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Abstract

We present a brief review of the AdS/CFT correspondence and the progress made to-
ward building a realistic gravity/gauge theory duality for a non-relativisitc conformal
field theory. In particular, we highlight many of the computational tools necessary for
such a program before introducing one such model duality. The model presented ex-
hibits the symmetry group of Schrodinger's equation along with conformal symmetry.
A black hole can be placed in this spacetime to study a finite temperature duality. In
the low-frequency, long-distance limit at finite temperature classical hydrodynamics
can be used to determine the retarded Green's functions of the field theory, which can
be computed from the gravity dual. This facilitates the calculation of several charac-
teristic quantities including the shear viscosity and the shear diffusion constant giving
results consistent with other hydrodynamic analyses of the system.
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1. Introduction

Perhaps the most remarkable development in string theory has been the formulation

of the various gravity/gauge theory correspondences. Over the past decade, intense

investigation has led to conjectured equivalences between field theories in flat space-

times and string theories in higher dimensional curved spacetimes. The original and

canonical example of such a duality is the anti-de Sitter space/conformal field theory

(AdS/CFT) correspondence. This particular duality is most commonly expressed be-

tween n = 4 supersymmetric Yang-Mills (SYM) theory in Minkowski four-space and

type IIB string theory in the ten dimensional spacetime AdS 5 x S5 . This duality has

gathered such intense interest because of a phenomenon known as strong/weak cou-

pling duality. In the strong coupling (i.e. large t' Hooft coupling) limit of the field

theory, the string theory becomes weakly coupled reducing to classical supergravity.

Hence, physics in the non-perturbative regime of the field theory can be analytically

determined by studying the classical low energy limit of the gravity theory.

Interest has grown in formulating such a gravity duality for more realistic gauge

theories. A necessary step toward this goal is studying such at duality at finite temper-

ature. In [1, 2], this was done for the AdS/CFT correspondence at finite temperature,
in which they considered real-time correlators. While Euclidean correlators decay ex-

ponentially at finite distances, their Minkowski counterparts posses non-exponential

tails that contain global information about the field theory. Although a complete anal-

ysis of all modes becomes analytically intractable, the behavior of the theory can be

well understood in the hydrodynamic limit by using fluid mechanics allowing us to

extract hydrodynamic information from the Minkowski correlators. This is essentially

the statement that any interacting field theory in the low-frequency, long-wavelength

limit should reduce to a theory describable by classical fluid mechanics. This places

tight constraints on the behavior of the various field theoretic operators because they

must be determined from just a few hydrodynamic quantities, and an analysis of the

dual gravity theory provides a method for determining these.

This type of analysis has been extremely successful and extended to other systems

at finite temperature such as [3, 4, 5, 6]. However, most of the strongly coupled rela-

tivistic field theories are not experimentally accessible. So, it can be asked what other

types of gauge theory/gravity correspondences can be formulated with a particular in-

terest toward finding a realistic field theory that can be studied in a laboratory. It turns

out that there are several examples of strongly coupled conformal field theories in the
non-relativistic regime, of which the most accesible is cold fermionic atoms at unitarity.
In order to eventually realize a consistent gravity dual for such a system it is necessary
to have a non-relativistic version of the AdS/CFT correspondence. This paper aims
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to move toward such a goal by studying a prototype model at finite temperature using
a hydrodynamic analysis to determine the various transport coefficients describing the
non-relativistic field theory.

This paper is structured as follows. In section 2, the original AdS/CFT correspon-
dence will be presented along with a simple worked example to illustrate the procedure
for determining the correlators in the field theory concluding with a prescription for
computing real-time Minkowski correlators. This will also reveal several more subtle
aspects of such computations. Subsequently, in section 3 the AdS/CFT duality will
be studied at finite temperature after having introduced the AdS black hole. In sec-
tion 4, the non-relativistic version of the correspondence will be formulated revolving
around the construction of the necessary geometry. A brief overview of non-relativistic
hydrodynamics in section 5 is presented before moving on to developing a systematic
formalism for extracting correlators from the Schrodinger black hole in section 6.

2. An Introduction to Gravity/Gauge Duality

2.1 The Basics of AdS/CFT

In recent years, research in string theory has seen the development of an extremely
fruitful program of deriving quantum field theories by taking limits of string/M theories.
The AdS/CFT correspondence is historically the first and the canonical example of such
a procedure. The original AdS/CFT correspondence between N = 4 SYM and type
IIB string theory was discovered via a rather roundabout route that involved studying
black branes and D-branes in string theory. However, we will try to motivate the
results through a much more direct approach by appealing to symmetries. We will
subsequently develop the foundations of the AdS/CFT correspondence and indicate
how it applies to similar dualities between different types of theories.

Symmetry narrows the search for determining how to relate a gauge theory to a
theory of gravity by placing tight constraints on the types of geometries we can consider.
Besides Poincare symmetry, which is common to all relativistic field theories, we would
like to impose the additional constraint of conformal symmetry. Consequently, our
symmetry algebra will have an extra generator corresponding to scale transformations
on top of the usual Lorentz and translation generators. For a four dimensional quantum
field theory, we would naively begin by searching for a string theory in four dimensions
that respects the same symmetries as the desired field theory. It can be shown that
there is no consistent and quantizable string theory in four flat dimensions, so in order
to find our string theory an extra dimension must be included.



Hence, we broaden our scope by looking for a five dimensional geometry that has a

four dimensional Poincare symmetry along with conformal invariance. Now, Poincare

symmery restricts the general form of the metric to

ds 2 = f(r)2 (dxidx + dr 2), (2.1)

where the radial coordinate r is left invariant under such a transformation and the

coefficient in front of dr 2 can be set to 1 by rescaling. Imposing conformal symmetry

requires that field theory be scale invariant i.e. xi -- Axz is a symmetry. Since the

string theory has a natural scale set by the string tension, the only way the theory

can respect this scale invariance is if this transformation is an isometry'. Hence, we

additionally require that r -+ Ar and f(r) = R/r to ensure invariance. This gives the

AdS metric
R2

ds ?2  2 (dxidx + dr2) (2.2)

where R is called the AdS radius, which determines the constant negative curvature of

the spacetime. Notice that in the limit r -- 0 the induced metric on the boundary is

proportional to the metric2 describing the field theory. Hence, it is often loosely said

that AdS is dual to a field theory defined on the boundary.

Before proceeding, let's describe the two theories that have been claimed to be

equivalent [7]. Firstly, M = 4 SYM is the maximally supersymmetric gauge theory in

four dimensions with gauge group SU(N). Its field content contains a gauge field/gluon,
four Weyl fermions/gluinos, and 6 real scalars all of which are defined in the adjoint

representation of the color group. Although we will refrain from giving the Lagrangian

of the theory, it is described by two parameters gym, the gauge coupling, and N, the

number of colors. In addition to supersymmetry, the theory also respects a conformal

invariance, which is preserved after quantization. In fact, the large number of symme-

tries of the theory yields a vanishing beta function for the coupling gyM! As a result,
K = 4 SYM is often referred to as a finite field theory. Interest in such a theory is also

obvious because of the clear similarities to QCD.

On the other side of the claimed duality is the ten dimensional type IIB string

theory. This theory contains a few massless fields including a graviton, a dilaton, a

one-form field strength, two three-form field strengths, and a self-dual five-form field

strength along with an infinite number of massive string excitations. The string the-

ory has two parameters, the string length 1, and the string coupling gs. In the long

'Requiring that symmetry transformations of the field theory be isometries of the string theory

metric will be essential idea later when we construct a non-relativistic version of the correspondence.
2Even though we started by imposing Poincare symmetry, we will later consider both Minkowski

and Euclidean signatures beginning with the latter.



wavelength limit when all of the fields vary over distances much longer than the string
length, the massive modes decouple from the theory yielding classical type IIB super-
gravity in ten dimensions. It can be shown that the AdS geometry we are looking for
is contained in the metric

R2
ds = -2 (dxidx + dr2 ) + R 2d (2.3)

which is a solution to the supergravity equations of motion. The self-dual Ramond-
Ramond five form F5 contributes the stress-energy tensor necessary to support such a
metric.

It has been claimed that the two theories are equivalent [8]. This has not been
formally proven, but certain limits of the asserted duality have shown equivalence. For
equivalence to hold, there should be a dictionary relating the content of one theory to
the other. The two dimensionless coupling constants can be related by

gyM = 47rg, (2.4)
R4

SYMN = (2.5)

Notice that in the large N limit with gM N > 1, i~< R and g, < 1. This was exactly
the condition that was needed to decouple the massive string excitations, which gave
a theory of classical supergravity. On the field theory side, the perturbative expansion
is described by the 't Hooft coupling A = g2MN. So, we see that the strong coupling
regime of the field theory is dual to the weak coupling limit of the string theory, which
allows us to use classical supergravity!

