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Abstract

This thesis presents a methodology for the integration of blade row body forces, de-
rived from axisymmetric and three-dimensional flow fields, for use in the stability
analysis of axial compressors. The body force database represents the body forces
as a function of the local flow coefficient times the overall flow coefficient; doing this
overcomes a source of non-uniqueness in the representation. Stability calculations
using body force databases from this methodology as well as from a legacy method,
applied to axisymmetric streamline curvature calculations, are compared. A proce-
dure for joining body forces extracted from axisymmetric and three-dimensional CFD
calculations is presented along with an assessment of the sensitivity of the stall pre-
diction and onset behavior to the shape of the body force curves. The slope of the
body force curves near the point corresponding to peak pressure rise, as well as those
near zero flow, are found to be important in determining the stall point and incep-
tion type. Comparisons to previous work and test data from a single stage research
compressor are made.
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Nomenclature

r Radial location or direction

0 Circumferential location or direction

x Axial location or direction

P Pressure

V Velocity

U Local wheel speed

f Rotor rotational speed

p Density

local = & Local flow coefficient

4 overall - VU Overall flow coefficient
Umidspan

00 = 0tocal loverald Phiphi reference variable

SPtatrexiPt, IGVinlet Compressor inlet total to exit static pressure rise coefficient
midspan

(IGV inlet to stator Exit)

(Doc € -= ocal Normalized local flow coefficient (IGV inlet to stator Exit)o l overall, design

oera overall Normalized overall flow coefficient
overall overall, design

4 = Normalized phiphi reference variable
Ooverall, design



q, = - Normalized compressor pressure rise coefficient
V)design

F Axial transport flux variable or body force

G Circumferential transport flux variable

H Radial transport flux variable

S Source term

C Coefficient on second order term in polynomial

F, Radial body force

Ft Tangential body force

Fx Axial body force



Chapter 1

Introduction

Gas turbine design procedures dictate that in order to ensure stable operation at all

conditions a stall margin be included in setting the operating point of the engine.

Current methods for determining the stall point rely on correlations of experimental

data or computations based on simplified fluid dynamic models [2007, Longley]. Cor-

relations require data from an actual compressor and are generally only applicable

to compressors of similar geometry. Simplified flow models, while applicable to any

input geometry, lack the ability to capture three dimensional effects that are known to

be important to determining the type of stall inception and development of the final

form of stall [1993, Day]. While accurate three-dimensional unsteady models exist,

they require extensive computational time to capture those intra- and inter-blade row

effects of the flow, which must be modeled to successfully determine the stall point

and type of stall inception.

1.1 Background

1.1.1 Compressor Instability

A representative compressor performance map is shown in Figure 1-1, with pressure

ratio (PR) plotted versus corrected mass flow for different corrected shaft speeds

( ). An operating line, defined as the line joining the expected operating points
Vro-~ IV~~~l~j 11r)U~IIS Q3~I IIJllllj~l?~n~~S V~~lllj~ lli



Aerodynamic
Stability Limit
Line

Operating
Line

N/ 0 = C2

N/ 4T= C1

Corrected Flow

Figure 1-1: Example of a compressor performance map. The difference in pressure
rise between the stall line and operating line at constant flow is often referred to as

stall margin (SMAvail) [1989, Steenken]

Lowest Order Higher Order

Planar
Waves

Roating
Wave

Structure

Surge Rotating Stall

Figure 1-2: Sketch of the relation between the natural oscillatory modes of a com-
pressor and stall type



of the compressor at each corrected shaft speed, and an aerodynamic stability line

(or surge line) are shown. The difference in pressure rise between the operating line

and the surge line at a constant corrected flow is often referred to as surge margin

(although other definitions are also used [2004, Cumpsty]). For a given corrected

shaft speed, the compressor exhibits an increase in pressure rise as the corrected

mass flow is decreased. At a certain point, referred to as the stall point, further

decrease in corrected mass flow leads to large amplitude flow oscillations and a drop

in compressor pressure rise.

These oscillations are manifest in two forms, referred to as rotating stall and surge.

Figure 1-2 shows a depiction of the natural oscillatory modes of a compressor and

their relation to rotating stall and surge. Rotating stall can appear as either a single

large, full span cell of low velocity flow or, as one or multiple part span stall cells

[1999, Gong]. Surge is a one-dimensional oscillation of the flow through the entire

compressor. This thesis addresses computations of the onset and routes to rotating

stall.

1.1.2 Stall Inception

Two routes to rotating stall in axial compressors have been found, known as modal

stall inception and spike inception [1998, Camp and Day]. Modal type stall inception

is characterized by small amplitude disturbances with length scales comparable to

the circumference of the compressor, and is also referred to as long wavelength in-

ception. The growth of the disturbances in modal stall inception is initially an linear

process occurring over multiple rotor revolutions [1998, Camp and Day]. Modal type

disturbances typically rotate at between 20-50% of the rotor speed and include the

entire length of the compressor.

Figure 1-3(a) shows an example of computed 01,oal traces for a compressor stalling

through long wavelength inception. The input disturbance (or forcing) results in a

long wavelength velocity deficit which rotates around the annulus at roughly 40% of

the rotor speed.

The second route to stall is through disturbances with length scales of a few blade
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Time (rotor revolutions) Time, in rotor revolutions

(a) Stall through long wavelength disturbances (b) Stall through short wavelength disturbances
(modes) (spikes)

Figure 1-3: Example of computed lol,, traces from the initial phases of compress
stall through (a) long wavelength inception and (b) short wavelength inception [1999,
Gong]

pitches and large amplitude. It is termed spike, or short wavelength, inception. Spike

type inception is non-linear in nature and takes place on a time scale [1998, Camp and

Day] that is shorter than long wavelength disturbances. In spike type stall inception

an input spike grows into stall within 3-5 rotor revolutions. The disturbances have

initial rotating speeds of roughly 70% of rotor speed [1999, Gong]. Figure 1-3(b)

presents traces of computed 1,oca for a compressor stalling through short wavelength

inception. In contrast to the long wavelength stall inception depicted in Figure 1-3(a),

the disturbance initially rotates at roughly 75% rotor speed and grows into a stall

cell within two rotor revolutions.

Camp and Day gave a criterion for the occurrence of each type of stall inception

based on the slope of the pressure rise curve near the stall point. Their results

are shown in Figure 1-4. Stall points on the negative slope of the total-to-static

characteristic, are associated with spike type. However, if the slope of the total-to-

static pressure rise curve at stall onset is near the point of zero slope, the inception

type is modal [1998, Camp and Day]. A complete stability prediction tool, the end

goal of this project, would have the capability of predicting both short and long

wavelength stall inception, as well as the compressor design features that lead to

each.
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Figure 1-4: Data from Camp and Day [1998] showing a clear relation between the
inception type and slope of the pressure rise curve near stall

1.1.3 Stability Calculations Using a Body Force Model

Accurate stability calculations require computation of the flow fields associated with

an entire compressor system rather than a single individual blade row because not

only the individual blade rows, but also their interaction with each other, must be

examined. Gong [1999] showed that it is not necessary to describe the unsteady flow

at a blade-to-blade level for stall inception, and that the blades can be smeared out

and replaced by body forces. Replacing the blades effect on the flow with a body

force, the computational cost and time of a simulation can be reduced.

