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Abstract

In this thesis, I develop a new, field-theoretic method for describing the quantum
phase transition between Mott insulating and superfluid states observed in bosonic
optical lattices. I begin by adding to the Hamiltonian of interest a symmetry breaking
source term. Using time-dependent perturbation theory, I then expand the grand-
canonical free energy as a double power series in both the tunneling and the source
term. From here, an order parameter field is introduced, and the underlying effective
action is derived via a Legendre transformation. After determining the Ginzburg-
Landau expansion of the effective action to first order in the tunneling term. expres-
sions for the Mott insulator-superfluid phase boundary, condensate density, average
particle number, and compressibility are derived and analyzed in detail. Additionally,
excitation spectra in the ordered phase are found by considering both longitudinal

and transverse variations of the order parameter. Finally, these results are applied to
the concrete case of the Bose-Hubbard Hamiltonian on a three dimensional cubic lat-
tice, and compared with the corresponding results from mean-field theory. Although

both approaches yield the same Mott insulator - superfluid phase boundary to first
order in the tunneling, the predictions of the effective action theory turn out to be
superior to the mean-field results deeper into the superfluid phase.
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Chapter 1

Introduction

Recent developments in the field of dilute ultracold quantum gasses [1, 2, 3, 4, 5]

have led to the experimental investigation of atoms in periodic potentials [6]. They

are a fascinating new generation of many-particle quantum systems as they allow for

the study of a variety of solid-state phenomena under perfectly controlled conditions

[4, 6, 7, 8. 9, 10, 11, 12]. For instance, bosonic lattice systems show a quantum phase

transition for varying lattice depths. In deep lattices the tunneling between lattice

sites is suppressed, and a Mott insulating state forms with a fixed number of bosons

residing on each lattice site. For shallow lattices, however, the dominance of inter-

site tunneling allows for bosons to spread coherently over the whole lattice, forming a

superfluid. The occurrence of such a quantum phase transition between a Mott insu-

lator and a superfluid is observable, for instance, in tinme-of-flight absorption pictures

taken after switching off the lattice potential. They inmage momentum distributions

integrated along one axis, and therefore by Heisenberg's unIertainty principle give

information about the corresponding spatial distributions. Thus. the localization of

atoms in the Mott phase results in diffuse absorption pictures. while the delocalized

superfluid phase gives rise to Bragg-like interference patterns.

The theoretical analysis of this quantum phase transition is usually based on the



Bose-Hubbard model Hamiltonian [13, 14, 15, 16],

HBH = [U&UaQ&(,- 1) - fta 1 - t >a a, (1.1)

where i, and i are bosonic annihilation and creation operators, p is the chemical

potential, and (i, j) signifies a sum over nearest neighbor sites i and j. Additionally, U

parameterizes the on-site interaction energy between two atoms at a given site, and t

characterizes the kinetic energy, in this case given by the tunneling of an atom between

two neighboring lattice sites. The quartic on-site coupling term, however, makes an

exact diagonalization of (1.1) impossible. Thus, while Monte-Carlo simulations have

proven fruitful for obtaining numerical results [17, 18, 19], analytic descriptions of

bosonic lattices near the quantum phase boundary have so far been typically limited

to imean-field [13, 15] or strong-coupling approximations [20, 21]. Currently, the most

precise analytic result for the whole Mott insulator-superfluid phase diagram in a

three dimensional cubic lattice at zero temperature is found in Ref. [22]. Therein, a

Landau expansion for an effective potential with a spatially and temporally global

order parameter is derived. In this thesis, we generalize the results of Ref. [22] by

allowing for a spatially and temporally varying order parameter, thus determining

a Ginzburg-Landau expansion for the effective action. This allows us to obtain an

approximate analytic description of bosonic lattice systelms near the quantum phase

1)oundarv. This work is based primarily upon my previous paper, Ref [23]

To this end we proceed as follows. The remainder of this Chapter will present

a (derivation of the Bose-Hubbard model, and an overview of the Ginzburg-Landau

theory of phase transitions. Then. In Chapter 2. we consider a very general type of

Hainiltonian consisting of an arbitrary on-site interaction and an arbitrary tunneling

terin. of which the Bose-Hubbard Hamiltonian is a special case. and determine the

g]l amd-( ainonical free energy to first order in the tiuneling term. This tunneling

laproximlation is motivated by the fact that in three diimensions, the Mott insulator-

supeliflid quantum phase transition is observed to occur for small values of t/U

(note that the tunneling expansion is related to the landom-walk expansion of Refs.



[24, 25, 26]). Next, in Chapter 3 we introduce an order parameter field and derive

a Ginzburg-Landau expansion of the effective action, allowing for the computation

of physical quantities near the phase boundary in both the Mott insulator and the

superfluid phase. Sections 3.1 and 3.2 present predictions of our effective-action

theory for both static homogeneous and spatio-temporally varying order parameter

fields, including expressions for the particle density, the compressibility, the superfluid

density, and the excitation spectra. Finally, in Chapter 4, we specify our results to

the Bose-Hubbard Hamiltonian, and compare them to the predictions of the standard

mean-field theory. Although both approaches yield the same approximation for the

location of the phase boundary, our effective action approach turns out to be superior

to the mean-field theory for the following reasons. First, we demonstrate that the

effective action approach leads to qualitatively better results deeper into the superfluid

phase. Secondly, in contrast to the mean-field approximation, the effective action

approach can be systematically extended to higher orders in the tunneling parameter

in order to quantitatively improve the results, as has already been demonstrated for

the case of the effective potential in Ref. [22].

1.1 Derivation of the Bose-Hubbard Model

We can see how Eq. (1.1) comes about by examining the setup of optical lattice

experiments. bosons are confined using pairs of counter-propegating lasers aligned

along all three spatial axes [4, 5. 6]. This establishes standing waves in all three

dimensions, creating a cubic array of electric field intensity maxima. Due to the

Stark effect. the b)osonic atoms are attracted to these intensity nmaxima. as there

electronic energy will be lower there due to level splitting. Thus. the effect of the

laser beams is to establish a potential energy term in the Hamiltonian of the form

attice( ) = V sill2 ( 7 X)_ . (1.2)

11



where a = 1, 2, 3 is the spatial direction, and a is the laser wavelength. Additionally,

we suppose that there is a hard-core repulsive interaction due to the presence of two

atoms at the same point, parameterized by the coupling constant g. Putting these

terms together, we can construct the second-quantized Hamiltonian for the lattice

system as

H J= d3/t(5) + Vlattice(;) +g t(>)$(5) ,p(S), (1.3)

where g(Y) and /i (5) are the annihilation and creation operators for bosons at posi-

tion Z. They satisfy the canonical commutation relations

Since the potential Vattice(Y) is periodic in 5, we can identify each intensity maximum

as a lattice site i and, via Bloch's theorem, switch to a basis of Wannier functions

[27] w,,(5) localized about i which satisfy

fd w ( )w 3( ) = 6b, (1.5)

In this basis. the bosonic field operators become

V() - Ziwz(X) ,t(X) lZw'(.T) (1.6)

where i' and 6, are bosonic creation and annihilation operators at site i obeying the

standard c oninutation relations

[az &j = [at!at 0=. [a61] (g. (1.7)

For our analysis, the specific form of the Wannier functions is no important, but

they can be found numerically if one is so inclined [28].