We can continue to develop this dictionary between the content of the dual theories.
In particular, the gravity/gauge duality requires that for every bulk field D there is
a corresponding gauge invariant operator O& in the boundary theory. The explicit
statement of this correspondence relates the partition function of the bulk fields to the
generating functional of the boundary field theory,

ZSGo] =-- De - sSG[] - (exp(- AdS O0))QFT, (2.6)

where the expectation value on the right hand side is the path integral. To leading
order in the saddle point approximation, this expression reduces to

SsG[0(x)] = - ln(exp(- / oO))QFT - WQFT[o(x), (2.7)

where the supergravity action is evaluated with an on-shell field that asymptotes to the
desired boundary source. We also recognize WQFT[o(x)] as the generating function of



connected correlators in the field theory. Thus, we see that correlation functions of the

operator O, can be computed by functionally differentiating the supergravity action

with respect to the source,

5SsG
(O(x)) = I o=0,

600(x)

62SSG
()( Z 2))0()0(2) 1o=0,

(0(x1) ... 0^(x,)) = (-1) n +1 SSG 0=0 (2.8)
(X) ... 60(x) (2.8)

Even though though this is a useful schematic relationship between the two theories,
this statement is not well defined due to UV divergencies in the field theory. So, renor-

malization is needed to cancel the divergencies. We defer the reader to find formal

development of the program of holographic renormalization in the literature [9]. How-

ever, we will in passing mention how renormalization ensures finite answers as need

arises. The production of the necessary counter-terms will be illustrated by example.

2.2 A Massive Scalar Field

As a simple illustration of the mechanics of this duality, consider a scalar field / in the

Euclidean continuation of the AdS 5 spacetime3 with a dimensionful mass m. Then the

appropriate bulk action to consider for the scalar field is simply

SO rl= /' d (, 5 og + m22). (2.9)

Requiring the variation of the action to be zero gives the equation of motion,

1
I ,(v/g ap) - m 2 = 0. (2.10)

The solution to this equation can be explicitly found by using translation invariance to

Fourier transform the Euclidean coordinates. Use the transformation defined by

(x, r) = d eiqixi fq(r) o(q), (2.11)

3We can neglect the S5 portion of the metric. If we were to consider these extra dimensions, the only

difference would be periodicity constraints in the spherical dimensions. Since the spherical dimensions

are periodic, a Fourier series expansion could be performed giving an infinite set of effective massive

modes in AdS5 . This is known as Kaluza-Klein dimensional reduction.
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where eo(q) is the Fourier transform of the boundary source determined by

(o(q) = Jd4 eigix (x, 0). (2.12)

We see that this requires fq(O) = 1 for every Fourier mode. Then, in momentum space
the equation of motion reduces to

-r2 f/ + 3r f + (q2r 2 + m 2R 2)fq = 0. (2.13)

This equation has known solutions expressed in terms of modified Bessel functions of
the second type,

fq(r) = Ar 2K
, (qr) + Br 2Ij, (qr), (2.14)

where v = v/4 + m 2R 2

In order to compute the boundary operator correlators, boundary conditions need
to be imposed. The correct solution is one that asymptotes to the boundary field and
is finite in the interior. In the limit r --+ oc, K , ~ r-1/2e-r and I, - r-1/2er. The
latter mode is clearly divergent, forcing the choice B = 0. To impose the remaining
boundary condition, we need to examine the behavior of the solution near r = 0. Since
r2K , (qr) _ r2- , the solution diverges at the boundary unless it is massless. Already,
we can see that some regulator and a renormalization scheme will be necessary. So, we
regulate the divergence by imposing the boundary condition at r = E. Then, we will
take the limit E -+ 0 at the end of the computation. The solution satisfying the new
boundary conditions is

r2 K.(qr)
fq(r) = C2 K , (q) (2.15)

Without interactions the only non-trivial correlator is the two-point function. In
order to compute the two-point function, the gravity/gauge prescription requires that
we evaluate the action using the on-shell field with the aforementioned boundary con-
ditions. A short calculation 4 shows that the action reduces to the boundary terms,

Sd 4 qd 4 q' r=oo
S: f (2,O o(q)o(q')F(r,q,q') ro= (2.16)

where r(r, q, q') is the flux factor defined as

F(r, q, q') = (2F)464(q + q) qr3 fq,(r)f (r). (2.17)

4Evaluating the on-shell action consists of successively integrating by parts, using the equation of
motion, and then applying Stokes' theorem.



We can now use the AdS/CFT correspondence (2.8) to get the momentum space cor-

relator

(O (q)O(q')) = -2Y(r, q, q') ro (2.18)

All that remains is a rather tedious evaluation of the flux factor at the boundary, since

it is easy to see that F(oo, q, q') = 0. Note that the calculation depends on whether

v is an integer, because the Bessel function K, has a blocked exponent for an integer

order.

After evaluating the flux factor at the boundary r = 0, we discover that there are

in general divergent terms as c - 0. As shown in appendix A, these divergencies can

be removed via renormalization by manufacturing a covariant boundary counter-term

action. In fact, even finite contact terms are removed, terms that depend on squares

of the momenta, because they don't contribute to the correlator at finite distances.

Lastly, the boundary operator needs to be renormalized to give a non-zero result for

m / 0. After renormalizing the theory, we find that two-point functions are

rR3 F(1 - v)(O(q)O(q')) = (2)44R 3 F(1+ q 1 q2 (2.19)
22v_ 1  ()

for non-integer v and

r R 3  (-1)n  2
(O(q)((q')) = -(27r)44(q + q')221 (n - 1)!2  q 2 (2.20)

for integer v.

2.3 Minkowski Space Correlators

As previously presented, the AdS/CFT correspondence allows us to compute correla-

tors for boundary operators in the field theory with a Euclidean metric signature. Al-

though it may be possible to determine Minkowski space correlators via Wick rotation

(i.e. analytical continuation), a general prescription for evaluating these is necessary.

The Minkowski space correlators can only be determined from their Euclidean coun-

terparts via analytic continuation if the Euclidean space correlators are known for all

frequencies. However, many computations require approximations making it necessary

to directly compute the Minkowski space correlators. The hydrodynamic limit is such

an approximation that necessitates a direct prescription.

To compute the Euclidean space correlators, we were simply able to functionally
differentiate the on-shell supergravity action. For Minkowski correlators there is a com-
plication, which is discussed in detail in [10]. Namely, no equivalence of the form of
(2.7) can give complex Green's functions. This is partially due to the fact that there
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are a variety of Green's functions in the Minkowski case, so the Euclidean boundary
conditions are not sufficient to determine a unique bulk field corresponding the bound-
ary operator. But even after additional boundary conditions are imposed on the bulk
solution, the imaginary components manage to cancel giving real Green's functions.
However, Minkowski Green's functions are in general complex. This complication will
be elucidated in a subsequent example.

Since there are complications for the Lorenztian signature theories, we will reduce
our scope. In particular, we will simply present a prescription for two-point functions,
which will be sufficient to later determine the various hydrodynamic quantities. Recall
that the retarded Green's function for the boundary operator O is defined by

GR(q) = -i d4x eikixi (t) ([OD(x), 0(0)), (2.21)

where 0(t) is the unit step function. All of the other Green's functions (advanced,
Feynman, etc.) can be determined from the retarded Green's function. So, this is
sufficient for understanding the Lorentzian signature theory. In analogy with (2.18), it
was conjectured in [10] that the retarded Green's function should be given by

GR(q) = -2.F(r, q, -q) r=rb' (2.22)

where the flux factor is found just as in the Euclidean case and rb is the location of
the boundary. The additional boundary condition for the retarded Green's function is
that for timelike momenta the bulk solution asymptotes to an incoming wave at the
horizion (r = oc for zero temperature). This makes sense from a physical viewpoint,
because waves should only be able to propagate into a black hole. In every case where
independent verification is possible, this prescription is found to be in agreement with
the results from other methods.

3. Finite Temperature and the AdS Black Hole

3.1 Background Geometry

So far we have seen a gravity/gauge duality between NJ = 4 SYM and AdS5 x S5 at
zero temperature, and this follows because there is no natural scale for these theories.
However, we should look for theories at finite temperature with the aim of finding more
realistic models that could describe a system realizable in the laboratory. Originally,
we presented the AdS geometry by arguing that the string theory background should
respect certain symmetries if it were to be dual to a quantum field theory. Subsequently,
we found such a geometry by studying the type IIB supergravity equations for motion.



In the same way, we can look for other solutions of type IIB supergravity equations

of motion which asymptotically correspond to AdS [1]. In particular, a whole family

of solutions are found related by a single parameter rH, the black hole horizon. Such a

solution is known as the AdS black hole or AdS black three-brane5 at finite temperature

and is given by the ten dimensional metric,

R2 R 2

dso = R2 ( f(r)dt2 + dx 2 + dy2 + dz 2) + dr 2 + R 2daQ, (3.1)
r r2f(r)

where f(r) = 1 - r4 /r . Notice than in the limit TH --+ 00, this metric reduces to the

Lorentzian signature AdS spacetime, and at the boundary we again recover the metric

for the boundary field theory. Like all black holes, there is an intrinsic temperature and

entropy. Here, the scale set by the horizon rH determines the Hawking temperature

T = 1/TrH. Hence, the AdS solution is special in this family in that it corresponds to

the zero temperature solution as claimed previously.