Xu, Hynes, and Denton [2003] were able to capture long wavelength disturbances

using a viscous body force model in combination with inviscid body forces from an

axisymmetric flow field but the model lacked information regarding the distribution of

the body forces. The body force model described in this thesis uses three dimensional

computations to provide an improved description of short wavelength disturbances

which are three-dimensional and localized to specific regions within a compressor.



1.1.4 Body Force Extraction and Database Generation

Kiwada [2008] developed a methodology for extracting body forces from three-dimensional

Navier-Stokes calculations and from streamline curvature computations. A represen-

tative control volume used in the process is shown in Figure 1-5. For a calculation in

which flow properties are calculated within a blade row, the control volume in Figure

1-5 would be further subdivided along the blade chord.

Hub

M- -
Figure 1-5: Example control volume for body force extraction [2008, Kiwada]

The body forces defined by Kiwada use a pitch average description of the flow.

His blade force averaging method produces an axisymmetric force distribution by first

averaging the flux terms, F, G, and H, defined in A.2, across the blade pitch and then

extracting the body forces by equating the derivatives of F, G, and H to the source

term, S, as in Eqn. A.4. Each flux variable is composed of four terms that appear in

the equations for a force balance on a control volume. For example, the first term in

F represents the axial mass flow, while the three remaining terms constitute the axial

transport of momentum in the axial, radial and tangential directions, respectively.

The flux terms are computed using a "blade force" average developed by Kiwada



[2008].

The blade force average expresses the flux from multiple points on a constant radial

surface as the net average flux through the surface, thus enabling a three-dimensional

flow field to be expressed as a pseudo-axisymmetric flow field, from which body forces

can then be extracted. Combining body force distributions from different operating

points allows one to generate a body force database that links the body forces for a

given cell to local flow conditions, specifically the local axial flow coefficient, reported

here as ocl = philoca
here as oa phioverall,design

1.2 Scope of the Thesis

1.2.1 Contribution

MIT is currently developing a procedure that capitalizes on recent advances in the

understanding of compressor instability to provide a stall estimation tool which cap-

tures the stall point and the type of stall inception. Gong [1999] demonstrated the

ability of a body force model to successfully capture both spike and modal type stall

inception. In the implementation he used the body forces were prescribed by an input

pressure rise characteristic and flow angles derived from experimental measurements

rather than computed from knowledge of the blade geometry.

The stability model of Gong [1999] was based on a body force representation of

the blade rows in which body forces are extracted from computed flow fields or ex-

perimental measurements, at operating points from reverse flow to design. Walker

[2009] used this model to demonstrate spike type stall inception with a body force

database extracted from axisymmetric streamline curvature flow fields using Kiwada's

method. The streamline curvature body forces, however, lack information regarding

the tip clearance effects, which are an important feature of the stall inception mech-

anism in the compressors of interest. This thesis addresses the issue of implementing

body forces based on three-dimensional computations to resolve this point. The thesis

also assesses the sensitivity of the stability simulation to the assumptions made and



the unknowns in the process.

1.2.2 Organization

The focus of the thesis is on incorporating body forces from streamline curvature

and three dimensional CFD calculations into the stability calculation. Chapters 2-3

discuss the body force databases and presents a new procedure that redefines the body

force database for use with three dimensional CFD derived body forces. Chapter 4

describes a method for the smooth joining of these body forces to those extracted

from the streamline curvature results. An initial sensitivity analysis of the stability

prediction tool as a whole is presented in Chapter 5.



Chapter 2

Technical Approach for Stability

Analysis

2.1 Requirements of the Body Force Database

The requirements of the body force database are that it provides information over a

range of flows from unstalled to possibly reverse flow. The reason is seen in Figure 2-1

which portrays how flow disturbance amplitude affects the range of the characteristic

which is accessed. For spike type stall, which is characterized by large amplitude

disturbances, the characteristic far from the peak pressure rise can be accessed even

if the overall operating point is on the negatively sloped portion of the characteristic.

Since stall can be characterized by low and even reverse flow in the region of the stall

cell, a robust model must be able to locally respond to and describe conditions from

design to reverse flow. This chapter discusses the CFD codes from which the body

forces were extracted.



Portion of characteristic
accessed by a small

amplitude disturbance

Zero flow
coefficient

Portion of characteristic
accessed by a large

amplitude disturbance

Figure 2-1: The effects of different disturbance amplitude on portion of characteristic
accessed [1999]

2.2 CFD Codes

2.2.1 Streamline Curvature Code

The axisymmetric streamline curvature code used in this project was SIMSLEQ-07

provided by Denton [2007]. The streamline curvature code solves for the positions of

the streamlines using radial equilibrium and mass conservation. The inputs required

are loss and exit flow angles for each blade and vane row. The code is able to provide

flow fields from the design flow coefficient, up to and past the stall flow coefficient, but

there are several caveats. The code does not incorporate a model for tip clearance.

It also has an internal limiter which prevents the velocity at any point within the

flow from falling below 5% of the midspan value at that location. As such, regions of

near zero and reverse flow, such as those in a tip gap or separated region are not well

simulated, especially when the code is used far from the region of operating conditions

for which it was designed.

The streamline curvature procedure also does not contain information within a

blade row. To populate the body force database within a blade the total body force



(i.e. pressure rise) across a blade is extracted for each streamtube and then dis-

tributed within the blade using normalized axial force distributions generated by two-

dimensional cascade calculations, computed using Fluent, at each radii (see Walker

[2009] for more details). These two-dimensional cascade calculations also provide the

input for loss and flow angle used in the code.

2.2.2 TBLOCK: Three-Dimensional Unsteady Navier-Stokes

Solver

The three-dimensional calculations were from the TBLOCK v7.5 code, also provided

by Denton [2007]. TBLOCK is a multi block, unsteady Navier-Stokes solver for

multi-blade path flows. The input is compressor geometry, including tip clearances,

inlet stagnation pressure, inlet temperature profiles, inlet flow angles and exit static

pressure. The operating point is set by specifying a back pressure. By specifying

increasingly higher back pressures the compressor is throttled, until it reaches a com-

putational stall point.

To provide a quasi-steady axisymmetric flow field needed for the body force ex-

tractions, the TBLOCK flow fields are blade force averaged in the theta direction,

as described in Section 1.1.4, and time averaged. Blade force averaging leads to a

loss of information, as discussed in Section 3.1.1, but is a necessary step to extracting

the body forces. Kiwada's body force extraction code is used on this quasi-steady

axisymmetric flow field to calculate the body forces.

Two TBLOCK data sets have been generated, one with 0.9% (of annulus height)

tip clearance and one with a 2.9% tip clearance. In this thesis, only the latter tip

clearance data is used. The MHI test compressor with a tip clearance of 2.9% stalled

at Goveral = .77, and the TBLOCK computations were available up to overaul = .78.



