure system

performance at a finer level of discrimination (Swets, 1988).

4.1.1 P, Measure

We can decompose the segmentation problem into a set of sub-tasks which aim to establish
whether pairs of sentences from the text belong to the same segment. With this interpre-
tation, a natural error metric is the probability that there would be a mismatch in the
way that the hypothesis and the reference associate or disassociate a randomly chosen pair
of sentences. We can compute this probability by marginalizing the joint probability of
error and sentence pairs, s; and s;, conditioned on the reference (ref) and hypothesis (hyp)

segmentations:

P(error|ref, hyp) = ZP(error, 84, 85|ref, hyp) = (4.1)
2%
ZP(si,sj[ref, hyp) - P(error|s;, s, ref, hyp) (4.2)
i’j

In order to compute this probability, we need to define a distribution over possible
sentence pairs. One possible candidate is the uniform distribution. In practice, however,
it is not desirable to assign equal weight to mistakes on pairs with different spans. For
example, consider that sentences at different ends of a lecture will be classified correctly
by most segmentation systems. Hence, a distribution for sentence pairs is chosen so that
all probability mass will be distributed equally among word pairs that are exactly k words
apart. Another common modification is to define the error metric over pairs of words, since

sentences tend to vary markedly in length.

The P measure then is the probability that a randomly chosen pair of k words apart
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in the text is incorrectly classified. That is if in the hypothesis, the two words belong to
the same segment, while in the reference they belong to different segments or vice versa.
Since P(error|s;, s;,ref, hyp) is either 1 in case of mismatch or 0 in case of a match, and
P(s;, sjlref, hyp) is uniform over words placed k& words apart, equation 4.2 reduces to the

following formula:

N—
Pi(ref, hyp) = Z Sref(iyi+ k) B Opyp(i,i + k)) (4.3)

i=1

where @ is the xnor operator (it evaluates to 1 only if the two arguments are not
equal), N is the number of words in the text. &es(i,5) and &pyy (i, j) are indicator functions
which evaluate to 1 if the two word indices fall within the same segment in the reference
and hypothesis segmentations and 0 otherwise. k is a parameter typically set to half the
average segment length. We follow Choi (2000) and compute the mean segment length used
in determining the parameter k on each reference text separately

Intuitively, formula 4.3 can be interpreted as follows. We shift a window of k words
across the text and determine if the terminal words at the ends of the window belong to
the same segment for the reference and hypothesis segmentations. The overall penalty is
the fraction of cases where the two indicator functions disagree.

In practice, the P, measure exhibits high variability on real data. In fact, the notion
of statistically significant difference in the P, measure mean is ill-defined, because, strictly
speaking, the P, measure score is not comparable across two different transcripts with
different mean segment lengths. Nevertheless, in order to be able to compare with past
segmentation results we take the average of P, measure scores across all the individual

transcripts.

4.1.2 WindowDiff

Pevzner and Hearst (2002) presented a critique of the P, measure. One of the problems
they identify is that with greater variation in segment length, the measure becomes more
lenient. The primary reason for this is that a penalty is registered only if the reference
and hypothesis differ in their assignment of the word pair to the same segment or to two

different segments. This approach will not identify errors where both the reference and
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the hypothesis assign words to different segments, yet in one segmentation there are more
intervening segments than in the other. In other words, false positives or false negatives
near actual boundaries may not be penalized.

To remedy this problem, Pevzner and Hearst introduced a variant on the P; measure,
the WindowDiff metric, which exacts a penalty only if the number of boundaries between
positions i and j placed in the reference segmentation conflicts with the number of bound-
aries in the same span of the hypothesized segmentation. In other words, the new criterion
becomes:

N-k
1
WindowDif f(ref, hyp) = NI > " (bregiyi+ k) = bpyy(iyi + k)| > 0),
i=1

where b(i,4+ k) represents the number of boundaries placed between the positions i and

i+ k in the text.

4.1.3 Receiver Operating Characteristic Curve

Receiver Operating Characteristic (ROC) Curves are one of the standard ways of evaluating
binary classifiers in machine learning literature (Swets, 1988). We apply this criterion for
the evaluation of segmentation quality to yield a more refined analysis than the one possible
with WindowDiff and P, metrics.