For the solutions with non-zero temperature, it is helpful to change variables by

introducing a dimensionless radius u = r 2/r2. Consequently, f(u) = 1 - u 2 and the

metric assumes the form,

R2 R 2

ds2 = (- f(u)dt 2 + dx 2 + dy 2 + dz 2) + du2 .  (3.2)
TUr 4u 2f(U)

Now the boundary corresponds to u = 0, and the horizon corresponds to u = 1 for

all finite temperatures. As expected, this bulk gravity theory is dual to KN = 4 SYM

with the same temperature T = 1/rrH. Consequently, the same analysis developed

previously effortlessly carries over to the finite temperature case.

3.2 A Hydrodynamic Illustration

Consider a massless scalar field 0 defined on the AdS black hole background where we

can neglect the spherical portion of the geometry as in AdS 5 . The appropriate action

to consider is
S d -jO¢O (3.3)

which is identical in form (modulo a sign) to (2.9) with m = 0 and the appropriate

change in the volume element. In this geometry, the volume element for the black hole

is = R 5/2r4u 3. Variation of the action then yields the equation of motion

1
8_,(v 0 ) = 0. (3.4)

5Unlike the Schwarzschild black hole, the AdS black hole has three flat directions at the horizon.

Hence, it is a three-brane solution.
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It is worth mentioning that this is Laplace' s equation for the AdS black hole geometry,
so we can think of this as a scalar wave equation, which it is. Proceeding as we did in
the zero temperature case, we will use the Fourier transform

(x, u) = e-4 iwt+iqzq(U), (3.5)

Oq d ~i (, U), (3.6)

where we have used the 0(3) rotational symmetry of the Euclidean dimensions to set
the four-momentum to (w, 0, 0, q). This then yields the equation

I, 1+ u2 _ 2 _ 2f

tq f +  
2 fq = 0, (3.7)

af Uf2

where we have introduced dimensionless momenta defined by

THW rHq
S'= , q = (3.8)

2 2

Now, (3.7) has no known solutions, so we can't proceed to calculate the retarded Green's
function as we did before by evaluating the flux factor with the appropriate solution.

Even though the inclusion of finite temperature sufficiently complicates the equa-
tion of motion to make it analytically intractable, it also provides us with another
mechanism to extract information out of the equation of motion that wasn't present in
the zero temperature case. Namely, the temperature sets a scale for the system, so we
can now perform a perturbative expansion in powers of the momenta w and q. This is
known as a hydrodynamic expansion.

Most of the mathematical details have been relegated to appendix B, but the basic
idea is that we need to find a perturbative solution in powers of the momenta that
satisfies the appropriate boundary conditions for the Minkowski space correlator. The
case of the massless scalar is so simple that we could actually just guess the form of
the solution, but it is worth illustrating a systematic approach that will be necessary
later. After converting (3.7) to a first order system, we get the matrix equation

q 2 w(3 .9 )

where ,q = f Oq 6. In vector notation, this equation is y' = A(u) - y. Notice that
the equation of motion has a regular singular point at u = 1. So, we can expand

'This choice was made in order to avoid an irregular singular point.



about the singularity imposing the correct boundary conditions at the horizion and

still get complete solutions in the low momentum regime perturbatively. The two

linearly independent solutions to (3.9) are of the form

y(u) = (1 - u)"F(u), (3.10)

where v is an eigenvalue of (u - 1)A(u) evaluated at the singularity u = 1, F(u) is

holomorphic, and F(1) is the eigenvector associated with v. Computation reveals that

there are two possible eigenvalues to choose from v = ±im/2.

The prescription for fining Minkowski space correlators requires that we impose

an additional boundary condition at the horizon beyond regularity. At the boundary,
both solutions behave like

y(u) oc (1 - u)+ i w/ 2 , (3.11)

where one solution is simply the conjugate of the other. Hence, both solutions are

regular preventing us from choosing a unique solution, because any linear combination

of the solutions satisfies the regularity condition. If we restore the time dependent

phase from the Fourier transform we see that

e-iwt(l - u)-±m /2 = e- iw(tTv), (3.12)

where v = ln(1 - u)rTH/4. The solution with v = -iw/2 consequently corresponds

to an incoming wave at the horizon while its conjugate is an outgoing wave. Our

prescription requires that we use the incoming wave solution, which is based on the

physical intuition that nothing should come back from inside the horizion.

There is also a second problem in determining the the Minkowski space correlator.

We see that one solution is the complex conjugate of the other and y*(q, u) = y(-q, u).

If we simply functionally differentiate the equivalent of (2.16), we would find

G(q) = -. '(u, q)l= - .F(u, -q)lu=l (3.13)

However, this quantity is always real, but we expect the Green's function to be complex

in general. It is unknown how to fix this by modifying the action principle. Instead,
we simply use the ansatz given by (2.22).

Before we can use the prescription to calculate the retarded Green's function, we

still need to calculate the solution with the incoming wave boundary condition (v =

-iw/2). A double Taylor series expansion on F(u) gives to lowest order in the momenta

y(u) = (1 - u)-i / 2 [F(u) + qFq, l( u) + Fl,m(u) + q2Fq2,l (u) + O(W2 , q2, q3)] .

(3.14)



Substituting this expansion into (3.9) and equating like powers in the momenta, we
get a coupled system of differential equations for each combination of the momenta.
Solving these equations recursively, we find that

q(U) = C(q, )(1 - U) - iW/ 2  - i In + n + 3) , (315)-5 2 + o(m2 ' (3.15)

where C(q, w) is an arbitrary constant that can depend on the momenta.
It remains to impose the boundary condition at the boundary u = E by requiring the

bulk field to asymptote to the boundary source that couples to the boundary operator
in the field theory. Hence, require

lim qq(u) = q. (3.16)

Then to lowest order in the momenta, the full solution is

20'(1 - u)-im/2 [ il l+U 1 +U
q (U) 1 - In + + 2 l2 2 3(U 2+imln2+ 2q 2 1n2 -2 2 2 "

(3.17)
The flux factor is the same as in the Euclidean AdS case because the mass doesn't
appear. Hence,

.(c, q, q') = -(27) 46 4 (q + q) 2-lgg fq,(U)fq(U) U=,

S)R3 ( - 1)q2 + i c (3.18)
= _(27)4 4(q _+. 4 (3.18)H EH

The program of holographic renormalization is applicable for any asymptotically AdS
space. We can then shamelessly drop the divergent term in the flux factor without
systematically developing the counter-term action for our theory7 . Finally, via (2.22)
the retarded Green's function is then

GR(q,q') = -(2-r) 4F 4 (q+q') (i+)q 2 ). (3.19)
rH

Now that the procedure for determining the Minkowski correlators at finite temperature
has been illustrated, we will move on to the original goal of studying a non-relativistic
version of the AdS/CFT correspondence at finite temperature.

7In fact the counter-terms found for the AdS background at zero temperature should cancel the
divergencies in the finite temperature case, because the renormalization should be independent of the
background we are working in.
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4. The Conformal SchrSdinger Geometry

4.1 Zero Temperature and Chemical Potential

So far we have presented a well known duality between a conformal field theory and

a higher dimensional black hole both parameterized by a scale that corresponds to

temperature. Perhaps the most useful result of finding such a duality is the inverse

relationship of the couplings in the dual theories. In the weak coupling limit of the

gravitational theory, we can extract information in the strong coupling regime of the

field theory. We would like to find a non-relativistic realization of such a duality, and
so we begin by finding a geometry with the appropriate asymptotic symmetries just as
we did in the relativistic case, which suggested that we use AdS.

