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Abstract

The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL) is carrying out a spin physics program at is = 200 -
500 GeV to gain a deeper insight into the spin structure and dynamics of the proton.
These studies provide fundamental tests of Quantum Chromodynamics (QCD).

One of the main objectives of the STAR spin physics program is the determi-
nation of the polarized gluon distribution function through a measurement of the
longitudinal double-spin asymmetry, ALL, for various processes. Di-Jet production is
of particular interest since it allows a direct access of the underlying partonic kine-
matics, in particular the reconstruction of the gluon momentum fraction relative to
the respective proton momentum.

The main objective of this study is to examine to what extent the gluon polariza-
tion can be measured as a function of the gluon momentum fraction in leading-order
perturbation theory. We propose a leading order method to extract the gluon po-
larization from ALL, and find that it transforms the problem into simply solving the
quadratic formula.
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Chapter 1

Introduction

1.1 The proton spin crisis

The spin structure of the proton is one of the most surprising and exciting open

problems in Quantum Chromodynamics (QCD). The concept of spin itself causes

a rift in our intuition in that the notion of a perpetual angular momentum defies

logic in the macroscopic world, yet most of the common particles, such as electrons

and protons, exhibit it. With most of the properties of spin worked out 1920s, most

physicists have become comfortable with the concept of spin, but it has still managed

to produce interesting and unexpected surprises.

One such surprise resulted from the study of the proton. Understood as consisting

of quarks, antiquarks, and gluons, it was expected that the majority of the total spin

of the proton, 1/2, must be carried by its three valence quarks. However, in the 1980s

and 90s, deep inelastic scattering (DIS) experiments showed, and confirmed, that only

about a third of the total spin is carried by the intrinsic spin of its constituents [9, 31.

This result, often referred to as the "proton spin crisis," indicates that a large portion

of the proton spin must be somehow divided among the orbital angular momentum of

the partons (constituents of the proton) and the spins of the gluons. The implication

that the spins of the gluons contribute significantly to the proton spin is a rather

interesting and intriguing prospect as there are no satisfactory models of the proton

that can predict the polarized gluon distribution.



The proton spin problem has spurred many theoretical and experimental efforts at

facilities such as CERN, RHIC, and SLAC to map out and characterize the individual

parton spin and angular momentum contributions to the proton's total spin. In

particular, the RHIC facility houses the first polarized collider, which should greatly

improve both the scope and accuracy of the extracted polarized parton information.

1.2 Spin physics at RHIC

The core goal of the RHIC spin program is to obtain a deeper understanding of the

spin structure and dynamics of the proton in polarized proton-proton collisions [4].

Shedding light on the proton spin problem by providing insight on how the intrinsic

spin of the proton is distributed among its underlying constituents of quarks, anti-

quarks and gluons is an important aspect of the program. Determination of the

parton orbital angular momentum contributions and gluon helicity distribution are

essential for a complete understanding of the proton spin.

The polarized collider at RHIC provides collisions of transverse and longitudinaly

polarized proton beams at a center-or-mass energy v = 200 GeV, and in the near

future vf = 500 GeV.

The longitudinal STAR spin physics program profits enormously from the unique

capabilities of the STAR experiment for large acceptance jet production, identified

hadron production, and photon production [10]. The measurement of the gluon po-

larization through inclusive measurements such as jet production and ro production

has been so far the prime focus of the physics analysis program [2, 1, 15]. These

results provide to date the largest constraint on the gluon polarization. All measure-

ments so far are carried out by averaging over the gluon momentum fraction. This

is a feature of inclusive measurements. Correlation measurements, such as di-jet pro-

duction, provides sensitivity to the underlying partonic kinematics beyond inclusive

measurements, which simply integrate over the measured kinematic region.