Up to now. our treatment has been exact. Now, however. we sul)stitute the



Wannier-function decomposition of the field operators into Eq. (1.3), and make the

approximation that the Wannier functions are strongly localized enough that all but

nearest neighbor overlap integrals can be neglected. With the definitions

t =- - d"3xw*() Vlattice(x) w () (1.8)

and

U = g d3xz u()14 (1.9)

we recover the Bose-Hubbard Hamiltonian (1.1).

1.2 Ginzburg-Landau Theory

Our main tool for analyzing phase transitions in the Bose-Hubbard model will be

the Ginzburg-Landau theory [29, 30]. The primary tenant of this framework is that

different phases are characterized by different symmetry properties. In the case of

the insulator-superfluid phase transition we will be examining, the relevant symmetry

is the breaking of global U(1) phase symmetry , -- e'e in the superfluid ground

state [30]. Clearly, from Eq. (1.1), this is a symmetry of the Hamiltonian, so that

the breaking of it by the ground state of the system is referred to as spontaneous

symmetry breaking.

The fundamental quantity of the Ginzburg-Landau theory is the order parameter,

which quantifies the extent of the symmetry breaking. The order parameter should

be 0 in the symmetric (in this case. the insulating state), and acquires a nonzero

value at the phase boundary. Because we are interested in symmetry breaking of the

creation and annihilation operator phases. we choose as our order parameter field

( K, = 0(7) (1.10)

This quantity must acquire a nonzero value if the phase symmetry shown above is

broken.



To quantify the properties of the phase transition, a thermodynamic potential

must be found which depends on the order parameter field. For us, this role will be

served by the effective action F. Since the Hamiltonian does not break the phase

symmetry, we expect the effective action to depend only on even powers of ,b. The

standard Ginzburg-Landau theory proceeds by expanding the thermodynamic poten-

tial to fourth order in the order parameter. Since in equilibrium all thermodynamic

potentials are stationary (i.e. their differentials are zero when the appropriate state

variables are held fixed) [29], we can find the equilibrium value of the order parameter

by setting the first derivative of F equal to 0. From there, many other thermodynamic

quantities may be determined.



Chapter 2

The Grand-Canonical Free Energy

We consider bosons on a background lattice with lattice sites denoted by i. Suppose

they are described by a Hamiltonian of the form

ft = o + ft, (2.1)

which depends on bosonic creation and annihilation operators o, and a,. We assume

that Ht is a sum of local terms each diagonal in the occupation number basis, i.e.

Ho = EZf (al ) (2.2)

so its energy eigenvalues are given by

E n, = f(nj) (2.3)

As we will 1)e working grand-canonically, we stipulate that th tterms ff,(&&,) in-

cldude the usual -p~<&, dependence on the chemical potential p. Also. we make the

simplifyillg assumption that HI is only a two-boson hopping term

(2.4)>1 tt
Ii

_~~~ ___ I*~LIX---L ~__rX^~___I~L_



with t. symmetric in i and j and t, = 0. As with the Bose-Hubbard model (1.1),

Ho in Eq. (2.2) describes the bosonic on-site interaction, while H1 in Eq. (2.4) incor-

porates the tunneling of bosons between lattice sites. Note, however, that Eq. (2.1)

with Eqs. (2.2) and (2.4) covers a significantly more general scenario than the Bose-

Hubbard model. The on-site interaction in the Bose-Hubbard model (1.1) is a two-

boson term with a global interaction strength, but in Eq. (2.2), however, we have

allowed for the on-site interaction of any finite number of bosons. In addition, we

have allowed the Hamiltonian to vary between lattice sites. Thus, our model is also

capable of describing on-site disorder, which may arise from a local chemical potential,

or from a local interaction [4, 13, 31]. Furthermore, Eq. (2.4) contains not only the

tunneling of bosons between nearest neighbor sites as in Eq. (2.1), but also between

arbitrarily distant sites.

As we are ultimately interested in investigating quantum phase transitions, we

follow general field-theoretic considerations and add source terms to the Hamiltonian

(2.1) in order to explicitly break any global symmetries [32. 33]

HiZ--- H' +zj &' [i ()& + JT)aj. (2.5)

Since the source currents j, (T), j *(T) depend explicitly upon the imaginary time vari-

able 7, standard time-dependent perturbation theory may be used to find a pertur-

bative expression for the grand-canonical free energy. To do this. we switch to the

imaginary-time Dirac interaction picture [34], with operators given by

OD(T) = CTHoO-THo (2.6)

where we have set h = 1. In this representation, the Schr6dinger initial value problem

for the time-evolution operator takes the form

UD(T, 70) = -H D()D(7- (). (2.7)

UD70, To) = 1. (2.8)



This is solved by the Dyson expansion

UD (T, TO) = 1 + D U() (7, To ) ,

n=1

n) (T, 0) =dri dr2...
,. To , o O JdTnT- [ D(T1)DL 11D(72) . 1 f1D(Tn)] ,

where T is the standard imaginary-time ordering operator.

partition function for the system is defined as

Z =tr {Te -f °o

which can be rewritten as

Z = tr e- ioI

The grand-canonical

dri(r) } (2.11)

(2.12)(3, 0) .

This gives the partition function Z as a functional of the currents. For brevity,. we

shall - in cases where no confusion may arise - suppress the arguments of functionals.