In analogy with the relativistic case, we begin by specifying the symmetries of our

sought after non-relativistic theory. In d spatial dimensions, the appropriate symmetry
group is generated by the d-dimensional Sch6dinger algebra where we have addition-
ally imposed conformal invariance. As the name suggests, the Schrodinger group is the

symmetry group of Schrodinger's equation. When we were constructing a geometry
that could support a duality between a relativistic conformal field theory and a string
theory, we saw that it was necessary for the symmetry transformations to be isometries
of the metric. So, we will do the equivalent thing here by looking for a metric that
has the Schr6dinger group as an isometry group. Such a construction can be found by
recognizing that the Schr6dinger group is a subgroup of the symmetry group of AdS,
hence we can deform the AdS metric until it only exhibits the Schrodinger symmetry
[11]. Alternatively, we can build it constructively (often known as guessing) by consid-
ering the symmetry generators acting on the coordinates [12]. Either way, the following
metric is isometric under the desired symmetry group

d2 = - dt 2 + 2dt + d 2 + dr 2 , (4.1)

where 5 = (x, z) and 3 is a parameter with the dimensions of length. This geometry
will be subsequently denoted as Sch5

S .
There are a few surprises here, all of which are related. The first is the appear-

ance of a new non-spatial coordinate (, which reduces the number of Euclidean spatial
directions to two as opposed to the three in the AdS. This is a consequence of intro-
ducing a number operator into the symmetry algebra. There are now two operators
which can be diagonalized in any representation of the algebra, the dimension and the

8Here, 3 is a quantity with the dimensions of length, which we could absorb into a redefinition of
units. However, after discovering where this arises from in a few moments, we will see that keeping it
serves as a useful check on later results by setting it to zero.
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particle number. The ( coordinate corresponds to the particle number, and so it seems
likely that a d-dimensional non-relativistic field theory needs to be embedded in a d + 2
dimensional spacetime. However, since ( corresponds to the particle number, we need
to compactify the s-dimension in order to have a gravity theory dual to non-relativistic
field theory, because non-relativistic theories typically have discrete numbers of parti-
cles. This can be seen by supposing ( has a period of L. Then, Fourier transforming
a function 0(() and imposing periodicity requires

ei = eil(E +L )  = 2N (4.2)
L

where N E Z. Hence, there are a discrete number of particles.
Now that we have geometry with the right symmetries, we would like to claim that

there is a gravity/gauge duality describing a non-relativistic conformal field theory on
the boundary. Since, the AdS geometry can be found as a solution to the type IIB
supergravity equations of motion, we might guess that Sch5 x M is also a solution,
where M is some compact manifold. A tedious computation shows that Sch5 x S5

satisfies the equations, where the only difference in the background fields from AdS is
the presence of a non-trivial two-form potential

B = A A R, (4.3)

where A is a one-form with background value

A= - dt (4.4)

and ir is a constant one-form to be described in more detail later. Since this spacetime
is a solution of the type IIB supergravity equations just with different asymptotics than
AdS, an similar equivalence between the bulk and boundary theories is expected and the
formalism developed for AdS/CFT should carry over. However, before we proceed to
study the boundary theory using the gravity dual, let's take a moment to move toward
our second goal of finding such a duality between theories at finite temperature.

4.2 The Null Melvin Twist

The geometry Sch5 x S5 is a solution of the type IIB equations of motion just like AdS,
but now we would like to find the related solution that has a black hole but still has
the same asymptotics. It turns out that there is a mechanism that can do this for us
called the Null Melvin Twist, which was demonstrated in [13]. The Null Melvin Twist
is a six step procedure that eats a solution of the type IIB equations of motion and



spits out a new solution with different asymptotics. Since this procedure will preserve

all of the curvature scalars, we can reliably use it in the supergravity approximation.

So, we will use it to transform the familiar AdS black hole into the the Schrodinger

black hole.
We will begin by outlining the melvinization procedure. We will need a solution to

the type IIB equations of motion (both the field content and metric) that has a time

coordinate t and two marked coordinates denoted y and p, where p is compact. To
melvinize this solution:

Step I: Boost with parameter 7 in the the y coordinate by applying the trans-

formation

t' = t cosh - y sinh y, (4.5)

y' = -t sinh y + y cosh y. (4.6)

This consequently mixes the dy and dt components of the metric and forms.

Step II: T-dualize along the y coordinate using the conventions:

, 1 , Bay I gaygyb + BayByb
y ay y gab ab -(47)

gYY y gyy y

= 1 In g, B gay B' gayByb+ Baygyb (48)
n--- , Bab--"ab- (4.8)

2 gyy gyy

Step III: Melvinize the marked compact coordinate via the transformation W' =
p + ay, where a is an undetermined parameter.

Step IV: T-dualize back along y.

Step V: Boost back along the y-coordinate using the parameter -7.

Step VI: Finally, take the limit y -+ oc and a -* 0 while holding (' _ ae^/2

fixed.

Observe that melvinization not only changes the asymptotics, but it also mixes the
metric, the dilaton, and the two-form potential B. The action of the melvinization on
the other bosonic fields is unimportant for our purposes, but it is worth mentioning
that this procedure leaves the five form unaffected.

We can now proceed to feed the AdS black hole solution to the Null Melvin twist.
Previously, we had dropped the other fields present in the AdS background except for
the Ramond-Ramond five form, because they are uniformly zero. However, we will
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discover that some of these components will become non-zero after melvinization. In
fact, we know that the gauge field has to be non-zero, because its presence is necessary
to support the zero temperature background. Recall that the black hole metric is

R 2  R2
ds'o = 2(-f(u)dT 2 + d 2 + d d 2) + + R 2 d . (4.9)

0 ru 4u 2f(U)

In order to proceed, we need to choose a coordinate to melvinize with on the five-sphere.
A convenient choice of coordinates is given by the Hopf fibration,

dss = ds 2 + (d + A)2 (4.10)

where CP2 is the complex projective space, 9 is the local coordinate on the Hopf fiber,
and A is the one form potential for the Kahler form on CP 2 (consult the appendix of
[13] for details). The one-form 7 identified earlier is the the fibration dp + A, which is
needed to construct B. Melvinizing the AdS black hole is straight-forward but rather
tedious. So, we will simply cite the result and defer the interested reader to [13] for a
step by step treatement. In string frame, the result is

R2
dso = [ - f (u)(u + 62 )dT2 - 262 f(u)dTdy + (U - 2f(u))dy 2] +

... + (d 2 + d2) R 2 + R2  2 + +A)
ruz 4u2 f (U) K(u)

(4.11)

Asch = 6R [f(u)dT + dy], (4.12)
THUK (u)

where 6 = P/TH = R 2/3'/rH and K(r) = 1 + 62u. This can be made to look more like
(4.1) by transforming to the light cone or null coordinates

y+7 y-T
t = +  . (4.13)

We have also identified the parameter/3 in (4.1) with the melvinization parameter /'
and they are related by 0 = R2/3'. Besides mixing the two-form potential with the
metric, the five-sphere is no longer a sphere like it was in the zero temperature case.
Rather, it is "squashed" by the factor 1/K(u), which we will later see makes a number
of things more complicated such as finding a consistent truncation. The temperature
can also be computed for this black hole like it was in AdS. We find as similar result

TH = /2 (4.14)

9 This choice for 6 is convenient because it makes 6 dimensionless, since/3 has dimensions length
and the melvinization parameter /' has dimensions of inverse length.



where the extract factor of -v is related to the change to light cone coordinates. As

a useful tool for checks on later results, we also note that the melvinization procedure

can be undone by taking 6 -- 0, in which limit we recover the AdS black hole.

5. Non-Relativistic Hydrodynamics

Thus far we have presented a geometry, which solves the type IIB supergravity equa-

tions of motion and is expected to be dual to a non-relativistc conformal field theory

defined on the boundary. In order to study the boundary field theory, we need to de-

velop the constraints hydrodynamics places on non-relativistic fluids. We will stop to

do that now, so we can ultimately proceed to extract information about the boundary

theory from the gravity dual in the low momentum regime.

5.1 The Hydrodynamic Equations

In general, the non-equilibrium behavior of any many particle system is overwhelmingly

complex. However, we can dramatically simplify the situation by considering systems

in which the physical quantities vary slowly over space in time. Consequently, each

portion of the system is almost in equilibrium at any point in time, and any variations

can be completely described terms in of the local values of thermodynamic variables.

Hence, we can apply classical fluid mechanics as an effective field theory, where we have

integrated out the high energy degrees of freedom and only consider dynamics at low

energy and large wavelengths.

Unlike other effective field theories, fluid mechanics is not formulated in terms of a

Lagragian and an action principle. Instead, conservation equations are imposed because

of the presence of dissipative effects in the system. In particular, for a one-component

system we only need to consider the particle density n(t, x), the momentum density

X(t, ') and the energy density e(t, x), which are constrained by the conservation laws

atn(t, -) + -V J (t, ) = 0 (number conservation), (5.1)

&t,(t, 7) + V T(t, 7) = 0 (momentum conservation), (5.2)

(t t, ) + V- (t, 7) = 0 (energy conservation), (5.3)

where 7 is the stress tensor and j" is the energy current density. Since we have assumed

that all variations in time and space are slow, the system is effectively in thermal equi-

librium and can be described by the local densities of conserved macroscopic quantities.