Some important results originating partly from RHIC data have been the full

global analysis at next-to-leading order (NLO) of available spin-dependent data,
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Figure 1-1: Upper row: xAg(Q2 = 10 GeV) from the global NLO QCD analysis
by DSSV [6] (left) and partial contributions AX2 of the fitted data sets to the to-
tal X2 variation of 0.2 Ag(x) dz. The uncertainty bands correspond to AX 2 = 1

(green/cross-hatched) and AX2 /X 2 = 2% (yellow/vertically hatched). Previous anal-
yses from GRSV [11] and DNS [5] are also shown. Lower panels: same as upper, but
with errors scaled down by a factor of 4 as expected from the next long RHIC pp run
at 200 GeV. (Taken from [7])

shown in Fig. 1.2 [7]. This analysis was able to constrain the polarized gluon distri-

bution Ag(x) over the range 0.05 < x < 0.2, where x is the momentum fraction of

the proton carried by the gluon. With only such a small range analyzed, it is obvious

there is much work to still be done.

1.3 Polarized gluon distribution extraction

As mentioned in the previous section, most of the constraints on the polarized gluon

distribution Ag have been the result of inclusive measurements, which inherently do

not permit direct sensitivity to the actual x-dependence. This provides the motiva-

tion to pursue correlation measurements to refine the x-dependence on the parton

distributions. In this work we will consider Di-Jet production, from which correlation

measurements, in particular the longitudinal spin asymmetry, can better constrain

the parton kinematics and hence constrain the shape of Ag. At leading order (LO),

the extraction of Ag from Di-Jets would allow for a model-independent way to con-



strain the x-dependence without making any initial assumptions on the functional

form of Ag (unlike what is required by global analysis). The feasibility of such a LO

extraction has not yet been demonstrated. This study will be the first to demonstrate

the feasibility of an experimental driven scheme to extract the momentum dependence

of the gluon polarization based on Di-Jet production.

In order to work out a method of extracting Ag from the spin asymmetry ALL, we

first need to define and construct a set of experimentally accessible variables. This is

done in Chapter 2, in which general parton kinematics are explored. Chapter 3 deals

with the heart of the extraction process by first exploring the relevant quantities,

namely the partonic spin asymmetry, and then exploiting a particular combination

of variables to give an method through which we can extract the gluon polarization

distribution.

1.4 Notation

Throughout this analysis, will work in units such that h = c = 1. In this system

[Length] = [Time] = [Energy]- = [Mass] - 1

We will use the Minkowski metric g,, = g" with signature (+, -, -, -). We label

tensors and four-vectors with Greek indices running over all spacetime components,

and Roman indices running over purely spatial components. Four-vectors are rep-

resented in italic type with either a Greek index or an arrow, and three-vectors (or

two-vectors in a given context) in boldface type. One-forms will be indicated with a

lowered index. When providing explicit components of a four-vector, we use " - "

instead of " = " to indicate that it takes the specific representation in the given frame

or coordinate system.1 Furthermore, we follow the Einstein summation convention of

1This convention for four-vectors is not quite standard for particle physics, wherein four-vectors
are often labeled simply with italic font (like normal variables), but it my opinion it provides more
clarity.



a repeated index indicating an implied sum. For example,

U = U -" (UO , U),

4

UP = gPvuv = gvU V (u , -u);

--# i =-U-+ = gCVUAZ v = o 0 - uSV - -- '- v -A U . V.

Finally, we distinguish between hadronic and partonic quantities by labeling those

associated with partons with a hat (e.g. ).
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Chapter 2

Kinematics of Di-Jet events

This chapter presents and derives all the relevant, experimentally accessible kinematic

variables necessary for the analysis. The important results are summarized at the end

along with plots to explicitly show their behavior. For more information see [8, 12, 13]

2.1 Hard-scattering model

As discussed in the Introduction, the primary goal is to precisely determine the spin-

dependent gluon distribution Ag(x) over a wide range in the gluon momentum frac-

tion x. We do so by considering the hard scattering between two hadrons in the parton

model shown in Fig. 2-1. In this model, two incoming hadrons of four-momentum P1

and P2 behave as a beam of quarks and gluons, with the hard-scattering process the

result of the interaction between respective partons. In the case of Di-Jets, we con-

sider the interaction of one parton from each parent hadron with momenta xlP1 and

x 2P2 respectively, where xi are the corresponding momentum fractions, interacting

to produce two partons of momenta 'p and '4, which later subsequently interact or

fragment until detected. As mentioned in the figure caption, we assume the parton

subprocess can be reconstructed from the various detections and measurements in

the collider. For the characteristic hard scale Q, this process has the scattering cross