Most classifiers assign test instances a score and decide the actual class of the instance by
comparing this score against a threshold. As the threshold is adjusted to allow for more true
positives, the false positives rate also goes up. The ROC plot is the plot of the true positive
rate against the false positive rate for various settings of a decision threshold. Ideally, the
true positive rate will increase at the cost of a minimal increase in false positives. So sharper
ROC curves with larger areas under the curve indicate better discrimination performance.

In our case, the concept of a true positive and a false positive is not as straightforward
as in many other settings, since the output of the system is not a single binary classification
decision, but an entire set of boundaries. To be able to make use of this metric we take
the threshold to be the distance from the original hypothesized boundaries within which
all of the word positions will be considered hypothesized boundaries. In our case, the true
positive rate is the fraction of boundaries correctly classified, and the false positive rate is

the fraction of non-boundary positions incorrectly classified as boundaries. At zero distance
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Segments per | Total Word | ASR WER
Corpus | Lectures Lecture Tokens Accuracy
Physics 33 5.9 232K 19.4%
Al 22 12.3 182K X

Table 4.1: Lecture Corpus Statistics

the original boundaries are taken as the set of hypotheses, and the raw true positive and
false positive rates are computed. As the threshold distance is increased more and more
of the reference boundaries will fall within the range of the hypothesized spans, but the
number of false positives will increase as well. The advantage of the ROC curve is that it
allows us to aggregate the error statistics from all of the test hypotheses and to visualize

the correspondence between increasing accuracy and false positives.

4.2 Data

We evaluate our segmentation algorithm on three sets of data. Two of the datasets we use
are new segmentation collections that we have compiled for this study, and the remaining set
includes a standard collection previously used for evaluation of segmentation algorithms. In
Appendix A, we provide examples of segmented transcripts from each of these sets. Various
corpus statistics for the new datasets are presented in Table 4.1. Below we briefly describe

each corpus.

4.2.1 Physics Lecture Corpus

Our first corpus consists of spoken lecture transcripts from an undergraduate Physics class.
In contrast to other segmentation datasets, our corpus contains much longer texts. A typical
lecture of 90 minutes has 500 to 700 sentences with 8500 words, which corresponds to about
15 pages of raw text. We have access both to manual transcriptions of these lectures and
also output from an automatic speech recognition system. A speaker-dependent model of
the lecturer was trained on 38 hours of lectures from other courses using the MIT Summit
Speech Recognition System (Glass, 2003). The word error rate for the latter system on
Physics lecture data is 19.4%, which is representative of state-of-the-art performance on

lecture material (Leeuwis et al., 2003; Furui, 2003; Cettolo et al., 2004; Fugen et al., 2006).
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In section 4.6, we will analyze the effect of speech recognition error on segmentation accuracy
with speaker independent models.

The Physics lecture transcript segmentations were produced by the teaching staff of the
Physics course at the Massachusetts Institute of Technology. Their objective was to facilitate
access to lecture recordings available on the class website. This segmentation conveys the
high-level topical structure of the lectures. On average, a lecture was annotated with six

segments, and a typical segment corresponds to two pages of a transcript.

4.2.2 Al Lecture Corpus

Our second lecture corpus differs in subject matter, lecturing style, and segmentation gran-
ularity. The graduate Artificial Intelligence class has, on average, twelve segments per
lecture, and a typical segment is about half of a page. One segment roughly corresponds to
the content of a slide. This time the segmentation was obtained from the lecturer herself.
The lecturer went through the transcripts of lecture recordings and segmented the lectures
with the objective of making the segments correspond to presentation slides for the lectures
that she intended to use the next time that she was going to teach the class. Due to the low
recording quality, we were unable to obtain the ASR transcripts for this class. Therefore,

we only use manual transcriptions of these lectures.

4.2.3 Synthetic Corpus

Also as part of our analysis, we used the synthetic corpus created by (Choi, 2000) which
is commonly used in the evaluation of segmentation algorithms. This corpus consists of a
set of concatenated segments randomly sampled from the Brown corpus. The length of the
segments in this corpus ranges from three to eleven sentences. Again, it is important to
underscore that the lexical transitions in these concatenated texts are very sharp, since the
segments come from texts written in widely varying language styles on completely different

topics.