These will be chosen to be the temperature, pressure, and average velocity. The average
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velocity can then be defined according to

, )(t, 5)= ( -(t, )), (5.4)
p

with n being the equilibrium density of particles. Galilean invariance ensures that
there is a conserved energy current for a system in complete equilibrium. However,
when the system is only in local equilibrium there is an extra flow of energy according
to temperature gradients allowing us to define

(E(t, 5)) = (6 + P)!(t, X) - VT(t, ),. (5.5)

where E and P are the equilibrium energy and pressure and / is the thermal conduc-
tivity. Lastly, the stress tensor is given by

(Tij(t, 5)) - SijP(t, x) - [Oj i(t; x) + &ivjXt, 5)] - 6ijvV(t, ) ( - ,I) (5.6)

where we have incorporated contributions due to the pressure P(t, 5), the shear viscosity
r and the bulk viscosity (. It is also worth noting that the thermodynamic quantities
such as the pressure and temperature are not independent of the other quantities. Since
the system is in local equilibrium, the usual thermodynamic relations hold locally, which
are

aT OT
OT (t,) = On O8(n(t, +)) + n a((t,)), (5.7)

P(t ) =On Oi (n (t, F)) + ~C i(n , a )). (5.8)

The conservation equations can be expressed in a more convenient form by com-
bining them with the constitutive equations (5.4), (5.5), and (5.6). First, decompose
the momentum density into longitudinal and transverse components

g(t. ) -= (t. X) + gt(t, X) (5.9)

where

v .t(t, ) = 0, (5.10)

V x ~ (t, ) = 0. (5.11)

The transverse portion of the momentum conservation equation yields the diffusion
equation

at K (t, 5)) = V2g(t(t, )) (5.12)
p



with the diffusion constant D = q/p. The divergence of the momentum conservation

law (i.e. the longitudinal portion) combined with the number conservation law gives

[-n2 + + 2 nt,4 ) + V 2 P(t, ) = 0. (5.13)

Similarly, the momentum density can be eliminated from the energy conservation law

to give
c+PC [((t, 7) - (n(t, )) - KV2 T(t, 7) = 0. (5.14)

5.2 Expressions for the Transport Coefficients

Now that we have determined the non-relativistic hydrodynamic equations, we can

see how these equations place constraints on the behavior of the local densities. Tra-

ditionally, the way to proceed is to study the linear response of the theory to small

perturbations from equilibrium, which will determine the structure of the correlators.

Define the response function

1
XAB(t - t', - ) = -([A(t, ),B(t', ')]). (5.15)

It is then immediately apparent that this is related to the retarded Green's function

we have been studying earlier. Using our convention for the Fourier transform,

XAB(W, q) = d4 x e-iw(t-t')+iQx ') B (t - - ). (5.16)

Then, it is straight forward to show by substituting (5.15) into our definition for the

retarded Green's function (2.21) that

Im G B(w, q) = --XAB (, q), (5.17)

for real frequencies w. Hence, any statement about the response function XAB is also

a statement about the Green's function and vice versa. This will eventually enable us

to determine the transport coefficients.

However, before continuing we can use symmetries and the conservation equations

to learn about what the response functions should look like before we give explicit for-

mulae for them. Of particular interest is the number density/number density response

function X ", Time reversal and rotational invariance combined with the fact that this

is a Hermitian operator requires that it be a real odd function of the frequency w. The

momentum density/momentum density response function X" is a tensor which can

be decomposed into transverse and longitudinal portions

Xgg (w, q ) = ! " (, q) + 6i4 Xt (w, q), (5.18)
q2 1 q2 tIa q
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both of which X7 and X" are real odd functions of the frequency. The number conser-
vation law (5.1) can be used to establish the relation

(,q) = X ) = , q). (5.19)

Similarly, a double application of this law yields

2

x,,(w q)= 2X1W, q). (5.20)

This shows us that once we know x", we can determine most of the remaining response
functions in the longitudinal modes.

Now, that we have related the response functions to something familiar and have
established relations among them we would like to use hydrodynamics to further con-
strain them. The procedure is to construct time-dependent perturbations that slowly
shift the system from equilibrium at which point the perturbation turns off. The re-
sponse of the system is completely described by the response functions defined above,
hence the name. Working in momentum space, we can construct exactly what the low
momentum behavior of the response function must be. This process is involved, so the
reader is deferred to [14] for the details, and we will simply present the results that we
need. Since the transverse momentum density satisfies its own diffusion equation, we
find that

r/wq2
X(w, q)= w +D 2q4

,  (5.21)
Xt -W2 + D2 q4

which has a diffusion pole at w = iDq 2 . The transverse response function for the mo-
mentum density for our purposes will not be the most convenient quantity to compute.
Instead, we can use the rotational invariance of the field theory to fix the momentum
in the z-direction. Then, (5.18) gives us X" = Xxgx. Combined with the momentum
density conservation equation (5.2) and the definition of the response function, we find

Xt -,q , (5.22)

and a second application gives

Xt= 2 z (5.23)

Now, (5.21) translates into the Kubo formula for the shear viscosity

1
= - lim lim -ImGi (w, q). (5.24)

w-O q-+O w0

This is is a quantity we will be able to compute from the bulk theory. Similar, for-
mulae can be expressed for the longitudinal modes to get the speed of sound, thermal
conductivity, etc. [14].
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6. Hydrodynamics and Holography

Having examined the hydrodynamic constraints placed upon the correlators, we can

now determine the various transport coefficients by studying the gravity dual of the

field theory. In particular, we can compute the retarded Green's functions in the low

momentum regime, which subsequently allows us to simply read of the various transport

coefficients by applying Kubo's formulae. The formalism we have developed thus far

allows us to calculate Green's functions by considering first order fluctuations of the

bulk fields around the equilibrium solution provided that the correspondence between

bulk and boundary fields is known. We begin by sketching an argument that gives the

relation between the bulk sources and the boundary operators. Once we know what

field content determines the desired correlators, we present a few useful tools that we

will be essential for solving the equations of motion in the hydrodynamic limit. Having

established the gravity/gauge theory dictionary, we will digress into finding solutions

in two different gauges in the AdS black hole, before finally using these solutions to

determine correlators and transport coefficients in the Schr6dinger spacetime.

6.1 Gauge/Gravity Dictionary

Now that we have a background metric and an understanding of what the conserved

currents of the boundary theory are we would like to turn on sources coupled to these

currents. These sources are the non-normalizable modes of the bulk field perturba-

tions expanded about the background solutions. So, we need to match these non-

normalizable modes to their dual boundary operators. This will be done by imposing

the gauge invariance of the theory. We will simply sketch the procedure placing em-

phasis on the results, and the interested reader can consult [11] for more details. For

simplicity, we will just consider the zero temperature case, because the generalization

to finite temperature and chemical potential is trivial.

We need to consider perturbations of the bulk fields, which will correspond to

background fields from which the boundary theory is constructed. Insight or experience

tells us that the bulk field of primary interest is the metric, which should couple to

some of boundary operators including the stress tensor. So, set

g9((x) = g(o)(x) + hy(x), (6.1)

where h,, is taken to be a first order perturbation. At this point, we need to be able

to identify what combinations of the h,, couple to the boundary operators. The gauge

symmetry generated by diffeomorphisms can provide us with such a tool (section 6.3

has a few more details about gauge transformations for an unfamiliar reader). Firstly,
it will be helpful to fix a gauge. The traditional choice of gauge is the transverse gauge
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hu, = 0, because it will greatly simplify the correspondence that will follow. The
transverse gauge doesn't completely fix the gauge, because it leaves five residual gauge
transformations. Since the bulk theory is gauge invariant and it is dual to the boundary
theory, the boundary theory should also be invariant under the gauge transformations.
Hence, we can require that the source terms in the boundary theory Lagrangian must
be invariant under these residual gauge transformations. This restricts what bulk fields
can couple to which boundary operators, and imposing the Schrodinger symmetry
uniquely fixes it.

Start by postulating the following parameterization of the metric,

1 2e-2 Bo 2e-Bo 1

R2 2e-2B - Bidx) 2  (dt- Bidx) d - Aodt - Aidx +

R--2 = --- 4-- r2 13
+ Xd (dxidxj + Hijdxidxz + dr2 ),
... + x 2 r

(6.2)

where for the moment we have set the AdS radius R equal to 1. This gives the back-
ground Sch 5 metric coupled to additional fields, which we will use to parameterize
the metric fluctuations. Expanding the additional fields to first order and interpreting
them as perturbations,

r2 (Aor2 2Bo)
-B 0

r (Ar 2 + 2B1)

2 (A 2r 2 + 2B2)

0

-Bo

1 B1-- !B
1-B2
00

r (Air 2 + 2B 1) ; (A 2r2 + 2B2)
B1 B2

Hzx Hzz
0 0

For the sake of computation, it will be useful to define dimensionless equivalents of
these fields for finite temperature. In particular, we set

Ao
2 ,
H

A
A i - - Ar

TH
Bi -+ rHBi. (6.4)

Finally, in the (T, y, u) coordinates we will use later the perturbations are then

Ao + u+262 Bo +u 2
Ao + 22Bo - !X

6uA1+(u+262 )B 1

vbsu
6uA 2 +(u+262 )B 2

0

Ao + 262B - X

A0  u-26
2 Bo + X

u 2
6uA 1-(u-262 )B1

v2-6u
6uA 2 -(u-26 2 )B 2

V06u
0

SuAi+(u+262 )B1 6uA 2 +(u+262 )B 2
v2u 6/26u

6uAl-(u-262)B1 6uA2-(u-2 2)B2

0bu 06u
Hx Hzz
Hzx Hz

0 0

R 2

hV = - 2

0
0

0 .