Figure 2-1: Hard scattering parton model. Two incoming hadrons of four-momentum
Pi and P2 scatter via interactions between partons with distributions fi(x1, P 2) and
f(x 2, 2) respectively, where xl and x2 are the momentum fractions of the parent
hadrons and p is the factorization scale. The interaction of the partons is given by
the scattering cross section &jij(a), where a is corresponding coupling. The product
partons (represented by solid lines) are later detected indirectly through various in-
teractions and fragmentation, from which we assume the parton subprocess can be
reconstructed.

section

o(A,1 2) dX1 d 2 fi (x,p 2)f(x 2, 2 ) P1ij (P1, 2 ,a( 2/), (2.1)
ij

where ji = xlP1 and i2 = x2P 2, and p is the factorization scale - a parameter that

differentiates between long and short-distance physics, usually on the order of Q for

the hard-scattering process.

For high-energy (i.e. short-distance) hard scattering, the coupling is small, and

hence the cross section & can be expanded into a perturbation series in a

& = ak :c(m) am, (2.2)
m=O

for some functions c(m). For leading-order (LO), n = 0, the partonic cross sections



are easily calculable. Additionally, due to asymptotic freedom, higher order approx-

imations for this short-distance cross section can be shown to be independent of the

particular details of the incoming hadrons [8].

2.2 Mandelstam variables

Figure 2-2: Mandelstam variable momentum labeling

In the case of Di-Jets, the process is essentially 2-body -+ 2-body. Labeling the

momenta as in Fig. 2-2, we can simplify many of the expressions in Di-Jet kinematics

by defining the Mandelstam variables:

s= ( + 2 )2

t = (2 - 2

= (A - A)2

(2.3)

(2.4)

(2.5)

(-43 + -4)2
P3 P42

P'1'2

Examining the first variable s in more detail, we see

(l + )2 = m1 + m + 2E 1E 2 - 2pl -P2

= m2 + m2 + 2E 1E 2 - 2 1P11 IP 21 cos 012,

where 012 is the angle between the beam directions in the given frame. The t and u

variables take on similar forms. From these definitions, it is straightforward to show



P3

P2P P 4

Figure 2-3: Four-momentum representations in CM frame.

the identity

s+t+u= m . (2.6)

For the scattering of identical particles of mass m, the Mandelstam variables take

on a particularly simple form. In the center-of-mass (CM) frame, we can write

Pl i (E,p ), p-' (E,-p), -)3 (E, p), 4 " (E, -p)

(see Fig. 2-3). In this configuration, the definitions lend themselves immediately to

the following expressions:

s = (2E)2 = E 2 I

t = -p 2 sin 2 O* - p 2 (cos 0* - 1)2 = -2p 2 (1 - cos 0*),

u =-p 2sin2 * _ p2(cos * + 1)2 = -2p 2(1 + cos 0*).

(2.7)

(2.8)

(2.9)

These expressions are very useful for high-energy kinematics, in which we take the

limit of massless partons (in this limit p r E).

2.3 Di-Jet Kinematics

Consider again the 2-body -* 2-body subprocess in Fig. 2-1. The analysis of the

interaction is most easily done in the CM frame, so it is useful to parameterize the

four-momenta in terms of quantities that transform simply under longitudinal boosts.