4.3 Human Agreement Analysis

In order to be able to reliably score systems on the non-synthetic data, there needs to be a

well-defined and consistent notion of a reference segment boundary.
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O A B C

MEAN SEGMENT COUNT 6.6 | 8.9 18.4 1 13.8
MEAN SEGMENT LENGTH 69.4 | 51.5 | 24.9 | 33.2
SEGMENT LENGTH STD. DEV. | 39.6 | 37.4 | 34.5 | 39.4

Table 4.2: Annotator Segmentation Statistics for the first ten Physics lectures.

REr/HyP | O A B C
O 0 0.243 | 0.418 | 0.312
A 0.219 {0 0.400 | 0.355
B 0.314 1 0.337 | O 0.332
C 0.260 | 0.296 | 0.370 | 0

Table 4.3: Py annotation agreement between different pairs of annotators. Note that the
measure is not symietric.

Spoken lectures are very different in style from other corpora used in human segmen-
tation studies (Hearst, 1994; Galley et al., 2003). We are interested in analyzing human
performance on a corpus of lecture transcripts with much longer texts and a less clear-cut
concept of a sub-topic.

As part of our human segmentation analysis, we asked three annotators to segment
the Physics lecture corpus. These annotators had taken the class in the past and were
familiar with the subject matter under consideration. We wrote a detailed instruction
manual for the task,! with annotation guidelines for the most part following the model
used by Gruenstein et al. (2005). The annotators were instructed to segment at a level
of granularity that would identify most of the prominent topical transitions necessary for
a summary of the lecture. The annotators used the NOMOS annotation software toolkit,
developed for meeting segmentation (Gruenstein et al., 2005).

The annotators were provided with recorded audio of the lectures and the corresponding
text transcriptions. We intentionally did not provide the subjects with the target number
of boundaries, since we wanted to see if the annotators would converge on a common
segmentation granularity.

Table 4.2 presents the annotator segmentation statistics. We see two classes of segmen-

tation granularities. The original reference (O) and annotator A segmented at a coarse

!The instructions are included in appendix A
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level with an average of 6.6 and 8.9 segments per lecture, respectively. Annotators B and
C operated at much finer levels of discrimination with 18.4 and 13.8 segments per lecture
on average. We conclude that multiple levels of granularity are acceptable in spoken lec-
ture segmentation. This is expected given the length of the lectures and varying human
judgments in selecting relevant topical content.

Following previous studies, we quantify the level of annotator agreement with the Py
measure (Gruenstein et al., 2005).2 Table 4.3 shows the annotator agreement scores between
different pairs of annotators. The majority of the three annotators agree on the exact
placement of a third of all of the boundaries, not counting the boundaries at the very
beginning and end of the texts.

Py, measures ranged from 0.24 and 0.42. We observe greater consistency at similar levels
of granularity, and less so across the two classes. Note that annotator A operated at a
level of granularity consistent with the original reference segmentation. Hence, the 0.24
P, measure score serves as the benchmark result with which we can compare the results
attained by segmentation algorithms on the Physics lecture data. As an additional point
of reference we note that the uniform and random baseline segmentations attain 0.469 and
0.493 P, measure, respectively, on the Physics lecture set. From the agreement results, we
can conclude that the lecture segmentation problem is difficult even for humans. However,
the task exhibits a high degree of regularity, and most cases of disagreement correspond
either to different conceptions of granularity or different approaches of addressing spoken
discourse artifacts such as off-topic remarks, audience-speaker interaction, or non-topical,
presentational changes. Barring these peculiarities, the concept of a topic is uncontroversial

and quite natural.

4.3.1 Setup and Parameter Estimation

A heldout development set of three lectures is used for estimating the optimal window
length, the distance thresholds for discarding node edges, the number of uniform chunks for

estimating Tf-Idf lexical weights, and the anisotropic diffusion smoothing parameters which

*Kappa measure would not be the appropriate measure in this case, because it is not sensitive to
near misses, and we cannot make the required independence assumption on the placement of boundaries.
Cochran’s @ test used previously to assess agreement in text segmentation also is not applicable here. Pas-
soneau and Litman (1997) assume that annotators assign a fixed number of boundaries, which does not hold
in our case.
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include the lambda and kappa parameters, and the target number of iterations.