Thus, by substituting Eqs. (2.9) and (2.10) into Eq. (2.12), we obtain

00(2.13)
Z = Z(0) + Z Z(n), (2.13)

n= 1

Z(") = Z(0) (-I)nn! dT1
0'

d72
r / THID (Tl)HD(T2 )

where

z n=O

is the partition function of the unperturbed system, and

1
< * >o= -tr *e

Z (0)
3io

represents the thermal average with respect to the unperturbed Hamiltonian Ho. This

(2.9)

(2.10)

.. Ht/D (Tn )
(2.14)

(2.15)

(2.16)



can be expressed more compactly as

Z = Z(o) Texp j dTI'D (T)) . (2.17)

Inserting the explicit form of H'D(T) from Eqs. (2.5) and (2.6), we see that the

expectation values appearing in Eq. (2.14) can be expanded in terms of Green's

functions of the unperturbed system. Furthermore, since the grand-canonical free

energy is given as a logarithm of the partition function

1
- - log Z, (2.18)

the Linked Cluster Theorem [35] tells us that F can be expanded diagrammatically

in terms of cumulants defined as

10,. ,(2 "ln 'j*1
2 '1, 1; '.. ; Z ' 1i ' 1;'') = ( ) Jl l ' I=0(0) ( .- n (TO ... 61 (TO

(2.19)

with the generating functional

'Cojj log = log exp - d j(T)a(7T) + j(T (T)

tZ(O) t L JO J/

(2.20)

with only contributions from conne(ted diagralms [36]. Note that this approach, rather

than a decomposition of the Green's functions via Wick's theorem, must be used ill

our case as Ho is not necessarily (quadrati( in the creation and annihilation operators.

Because Ho is local according to Eq. (2.2), the average in Eq. (2.20) factors into

independent averages for each latti e site. It follows that C(o)[jj*] is a sum of lo l

quantities, and thus the cumulants C , (i '- .. , 1 . . . ,,) vanish unless



all site indices are equal. With this, we can write

C (,, 1..; n 7 Til, n T;. .. ; n, T7 ) = C (0) ,..., , Ti.., 7) 62 ,jm,

n,m

so that it only remains to determine the local quantities iC .( o) 7 Ti,.

Using the definitions (2.19) and (2.20), we find that

202 (Ti 12)= [(T ))&(T 2) = G(0)(i, Tli,7 T2 ),

where G(0)(i,T 1 j, 72) = 63G 0 (i,7T1 i, T2) is the imaginary-time Green's function of

the unperturbed system. Similarly,

(0 ( ,
T2 717T3, T4 ) T [&(T 1 ) e

& 
(7

2 ) k)
( 7 3

4 ) >0

- zC~4)() (TIT4 )173)iCi
-
2 ( 3 ). (2.23)

Note that local the quantity C(0)( 1, T2 1T3 , 74) is symmetric under both the exchanges

1 + 72 and 73 +-+ 74.

Because each power of the tunneling parameter t,, is associated with a creation

operator and an annihilation operator, and each power of j,(7) (j*(7T)) is associated

with one creation (annihilation) operator, we can construct the connected diagrams

which contribute to F according to the following rules [37]:

1. Each vertex with n lines entering and n lines exiting corresponds to a 2n-th

order cumulant 2C(.

2. Draw all topologically inequivalent connected diagrams.

3. Label each vertex with a site index, and each line with an imaginary-time vari-

able.

4. Each internal line is associated with a factor of it ,.

5. Each incoming (outgoing) external line is associated with a factor of J,(7)

0(3*())

(2.21)

S, Tn). -

(2.22)



6. Multiply by the multiplicity and divide by the symmetry factor.

7. Integrate over all internal time variables.

Each diagram is then multiplied by the appropriate factors of ji(T), j*(T), and t,

and all spacetime variables are integrated. Since H2/0 in Eq. (2.2) is diagonal in the

occupation number basis and local, there can be no contributions from diagrams with

one line. Thus, to first order in the tunneling t,, and fouith order in the currents

J (7T) we find

{Fo -d dTJ d7-2 [a(O)(ilI Z, T2)J3 (T)j (7-) + a 1) (i~J11 72)3jz(T1);(T 2)

- JdI d7 2  3Jda 4 ,t) 71, 72 1 3 7: 1.1).), (T], (T 2 )j* (T3 )1 T4)

j 2 d dT 2 dT2 jdT 3 4 > a() . . , 7 (4 (T (72 * (T3 (T4)

+ (14 . TJ. 2 1,T3;Z,7 4  l (T )J( 2 )Jz 'IT)j2 ) . (2.24)

where

Fo = log Z( ) = lo > 31(n) (2.25)

is the grand-( anonical free energy of the unpertllrl)ed system. and the respective



coefficients a2, are given by the following diagrams and expressions:

a )(i, TIi. T2 ) T71

a (i,T 1 j, 7 2 ) T

i 3( )
T2 %TIp T (2 = dTZC 2 T)J) C (TT 2),

0

(2.27)

(2.28)

j

= d r C 0)  T1, 2 T 7 T (0) 2 73)
74 0

(2.29)

In the next chapter, we will see how this expansion (2.24) of the grand-canonical free

energy leads to the Ginzburg-Landau expansion of the effective action to first order

in tji.

At this point. it is also worth making some observations about

Green's function G(i. T I.J 72), defined in the standard way as

the two-particle

\ -j(TI)j(T 2 ) Zt t,(7] n.T)J(7 2 )

(2.30)

This quantity can also be expanded diagrammatically in termns of cmniulants. pro-

vided we realize that the effect of the prefactor 1/Z in Eq. (2.30) is simply to cancel

all disconnected diagramis [34]. ensuring that the only diagranms that contribute are

connected diagrams with two external lines [36, 37]. Thus. there is a natural corre-

(2.26)

a )(i, T, 72 , 7,3; Z, 74 )

a )(i,71; i, 72 3j, : 3 , 14) =

SiC(O)(T71, 2 T3, 74),



spondence between the Green's function and the coefficients a 2' ) defined above:

G(i, Tjl j, 72) = G()(i, jj1 2) + G() (z, 7 1, 72) +

= 6,a 0 )(i T1 i, T2 )+ a( 1 (i) , 1 T72) + . . (2.31)



Chapter 3

The Effective Action

Evaluation of the diagrams shown in Eqs. (2.27) and (2.29) involve integration over

the time variable associated with the internal line. Thus, their evaluation can be sim-

plified by transforming to Matsubara space, where these integrals amount to simple

multiplication. We use the following (onvention for the forward and inverse Matsub-

ara transformations

g(w77) - - dT'-"g(T), (3.1)

g(T)- g() -6L'-Ln , (3.2)

with the Matsubara frequencies

27-m
-,,, Z. (3.3)

Since the unperturbed Hamiltonian (2.2) is time-translation invariant, it follows from

Eqs. (2.19) and (2.20) that the cunlilants - and thus the functions 02, - must depend

on time-differences only. In terms of M'atslbaras frequencies, this implies that one of



the frequency variables is restricted by a delta function, i.e. we have

a )(i, Wml Z, Wm2 ) = a W)(im1, 1) 1,Lm2 I

a( 0
) (i, Wmi 2 i, Wm3; I, Wm4) = a~) (i, WLml .I, lm2 , Wm4) wmw+ 2,wm3±Wm 4.