Following convention, we introduce the rapidity y, transverse momentum PT, and

azimuthal angle q, where rapidity is defined by

Y -In E+p,
y2 (E- p)

(2.10)

and is additive under boosts along the z direction. For a particle (parton) of mass m

and four-momentum - (E, p), we can represent T7 in terms of the new variables by

- (mT cosh y, PT sin 0, pT cos 0, mT sinh y), (2.11)

where mT = V + -T m 2 . For high energy processes, we can take m - 0. In this limit,

E - Ipl and

P-Pz _
PI +z

IP2 - p_ PT 1

IpI +Pz PIp +pz IPl/PT +Pz/PT

1 1tan

sin a tan 9 (
sin 0
+cos0 = tan(0/2),1 + cos o

where 0 is the angle from the beam as measured in the lab. Hence, the rapidity is

often replaced by the pseudorapidity

r = - In tan(0/2). (2.12)

Now, consider 2-body pp collisions. In the CM frame, we can write the proton

momenta as

Pl - (E, 0, O, P), P2 - (E, 0, , -P).

In the high-energy limit, E - P and

P, = (E, 0, 0, E), P2 - (E,, 0, -E).

In this frame, the momenta of the partons are given as fractions of their respective

(2.13)



parent hadron's momentum

P2 = 2P2 PCM ((X 1 + x2 )E, 0, 0, (xI - x 2)E). (2.14)

From PCM we can compute the invariant mass

M2 - PICM F IPCM = ( 1 + x 2 )2 E 2 - (x 1 - x 2 )2 = 4x 1l 2 E2 = xx 2 S = , (2.15)

where we have used that the total energy Etot = 2E = \F. The momenta of the

outgoing partons are given by

P3 " (E3, PT, P3,z), P4 - (E 4, -PT, p4,z),

or parameterized as above

S- (m3,T cosh Y3 PT, Pm3,T sinh Y3), P4 = (m4,T cosh Y4, PT, m4,T sinh Y4).

In the case of large transverse momentum, mi,T = Vp + m2 PT, and

PCM = P3 + P4 (PT(cosh Y3 + cosh y 4 ), 0, 0, pT (sinh Y3 + sinh Y4)). (2.16)

By conservation of momentum, PCM = CM, which gives

(xl + Z2)E = T(cosh Y3 + cosh Y4)

(x1 - x 2)E = pT(sinh y3 + sinh y4).

Solving for xl and x 2, we find

PT
x1,2 = {(cosh Y3  sinhy 3) + (coshy 4 ± sinhy 4)}.2E

Recalling that coshyj = (eYi + -Yi)/2 and sinhyj = (eyi - e-Y2)/2, we find the

Pi = x1,



momentum fractions to be

1
Xl -= 1XT (e

y 3 + eY4),
2

1
X2 = XT (e - y 3 + e-Y4),

2

where we have used XT = pT/2E = 2pT/V/.

Now, we relate these values to those measured explicitly in the laboratory. Let y

be the total rapidity of the Di-Jet system as measured in the laboratory, and let ±y*

be the equal and opposite rapidities in the parton-parton CM frame. In terms of the

measured rapidities, y and y* become

1
Y (Y3 + Y4),2

1
y* = (Y - Y4)2

(2.18)

For a high-energy Di-Jet with outgoing total momentum parameterized in the CM

frame as

PM - (pr cosh y*, PT, PT sinh y*),

we can relate the CM scattering angle 0* to the observed rapidities via

os sinhy* tanhY3 - Y4
E* cosh y* 2

(2.19)

The longitudinal parton momentum fractions can also be related to the observed

rapidities by combining terms in Eq. (2.17).

X1,2 = I(e3 e+y4 I I XTe(Y3+Y4)/2 (e(Y3-Y4)/2 + e-(Y3-Y4)/2 cosh y*
Xl, 2 + / 2 + = xTe + cosh

Dividing xl by x2 yields e2y, so it follows that

1
y = n(x/z 2)2

(2.20)

Finally, using equations (2.7)-(2.9) in the limit that m -- 0, the Mandelstam variables

(2.17)



for the Di-Jet system become

= M 2 = 4(E*)2 = xx 2s (2.21)

= (1 - cos 0*) (2.22)

1
= -- (1 + cos 0*) (2.23)

2.4 Summary

We conclude this chapter with a brief discussion of the kinematic variables. For

convenience, the most important variables are listed below.