2.3 Body Forces at Zero and Reverse Flow

The lowest flow coefficient that can be achieved using the current simulation tools

(SLC plus Fluent) is overa-n = .44. To create body force data points at zero and

reverse flow, the zero flow point is assumed to have Fx, F, and Ft equal to zero, with

a corresponding flow field that consists of T 0ol 1 = 0 everywhere within the grid. Note

that Ilocal is the local flow coefficient for a given cell, ocal = VUm divided by the
Umidspan

overall flow at design for the compressor. This assumption is analyzed in Section 5.3

to determine its impact on stall inception to changes in the force at ,,,overa = 0.

Gamache and Greitzer [1990] showed that in reverse flow, an axial compressor

exhibits a pressure rise curve characterized by a strongly negative slope. As such, an

axial force, Freverse, was input to produce a steep negative slope of the force curves

in the reverse flow region.



Chapter 3

Body Force Database from

Three-Dimensional CFD

3.1 Double Values in the Computed TBLOCK Body

Forces

The stability estimation tool used is the UnsComp code developed by Gong [1999].

UnsComp requires a unique definition of the body forces, F, Fr, and Ft at any

local flow coefficient, IElo l. The body forces extracted from the streamline curvature

calculation provide a unique set of forces as a function of )locaE and thus could be

directly implemented into UnsComp. However the TBLOCK description, expressed

in terms of (Dc, is not single valued.

Figure 3-1 shows an example of the force curve for a cell in the rotor at 43%

chord and 4% span. There are multiple values of force in the TBLOCK curve near

Izocl = 1.30. The streamline curvature body force curve, for the same cell, shows no

double values.

Figure 3-2 shows the computational grid used in UnsComp indicating where double

values in the TBLOCK data occur. Red cells indicate where at least one double

value occurs within that particular cell over all the operating conditions, while blue

cells contain no double values. The double values appear to be associated with the



1.2
local

Figure 3-1: Fx vs. locP comparison showing double values in TBLOCK body forces

at Rotor, 43% chord, 4% Span

occurrence of reverse flow. For example the cluster of double values near the stator

hub are caused by acceleration of the fluid in that region due to a combination of flow

blockage from the tip leakage flow in the rotor and a small region of reverse flow along

the stator hub. The area of reverse flow along the hub toward the trailing edge of the

SI II I I I I I

Casing

Hub
IGV Rotor

Figure 3-2: Cells containing double values in TBLOCK data
is (lltocl. Red indicates cells that contain double values, while
contain no double values

Stator

when reference variable
blue indicates cells that
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-0.2
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Figure 3-3: Pseudocolor plots of blade-force averaged values of c(Ial from TBLOCK
near design ((Ioveralu = .97) and stall (Ioverau = .78)

stator, shown in Figure 3-3, causes a large upward shift of the streamlines resulting in

a region of accelerated flow just above it, where the double values occur. As seen in

Figure 3-3, the leakage flow from the tip of the rotor results in a high pressure region

near the casing at the tip of the rotor. This high pressure region causes a downward

shift in the streamlines within the rotor, leading to double values at trailing edge

of the rotor on the hub. While the double values are most prevalent in regions of

accelerated flow but they are also present in areas of reverse or low flow, as at the

trailing edge of the stator tip where the flow is degraded due to the leakage flow from

the tip of the rotor.

In summary, Figure 3-2 indicates double values in the stator hub and tip the rotor

hub and tip. As mentioned, examination of the flow fields in these regions shows that

they correspond to either areas of low flow or large streamline shifts due to low flow

areas.



3.1.1 Cause of Double Values in 4 local

The body forces are extracted on axisymmetric grids. Since the TBLOCK com-

putation is a fully 3-D computation, blade-force averaging in the theta direction is

performed. When the flow field is blade-force averaged around the circumference,
information about non-uniformities of the flow field within a blade passage is lost,
with the possibility that two flow fields could average to the same mean value.

2

1.5

0.5
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-- Oall = 0.78 2Pith W8. Pitch-01_overall =.ft3r P

Pressure Side Suction Side
Rotor Pitch

Figure 3-4: Profiles of 1 o a, across rotor passage at various ''overau

This situation is seen in Figure 3-4 which shows curves of 1ioai, at different Doverall,

across a rotor passage at 42% chord and 2% span. The inset figure is a zoomed in

view. The majority of each velocity profile is characterized by almost a constant value

of Iloal from roughly 25% to 98% pitch. From the inset in Figure 3-4, as Goverall is

decreased from design (overa l = .97) to overall = .86, there is a decrease in blocl.

However as G(overall is lowered further to overaui = .83, the Jloca profile shows a higher

average than the profile at overaul = .86, leading to a double value of 4to1al. When

stall is reached at overall = .78 the zoal profile is at a higher mean value than the

other 'o10al profiles in the figure, except for Doveral = .97.

Figure 3-5 shows overau versus Ilocal for a cell at 42% chord and 2% span in the
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Figure 3-5: Blade-force averaged value of (Iloal vs Ioverall for rotor passage

rotor after blade-force averaging has been performed. Double values in (Doa as a

function of Ioverall can be seen.

A physical interpretation of the source of the double values is as follows. The

initial decrease in the mean value of Itoa across the passage is due to the decrease

in mass flow as (overal is decreased. Figure 3-3 shows how as the operating point is

decreased from design towards stall, the tip leakage flow grows into a larger and larger

region of low flow, which acts to block the incoming flow and cause a streamline shift

towards the hub. The shift of the streamlines causes an acceleration of the inward

flow, resulting in the (Io'al of cells near the hub doubling back to values of (4to, seen

at higher (overau.

3.2 Variable Change to Eliminate the Double Val-

ued Behavior

The TBLOCK body forces can be used in the UnsComp stability code if the body

force database is appropriately redefined to provide a unique definition of the body
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Figure 3-6: Fx vs. 44 at Rotor, 77% span, 42% chord showing elimination of double
values with Q reference variable

force at all local flow conditions. A new variable 44 = 4 local loveralIl, was introduced

to achieve this condition. Use of the 44 variable, while not completely eliminating

the double values provides 86% reduction in the number of double values encountered

for the grid used in this study, as well as a decrease in the severity of the double values.

Casing

IGV Rotor Stator

Figure 3-7: Cells containing double values in TBLOCK data when reference variable
is 44. Red indicates cells that contain double values, while blue indicates cells that
contain no double values



Figure 3-6 shows the analog to Figure 3-1 using the (Q) reference variable. The

plot shows how the redefinition of the reference variable stretches the body force curve

along the abscissa and eliminates the double value that was present in the body force

curve plotted in Figure 3-1. The body forces expressed as a function of (ND are now

uniquely defined at all points along the curve.

Figure 3-7 shows the cells within the computational grid with a double value when

the reference variable is 4ID(. Comparing Figures 3-2 and 3-7, the change to the (IA

reference variable gives a major reduction in the number of cells in which double

values occur.

3.3 Assessment of M(# Performance as a Reference

Variable

Assessment of the (ID reference variable was performed by comparing results of a

stall simulation using a body force database generated from streamline curvature

body forces and the (I) reference variable, with results of a stall simulation using the

same values of body forces and the Iloc reference variable.