0

O0

(6.3)

R2
" 2THU

0

0

0

0

O(65)
(6.5)



All of the transformation rules for these perturbations under infinitesimal diffeo-

morphisms can be written out (though they are rather unenlightening), and a dual

non-relativistic field theory can be constructed with the exact same symmetries. This

identification then immediately furnishes an interpretation of these perturbations. The

conclusion is that:

* Hij couples to the stress tensor Tij

* A, couples to the mass current (n, .),

* B, couples to the energy current (e, j').

The only mode that remains is X, which has no immediate physical interpretation in

the boundary theory. Notice that we have determined the bulk fields dual to all of

the operators we considered in the hydrodynamic analysis. So, for our purposes the

boundary operators coupled to the perturbations for other fields are unecessary, and

we would like to set them to zero if possible.

Lastly, in order to compute the retarded Green's functions corresponding to these

operators, we need to know the form of the on-shell action for the metric. In particular,
we only need the quadratic terms, which are

Son-shell = fd4x v/-guu (hilOh + Vuhv) u, (6.6)

where no0 = 27 5/2R 4/N is the ten dimensional gravitational constant. At this point,
we are ready to proceed to study these modes of the metric fluctuations.

6.2 Classification of the Modes

In the previous section it was argued that the only field which couples to the boundary

operators of interest is the metric. So, we want to set as many perturbations to zero

as possible while still keeping the metric perturbations unrestricted. The fermioninc

content is trivially set to zero, and only a few bosonic fields will contribute. It is

not hard to show that the only fields to consider are the metric, the dilaton, and the

two-form potential.
Consider the perturbations

gp(x) -+ g,(x) + h,,v(x), (6.7)

A,(x) -* A,(x) + 6A,(x), (6.8)

)(x) - 1(x) + 4D4(x). (6.9)



As before, it is convenient to work with the momentum space equivalents of the per-
turbations related by the Fourier transform. For an arbitrary pertrubation 5h(x)

h(, ) I ei(-+qyy+qz)h(q,u), (6.10)

where we have again used the rotational symmetry to remove the x dependence in the
Fourier kernel. There is an important distinction for the Schr6dinger black hole that is
not present in the AdS case. There is a second momentum that is not spatial, which is
a consequence of the chemical potential. This will be important later, because we need
to evaluate the Green's functions at equilibrium.

Let's stop for a moment and generalize. Instead suppose that we have a system
with an O(d) symmetry. This symmetry allows us to fix the momentum in just one
direction, which is reflected in the kernel of the Fourier transform. However, there
still remains an O(d - 1) residual symmetry, which consists of rotations about the
marked axis. This residual symmetry must still be a good symmetry of the system,
hence the equations of motion must respect it. Under the O(d - 1) group action, the
fields can transform as scalars, vectors, or tensors, but the equations of motion are
still invariant. Hence, modes that couple together in the equations of motion must
transform in the same way under the residual O(d - 1) symmetry. This simplifies the
analysis by allowing us to decompose the fluctuations into independent channels that
can be studied separately.

For Sch5 , the residual symmetry is a trivial 0(1) symmetry, which is only a change
of sign. However, this does ensure the decoupling of the perturbations into two chan-
nelsio

Scalars (Sound Channel): hT,, hy,, hy, , hZT, hz,, h, zz,6A-, Ay, 6Az, 6A,, 6P (6.11)

Vectors (Shear Channel): hXT, hxy, hz, Ax (6.12)

It is also worth noting that in the qz -+ 0 limit, we regain the 0(2) symmetry and see
even more decoupling. Here, hzx decouples completely because it is the only component
that transforms as a tensor. This will later simplify the computation of the shear
viscosity, since we only need the zero momentum limit.

6.3 Residual Gauge Transformations

Seeing that the field perturbations separate into channels is helpful, because we can
reduce the number of equations that need to be solved simultaneously. However, an

10The naming arises from considering the boundary operators to which these bulk fields couple. The
"sound channel" has solutions which exhibit the sound pole in the boundary theory i.e. it couples to
the longitudinal components of the momentum density. Conversely, the "shear channel" exhibits the
diffusive behavior of the transverse components.



additional symmetry allows us to extract even more from the equations of motion

without going through the laborious task of solving coupled second order equations.

This symmetry is the gauge symmetry.

Since our bulk theory is simply classical supergravity which we have linearized

about the background solutions, we have a gauge theory with diffeomorphisms as the

gauge transformation. This is simply a statement that a change of coordinates shouldn't

affect the physics of the theory. In general, an infinitesimal diffeomorphism acts on the

fields according to

x" -x Z" + rq, (6.13)

g v(x) -- g~v(x) - Vri, - VVl7r,, (6.14)

A,(x) -- A,(x) - rlVA,(x) - Ap(x)V,~r p , (6.15)

S(x) -* (x) - 7JPVpa(x), (6.16)

where we have recognized the patterns that each of the transformations is the Lie

derivative of the field making it easy to generalize the transformation to higher compo-

nent objects. It is also sufficient to consider only infinitesimal transformations, because

global transformations can be constructed from them. Since we have given perturba-

tions to all of our fields, we are free to let the background fields be invariant and only

allow the perturbations to transform. Since the dictionary between bulk and boundary

fields was given in the transverse gauge h,, = 0, we will need to enforce this in the

gauge transformation. This yields the constraint equations

Vu, - Vr, = 8,rl, + ouql, - 2FPurp = 0. (6.17)

To first order in the diffeomorphism, there are five solutions to this equation corre-

sponding to five gauge transformations which preserve the transverse gauge. Because

the action is invariant under the gauge transformation, the resulting equations of mo-

tion must be as well. Hence, linearity tells us that the gauge transformation acting on

the trivial solution must also be a solution of the equations of motion. We are then

instantly guaranteed to have five pure gauge solutions to the equations of motion which

are exact to all orders in momenta.

We can go even farther than this and find gauge invariant parameterizations of the

fluctuations [15]. By the same reasoning as before, the equation of motion that the

gauge invariant variable satisfy must by definition be gauge invariant. Hence, we expect

to see further decoupling because there are less gauge invariant parameterizations than

there are fluctuations.
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6.4 Finding the Bulk Solutions

The end goal is to compute retarded Green's functions of the boundary operators, and
to do this we need to know the bulk solutions in the hydrodynamic limit. Naively, we
could approach this problem just as we did before in computing the massless scalar
coupled to the AdS black hole background by finding the equations of motion and
directly solving them in the hydrodynamic limit. However, because AdS has a diagonal
metric even the most complicated channel, the sound channel, is relatively easy to solve
in the transverse gauge. This turns out not to be the case in the Schr6dinger black
hole"1 .

There are two ways to proceed in finding these solutions at this point, and both
involve melvinization. The insight is that the solutions in the Schridinger spacetime can
be determined from their AdS counterparts. They can either be directly melvinized,
or we can use melvinization to find linear combinations of the metric perturbations
that decouple many of the equations. In either approach, we need to know how the
AdS perturbations are related to their Schr6dinger counterparts. This can be found by
melvinization.

Recall the melvinization procedure introduced earlier. We found that the non-
trivial fields in the Schr6dinger background are the metric, the dilaton, and the one-form
potential, which in turn can be constructed from the same fields in the AdS background.
So, we will want to melvinize the AdS perturbations of these fields to relate them to
the perturbations in the Schr6dinger spacetime. Now, it is not guaranteed that the
transverse gauge in AdS melvinizes to the transverse gauge in the Schridinger black
hole. So, we will proceed without fixing a gauge until after we have melvinized. The
AdS fields with fluctuations are

AdS (O)AdS + hAdS (6.18)

AdS = 6AdS, (6.19)

AdS = S~AdS. (6.20)

When we originally melvinized the AdS black hole background, the process was not
simple, but it could still be done by hand. Now that both the dilaton and gauge field
are non-trivial and that the metric has off diagonal components, the melvinization
procedure is significantly more complicated. We will simply cite the results that were
found using the Mathematica package presented in the appendix.

"1In more detail, the problem is that a large number of fields couple together in the equations of
motion. After performing a hydrodynamic expansion, the recursive systems of equations in general
have more than two coupled first order equations. There is no general solution for such a system. The
AdS sound channel can be easily parameterized such that only coupled first order equations need to
be solved
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We will define the Schr6dinger perturbations in the same way as their AdS relatives,
with the only difference being the difference in the background values. The first metric

components to consider are hu, which are related to the AdS perturbations by

Sch = hAdS hSch hAdS hSch = hAdS (6.21)

hsch - u - f62 hAdS + 62 hAdS 6R_ 6 AAdS (6.22)
uy uK uY uK ut THUK (2

hsch U + 62 Ad 62 f AdS 6Rf AdS
hr _ h h6A (6.23)

U' uK ut uK uY  rHK u

Observe that the melvinization mixes components of the gauge field with the metric.