XI = ,2T(eY3 + e 4) (2.24a)

1
X2 = -xT(e - 3 + e-Y4) (2.24b)

M = v xx 2  (2.24c)

cos 0* = tanh (Y3 2 Y4 (2.24d)

Y3 +Y4 1
= + Y4 = ln(xzl/ 2 ) (2.24e)2 2

These expressions were derived by considering the substructure of two colliding pro-

tons, and applying straightforward special relativity in the CM frame to yield ex-

perimentally accessible quantities. The high-energy hadrons contain (approximately)

massless partons - quarks and gluons - that interact in a 2-body -+ 2-body process,

creating outgoing particles which later interact or fragment and are ultimately de-

tected. The information obtained is used to reconstruct and gain information about

the scattering subprocess.

Note that in high-energy experiments, the pseudorapidity r is more experimen-

tally accessible than the rapidity y, as it depends only on the scattering angle, and

suffices as an adequate replacement. Plots of the kinematic variables are presented

in the following pages, with the rapidity y replaced by the pseudorapidity rj where

appropriate.
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Chapter 3

A LO Ag extraction method in

Di-Jet events

This chapter defines and explores the spin asymmetries to leading order. The con-

tributing QCD subprocesses are also discussed, as well as their relative weights per

given geometry. In Section 3.3 we present the leading order gluon polarization ex-

traction method. For more details, see [3], [4] and [8].

3.1 Polarized collisions and spin asymmetry

We now return to Eq. (2.1) to discuss the specifics of the spin-dependent parton

densities and cross sections. For convenience, we reproduce it below

,2) j, )aij(p, a(P2), Q2/"2), (31)
O(PI, P2) 1 d 2 fi(XI, A2  (X 2 , P12)i12, ( 2  2 2 ), (3.1)

where the sum runs over all parton species, and where xx are the respective hadron

momentum fractions at the hard-scattering factorization scale p. For longitudinaly

polarized collisions, we denote parton distribution functions (PDFs) for partons of

type i and positive and negative helicities as f+(x, p 2) and f (x, p 2) respectively.

To study the proton spin structure, we examine the hadron in a helicity eigenstate

described by quark and gluon helicity PDFs, denoted A f (x, p2), which we define as



the difference between PDFs with positive and negative helicities

A f (x, qt2 ) - fj+(x, )- f- fi (, i 2 ). (3.2)

For example, the polarized gluon distribution is Ag(x, p 2) - g+(, p2) - g-(x, P2).

The total contribution to the proton spin for a given parton i is given by the integral

over the full range of momentum fractions, multiplied by particular spin si of the

parton species

Fi(p2) -i f(x, 2) dx. (3.3)

With these definitions, we can express the total proton spin by

Sdx E[Aq(x, t2) + Aq(x, 2)] + Ag(x, P2) + L(p 2 ) = , (3.4)

where L(p 2) is the total orbital angular momentum of the quarks and gluons in the

proton [4].

We can define a polarized cross section, analogous to Eq. (3.1), by first defining

combinations of cross sections for each possible longitudinal spin setting

A a { ((a+ + a--) - (+- + a-)} (3.5)

A (+ + -) - (- + & )} (3.6)

so that

Ad= dxj dx 2 Afi (x 1, 
2 ) Af(x 2 , 1

2) (iP lP2, Q 2/ 2) (3.7)

However, experimentally, the measurable quantity that allows us to access and exam-

ine the polarized parton distributions is not simply the scattering cross section, but

rather the longitudinal spin asymmetry ALL, defined by

ALL C ij f dxl dx 2 Af(Xl, p 2)Afj(x 2, p 2 ) &ij (&LL)ij

(7 Eij fi(Xl, P 2 )fj(X2, t 2 ) 6iij



Class Process(s) &LL(S, t, U) LL (coS 8)
2A gg-gg - 3 (1 - cos 4 0*)(7 + Cos 2 0*)A gg --+gg 3--

3 S- - (3 + Cos2 0*)2

B _ d_ ) 5 - 3 cos4 0* - 2 cos2 0*
B qq -+ qq

j2 + i2 - 2i2+ (i4+ft4) 11 + 3 Co 4 0* + 34 cos2 0*

qq' * qq'