The computed stall point when using the Iiocai reference variable is 'I'overa = .79,

as indicated by the green star in Figure 3-8, is 2.6% higher than the measured stall

point. The local traces at stall, for twelve equally spaced circumferential stations at

an axial location between the rotor exit and stator inlet are shown in Figure 3-9. The

compressor stalls through spike type incpetion and the final form of stall is part span

rotating stall, as depicted in Figure 3-10, which shows a pseudocolor plot of (Ilocal

for an r - 0 plane between the rotor exit and stator inlet. The disturbance is input

at one rotor revolution and initially rotates at 67% rotor speed. Three and one half

rotor revolutions after the disturbance is input, the spike develops into a part span

rotating stall cell which travels around the annulus at 52% rotor speed.

The computed stall point using the I4I reference variable is (Ioverai = .67, as

indicated by the cyan star in Figure 3-8, 13% lower than the measured stall point.
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Figure 3-8: Comparison of pressure rise curves from test data, streamline curvature
computations and, UnsComp calculations with streamline curvature body forces ref-
erenced to the (ll variable, in pink, and c4) variable, in blue. Green star indicates
point at which UnsComp estimates stall using (Ica, while the cyan star indicates
where stall is calculated while using the 4(D4 reference variable

The 4Itoca traces at the stall point are shown in Figure 3-11, showing the compressor

stalling through spike type stall inception, similar to the behavior observed when

using the Itoca variable. The initial rotating speed of the spike is 67% rotor speed

while the stall cell rotates at 56% rotor speed. The final form of stall however is not

part span stall as seen in the case when using the local variable, but rather ring stall

as seen in Figure 3-12 which shows the pseudocolor plot of Iloal at the rotor exit.

The 4 variable captures the same stall inception type as the Dool variable but

the onset of stall is at a different flow coefficient. The reason for this is not know at

present but suspected to be related to the behavior of the (I( variable near zero flow.

When 0overall = 0, there are numerous distributions of 1)local, and thus distributions

of body forces, that can give rise to a flow field with a particular 4Ioverall; however,
when 4 'overall = 0, there is only one set of body force distributions available to choose

from since (( = 0 when (Ioverall = 0. The degree to which this behavior affects the
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Figure 3-9: A(Iocal traces at various circumferential positions at the casing for UnsComp
with streamline curvature body forces and 'IocaJ reference variable at Ioverau = .79.
Axial location between the rotor exit and stator inlet
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Figure 3-11: 4(local traces at various circumferential positions at the casing for
UnsComp with streamline curvature body forces and 4( reference variable at a

,overau = .67. Axial location between the rotor trailing edge and stator leading
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stall simulation is the subject of ongoing investigation.

It is also not clear whether the simulation with the 1,,,ocaI reference variable would

also exhibit ring stall if run for more rotor revolutions. The possibility remains the

compressor, or simulation, may be prone to ring stall but is left for future investiga-

tion.
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Chapter 4

Joining of SLC and TBLOCK

Body Force Databases

4.1 Impetus for Joining the Body Force Databases

The TBLOCK body forces are used to give higher fidelity descriptions of the tip region

flows for better estimates of the stall point and inception type. However, TBLOCK

can only calculate flow fields up to the numerical stall point, while UnsComp requires

that body forces be defined from design to reverse flow. Thus, the body forces derived

from TBLOCK flow fields, from design to stall, must be joined to another descriptor

from stall to low flow. The methodology used here is obtaining the body forces from

streamline curvature plus two-dimensional viscous calculations. The overall body

force description should yield curves which are smooth and continuous at all values

of (I1ocl.

4.2 Legacy Procedure For Joining the Databases

Walker [2009] proposed a procedure for joining the streamline curvature and TBLOCK

body force databases based on a methodology developed by Kiwada [2008]. The aim

was to provide a smooth joining of the integrated force values at each radii within

the blade. The integrated force value is defined by F,integrated = fJEE F~dx, from the



leading edge to trailing edge of a blade at a given radius.

TBLOCK provides flow fields and forces up to a numerical stall point, Doverall, stall, TBLOCK.

Fstall, TBLOCK is the corresponding force for a given cell at that point. Given this point

the corresponding streamline curvature body forces obtained at (oveDrau lower than

(Ioverall, stall, TBLOCK are shifted in 1 overall and force to match )overall, stall, TBLOCK and

Fstall,TBLOCK. This method provided a first approach to joining the TBLOCK and

streamline curvature databases, but it was not tested with the stability code and did

not result in smooth body force curves at all points within the computational domain.

With the procedure just described the body forces are matched between TBLOCK

and streamline curvature where the two curves attach, but there is no constraint on

matching the slope of the TBLOCK and streamline curvature body force curves.

Walker [2009] notes that discontinuities in the slope of the resultant curve appear

for body forces near the rotor tip. He also states that although the integrated force

curves may match the value of force at this TBLOCK/streamline curvature joining

point, when the force is distributed through the blade, discontinuities in force may

appear for individual cells.
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Figure 4-1: Example of an integrated
force curve using the legacy method. In-
tegrated forces are for the rotor midspan
and plotted versus qoverau [2009]
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Figure 4-1 shows a curve of the integrated body force versus 4 at the midspan

of the rotor [2009]. It can be seen that the method provides a smooth joining of

the integrated force curves at some radii. Figure 4-2 [2009], however, shows that

discontinuities in slope and force appear for local cells upon redistribution of the

forces.

4.3 A New Procedure for Joining the Databases

A procedure for joining the two databases was developed to avoid the local discon-

tinuities encountered if only the integrated forces are matched. The procedure joins

the streamline curvature and TBLOCK body forces on a local basis. At each cell

within the computational grid, each force curve is defined over four regions of 44.

The four regions which play a different role in the fitting procedure and have

different constraints are shown in Figure 4-3 for an example cell in the rotor at 31%

span and 7% chord. They are: 1) TBLOCK Force Region, 4( _ 4)3; 2)Buffer

region, 44(I2 _ 1 < (I (I3; 3) Streamline curvature fit region, 4 I < (I < 44I(I2; 4)

1

IL

0.1 0.2 0.3
I"

0.4 0.5 0.6

Figure 4-3: Example of F, vs 44 body force curve in rotor at 31% span and 7% chord
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Extension to zero, 0 < '(I < ( 1. The points (G14i,F 1 ) and (D4)3, F3) correspond

to the lowest available streamline curvature and TBLOCK data points, respectively.

The TBLOCK force region is not discussed in detail as the body forces in this region

are the extracted TBLOCK body forces and remain unmodified.

Three desired characteristics of the resulting force curve drove the design of the

fitting procedure. First, for G >'_ 43, the TBLOCK body forces are not modified

since they are extracted from full three-dimensional calculations, and are considered

the most accurate body forces currently available. Second, for '1 <_ '1G3, the curve

should be continuous and smooth with no discontinuities in either force or slope.

Finally, although the streamline curvature body forces are not as accurate as the

TBLOCK data, bulk information about the shape of the force curve can be used as

a guide in extending the force curve for '4 < (D3. Doing this preserves the overall

curvature of the data while avoiding discontinuities between the streamline curvature

and TBLOCK body forces.