Using this frequency conservation, we find from Eq. (2.27)

a L)(i, l Wm LJ m2) a ()(z, Lml ) ( ml mlw m 2 ,

(3.4)

(3.5)

(3.6)

and correspondingly Eq. (2.29) implies

1) (iml W , Wm2lJ, Wm3; , Wm4) a) (i, w 1 :. ~n2 i m 4 )), Wm3)w w w,4

(3.7)

Thus, the first order corrections to the functions a2n can be expressed entirely in terms

of a(° ) and the corresponding zeroth order terms. Using the expressions (2.26) and

(2.28), along with the definitions (2.22) and (2.23), we find that these two coefficients

are explicitly given by

n=o

n

(n) - (n - 1) -
(3.8)x n+ 1

x f,(n + 1) f,(u) - i.;,



and

a40) (i, Wml ;, Wrm2 IZ Wm4) = 1 -00 (n)

n=O

n(n -1) 1 e((n)(n1)+i(m4m m2)

x f1 (n- 2) - fi(n - 1) + iWm4 i(Wm4 - Wm2) kf(n) - f,(n- 1) +i(Wm4 --win 1 - min2 )

e(f,(n)-f(n-1)- wml) - 1 1

f (n) - fi(n - ) - i(l f(n 2) -- f (n - 2) - lom2

( (f(n)-(n-2)- i(+ 1 ( ef(nl)- (n 1)+i(m4 m2)) - 1
x f,(n) - fi(n - 2) - i(Wml + fm2 f() - f(n -)(M

+ n 2 
CO(f (n)- f (n- )+i(Wm4 mLL l-L)2))

fQ (n) - Mt (n - 1) - i m2 W4 m2 m4 - Wml L m2)

e/(f-(n-f(n-1)-iwm1) - 1

ft (n) - f(n- 1)- iml

1 (
f(n - 1) - fi(r) + iZWm4 Jmm -

e(f(n)-f(l-1)-iWrl) - 1)

n(n + 1) + 1

f r() - f,(n - 1) -- (mWl m2

( e (f 
( n ) -

f
( n - 1

)+
l

(wm4
- w m l

wm2)) - f(n)-f n m4) 1

f,(n) - fi(n - 1) + i(m 4 - -Wml W m2) f()i() -f(tn + 1) + im4

Wrnlm4 , ( f(r )+Z )

f(n + 1) - fz(n) - {WMi fz(n) - f (n + 1) + tWm 4 J4 JWml.*WLm 2

- o) (i, Wmli, m4)a (i,m 2)}
02

r +-C2

(3.9)

where we have introduced the notation {},,,y to denote a symmetrization in the

variables x and y. Hence the expansion of the grand-canonical free energy (2.24) can

be cornpactly rewritten as

T = F - - 5 Mzj(WmlWm2)jj(Wml)j()m2)

+ )3 > NiJkl(Wml. Wm2, W-n3, WmLi)J(&)Jl j 2)J (Wn3) (Wm4)1]
SAl Wm2

W n3 ,Wm4

(3.10)



where we have introduced the abbreviations

AM(mi, m2) [a 2 (i, Wml) 5 i3y + a2 ) (i,ml)a( 2, ml)t ~Ww2 (3.11)

and

Njkl(wml -m2, Wm3, W m4) VWm1 +Wm2,wm 3 Wm 4  )(i mi i. wm2 1. m4) {6a((4k6 k

+ 26z, tzka(o)(k, wm)j- + t ao)(J, rn2)zk1 . (3.12)r, (o)(° L0 , 12 ) 6z k],, , ] (3.12)

Use of the expansion given above is limited by the fact that the currents j, (wm)
are unphysical quantities. Therefore we desire a thermodynamic potential in terms

of physically relevant observables. To this end, we define an order parameter field

,(w,,) in the standard field-theoretic way [32, 33] as

OzK(wm) = (61(w))= 136 * 6 (3.13)

To first order in the tunneling parameter ti, we find that the order parameter field

is given by

P W11

- 2 E E Npk (W,,,iG m2, m m3, Ln).jp( , )IJ 1)(l),, )3(W,, 3 )
p3k mn1,l Wm2 Wm3

(3.14)

This finding motivates the performance of a Legendre transforimation of F to obtain

the effective action which is a functional of the order parameter held.

,',(,,). ( j, )] = _ - - > > [ , (w )J.(L ,) + L(&,,/)}, ,)]. 1(3.15)

The iimportance of the functional F is made clear with the following observation.

The physical situation of interest is the (ase when the artificiallv intro(di ed( currents



vanish, i.e. when we set ji( m) = *(Wmm) -- 0. Since 4 and j* are conjugate variables,

we have that
6F

and thus this physical situation corresponds to

6 _ = 0. (3.17)
0=- Pcq - 64 2(wm) cPi&eq

This means that the equilibrium value of the square of the order parameter field IV 1

is determined by the condition that the effective action F is stationary with respect

to variations about it. Furthermore, we have from Eq. (3.15) that the effective action

F, evaluated at the equilibrium order parameter field, is equal to the physical grand-

canonical free energy:

F = lim F. (3.18)
11I= eq 3--+0

Now, a Ginzburg-Landau expansion of the effective action can be obtained. First,

using the fact that to first order in tj

MI (mlWmlWm2 i3 aO(i, wml)tzu] (3.19)

a2  ml)

Eq. (3.14) can be inverted recursively to find jz(wm) as a functional of the order

parameter field, yielding

P.wm 1

-2 N~'q> 3 kp(WI mi, mWl2, gn3, n) Jq (W)ml)J (W1m2)Jk (W2m.3)

(3.20)

where we have defined the abbreviation

.J,(J4,) p- f (  l  'p(m) (3.21)
P.)Wml



Inserting this expression for j, (Wm,) into Eq. (3.15) together with the expansion (3.10),

and keeping terms only up to first order in the tunneling tz, we find

F= + /1 { m S t2 J (Wm)4I(Wm)] (3.22)

(0) (0) (0) (0) ml i m2 m3 m4
W- 1 ,Wm2 4a o(i, mi)a) (2, m 2) (i, W o3)a (i, Wm4)
Wm3 ,Wm4

Thus, after performing the Legendre transformation, it turns out that the tunneling

parameter ti, appears up to first order only in terms which are quadratic in the

order parameter field. Furthermore, note that this result for the effective action

is sufficiently general that it depends on only three quantities of the unperturbed

system: the grand-canonical free energy (2.25) and the Matsubara transform of the

zeroth-order coefficients (3.8) and (3.9). Finally, the condition for equilibrium (3.17)

becomes

a() (Zm) j

0) (Z, Wml" , Wmn2 I, W m3; i, Wm)
2a(0) Z, I ) (0) , (0) ( Wi ml in 2 m

WmlWm2,Wm3 2 2- 2 23)a2

(3 23)

Due to the complexity introduced by allowing the functions f2 in the Hainiltonian

(2.2) to be site-dependent, and the fact that many interesting physical scenarlos (ail

be modeled with a uniform on-site interaction, we restrict our attention in the iest of

this paper to the homogeneous situation

fl(a,) = f(aZ6). (3 24)

In this case, the cumulants are no longer on-site quantities, and we may thlis hdop

the site indices in the coefficients 0 2,. In the next sections, we examine the p)llnsi( al

implications of both a static and a dvnamni order parameter field.