C q' - qq'  2 _ fi2 4 - (1 + cos 0*)2

qg qg g2 + f12 4 + (1 + cos 0*)2

qg ~ q-y

D qq -* qq - (32 13- (3cos 4 * - 5cos 3 0* + 10cos2 * + 8cos0*)

(L4)_( 2 2 35 + (3 cOS4 0* - 5 coS3 0* + 10 S 2 *8CO *)

gg - qq
qq~ gg

E qq - g-y -1 -1

qq - 11

Table 3.1: Listed above are the (massless) partonic asymmetries, given in terms
of Mandelstam variables and the CM scattering angle 0*, for each given class of
processes. The relative contributions to the total spin asymmetry for a given geometry
are shown in Fig. 3-1, and more explicitly in Fig. 3-2.

where (aLL)ij = Aijij is the subprocess partonic spin asymmetry.'

3.2 Contributions from partonic spin asymmetry

We begin by analyzing the partonic spin asymmetry aLL in leading order (LO). At this

order, aLL is calculable in perturbative QCD and the results are given in Table 3.1.

Plotting &LL for various processes against the cosine of the CM scattering angle gives

the relative weights (contributions) to the total spin asymmetry ALL for a given

product geometry.

Examining Fig. 3-1, we can find the particular geometries corresponding to the

maximum contribution for a given process. For classes A and B, the distribution of

aLL is symmetric, and hence we expect those processes to become important for a CM
1The spin subprocess asymmetry aLL is often referred to as the analyzing power.
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Figure 3-1: Plot of the (massless) partonic asymmetry aLL against cosine of CM
scattering angle 0* for each given class of processes A, B, C, D, and E (see Table 3.1).
Each line gives the relative weight towards the total spin asymmetry ALL-

scattering angle around 0* = 900. Class C processes have a maximum contribution

for 0* = 180'. The maximum for Class D processes is less immediate as it does not

possess a nice symmetry, but referencing ^LL from Table. 3.1 and performing a quick

calculation, we find the maximum to occur at

os* = 2+ v/2-57-16) / /- 5 - 16) -0.2870 ==-- 0* 107'

Notice that there is always a constant background due to class E processes. These

critical angles, including the respective symmetric angles 1800 apart, allow us to
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Figure 3-2: Relative contributions and geometries for various classes of processes for
given key angles. Note that the (massless) Di-Jet system produces symmetric product
jets 1800 apart (not shown).

more easily sort out collision processes in the detector by giving regions in which

known classes of processes dominate over others. An explicit representation of these

conclusions is given in Fig. 3-2.

To shed more light on the partonic asymmetries, we express them in terms of

another experimentally accessible set of parameters, the product parton pseudora-

pidities. The plots are shown in Fig. 3-3. Although the corresponding geometries and

scattering angles are less obvious, the plots indicate what combinations of product

rapidities will generate the largest partonic spin asymmetry.

3.3 Extraction of Ag from partonic asymmetry

For this analysis, we consider back-to-back Di-Jets; that is, we consider regions for

which x1 = X2 = x. From Equations (2.24a) through (2.24e) we see that for back-to-

back Di-Jets, y4 = -y3 and cos 0* = tanh Y3. Now, we plot the total spin asymmetry

ALL against the observed M/Vs = v x = x to give ALL as a function of x. Typical

plots of ALL VS. M/Vl showing the statistical precision are given in Fig. 3-4 (for

more details, see [7] and [14]).

Assuming the parton kinematics can be accurately reconstructed from the collider

data, we can bin the events in the back-to-back momentum fraction x of the hard
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scattering process. For a particular bin x E [Xk, Xk+1], we can rewrite Eq. (3.8) as

1 fXk+1 k+1

ALL = - d X dx 2 {gg(X1, x2)Ag(Il)Ag(x2) + qgAg(xl)Aq(x2)
k k (3.9)

+&qq'(Xi, X2)Aq(x)Aq'(X2) },

where iiij - &j (&LL)ij are the products of the (massless) partonic cross sections and

corresponding partonic asymmetries for each given process, which are either calcu-

lable or at least parameterizable, and Aq(x) represents the total quark distribution

function, absorbing both quark and anti-quark contributions.