4.3.1 Buffer Region on (I)I2 3< (I) < I(3

The point (442, F2) is determined by taking the first point in the streamline curvature

data which is lower in '1 than the last available TBLOCK point, GG3, and moving

down in '4D space two data points in the streamline curvature data. The number

of points moved down in '1G can be adjusted depending on the size of the step

between the streamline curvature data. For the results presented here, the streamline

curvature data had a spacing of AQ4 = .01. If this operation results in only one, or

zero, remaining streamline curvature data points, or there is no available streamline

curvature data, the last TBLOCK point is connected to 4 = 0 with a straight line,

and no information from the streamline curvature data is used. The buffer region,

plotted with green squares in Figure 4-3, is necessary to allow a smooth transition

between the TBLOCK force curve and the portion of the force curve generated from

the fit to the streamline curvature data. In the buffer region a second order polynomial

is used with the constraints that the curve must pass through the point (143, F3 ), as

well as have the same slope as the TBLOCK data at that point. Additionally, at the



point ((I42, F2), the buffer region and streamline curvature fit curves are matched to

have the same value of force and slope.

4.3.2 SLC Fit Region on QI < ((I < I4 2

Two properties of the streamline curvature curves are used to constrain the generated

body force curves for (4 < ((I2 and ( > 14 1. As mentioned in Section 4.2, Camp

and Day [1998] showed that the shape of the pressure rise curve (which is directly

influenced by the shape of the force curves) is important in determining the stall

inception point and type. Thus, to preserve the shape of the streamline curvature

body forces, the first property used in the fit to the streamline curvature data was

the coefficient of the second order term, CSLC. Preservation of CSLC ensures the

concavity of the generated body force curve and the streamline curvature body forces

is the same. The second property is the change in force from the beginning to the end

of the fit, AF 2-1,SLC = F2,SLC - F1,SLC, which ensures the local change in pressure

rise from ((42 to (I1l is roughly conserved.

Once CSLC and AF 2- 1,SLC are determined for the curve from (42 to (I(1, a

second order polynomial is defined which shares the same slope and value of force

as the buffer region curve at ((42, F 2), as well as the same slope and force value

as the extension to zero at ((441, F1). Figure 4-3 shows how the curves fit together.

The curve in blue diamonds mimics the shape and change in force of the streamline

curvature body forces, yellow dots, but is shifted to match the buffer region and

extension to zero.

4.3.3 Extension to Zero Flow on 0 < I4 < I4 1

The final two regions of flow to be defined are the extension to zero flow on 0 <

(( < (I (1 and the reverse flow region on (I.reverse < (14 < 0. For the extension to

zero flow, another second order polynomial is generated with the constraint that it

must share the same slope and force value at (((1l, F1 ). The extension to zero is

plotted as green triangles in Figure 4-3. As mentioned in Section 2.3 an anchor point



at (0, 0) is included in the body force database so the extension to zero curve passes

through this point. In the reverse flow region, the body forces are defined by the

reverse flow data point described in Section 2.3.

Figure 4-3 shows the force curves from streamline curvature and TBLOCK for

a cell in the rotor at 31% span and 7% chord, as well as the resultant curve from

applying the joining procedure to those force curves. Also marked are the different

regions of the curve described in this section, which constitute the resultant body

force curve. The resulting body force curve maximizes the use of TBLOCK body

forces, preserves the shape of the streamline curvature body force curve and avoids

discontinuities between streamline curvature and TBLOCK body forces.



Chapter 5

Sensitivity of the Stability

Calculation to Shape of Force

Curves

5.1 Motivation for the Sensitivity Study

Gong [2008] showed that variations in the shape of the pressure rise curve can lead

to changes in both stall point and stall inception type. While the pressure rise in his

formulation directly translates into the axial body force F', this is not true for a flow

with radial non-uniformities in the background flow. It is not evident how changes to

portions of the local body force curves past the peak are manifest as changes in the

overall pressure rise curve, because the body force curves are defined in terms of local

flow properties and combinations of local properties can give rise to similar overall

flow properties. Thus, a study of the effects of changes to the body force curve past

the peak was performed.

Initial attempts at using the joined body force database were unsuccessful at

reproducing stall, and the number of assumptions and variables in the joining process

and use of the TBLOCK data were deemed too numerous to analyze given the time

frame of this thesis. A sensitivity analysis using streamline curvature body forces was



thus carried out.

Three aspects were examined. The first addressed changes to the slope of the

force curves near the flow coefficient corresponding to the peak pressure rise, the

second addressed changes to the force value at zero flow coefficient, and the third

addressed changes to the slope of the reverse flow region of the body force curves.

The studies aimed both to provide insight into how changes in the force curves effect

the calculated stall point and inception type and to elucidate areas of importance in

the joining procedure and limits for changes in those parameters, for which there was

little or no guidance.

In the results presented here the baseline used for comparison is the UnsComp

calculation using the (I variable and streamline curvature data, presented in Section

3.3. This case (Figure 3-3) exhibited part span rotating stall through spike type

inception at an overall flow coefficient of (stall, baseline = .670, with a final stall state

of ring stall.

5.2 Sensitivity to Shape of the Force Curve Near

the Peak

Gong [2008] found that variations in the slope of the pressure rise curve near the

peak had the most impact on the stall point estimate. His results were based on

the incompressible version of UnsComp in which the body forces were derived from

a prescribed pressure rise curve. For the compressible version of UnsComp the body

force curves themselves were modified to assess how changes in the body force curves

past the peak pressure rise would affect the stall point estimate.

Table 5.1 lists the three cases examined while Figure 5-1 gives a graphical rep-

resentation of example force curves from each case. For all three cases, each force

curve was comprised of streamline curvature body forces for flows larger than (IM)peak.

Specifically the point (l4 peak,Fpeak), the 1Q and force value at ,overau = .78 respec-

tively, was connected by a straight line to a specific value of Foveri,=O, the force at



Case F overall 0

1 0

2 Fpeak

3 Fpeak
2

Table 5.1: List of cases for changing shape of force curve near peak

(Ioveraul = 0. The slope of the reverse flow body force curve was unchanged in all four

cases although the reverse flow curve was connected to the point at zero flow as seen

in Figure 5-1. Case 1 had Fo,,eral=o = 0 similar to the way the baseline is joined

to zero flow. Case 2 had Foverall=O = Fpeak, where Fpeak is the value of force for a

given cell at peak pressure rise. Case 2 results in a body force curve of zero slope

from I(Ipeak to zero flow, i.e. it represents a compressor which produces a constant

pressure rise for flows below ((peak. Case 3 had Foer.= = 2giving a line of

intermediate slope.

FX

SLC Body Forces

\/

0 (P Last qxp

Figure 5-1: Graphical representation of force curves for three slope sensitivity test
case studies
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Figure 5-2: Total-to-static pressure rise curves for Cases 1-3

The resulting total-to-static pressure rise curves for Cases 1 to 3 are plotted in

Figure 5-2, with the baseline included for reference. The data for each case is plotted

up to the last flow coefficient at which UnsComp was able to calculate an axisymmetric

flow without reverse flow. (The axisymmetric solutions are used to populate the initial

flow fields of the three-dimensional calculations in UnsComp, and reverse flow can

possibly predispose the simulation to stall.)