One problem is that we do not have access to derivatives of the P, or WindowDiff
metric with respect to the parameters. The functional dependence between these metrics
and parameters is a step function with discontinuities at every point of change in the
dependent variable. What’s more this function is highly non-linear and sensitive to the
features of the data. Nevertheless, there are several search and optimization algorithms
which could potentially be used, including line search and simulated annealing. One point
to keep in mind is that each evaluation of the objective function involves the evaluation of
the Minimum Cut algorithm on three development lectures, which may take up to a second.
So, the number of evaluations should ideally be kept to a minimum.

We use a greedy search procedure for optimizing the parameters, because it has a small
footprint in terms of both time and memory requirements. Each parameter is optimized on
a grid of parameters values, with other parameters kept fixed. After all of the parameters
have been optimized, the search is repeated on a refined grid, until the objective value
converges to a local minimum. Apart from computational efficiency, an added advantage of
this method is that it will be unlikely to overfit the parameters on the development data.

Finally, in our experiments, the number of target segments is set to that of the reference

segmentation for both the Minimum Cut system and the baselines.

4.4 Long-Range Dependency Analysis

We first determine the impact of long-range pairwise similarity dependencies on segmen-
tation performance. Our key hypothesis is that considering long-distance lexical relations
contributes to the effectiveness of the algorithm. To test this hypothesis, we discard edges
between nodes that are more than a certain number of sentences apart. We test the system
on a range of data sets, including the Physics and Al lectures and the synthetic corpus
created by Choi (2000).

The results in Table 4.4 confirm our hypothesis — taking into account non-local lexical
dependencies helps across different domains. On manually transcribed Physics lecture data,
for example, when the algorithm takes into account edges separated by up to a hundred
sentences, it yields 26% lower Py measure (0.279) than when it considers dependencies up

to ten sentences (0.380). Figure 4-1 shows the ROC plot for the segmentation of the Physics
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EpGe CUTOFF
| 10 | 25 | 50 1100 [ 200 [ NONE
PHysics (MANUAL)
PK | 0.3802 | 0.3527 | 0.3149 | 0.2788 | 0.3034 | 0.3200
WD | 0.3927 | 0.3632 | 0.3292 | 0.2962 | 0.3281 | 0.3505
Al
PK | 0.4375 | 0.3893 | 0.3610 | 0.3680 | 0.4035 | 0.3936
WD | 0.4515 | 0.4046 | 0.3799 | 0.3892 | 0.4296 | 0.4186
CHot
PK | 0.1483 | 0.1693 | 0.1830 | 0.1855 | 0.1855 | 0.1855
WD | 0.1840 | 0.2104 | 0.2347 | 0.2337 | 0.2337 | 0.2337

Table 4.4: Edges between nodes separated beyond a certain threshold distance are removed.

lecture data with different cutoff parameters, again demonstrating clear gains attained by
employing long-range dependencies. As Table 4.4 shows, the improvement is consistent
across all spoken lecture datasets. We note, however, that after some point increasing the
threshold may degrade performance, because it introduces too many spurious dependencies
(see the last column of Table 4.4). The speaker will occasionally return to a topic described
at the beginning of the lecture, and this will bias the algorithm to put the segment boundary
closer to the end of the lecture.

Long-range dependencies do not improve the performance on the synthetic dataset. This
is expected since the segments in the synthetic dataset are randomly selected from widely-
varying documents in the Brown corpus, even spanning different genres of written language.
So, effectively, there are no genuine long-range dependencies that can be exploited by the

algorithm.

4.5 Comparison with Local Models

We compare our system with the state-of-the-art similarity-based segmentation system de-
veloped by Choi(2000). We use the publicly available implementation of the system and
optimize the system on a range of mask-sizes and different parameter settings described
in (Choi, 2000) on a heldout development set of three lectures. To control for segmentation
granularity, we specify the number of segments in the reference segmentation for both our
system and the baseline. Table 4.5 shows that the Minimum Cut algorithm consistently

outperforms the similarity-based baseline on all the lecture datasets. We attribute this
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| Coor [UI | MINCuUT

PHYsIcS (MANUAL)
PK | 0.372 | 0.310 | 0.281
wbD | 0.385 | 0.323 | 0.301
Al
PK | 0.445 | 0.374 | 0.378
WD | 0.478 | 0.420 | 0.393
CHO1
PK | 0.110 | 0.105 | 0.133
wbD | 0.121 | 0.116 | 0.154

Table 4.5: Performance analysis of different algorithms on the corpora, with three lectures
heldout for development.

gain to the presence of more attenuated topic transitions in spoken language. Since spoken
language is more spontaneous and less structured than written language, the speaker needs
to keep the listener abreast of the changes in topic content by introducing subtle cues and
references to prior topics in the course of topical transitions. Non-local dependencies help
to elucidate shifts in focus, because the strength of a particular transition is measured with

respect to other local and long-distance contextual discourse relationships.