3.1 Physical Quantities in the Static Case

Consider first an order parameter field that is constant in both time and space, i.e.

of the form

(3.25)

With this, the effective action (3.22) simplifies to the effective potential

r = )(0)
a2 (0)

a( ) (0, 0 , 0) 42J + F ,

4 [a 0) (0)] 
4 ,

where Ns denotes the total number of lattice sites, and y = Eij to. In the case where

a~) (0, 010, 0) < 0 (3.27)

we have, according to the standard Landau theory, a phase transition of second order

with a phase boundary given by the set of system parameters satisfying

(3.28)
a o) (0)

As this is the case of most interest, we will assume that such a phase transition exists.

We also find that Eq. (3.23) takes the simple form

o =
Ns

-(0)
a20 (0)

, 2 V' a 3n (0, 0o , O0)

2(a 0'°(0))4
(3.29)

from which we see that in the ordered phase the equilibrium value of 112 , and thus

the condensate density, is given by

(3.30)
2 (a () (0)) N - " (0)2 0)0)

/10 a 
12 

o )

Furthermore, due to Eq. (3.18), other physical q(uantities follow from evaluating

derivatives of F at eq. For instance, the expe(tatioll value of the number of par-

(3.26)

JW( m) = OV-0 6"Oo.



ticles per lattice site (n) = - - in the ordered phase is given by

1 ai
(n) = (3.31)Nrs Op o fromicq

and correspondingly, the compressibility K =- a follows from

1 82F
K = - (3.32)

In general, any thermodynamic quantity expressible as a function of derivatives of the

grand-canonical free energy f can be expressed as the same function of derivatives

of F with respect to the same variables, evaluated at U = QOeq-

Relaxing the condition of spatial homogeneity of the order parameter, we are able

to determine the superfluid density of the system. The superfluid density is defined

as the effective fluid density that remains at rest when the entire system is moved

at a constant velocity [38, 39]. As is well known in quantum mechanics, such a

uniform velocity corresponds to imposing twisted boundary conditions. Equivalently,

we introduce Peierls phase factors

a-, ae+ ' 0  (3.33)

in the original Hamiltonian (2.1). Here 4 is related to the velocity of the system

according to 57 = 0/nI*L where m* is the effective particle mass, X, are the lattice

vec tors, and L is the extent of the system in the dire tion of 5. Equating the kinetic

energy of the superfluid with the free energy difference F(o) - F(O), we see that the

superfluid density p is given by

= lim 2(*L- ) ) . (3 34)

Exanmining the form of Ho and H1 in Eqs. (2.2) and (2.4). we see that the effect

of introducing the phase factors in Eq. (3.33) is simply to redefine the tunneling



parameter ti, as

ti 3() = t,3e-r m .

Thus, using Eq. (3.18) we can express p in terms of the effective action as

p = limN 0I 2 F(),c
101_o N'1012 *=Veq (0

which, with the aid of Eq. (3.22) reduces to

2m*L 2

p = lim - -- 2

141-o Ns 012 [t3 -.2 eL :/
Oeq (0) 1 e (3.37)- 1e(G 2)Veq (0)

+ Ns a (I(0) eq eq(0 2)
3a4 0)(, 0 0, 0)

4(a(O))
4

Thus, the superfluid density is determined explicitly once a definite form of the tun-

neling parameter t,, is specified.

3.2 Physical Quantities in the Dynamic Case

By allowing the order parameter to vary in imaginary time, we can also use the

effective action to obtain an analytic form for the Matsubara Green's function. To

do so, we note that the Legendre transformation (3.13), (3.15), (3.16) implies

6j() (Wm2))
-1

(=0

(3.38)

We recognize immediately from Eq. (2.30) that this is precisely the inverse of the Mat-

subara Green's function !(z W,nj m, W,,2). Next, we consider F expanded to arbitrary

order in t, ,

F (

(3.35)

- r(0) o(O)] (3.36)

0 (0) (a )

00

+ =1 (A ( ,) (i L , ), )
n=l j

(3.39)

62r

7, =cq

t2 2

eg l 014)V@eq (0



where the expansion coefficients Ga2n) are determined by methods like those described

above. We then find from Eq. (3.38) that the Matsubara Green's function is given by

[~g(j ,m 2  m1-,- i() 1 lmlWm2 () a ) )n]j + ... . (3.40)

Recognizing that lawmi,w,2 // (Wml) is simply the inverse of the unperturbed Mat-

subara Green's function, we see that the power series in tj in Eq. (3.40) gives a series

expansion of the self-energy E:

-1C

E(i, w-m- , m2) [U(0 (i mlJ w m21 , W )]- [g(i Wmlj, UWm2) - 1  
l, 1Wm'2 >7 [9n) (iml) [(t)zj-

n=1

(3.41)
Thus, we conclude that our effective action gives an expansion for the Green's function

in terms of the self-energy in powers of t,3 . In the non-ordered phase, this is the same

as if we had computed the corrections to the unperturbed Green's function directly

from our perturbative expansion of _ and performed a resummation [37]. Specifying

Eq. (3.40) to our present first-order case, we hence find

[9(O)(J, Wm2 Znl, ,)] - 1  (1)(j, Wm2 Ii, Wml)

1 6 (O)(m2 o 00, m2)(a(O) (0))2 (1 )

_a20) + 0) l))2 (,2 (

(3.42)

Denoting by t h, the Fourier transform of the tunneling parameter,

t , = E te 3 (' ; '' ) (3.43)

Ii



we find that Eq. (3.42) can be rewritten in Fourier space as

g(k ', m2 Ik, Wmi)

1 2mwm 2  (w in1 l 0, wm 2 )(a,)(0))2 0)26WnILm2 (14 L 1 1, O) 2 ()(0)

= + - t,. (3.44)
a0) aml 2)m 20) (0, 0, 0)

We see that the second term above is a contribution to the Green's function due

completely to the existence of a non-vanishing order parameter. This correction can

thus be exploited to improve analytical time-of-flight calculations for bosonic lattice

systems in the superfluid phase [40].