5.2.1 Case 1

The IIocat traces for Case 1, in Figure 5-3, indicate stall through spike type stall

inception leading to part span rotating stall at ,,ov(erai = .832. Figure 5-4 shows the

pseudocolor plot of (loca, at the rotor exit including the part span rotating stall cell.

The initial speed of the spike is 67% of rotor speed while the stall cell rotates at 43%

rotor speed.

The slope of the total to static pressure rise curve for Case 1 is negative at the

stall point and the stall inception type is a spike, which is in accord with the findings

of Camp and Day [1998] presented in Section 1.1.2. In contrast to the baseline, Case
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Figure 5-3: Traces of Ioc for sensitivity Case 1 showing spike type
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1 does not go into ring stall.

5.2.2 Case 2

The (1,oca traces for Case 2 at Iovera1 = .691 are shown in Figure 5-5. The final flow

pattern, shown in Figure 5-6, is characterized by an eight lobed pattern of high flow

regions that rotate around the annulus at 30% rotor speed. This appears to be a

modal pattern which does not develop into large amplitude rotating stall.
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0.1 .8

0 Revolutions = 23.16 .

S_ 3.5

-0.2 .2

, zrzrV2 AM, ).1
6 10 15 20 25 -0.3

Rotor Revolutions -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Figure 5-5: Traces of #(Doa for sensitiv- Figure 5-6: Pseudocolor plot of I ocl for
ity Case 2 showing modal disturbance at sensitivity Case 2 showing eight rotating
(overau = .691 lobes of high flow at (Ioverall = .691

Given the near zero slope of the pressure rise curve at the points where the spike

was input, the modal patterns observed bear resemblance to similar results encoun-

tered by Walker [2009]. He noted modal patterns within the flow with the full stream-

line curvature body force database and (o,,al reference variable, joined through zero

force at zero flow. He noted that for the same operating point at which stall was ob-

served in his simulations, overaiu = .78, a disturbance - the size of the disturbance

that caused spike type stall would result in a rotating disturbance characterized by

an eight lobed pattern. Given that Walker observed the same eight lobed pattern it

is possible that the compressor being studied with the Case 2 body forces is modal.

The time traces of G(overall and I (s-s) were examined for the perturbed case and

are shown in Figure 5-7 (a) and (b), respectively. The modal pattern observed does

not have a drop in pressure rise, but there is a change in both Iovera, and I (s-s)



which converge to steady average values. The increase in pressure rise due to a drop

in annulus averaged static pressure at the inlet measurement location, which was

taken to be just upstream of the inlet guide vanes as in the test compressor. When

the inlet measurement plane is changed to the inlet of the computational domain, the

pressure rise drops to a time average value of 1(s - s) = 7.62.

0.67 , 7.8
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Figure 5-7: Time traces of Iovera and T (s-s) for sensitivity Case 2 at (Ioveral = .691

5.2.3 Case 3

Case 3 provided an intermediate test case with a slope in the body force curve from

the peak pressure rise to zero flow between that of Case 1 and 3. The 4Il 1 traces for

Case 3 at overa11 = .748 are shown in Figure 5-8. The final flow pattern, shown in
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Figure 5-8: Traces of Iocal for sensitivity
Case 3 at ,,,oerau = .748 showing rotating
modal stall pattern

Figure 5-9: Pseudocolor plot of (Ilo.a for
sensitivity Case 3 showing 5 lobed rotat-
ing stall pattern at (overa, = .748
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Figure 5-9, is characterized by a five lobed pattern of alternating high and low flow

regions that rotate around the annulus at 23% rotor speed.

The Docl traces and lobed pattern resemble the flow patterns seen in Case 2, but

with a drop in both 1 and I (s-s).

0.74
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Figure 5-10: Time traces of Goverall and IF (s-s) for sensitivity Case 3 at overall = .748.

Both T (s-s) and 4 level out to steady mean values by 20 rotor revolutions

5.2.4 Summary of Sensitivity Study of Shape of the Force

Curve Near the Peak

The results of the study regarding the effects of changes to the force curves near the

peak are summarized in Table 5.2. The data indicate the stall point estimate and

inception type are sensitive to changes in the slope of the forces past the peak of the

pressure rise.

The small amplitude of the final motion in Case 2 is not unexpected given the

body force curves. Since -  f TE Fxdx, a constant body force past the peak to

zero flow implies a flat pressure rise curve below the flow coefficient corresponding to

the peak.

Greitzer [1981] proposed an energy argument relating the slope of the pressure rise

characteristic to the growth or decay of a disturbance. If a disturbance of rTh and

6AP is superimposed over the mean flow for an operating point on the negative slope

of the characteristic, 6rh and 6AP carry opposite signs. Their product, energy input



Case stal stall-stall,baseline * 100 Inception Final Stall Type or
stall stall, baseline Type Flow Pattern

1 .832 +24.2% Spike Part span rotating stall
cell

2 No Stall N/A N/A 8 lobed pattern of high
flow

3 .748 +11.6% Unclear 5 lobed rotating stall
pattern

Baseline .670 0.0% Spike Ring stall

Table 5.2: List of cases for changing shape of force curve near peak

to the system, is negative and thus there is low energy input into the system and

the perturbation decays. If the slope of the pressure rise curve is positive however,

then the product of 6ri and 6AP is positive and there is higher energy input than

with a uniform flow, resulting in a disturbance that grows. Thus, if the slope of the

pressure rise curve is negative at all operating points, a disturbance cannot grow at

any operating point.

The body forces corresponding to Case 1 and the baseline differed only from

Ioverall = 0 to overall = .78, yet Case 1 exhibited stall at a flow coefficient 24%

higher than the baseline. Case 1 also does not exhibit ring stall (as in the baseline),

and the part span stall cell in Case 1 rotates at a slower speed than the stall cell in

the baseline.

The results of Case 1 indicate that the stall inception estimate is sensitive to the

slope of the body force curves near (and below) the peak. However the changes to the

slope near the peak modify the forces from the peak to reverse flow. The sensitivity

studies to follow will help to isolate the effects of changes to force curves near zero

flow and in the reverse flow region.

5.3 Sensitivity to Force at Zero Flow

It is possible during stall that a local region of flow passes through zero flow conditions

thus necessitating a (14) = 0 data point on the force curve. There is little data on



the flow fields in this regime [1990], and two test cases were developed to assess the

sensitivity of the stall simulation to the specification of forces here and at zero flow.

Each case utilized the full set of streamline curvature body forces from design to

Fx SLC Body Forces

0 q~(PLast

Figure 5-11: Graphical
tivity study

representation of force curves for zero flow force value sensi-

overauI = .44 but was joined to two different values of Foverai=o.

The test cases are shown in Figure 5-11. The lines to zero flow were defined by

FLast (Case 5) and F ast (Case 6), where FLast is the body force at o,,verau = .44. It

was expected that changes in the zero flow force value would have less impact on the

slope of the force curve near ,,,,erall = .78, thus isolating the effect of changing the

force value at zero flow from changes to the curve near overall = .78.