Our system does not outperform Choi’s algorithm on the synthetic data. This again can
be attributed to the discrepancy in distributional properties of the synthetic corpus which
lacks coherence in its thematic shifts and the lecture corpus of spontaneous speech with
smooth distributional variations. We also note that we did not try to adjust our model
to optimize its performance on the synthetic data. The smoothing method developed for
lecture segmentation may not be appropriate for short segments ranging from three to eleven

sentences that constitute the synthetic set.

We also compared our method with another state-of-the-art algorithm which does not
explicitly rely on pairwise similarity analysis. This algorithm (UI) computes the optimal
segmentation by estimating changes in the language model predictions over different parti-
tions (Utiyama and Isahara, 2001). We used the publicly available implementation of the

system that does not require parameter tuning on a heldout development set.

Again, our method achieves favorable performance on a range of lecture data sets (See

Table 4.5), and both algorithms attain results close to the range of human agreement scores.
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Figure 4-1: ROC plot for the Minimum Cut Segmenter on thirty Physics Lectures, with
edge cutoffs ranging from one to hundred sentences.

SD | SIT | SI™
%WER | 18.4 | 32.7 | 44.9

Table 4.6: Word Error Rates for different ASR Models
4.6 Effect of Speech Recognition Accuracy

In order to determine how robust our method is in the presence of transcription errors, we
analyzed its performance on Automatic Speech Recognition (ASR) transcripts with various
levels of word error.

The three speech recognition models used to generate these transcript sets were the
speaker-dependent model (SD), the speaker independent model (SI*) with speech samples
of the speaker included in the training data, and finally the speaker independent model
(SI7) with all instances of the test speaker’s utterances removed from training (See Table

4.6 for for their respective word error rates).
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SYSTEM | SD ENEES
P, MEASURE
MiInCut | 0.3023 | 0.3329 | 0.3302
Ul 0.3220 | 0.3183 | 0.3527
WINDOWDIFF MEASURE
MINCuUT | 0.3183 | 0.3469 | 0.3474
Ul 0.3369 | 0.3324 | 0.3664

Table 4.7: Segmentation Results on transcripts with different levels of word error

The MinCut and the UI segmentation system were tested on each of these ASR transcript
sets. The results in Table 4.7 show that the minimum cut system is robust in noisy speech
environments. In fact for two of the three test conditions it outperforms the UI baseline,

and it comes close to the results derived from the manually transcribed data.

4.7 Speech Segmentation Experiments

In this section, we demonstrate that our algorithm is not only applicable in settings where
words and lexical similarity information is available. We include a proof-of-concept exper-
iment with segmentation of acoustic signal without any intermediate speech recognition

processing.

4.7.1 Unsupervised Pattern Discovery in Speech

We obtain the representation of speech from automatically derived word clusters, generated
by Park’s unsupervised word acquisition method (Park, 2006). We note that we only use
the intermediate similarity representation derived from this method, as the actual word
clusters computed would be too sparse to give us a rich enough representation which could
enable us to discern changes in lexical distribution. Many of the words occurring only a few
times in the text are pruned away by this method, even though the cumulate sum of these
items is enough to have a dramatic impact on the results. Below, we outline the steps for

the feature extraction approach.

Signal Processing The speech is converted into a time series of Mel-scale cepstral co-

efficients (MFCCs), the representation most commonly used in speech recognition. The
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Target Words
direction [ half seconds | acceleration
Aligned Words
direction which | per second acceleration
direction and per second squared | acceleration
that action a second square acceleration
y direction seconds explanation
direction the per second squared | rotation
direction trays calculation
direction acceleration

Table 4.8: Aligned Word Paths

SUMMIT speech recognizer front-end is used for signal processing (Glass, 2003).