This is a the primary cause of the extra complication in determining the non-relativistic

correlators. Now, we can use this result to relate the transverse gauge in the Schridinger

spacetime to a choice of gauge in AdS. We see that the gauge choice

AdS = 0, h AdS = 0, h AdS = 0, (6.24)

hAdS =6f 6AAdS hAdS =- 6AAdS (6.25)
THU THU

melvinizes to the transverse gauge h Sh = 0. This gauge choice will be referred to as the

Schr6dinger transverse gauge h h = 0, since the two are equivalent via melvinization.

Now that we are familiar with the two gauges that are convenient to work in, we

can write down the rest of the relations. However, since these formulae are rather

complicated, we will defer the explicit presentation of these results to the appendices.

Now that we can relate the perturbations between the two asymptotically AdS

spacetimes, we can proceed to find the solutions for the Schridinger spacetime. As

mentioned before, the Schr6dinger fluctuations can be parameterized in terms of the

AdS fluctuations, which should result in some decoupling in the equations of motion.

This turns out to be true and it works beautifully for the shear channel, but it isn't

straightforward to apply this parameterization to the sound channel. The problem

is that ten dimensional Schr6dinger geometry is not Sch5 x S5 . Instead, the five-

sphere is "squashed" a little bit. Hence, the Kaluza-Klein reduction doesn't permit

us to simply drop the pseudo-spherical geometry and proceed like we did in AdS. A

consistent truncation does exist with the additional complication being the introduction

of two new scalar fields [16]. These scalar field incorporate the effects of the "squashed"

sphere on the Sch5 portion of the geometry, and they complicate the sound channel

equations enough such that they become nearly intractable to solve directly even after

using the AdS parameterization. The easiest approach is then to solve for the AdS

perturbations and then use the formulae derived by melvinization to determine the
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Schrodinger solutions. This can all be done without considering the five dimensional
consistent truncation.

We will solve the AdS perturbations in the same way we solved for the scalar field
coupled to the black hole background. In fact we will do this twice, once for each gauge
we want to consider. The reason for this is that the metric solutions for the transverse
gauge hAdS = 0 are also solutions for the AdS gauge h'h = 0 with the gauge field
perturbation 6AA d S = 0. This reflects that fact that there are more nontrivial degrees
of freedom in the Schrodinger black hole than in the AdS black hole.

6.4.1 The AdS Black Hole with hAdS = 0Up

We will begin by briefly applying several of the tools we have developed thus far by
studying symmetries of the system and then solving the equations of motion. An
interested reader can consult [1, 2] for more details about solving the AdS metric per-
turbations in the transverse gauge. Experience teaches us that the metric perturbations
we want to consider have one raised and one lowered index. In fact, these are the modes
that couple to the boundary stress-energy tensor. So, define

Hpv, = hl,. (6.26)

Since there are no off-diagonal elements in the metric, H,, oc h,, up to a radially
dependent factor.

After fixing the momenta in the z-direction using the same Fourier transform as
defined by (3.5), there is still an 0(2) residual symmetry in the xy plane. Hence, we
see that there are three channels among which the perturbations are divided:

Scalars (Sound Channel): Hzt, Htt, Hzz, (Hxx, Hyy , or Haa)

Vectors (Shear Channel): Hxt, Hzx, and Ht, Hzy,

Tensors (Scalar Channel): Hxy (Hbb).

(6.27)

(6.28)

(6.29)

It is worth noting that the tensor representation is reducible into a trace and traceless
part. So, we can exchange Haa = Hxx + Hy, for Hx and H,, in the sound channel
provided we add another scalar channel with Hbb = Hxx - Hyy. The full metric with
the first order perturbations is then

- + LHtt
1 Hxt

AdS _ HtS T2 uHyt

0

' Hxt
U U

+ HZ
1 H
u

o1_7L

± Hyx
±+!H

+ 1 H,

u zy

0

Hz

0

(6.30)

0
0
0O .

0
r2
HH

4U2 (1--U2 )



Variation of the action gives Einstein's equation

G,, = -Ag, (6.31)

where the cosmological constant is A = -6/R 2 . These equations can be rearranged to

yield Ricci's equation or the trace-reversed equation

2A
R,,= 3 9,. (6.32)

The traced reversed form of the equations are slightly more convenient to work with,
but the only difference is in the linear combinations of the sound channel equations.

The other channels yield equivalent expressions for corresponding components of the

tensorial equation. Now, the scalar equations of motion resulting from this parameter-

ization of the metric are

(Exy)

(ExZ - EYY)

1 + u 2  2  2f

Hx H yx +  U 2  Hyx = 0,

1 + u 2  2 _ 2 f
Hbb" -+ Hbb' + - Hbb = 0,

uf uf 2

where we have indicated the component of the Ricci equation that yielded

tion. The two shear channels are (a = x, y)

(Euc)

(Et)

(Ezao)

W- Hct + qHZ = 0,
f

Ha 1 Ht- -(qHct + wHz.) = 0,

H1 +u 2 +
H" Hz + -2 (qHct + wHza) = 0.

uf Uf

(6.33)

(6.34)

each equa-

(6.35)

(6.36)

(6.37)

Lastly, once we have made the further redefinition Hii = Haa + Hzz the sound channel
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equations are

/ 3(1 + 2) 1 + U2 2qw q2 2
(Ett) Htt - HI Ht - Htt - Hi = 0O

2uf 2u f af 2 Uf af2

(6.38)
1 1 1 2 - 2  2-q 2f(Exx + EHt) H" + -Ht - I H + 2f Ha = O,
u f aa + Uf

(6.39)
1 H' q

(Ezt) H"- Hzt + Haa = 0,

(6.40)

, , 1H 3 + 2 1 2
(Ezz) H- Ha + 3H + u+ Hi' + + ...

2u 2uf f a
2qrm q2 W 2 2 + q2f

' + 2 -Hzt + Htt + H- H = 0
Uf uf tUf 2  uf 2

(6.41)
2qu mu

(Enu) qHzt + uwHz + Hzt + 7-Hi = 0,f f
(6.42)

(Euz) wHzt + qf Hit - qf Haa - quHtt = 0,

(6.43)

(Euu) H - Ht' + -Ht H1 = 0.

(6.44)

Notice that the scalar channel equations (6.33) and (6.34) are the same equation
of motion that was derived for a massless scalar field coupled to the AdS background

(3.7), hence the name scalar channel. We already know these solutions which are given
by (3.17) with the appropriate exchange in field names.

In both the shear and sound channels, we notice that there is a redundancy in the
equations. because there are fewer variables than there are equations. In particular,
there are the so called gauge equations which are first order constraints imposed by
our choice of gauge. In order to find the solutions, we need to select a complete set of
equations, and then we can reduce them to a first order system which can be expanded
in the hydrodynamic limit. To be completely rigorous, we should reduce the equations
to a set from which we can derive all of the remaining equations. However, this is
tedious in general, because the equations are not simply linear combinations of each
other. Alternatively, we can select the same number of equations as there are degrees
of freedom using trial and error until we find the correct physical behavior near the



horizon as exhibited by the eigenvalues of the first order system. We will simply give

the results from the later process.

For the shear channels, we need to select two equations since there are two degrees

of freedom. We will choose to use (6.35) and (6.36), which means that the general

solutions will have three degrees of freedom, which need to be fixed. The first order

system constructed from these equations is

Ht , 0 0- Hat

Hza = 0 0 1 Hza . (6.45)

uf uf uPat qW q2 1 Pat

We find three eigenvalues which are v = 0, ±fi/2. The outgoing wave can be discarded

as unphysical. The v = 0 solution meets the incoming wave boundary condition because

it corresponds to a pure gauge solution to the equations of motion, and the v = -im/2

is the incoming wave that we expected to find. Thus, we have two degrees of freedom

remaining, which can be fixed by requiring the bulk fields to asymptote to their dual

boundary fields. In the hydrodynamic limit, the two solutions are then

Ht = w, (6.46)

H' = -q, (6.47)

Hin = (1 - u)-i/2if q ( u)[( u) l+
2iq1f2 1

. iq3 f + O (q4, q2w,) 2 (6.48)

Hzainc = (1 - u)-i/2 ( 1 - i l n l  +  ) (6.49)

We might wonder what would have happened has we chosen to forgo using the

first order gauge equation and selected the other second order dynamical equation. In

that case we would end up with four degrees of freedom for a general solution, but we

know that we still need to reduce this to two. Of course, discarding the outgoing wave
solution eliminates one of the extra two degrees of freedom, but what happens to other
one? The other degree of freedom has an exponent v = 0 and is actually a pure gauge
solution that arises from a gauge transformation, which breaks the transverse gauge.
In particular, the solution found corresponding to this exponent does not satisfy (6.35)

and can be discarded. The solutions then are the same as we found using the gauge

equation.
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Now, we are prepared to move onto solving the sound channel equations of motion.
There are four independent perturbations, which indicates that we need to select four
of the seven available equations. Although there are several combinations of the listed
equations that will work for this purpose, we will use (6.38), (6.40), (6.42), and (6.43).
The resulting first order system is

0 0

0 0

0 U

0 0
0 u(l+u 2 )+2W2

2uf

qw 0uf

0

0
29u
wf
0

q(U3+u+2W2)

u f

0

The exponents of this system are v = 0, 0, ±1/212, +fiw/2. We need four solutions
and the correct ones to choose have the exponents v = -1/2, 0, 0, -iwo/2, which can
be interpreted as three pure gauge solutions and an incoming wave. The complete
solutions are

H = -2q, (6.51)

H't = , (6.52)

H"
H" tt

11zt

(6.53)

(6.54)

= -2,
= q f,

H , -1 + u 2 + 2w2U
Htt =

H ! I = -2v ,

H II" = 2q2 sin - 1 u - 30 ,

Hzt = -qw(sin- U + ± V),

(6.55)

(6.56)

(6.57)

(6.58)

12It is at least worth mentioning in passing that the exponent v = 1/2 is blocked. Fortunately, its
corresponding solution is not one we will need.