The pressure rise characteristics for Case 5 and Case 6 are plotted in Figure 5-

12. The pressure rise curves for the cases only differ in the value of the lowest flow

coefficient UnsComp is able to calculate an axisymmetric solution without reverse

flow. This agreement of the pressure rise curves occurs because the body force curves

are the same for flow coefficients above overall = .44.
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Figure 5-12: Total-to-static pressure rise curves for Cases 5 and 6

5.3.1 Case 5

Case 5 stalled through modal stall inception at Goverall = .624 as in Figure 5-13

which plots the iocai traces at the rotor exit. The input spike initially rotates around

D 6 10 1i 20
Rotor Revolutions

Figure 5-13: Traces of (I1o1l for sensitivity Case 5 showing modal stall inception at
,over,,, = .624 leading to part span rotating stall
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the annulus at 67% rotor speed but disappears in less than one rotor revolution, at

which point long wavelength oscillations characteristic of modal stall appear. After

approximately nine rotor revolutions a part span stall cell is seen rotating around the

annulus at 34% rotor speed. Figure 5-14 shows that the final form of stall was a part

span rotating stall cell.
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Figure 5-14: Pseudocolor plot of (1~oD for Case 5 showing rotating part span stall
cell at Ioveral = .624

5.3.2 Case 6

Stall simulation results for Case 6 are given in Figure 5-15 which shows (Ioal traces

at the rotor exit. The compressor appears to stall, at (overau = .629, through modal

inception that grows into a rotating stall cell. Within one rotor revolution of ap-

pearing, the rotating stall cell encompasses the entire annulus leading to ring stall.

The cause of oscillations that appear at fifteen rotor revolutions is not yet known.

In Figure 5-17 the annulus average values of Ioverau and T (s-s), show a drop in the

pressure rise of the compressor after the input disturbance.
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Figure 5-15: Traces of Olo4l for Case
6 showing modal stall inception at

overau = .629 leading to part span ro-
tating stall
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Figure 5-16: Pseudocolor plot of (I,,ol for
Case 6 showing rotating part span stall
cell at ,over,, = .629
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Case 6 at (Ioveral = .629. Both
the twentieth rotor revolution,

5.3.3 Summary of Sensitivity to Value of Force at Zero Flow

The results of the sensitivity study into the effects of changing the force value at zero

flow are listed in Table 5.3, including the baseline for reference.

Case 5 stalled at 7% lower flow coefficient than the baseline. There was modal

type inception with the final form a part span stall cell. Case 6 had stall inceptoin

at 6% lower flow coefficient than the case. There was a short lived modal inception

pattern with the final form of ring stall, accompanied by small oscillations in the

I1ocal traces near the end of the simulation.

The data indicates that the stall point estimate is not as sensitive to the force
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value at zero flow as it is to the change in slope of the force curve between zero flow

and the peak. However, the force input in the zero flow region does appear to change

the inception pattern, reproducing spike type stall inception only when the force at

zero flow was set to zero.

Case (#stalI  (stall-stall, baseline * 100 Inception Final Stall Type orCase tall stall, baseline

Type Flow Pattern

Baseline .670 0.0% Spike Ring stall

5 .624 -6.9% Modal Part span stall cell

6 .629 -6.1% Modal (short) Ring stall with oscilla-
tions

Table 5.3: Summary table of results from sensitivity analysis of changing force value
at zero flow

The slope of the body force curve near zero flow can affect the stall inception

type as follows. The force is related approximately to the local pressure rise by

Ap , fTE Fxdx. If during stall inception, a region of flow decelerates to low or

reverse flow conditions, the slope of the body force curve in this regime could then

determine the rate at which a disturbance grows or decays. The energy argument

presented in Section 5.2.4, stated that negatively sloped pressure rise characteristics

tend to stabilize disturbances, while positively sloped pressure rise characteristics have

the opposite effect. Given that the force curves are roughly pressure rise curves for

the local cell to which they are applied, a negatively sloped force curve would extract

energy from the perturbation, while a positively sloped force curve would input energy

into the perturbation. For a disturbance that sees many cells with steeply positive

sloped force curves, the disturbance will grow rapidly, while shallower force curves

lead to disturbances that grow at slower rates.

The baseline is characterized by a sharply positive force curve near zero flow, Case

5 has a zero slope force curve at zero. The simulations show that the baseline exhibits

spike type stall inception, large amplitude, rapidly growing disturbances. Case 5

exhibits modal stall, which is characterized by long wavelength, small amplitude and

slow moving disturbances.



5.4 Sensitivity to Slope of Reverse Flow Region of

Force Curve

Stall cells are characterized by low or reverse flow conditions. Gamache and Greitzer

[1990] showed that a compressor in reverse flow has a steeply negative pressure rise

curve. For the baseline stall simulation a force per unit mass of Fx,reverse - 7.6 was

input at (Ioverau = -. 2 which produces a steep negative slope in the force curve in

the reverse flow region.

Case F overall=-.2

7 5 * Frev

8 2

Table 5.4: List of cases for changing slope of force curve in reverse flow region

SLC Body Forces

Pq)9reverse 0 qxp

Figure 5-18: Graphical representation of force curves for reverse flow force value
sensitivity study
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Figure 5-19: Total-to-static pressure rise curves for Cases 7 and 8

To test the sensitivity of the stall onset estimates to the slope of the reverse flow

portion of the force curve, two test cases were compared to the baseline, as listed in

Table 5.4. Figure 5-18 shows graphical representations of the test cases compared to

the baseline. Case 7 had F~overall=-. 2 = 5 * Frey, a steeper slope than the baseline,

while Case 8 had Fovera,,=-.2 = , resulting in a shallower slope than the baseline.

Figure 5-19 shows a plot of the pressure rise characteristic for the baseline with

the stall points from Cases 7 and 8 included as cyan and yellow stars, respectively.

The pressure rise curves for Cases 7 and 8 are the same as that for the baseline since

all three cases share the same set of body forces from design to zero flow, and only

vary for reverse flow. Since the axisymmetric pressure rise curves are only plotted up

to the last stable operating point at which no reverse flow exists in the solution, the

operating points are the same, to within computational error.

5.4.1 Case 7

Case 7 exhibited spike type stall inception at o,,erau = .655, leading to a part span

rotating stall cell as seen in Figure 5-21. The input spike travels at 67% rotor speed
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Figure 5-20: Traces of loc for Case 7 showing spike type stall inception at 4Ioverau =
.655 leading to part span rotating stall

and grows until roughly 4.5 rotor revolutions, after which it disappears for roughly

one rotor revolution and then a part span rotating stall cell appears at about the

sixth rotor revolution.

At approximately the fifteenth rotor revolution the computation encountered an
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Figure 5-21: Pseudocolor plot of Jloc for
Case 7 showing part span rotating stall
cell at (overaul = .655
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Figure 5-22: Pseudocolor plot of 4 oI for
Case 7 showing reverse flow region ex-
tending from casing to hub just prior to
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error. Just prior to the error, a column of reverse flow was observed extending from

the casing to the hub, as seen in Figure 5-22, with the magnitude of the reverse flow

velocity growing until the computation stopped. The cause of this error is not yet

known.