This process can be summarized as follows. After capturing the acoustic signal as
a digital waveform sampled at a rate of 16 kHz, the waveform mean and magnitude is
normalized. The short-time Fourier transform is taken with a frame interval of 10 ms, a 25.6
ms Hamming window, and a 256 point discrete Fourier transform. The spectral energy from
the Fourier Transform then is weighted by the Mel-frequency filters, and finally the discrete
cosine transform of the log of Mel-frequency spectral coefficients is computed, yielding a

series of 14-dimensional MFCC vectors.

Segmental DTW A variation of the Dynamic Time Warping algorithm is used to align
most similar fragments of speech in the lecture (Park and Glass, 2006). First, the distance
matrix is generated by computing distances between the MFCC vectors for pairs of utter-
ances. The matrix is cut into diagonal bands with a fixed width to limit the amount of
distortion in the aligned paths. Optimal paths with the lowest distortion cost through the
bands are found by the Dynamic Time Warping Algorithm. Each path is then trimmed
to the least average subsequence (See Figure 4-2). The average of the sequence distortion
profile is subtracted from the maximum distortion, yielding a similarity profile over time.

Table 4.8 shows some examples of aligned word paths in a Physics transcript.

4.7.2 Speech Minimum Cut

Once the highest scoring paths are extracted for each pair of utterances and the similarity

score is computed, we employ this information to develop a suitable representation for the
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Figure 4-2: Illustration of Dynamic Time Warping from (Park and Glass, 2006).

mincut algorithm. In its original form the similarity profile is too sparse There are gaps

between aligned utterance fragments and they also differ in duration.

In order to use our system, we quantize the data by splitting the lecture into contiguous
time blocks to make the nodes in the similarity profile more uniform. We aggregate the
similarity scores for paths that fall within these time blocks. More formally if S(p;,p;) is
the similarity score for the aligned paths p; and p;, and B(p;) is the index of the time block
within which the start-time of path p; falls, then the similarity between the time blocks
is computed as follows: S(b;,b;) = ZpieA,ijB S(pi,p;), where A = {ps|B(p;) = b;} and
B = {pi| B(p;) = bs}.

After quantization, we use the anisotropic diffusion method proposed in (Perona and
Malik, 1990) to smooth the similarity matrix (See section 3.4). A sample lecture similarity
matrix is shown in figure 4-3. Since the matrix is symmetric, only the upper portion of
the matrix is shown. Each element of the matrix corresponds to a rectangular patch in the
image. The matrix entries determine the color of each patch. The values are scaled to the
range of a colormap ranging from blue to red. The intensity of the red color indicates the
degree of acoustic similarity. Vertical lines in the image are reference segment boundaries.

Again, here we see that concentrated patches of similarity correspond to topical segments

in a lecture.
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Figure 4-3: Smoothed word-fragment similarity matrix of a Physics lecture. The degree
of block similarity is captured by the intensity of the color, ranging from blue (lowest
similarity) to red (highest similarity).

We tuned the number of quantized blocks as well as the kappa, lambda parameters, and
the number of iterations in the anisotropic algorithm on a heldout set of three development

lectures.

With the target number of segments set to the reference number of segments, the min-
imum cut segmenter on the set of 33 Physics lectures yields 0.38 average P measure and
0.3933 average WindowDiff measure. This result is significantly better than the scores at-
tained by uniform and random segmentations, and is close to the performance of the Choi
baseline on the Physics lecture set. In some of the individual lectures, the resulting seg-
mentation actually improved on the minimum cut text segmentation result, but the overall

result is worse perhaps owing to noise and acoustic irregularities.

We note that it would not be possible to incorporate the acoustic similarity information

for the UI baseline, because this algorithm operates over text ngrams.
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4.8 Conclusion

In this chapter, we layed out the the experimental basis for the effectiveness of our algorithm.
In particular, we showed that the task of spoken lecture segmentation is qualitatively differ-
ent from previous segmentation tasks with written language on synthetic corpora. The new
features of this problem are not well modeled by the previous algorithms, which principally
relied on assumptions of locality in lexical similarity changes to discern boundaries. Our re-
sults show that being able to exploit the global characteristics of the similarity distribution
is critical in our ability to model spoken discourse topics.

Our new framework attains the new state-of-the-art baseline in spoken lecture segmen-
tation. Moreover, we demonstrate that the method is applicable in a v