Next, we can examine excitations of the system at zero temperature by looking for

spatio-temporal variations of the order parameter field about Veq i which

preserve the equilibrium condition (3.17), where 00 is an arbitrary global phase. To

this end, we first must specify to the case where our system is translationally invariant.

such that

tw' = tA-b. (3.45)

Next, we add to the equilibrium value of the order parameter field a small variation

6.0(x 2, wm). We then Taylor expand the effective action F about Oeq in terms of these

variations. The first order term vanishes due to the equilibrium condition (3.17).

leaving

62F
F FVeq] + 2F 6 (Wil) 1 (Wr 2 ) + .... (3.46)

Wrn 1 -L4?m 2

Demanding that in equilibrium the effective potential is stationary with respect to

the variations 6i4 in the standard way gives the equation of motion

62r
(, 3 1(w l) 0 0. (3.47)

This equation can be satisfied in two distinct ways. The trivial solution &'(.,. w,,,) = 0

corresponds to the static homogeneous equilibrium examined in the previous section.



The second solution is given by

S= 0 (3.48)

and describes the excitation spectrum of the system. In particular, by analytically

continuing Eq. (3.48) to real frequencies and transforming to Fourier space, we are

able to identify the dispersion relation of low-lying excitations as those curves w(k)

which make the equation valid. The standard method of performing this analytic con-

tinuation is to find the equations of motion in imaginary-time and perform an inverse

Wick rotation. Because of the complexity of the coefficient a(O)(wml, ,m2Wm3, Wm4),

however, this is ill-suited to our present needs. Therefore, we note that our imagi-

nary time evolution operator exp (-IT) can be mapped to the real-time evolution

operator exp (-ilt) by the formal substitution H I iH. To maintain the reality

of the grand-canonical free energy, we must also perform the substitution .F - -iZF.

We thus find that in terms of real frequencies the effective action is given by

FR = Fo + dw -t - tz(w)(w) (3.49)

SW 4  4R 1, w2 W3, )

4aR 12R 2 2R 3 4

where a2~0 and a(0 are obtained from Eqs. (3.8) and (3.9) respectively by the replace-

ment f,(n) -- if(n). Thus, the real-time continuation of the condition (3.48) is given

by
= 0. 

(3.50)

In general, the function w(k) will have a positive and a negative frequency branch

Because we determined these (urves by expanding the effective action FE about (

minimum, however, only the positive frequency branch of w(k) are to be considered

as physically relevant.

Since the order parameter is (oniplex. we examine separately variations of both



the magnitude and of the phase. First, we consider excitations in the amplitude of the

order parameter. To this end, we replace < in Eq. (3.22) by Oeqg 6wmrn,0 + 6)ki(Wm),

where 61b(Wm) is an arbitrary infinitesimal function of the lattice site i and WJm, with

fixed phase 00. Carrying out the functional derivative in Eq. (3.50) and performing

the continuation outlined above and transforming to Fourier space yields the equation

-i 2a( (wA, 0 0, wA)(a 2(0) (0)) 2 +

0 - + -t (3.51)
a () (WA) +(a(o (wA))2a (0, 0 0, 0) k

This gives a constraint equation which can be solved for the dispersion relation of

amplitude excitations wA(c). By comparing Eq. (3.51) with the Matsubara Green's

function (3.44), we notice that the dispersion relation WA(k) coincides with the poles

of the translationally invariant real-time Green's function.

To treat the phase degree of freedom, we note first that adding a small time-

varying phase to >eq amounts to the transformation

---u eq[±i0 ( 0() eq 1 + (7) - O(7 (3.52)

Expressing this in Matsubara space, we have

- eq 1 + iO(wm) - -2 j O.(,)O,(O,, - L1) (3.53)

Inserting the transformation (3.53) into the real-time effective action (3.49) and per-

forming the derivative (3.50) yields the condition

2a (0) (0) 'Y ) I .

2 N2 a (0)

0 + 2 9b(). 0.0, 0) + b(wo, -o, 0, 0)
0 (()) ( ) a ( (0) - (0, 0 0, 0)

+ b(0. 0. &o, -Wo) - 2b(wo, 0, wo, 0) - 2b(Lo. 0. 0. &,) + - (3.54)



where we have defined

(0)
b(wl2 , W2 I 4) = (3.55)

2R a(o) (W2)a ( (W3)a(0)

This determines the dispersion relation wo(k) of the phase excitations. We note that

since ta = yl/N,, wo(O) = 0 is a solution to the constraint (3.54) in accordance with

Goldstone's theorem [32, 33].

Lastly, we investigate the phenomenon of second sound. As is well known, the

observed elementary excitations of a superfluid are given by phonons. To obtain their

corresponding dispersion relation w,(k), we must examine the phase excitations in

the presence of the amplitude variations, i.e. ), - [eq + 6, (w,,i)] eZO z(wm). This has

been considered, for example, in Refs. [41, 42], leading to the result

s(k) = WA(k)w (k). (3.56)



Chapter 4

An Application: The

Bose-Hubbard Hamiltonian

Having developed the field-theoretic approach for the general Hamiltonian (2.1), (2.2),

(2.4) in the preceding chapters, we are now in a position to apply it to the specific

case of the Bose-Hubbard Hamiltonian on a 3-dimensional cubic lattice defined by

Eq. (1.1). As is well known, this model exhibits a quantum phase transition between

a Mott insulating phase and a superfluid phase [13, 14, 15, 16]. The Hamiltonian

(1.1) has exactly the form assumed in Chapter 2 when the following identifications

are made:

1
f(n) = E, = -Un(n - 1) - [n (4.1)

2

((4.2)

where d(, denotes the lattice basis vectors with k = 1. 2. 3. Additionally. we see that

the quantity introduced above simplifies to

- S tj = 6Nt. (4.3)



Thus, we can apply all previously derived formulas to extract physical information

about the Bose-Hubbard system. In the wm -- 0 limit, we find that a2) (0) becomes

1 00

2)(0) (= Z(O)
n=O

En+li - En En - En-1 (4.4)

The expression for a ° ) (0, 010, 0) must be calculated via a more careful limiting pro-

cedure. Making use of the limit

ebx - 1
lim X = b,
x0O X (4.5)

we find that

a4) (0, 010, 0)
2

jZ(o)
e - En

n=O

-2
-1) 2

(En - El 1 ) 2 (En - E2)

+n2 2 r 3
(En - En-1) (En - E n-1)

2,3

(En+I - E1)(E )

+ (n + 1)(n + 2)

[ - En 1)]

[(En+I- 

- n(n+ 1) 2(E+1 - 2E) + E,, -1)
(En - En_1)2(Ern - Eln+) 2

2 E
-n 1) (E,+1 - E,)

3 (En+ 1 - Etn)

E)2(En+2 - En)
- 2a(O)(0))2. (4.6)

4.1 Effective Action Predictions in the Static Case

Before examining the physical implications of our effective action approach. we first

introduce the standard mean-field treatment of the Bose-Hubbard Hamilltonian for

comparison. The mean-field Hamiltonian is found by performing a Hartiee-Fock

expansion of the hopping term in the Hamiltonian (1.1) [13, 15]. Kec('ping in mind

that the order parameter is defined according to t',

HNIF - H - 6t

(a6), this yields

10 2)at +( *., (4.7)
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Figure 4-1: Plot of the critical value of the hopping parameter t versus the chemical

potential p/, both scaled by the interaction energy U. The phase boundaries for two

different temperatures are shown. The solid blue curve is T/U = 0, and the dashed

red curve is T/U = 0.1/ks.