5.4.2 Case 8

The 1,oal traces for Case 8 at ,overa1 = .701 are shown in Figure 5-23. There is a

spike input at one rotor revolution that rotates at 67% rotor speed. The spike grows

into a part span rotating stall cell rotating at 50% rotor speed prior to developing

into ring stall. Figure 5-24 shows a pseudocolor plot of the ring stall structure at the

exit of the rotor at 23.16 rotor revolutions.
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Figure 5-23:
.701 leading

Traces of (I,,o for Case 8 showing spike type stall inception at (overall =
to part span rotating stall
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5.4.3 Summary of Sensitivity to Slope of Reverse Flow Re-

gion of Force Curve

Table 5.5 lists the results of the test cases used to assess the sensitivity to slope of

the body force curve in the reverse flow region.

Case Psta.1 4.ta sta, baseine * 100 Inception Final Stall Type or
Istall, baseline Type Flow Pattern

Baseline .670 0.0% Spike Ring stall

7 .655 -2.2% Spike Part span stall cell

8 .701 +4.6% Spike Ring stall

Table 5.5: Summary table of results from sensitivity analysis
at zero flow

of changing force value

Both Case 7 and 8 captured spike type stall inception, at flow coefficients within

5% of the baseline stalling flow coefficient. The final form of stall in Case 7 was a

part span stall cell rather than the ring stall seen in the baseline and in Case 8. The



slope of the reverse flow portion of the body force characteristic thus does not have

a significant effect on the stalling coefficient, compared to the slope of zero flow force

value and slope of the curve near the peak, but does impact the final form of stall

observed.



Chapter 6

Summary, Conclusion and Future

Work

6.1 Summary of Work Presented

This thesis addresses the use of body forces from streamline curvature and from

three-dimensional CFD computations.

Chapter 1 presented an overview of compressor stability with a focus on the two

types of stall inception and a review of body force models for stability calculations.

Chapter 2 reviewed the requirements for a body force database and provided

background on the CFD codes used to generate the body forces in this project, as

well as their limitations.

Chapter 3 presented an analysis of the non-uniqueness observed in the #ocalo vari-

able in the TBLOCK data set and proposed a fix for this limitation using the variable

(localI overall. This enables use of the TBLOCK data in the UnsComp stability code.

Chapter 4 described a proposal, based on qualitative information about the stalled

flow behavior, for joining the streamline curvature and TBLOCK body force databases.

Chapter 5 presented a set of sensitivity studies to determine the change in stall

point and in type of stall that are associated with changes to the shape of the body

force curves at flows below peak pressure rise flow coefficient. A stability analysis

using streamline curvature body forces with changes to the shapes of the body force



curves past the peak highlighted areas of the body force curve and joining procedure

that are important in determining stall point and inception type estimates.

6.2 Conclusions

1. The stall inception type was not sensitive to changes in the reverse flow body

forces, but it was sensitive to the body forces at zero flow. The slope of the body

force curve approaching zero flow from positive flow coefficients can thus be factor in

determining the stall inception pattern.

2. The slope of the pressure rise curve near the peak has the largest effect on the

stall point of all the parameters tested in this thesis. The maximum change seen in

the stall point estimate over the cases examined was 24% and some cases failed to

stall all together. The results are in agreement with the findings of Gong [2008].

3. Changes to the force value at zero flow provided an average of 6.5% change

in stalling flow coefficient and changes to the reverse flow part of the force curves

incurred less than 5% changes to the stalling flow coefficient.

4. The body force expressed as a function of the Q reference variable can provide

a means to adapt the TBLOCK data into a form suitable for use in the stability

analysis code, UnsComp. There are 10% differences in the computed stall onset points

between the procedures using the 44D reference variable and that using the 4loal

reference variable. However the D4 variable has the advantage of being applicable to

both the TBLOCK and streamline curvature data sets.

5. Based on the results of the sensitivity study, the joining procedure proposed in

this thesis should be assessed in terms of constraints on the slopes of the body force

curves. In particular large changes in slope of the body force curves that arise as a

result of the joining procedure.

6. The stall simulation results with the streamline curvature body forces have

allowed assessment of the effects of the body force representation on stall onset and

pattern. While the impetus for using the TBLOCK body forces was to include the

effects of tip clearances, once can also to model tip clearance effects in a streamline



curvature framework. In view of the goal of providing a simple yet accurate stall

estimation tool, it might be useful to consider the idea of incorporating tip clearance

effects into a streamline curvature simulation and body force computation.

6.3 Proposed Future Work

1. The changes to the body force curves used in this thesis were coupled in that

changes to the slope of the body force curves near the peak changed the slope of the

body force curve and the force value near zero flow at that point. A sensitivity analysis

on the effect of the slope of the body force curve near the peak, but with a constant

slope curve in the low flow region of the body force curve should be performed to

isolate the effects of the slope changes near zero flow and those near the peak.

2. The TBLOCK body forces provide body forces that are more accurate repre-

sentation of the body forces within the actual compressor and also include the effects

of tip clearances. However, the grid currently used in the stall simulation smears out

the tip gap, in the radial direction, into one cell within UnsComp. The effects of

radial grid size should be investigated.

3. Initial stall simulations using the TBLOCK body forces did not yield distur-

bances that grew into a stall cell. The computed pressure rise across the rotor was

lower than the pressure rise across the stator with the TBLOCK body forces. The

streamline curvature body forces, which reproduce spike type stall inception, as in

the data, exhibit a higher pressure rise across the rotor than that across the stator.

An investigation of the cause of the discrepancy in the computed pressure rises should

be carried out.

4. The procedure for joining the TBLOCK and streamline curvature body forces

presented in this thesis uses the TBLOCK body forces up to the last available flow co-

efficient and then extends curves from this point to low and reverse flow. A sensitivity

study similar to the one performed in this thesis, but using TBLOCK body forces,

should be carried out. This study would be a generalization of the proposed joining

procedure that joined a simple set of curves to the fixed TBLOCK body forces.



5. When using the 4M reference variable in conjunction with the streamline

curvature body forces, UnsComp simulated the compressors final stall state to be

ring stall. However when the original al reference variable is used the compressor

does not exhibit ring stall. A simulation should be run using the streamline curvature

body forces and the T local variable, for longer (50 rotor revolutions to determine if

the compressor is prone to ring stall or if the ring stall is an effect of the use of the

4D variable.

6. While stability calculations using the 14 reference variable estimate stall to

within 8% of the measured value and correctly simulate the spike type stall inception

seen in the test compressor, there is not a rigorous justification for the (Q variable.

The variable provides a reduction in the number of double values in TBLOCK and

allows for their incorporation into the simulation, but a reference variable which is

a function of two local flow quanities may be better suited to the robsustness of the

overall procedure.



Appendix A

Body Force Description and

Equations

A.1 Governing Equations

The incompressible form of the Navier-Stokes equations in cylindrical form are given

by Greitzer, Tan and Graf [2004] as:
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(A.3)

The variables X, 0, and i represent unit vectors in the axial, tangential and radial

directions, respectively, while - is the stress tensor.

A.2 Flux Form of Equations

The body force formulation relies on a flux form of the Navier Stokes equations.

Specifically a conservative form of the Equations A.1 - A.2 as given by Equation A.4,
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where F, G, H and S are given by:
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