Now, consider the Taylor expansion of Ag(x) about the point 2t E [Xk, Xk+1

dAg 1 d2Ag - 2  3 )  (3.10)
Ag(x) = Ag() + dx (x - 2) + 2! d2 3) (3.10)

Note that since we are choosing an arbitrary bin [Xk, k+l] that in general is not

centered at zero, we do not set 2 = 0. Now, consider the Ag(x 1 )Ag(x 2) term in

Eq. (3.9). Plugging in the Taylor expansion, we have

Ag( ) + dag (X - -) + ..- (+ (X2 -
dx d(3.11)

= Ag(2))2  Ag(-) dA [(X - t) + (X2 -)] + 0 ((X- )2).

Under the integral, the first term becomes

dxk+l Xk1 (Ag()) 2 + Ag() Ag - ) + (- + O ((X-

xk dx dx2 gg12 i,2 (1 - + 2  ± ( )2

f k+1 j Xk+1 +

dX dx2 gg (X1 X2) 2 + 2Ag() dAg (x -2) + ((x - )2

where we have exploited the exchange symmetry between xl and x2 in 1gg(zl, x2) and

in the limits of the integral. Notice that the leading error term can be eliminated by

requiring that 2 satisfy

JXk+1 fXk+1

dXl ] dx 2 lgg(Xl,2 2) (X- 0. (3.12)
Jk J



Now, we return to the remaining terms in Eq. (3.9). The second term contains

one factor of Ag(xi), and inserting the Taylor series yields

SXk+1 Xk+1 dzg
dXl dX2 qg , 2 2) g() + ( 1 - X) + O ((x 1 - )2)

JXk d X k ) dx d

Therefore, by assigning

1 f Xk+1 jXk+1

C1 = - dx dX2 qg(X1,X2) (3.13)
0" Xk X xk
1 fXk+l fk+1 dAg

c2 = dx X dx 2 &qg(X, z2)q(x2) + 2&gg dg (xl - 2) (3.14)

1 j"k+ j Xk+ 1 d g x
k Xk dx ,

(3.15)

we reduce the problem of extracting the gluon distribution to that of simply solving

the quadratic formula

ALL(X) = C1 (Ag(x)) 2 + C2Ag(x) + C3, (3.16)

where all variables ALL and ci are determined through measurements and known

calculations.

The general strategy then, would be to bin the data ALL against M/l\/ = x, and

for each bin, iterate the calculation in Eq. (3.16) so that the errors given in cl and

c2 (terms proportional to dAg/dx) are minimized - either by exploiting Eq. (3.12)

or another standard. To further refine the extraction, the bin calculation could be

iterated further to minimize the error in the next order in the integral, represented

above by 0 ((x - 2) 2 ), which can be easily expressed explicitly by calculating more

terms in the Taylor series product in (3.11). Through this method we should be able to

fairly accurately, and efficiently, deduce the shape of the polarized gluon distribution,

without any assumptions on the functional form. 2

2Except of course that it be continuous and differentiable.
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Chapter 4

Summary and further work

The "spin crisis problem" remains a fascinating problem that tests the foundation of

QCD. In the previous chapters, we developed a method to extract the polarized gluon

distribution Ag from the double spin asymmetry ALL, taking what seemed to be a

rather intractable problem into an almost trivial calculation: solving the quadratic

formula. The errors due to the Taylor series truncation are easily determined - the

error in each truncation is less than the maximum size of the next order term, and the

propagation of the errors through the quadratic are straightforward. What remains

to be done is to apply the method to simulated data, with a given functional form

for Ag, to see how well Ag can be recovered. This step is in process at the time

of writing. If successful, the method will be applied to actual collider data to help

illuminate the momentum dependence of the gluon polarization.
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