The methods of Chapter 2 can be adapted to give an expansion of the mean-field free

energy in powers of the order parameter, since

HMF = H + llt=o + 6tN ~ j , (4.8)

when we make the formal identification j (r) = -6t. Thus, an expansion of Y to

zeroth order in t gives an expansion of the mean-field free energy YMF in powers

of the order parameter, provided we recognize that the constant term in Eq. (4.8)

contributes a term of order 1012 to FMF. With these considerations in mind, we find

the explicit result

YMF = FO - Ns (a2F ±2 3 MF ,i4) , (4.9)

where the mean-field Landau coefficients a F and a IF are given by

aMF = a o) (0) (6t) 2 - t. (4.10)

a1F = a 0 )(0. 010, 0)(6t) . (4.11)

Thus, the mean-field result can also be expressed in terms of the same three quantities

(2.25), (3.8), and (3.9) as our effective action approach.



We now compare the predictions of our mean field theory with our effective action

theory. First, we find that the mean-field phase boundary is given by the curve

[13, 31, 43, 44]

tMF 1 Z( , (4.12)
6a 0 (0) 6 eEn

2 °
o 6 e-E nl - En E, - En- 1

which turns out to be identical to the phase boundary found from Eq. (3.28). A

plot of the phase boundary in Fig. 4-1 reveals that increasing thermal fluctuations

destroy quantum coherence, as the superfluid phase shrinks with increasing tempera-

ture. Note that the main advantage of the field-theoretic method over the mean-field

approach is in the fact that the phase boundary can be improved by carrying the

expansion out to higher orders in t. The phase boundary to second tunneling order

has already been calculated for T = 0 in Ref. [22] and for T > 0 in Ref. [37], and

proves to be a considerable improvement over the mean-field result.

We next look now at the condensate density tb t2 From Eq. (3.30), we find

2 2(a 0)())3 1 - 6ta~ )(0) 1 (4.13)

while standard Landau-theory yields

2 -2a = 2 (0 [1- a o)(0) (4.14)

via the minimization of FIlF.-

Turning to the superfluid density, we see from Eq (3.35) that for the Bose-

Hubbard model.

t(o) = 2t cos ( o (4.15)

where d, are the nearest neighbor lattice vectors in the a (direction. Therefore, in the

Bose-Hubbard model we have t = 1/(2rn*) [45]. Thuis. froiii Eqs. (3.34) and (3.37) we

find that for both the mean-field theory and the effe(tive a(ction theory to first order
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Figure 4-2: Plot of the condensate density as a function of the hopping parameter
t/U for both the mean-field theory (left) and the effective action theory (right), with
fixed pI/U = 0.9. The solid blue curves are T/U = 0, and the dashed red curves are
T/U = O.1/kB.

in t,
beq 

2
(. (4.16)

Taking 5 to be in a lattice direction, we see that the superfluid and condensate

densities are equal at this level of approximation.

A plot of the condensate/superfluid density as a function of the tunneling parame-

ter t at a fixed value of the chemical potential p for each theory can be seen in Fig. 4-2.

It is interesting to note that while the superfluid density from the field-theoretic ap-

proach increases linearly with t, the mean-field superfluid density quickly begins to

fall off as t increases, a behavior which is at odds with the notion of a superfluid [13].

Furthermore, it can be seen that Eq. (4.13) is simply a first order series expansion of

Eq. (4.14) about t = tc, meaning I Vq is the tangent lirle to I/ 2 at t = t,. Thus,

although the two results agree near the phase boundary, the mean-field prediction

quickly begins to exhibit an unphysical behavior. suggesting that our field-theoretic

result has a larger range of validity.

Next, we compare the average number of particles per lattice site (n) as computed

in the two theories. In the ordered phase, the field theoret ic prediction for (n) is given



<n>
2.0 r

0.0 0.2 0.4 0.6 0.8 1.0 U 0.0

0.2 0.4 0.6 0.8 1.0 U
0.2 0.4 0.6 0.8 1.0 U

Figure 4-3: Plot of the average number of particles per
chemical potential t/U with fixed t/U = 0.025. Left shows
while right shows the field-theoretic prediction. The solid
and the dashed red curves are T/U = O.1/kB.
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Figure 4-4: Plot of the compressibility riU as a function of the chemical potential
t/U with fixed t/U = 0.025. Left shows the mean-field prediction, while right shows
the field-theoretic prediction. The solid blue curves are T/U = 0, and the dashed red
curves are T/U = O.1/kB.

by Eq. (3.31) above, while the mean-field result is given by

(n)MF= 1- N 1 1P,F (4.17)

In the Mott phase, Il = 1MF = 0, and both theories predict

(4.18)1 0Fo
(n) = (n)MF = N o

NK ap~

which is simply (n)0 . Plots of these two quantities as a function of the chemical

potential at a fixed value of the hopping parameter are shown in Fig. 4-3. Although

the predictions of both theories agree in the immediate vicinity of the phase boundary,

I
L
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Figure 4-5: Contours of constant (n) in parameter space for both the mean-field and

effective action theories at T = 0. The dotted blue curve shows the first three lobes of

the phase boundary. The solid blue curves are the predictions of the effective action
theory, while the dotted red curves show the predictions of the mean-field theory.

we see that at low temperatures (n)MF is not a monotonically increasing function of 1.

In fact, the plot shows that away from the phase boundary, (n)MF actually decreases

with increasing p, i.e. the compressibility is predicted to be negative in the superfluid

phase. This is directly at odds with the fact that a superfluid has, by definition, a

positive compressibility [42]. The behavior of (n) as derived from the effective action,

on the other hand, fits well with expectation further away from the phase boundary.

This is highlighted in Fig. 4-4, which shows the compressibility K for each case.

As a final point of comparison, we specify to the zero temperature case and ex-

amine contours in parameter space along which the average number density (n) is

constant. Inside each Mott lobe, we know that the number density is fixed at the

quantum number n of the lobe. In the superfluid phase, for fixed t we expect (n) to

increase monotonically with increasing chemical potential. This implies that contours

of constant (n) should be monotonic in p. Such contours for (n) = 1, 2, 3 are shown

in Fig. 4-5. Although the mean-field and effective action contours agree close to the

lobe tip, the mean-field result exhibits a non-monotonic behavior farther away from

the lobe tip. Given the non-monotonic behavior of (n)MF discussed above, this is not

wholly surprising. From these considerations, we conclude that the effective action

theory has a larger range of validity than the mean field theory and, furthermore, we

expect an increase in quantitative accuracy when higher powers of t are considered.



4.2 Effective Action Predictions in the Dynamic

Case

We now turn our attention to the Green's function and the zero-temperature excita-

tion spectra of the Bose-Hubbard model. Using Eq. (3.44), we see that to first order

in t the Green's function of the system in the ordered phase can be written as

0(wm, k) =
a() ?01 20, (4.19)

2a 0 ) (wm,OO,wm)(a (o) (0))2 L6t- 1

1 + (a( O ) - 2ta () ) cos(ked)
(a(0)(wm,))ao o (0010,0)

where d is the lattice spacing, and k is restricted to the first Brillouin zone. At the

phase boundary we have 6t - 1/a()(0) = 0, and the Green's function reduces to

g(wm, k) =
a(O)
a2t (W7n)

1 -2ta
0 L(w) Zcos(k~d)2 Ea2t

(4.20)

This is precisely the result obtained in the Mott phase via a resummation of zero loop

diagrams [37].

From Eq. (3.51), we see that the zero-temperature dispersion relation for ampli-

tude excitations wA(k) satisfies

2a4R (WA, 010, WA)(a (0)) 2 [6t+ (0)(o

0 (0 ) + 12 - 2t cos (ked). (4.21)
a2R(A) () (WA))2ao) (0. 0 0. 0)

which we recognize also as the condition for poles in Eq. (4.19) continued to real time.

While too complicated to solve exactly. Eq. (4.21) can be inverted numerically to yield

the dispersion relation wA(k). A plot of WA(k) taken along the (1, 1, 1) direction ill

the first Brillouin zone is shown in Fig. 4-6. We observe that in the superfluid phase.

L,4 (k) is gapped and quadratic.,

WA(k) A A k+ I,.A(.22 (4.22)



Furthermore, at the phase boundary, we find that the dispersion becomes gapless and

linear.

Next, we consider the zero-temperature dispersion relation wo(k) of phase excita-

tions. For the Bose-Hubbard model, Eq. (3.54) takes the form

2a2 (0)3 1i + 6ta (0)

-i i + [2b(0, 0, 0, 0) + b(wo, - o, 0, 0)
a (WO a(0) a 4R(0 01, 0)

+ b(0, 0, wo, -wo) - 2b(wo, 0, wo, 0) - 2b(wO, 0, 0, wo) + 2t 3 - cos (kad)

(4.23)

We can numerically solve this equation for wo(k). A plot of wo(k) along the (1, 1, 1)

direction in the first Brillouin zone is shown in the right of Fig. 4-6. We see that in

the superfluid phase the dispersion is quadratic with

we(k) (. (4.24)

Finally, by comparing Eqs. (4.21) and (4.23). we find that at the phase boundary

WA and we are degenerate. Lastly, using the result (3.56), we can investigate the

behavior of superfluid second sound excitations. From our observations above, we

find a linear dispersion for small k,

w (k) - ck (4.25)

with the velocity of sound

c= (. (4.26)

Thus, the velocity of second sound at any point near the phase boundary can be

found from the above numerical inversions. With this, we plot the sound velocity c

as a function of the tunneling t/U in Fig. 4-7. VWe observe that, since near the phase

b)ounidary a large quadratic term suddenly appears in the phase dispersion relation,

the sound velocity jumps immediately inside the superfluid phase. This jump must
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Figure 4-6: Plots of the zero-temperature dispersion relations wA(k) (Left) and wo(k)
(Right) for various values of the hopping t with fixed n = 1, up/U = V - 1 and
with k = (1, 1, 1)k/V/. The solid blue lines corresponds to t = to 0.028 U, which
for these values of A and n is at the tip of the first Mott lobe. The dotted yellow
lines corresponds to t = 0.03 U, and the dashed red lines corresponds to t = 0.035 U.
Note that amplitude excitations exhibit a t-dependent energy gap, while the phase
excitations are gapless in accordance with Goldstone's theorem.

cd

U
4

3

2

0.029 0.030 0.031 0.032 0.033 0.034 0.035 U

Figure 4-7: Plot of the
with n=1 and p/U =

second sound velocity c as a function of t/U for t > tc , 0.028 U
V - 1.

1.0

0.8

0.6

0.4

0.2

2 3
' ' , . .' . . .' , . . , , . . . .

rIrIIrIrrrr
I
r

'



be viewed cautiously, however, as the Ginzburg-Landau expansion is incapable of

accurately describing critical behavior in the immediate vicinity of the phase boundary

[32, 33, 46, 47]. As the mass of the phase excitations begins to increase faster than the

gap in the amplitude excitations, we see that the sound velocity begins to decrease.

Far from the phase boundary, however, we know from the seminal Bogoliubov theory

that the sound velocity must increase as V [41, 48], confirming that our theory is

not valid in the deep superfluid phase.
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Chapter 5

Summary and Conclusion

In this thesis we derived, to first order in the tunneling, the Ginzburg-Landau expan-

sion of the effective action for a very general bosonic lattice Hamiltonian. From the

effective action we calculated many static and dynamic system properties of experi-

mental interest. In specifying these results to the Bose-Hubbard model, we compared

them with the corresponding findings of the standard mean-field theory. Although

both approaches yield - up to first order in the tunneling - the same phase boundary,

our method gives qualitatively better results deeper in the superfluid phase. Addi-

tionally, we were able to find the dispersion relation for superfluid excitations, which

cannot readily be done in the mean-field approach. The primary advantage of our

effective-action theory, however, lies in its extensibility. It is straightforward to gen-

eralize the derivation given in Chapters 2 and 3 by calculating diagrams beyond the

tree level in order to include higher-order tunneling corrections. As seen in Section

3.2, this gives a systematic hopping expansion of the self-energy function zn both the

ordered and non-ordered phases, providing an arbitrarily precise description of the

system dynamics near the phase boundary. This should allow, for instance, for the

calculation of time-of-flight absorption pictures and their corresponding visibilities for

the whole phase diagram [40]. Furthermore, given the generality of the formalism, our

effective action theory can., in principle, incorporate a variety of interesting effects,

such as disordered lattices [4. 31]. vortex dynamics [41], and tunneling beyond near-

est neighbor sites. In particular, an effective action for the disordered Bose-Hubbard



model could give new insight into the nature of the Bose glass phase as a state of

short-range order [13].
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