(0

-Ly
0

0

0

Htt

Haa
H,

Hzt

Ptt

Pzt

1
f
1
f
0
0

3-u
2

2uf

0

0

qf

1
q(1+U2)

2tu
1
u

Htt

Haa

Hi

Hzt

Ptt

Pzt

(6.50)



H = (1 - u)-iw/ 2  
- )+(q3,3) , (6.59)

Hc = (1 - u)-iW/2  i 2 2 1 - U + In 2 + ) +O( 3aa 2 2 3 2
(6.60)

H7 = (1 - u) - i /2 [1 - + O(q 3, q)], (6.61)

HC = (1 - U)-iW/2  + O(, ) , (6.62)

where we have only given the non-zero values for the pure gauge solutions.

6.4.2 The AdS Black Hole with hsch = 0

Even though the metric perturbations which respect h A s = 0 are not quite all the
solutions we want, they are a subset of them. So, finding these solutions was a nec-
essary task and a good warm up. There are several insights from solving the metric
perturbations in the AdS transverse gauge that will help us find the solutions which
melvinize to the Schr6dinger transverse gauge. In particular, the same parameteriza-
tion will be used and we will facilitate solving the equations by using the decoupling
into independent channels.

For the h Ad = 0 gauge, we could simply discard the gauge field because its degrees
of freedom are independent of the metric, but this is no longer the case in the transverse
Schr6dinger gauge. We now need to use following five dimensional action which results
from the consistent truncation

S 2 d 5  R - 2A - F,,F" v m- AA (663)

where A = -6/R 2 and m 2 = 8/R 2. The gauge field here is the same one-form that
appears in (4.3). This is simply the Proca action coupled to the AdS black hole, which
is the result of the dimensional reduction on the five-sphere [16]. Note that we still
need to impose the Lorentz gauge constraint

V7,A = 0, (6.64)

in addition to the equations of motion resulting from the variation of the action 13 . We
will use the parameterization for the metric modes as specified by (6.26). However,

13The Lorentz gauge condition needs to be imposed, because the mass term in the Lagrangian is not
gauge invariant. To find a gauge invariant action we need to consider the more general Stiickleberg
action, which can be made manifestly gauge invariant. The Proca action is then one possible gauge
choice and the Lorentz gauge condition is inherited as a constraint.



we still need to choose a parameterization for the gauge field, and a little dimensional

analysis will help. The bare gauge field perturbations (except for [A,] = L) are dimen-

sionless as required for the action (6.63) to be a dimensionless scalar. We have seen

though that raised indices have less singular behavior near the boundary, so we will

want to multiply each gauge field component by R2 /r Hu. Introducing extra factors of

u will make the resulting equations more complicated even though the solutions are

more well behaved, so we will settle for the following compromise

21 1uH + H HH 1Hz R 0

g AdS = Hyt yx + gH Hzy -SAU , (6.65)
H Hz Hx Hzy 1 + !H z 0

Rf6A u R6Ar
-R---L6A, O A, OU 0 u 4u

2
(1_U

2
)

R2

AAdS 2 (At, 6A, , 6 A, SAz, rH6 Au), (6.66)
TH

where we will agree to add the 1/u term later when needed. It turns out we will

never need to worry about raising the index on the 6A term, because we will shortly

eliminate it.

Variation of the action yields two sets of equations of motion, one for the metric

and one for the gauge field. The metric's equation of motion is Einstein's equation

G,, = -Ag,, + TA, + 3T , (6.67)

where T H is the stress-energy tensor of the of the corresponding p-forms given by

TH p 2+ 1) gyVH2 - H _...H (6.68)

Like before, it is more convenient to work with Ricci's equations, so the stress-energy

tensors need to be trace reversed. Conveniently, (6.68) immediately tells us that the

stress-energy tensors will not contribute to the metric equations at first order in the

perturbations, because the background value of the gauge field is zero. Hence, we can

simply drop the stress-energy tensors and write down Ricci's equation as before

2A
Rt, = 3 " " (6.69)

Even though the tensorial structure of the equation of motion is the same, the individual

components are not all the same due to the presence of 6A,.

Both of the scalar channels are unaffected by the change of gauge, and the solutions

should be familiar at this point. We also find that the Hxt-Hz, shear channel is similarly



unaffected. However, we find the first difference in the Hyt-H,, channel, which is

expected since the h,, mode is no longer trivial. The equations of motion are

2iA 2

SqHz~SH'+
f Hy+

1
H" - -H't - ytU

+ 2inw6A' - f (qHo,
21f

+ wHz ) -

- q2f)6A, = 0,

(6.70)

2iAw 6A
b6A, =0,

(6.71)

(, 1 + 2i2 2iq( 2)

(Ezy) Hz" uf H zy - 2iAqS6A' + (qHyt + wHzc) + uf, = 0,
uf H Uf2 uf

(6.72)

where we have rescaled A = 6R/rH. Likewise, the sound channel is also affected,

3(1 1+ u 2

tt 2uf ntt + 2uf

q2 t'2

uf uf 2

- 4iA6A' - 2 Hzt -
Uf2

+ 6iAw(1 + U2)
+ 6As = 0,f

(6.73)

(Exx + EYY)
1

H' + -u
1
ui

1 + U2

u H'a
Uf

w2  q2 f
+ uf2  Haa

Uf 2

4iAw
(6A = .74)

(6.74)

+ 2iAqf 6A's +
qw

HU
uf

2iAq

U
+ 3u 2)6Au = 0,

(6.75)

(Ezz) Hg - + Htt +

2u

q2
. + -Htt

of

3+u 2

2uf
2

+ -WHij -
uf 2

+ u 2  2q Hz +
Uf aa Uf
2 + C12 f 2iAw

uf 2 U

2qu
qHzt + wH' + Hz +

f
mU
-Hi + 2iAq2 f SA = 0,

(6.77)

wHzt + qf Htt - qf Haa - quHtt - 2iAqw f SA = 0,
(6.78)

U-

f H2
12iAmu

+ 4iA 6A - 6A = 0.

(6.79)
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(Eyt)

(Ezt)
1 H'

S- I zU

=0,

(Eut)

(Euz)

(Euu)

(6.76)

H' - Ht + - HIt
ti f t



Observe that for 6A, = 0, all of these equations are equivalent to their counterparts
in the transverse gauge as we expected. Hence, all of our previous solutions are indeed
solutions in this gauge as was claimed earlier, provided 6A, = 0 is consistent with the
gauge field equations of motion. This is obviously true because there is no background
gauge field. Before we can proceed, we explicitly need to determine the gauge field
equations of motion as well because of the coupling to 6A,.

Varying the action with respect to the gauge field yields the Proca equation of for
a massive vector particle coupled to a curved background,

VF"" - m 2A" = 0. (6.80)

There are five equations of motion and one gauge constraint due to (6.64),

5A' + 2iumA', - tAU 2 + q2 l At = 0, (6.81)
uf U2

2u w2u- (2 + q2 u)f
6A" 6Aa + 2 6A = 0, (6.82)

f 2f2
2u A qm 4iqu W2u - 2f

A 6A - 2iq6A', + 2, + 6  + A = 0, (6.83)
f oU Uf2  f U2f2

2i
w6A' + qf 6A' + -(uw 2 - 2f - q2 uf)A = 0, (6.84)U

1 + u2  i i
f 6A' - A +A + 6At = 0, (6.85)

u 2u 2u f

where a = x, y. A little bit of work shows that Lorentz gauge constraint (6.85) is
actually automatically satisfied by the other five equations. Hence, we won't have to
worry about imposing the Lorentz gauge. Consistent with symmetry considerations, we
see that the modes in the xy-plane satisfy their own scalar equations, while the other
modes couple together. We need the solutions for 6A to determine the unknown metric
perturbations, which are needed to get the complete melvinized solutions. However, we
see that there can only be four propagating degrees of freedom for this five component
gauge field, because there is no dynamical equation for 6A,,. This is consistent with
what we should expect for a massive gauge field [17]. So, (6.84) determines 6A, in
terms of the other gauge field components.

Let's stop for a moment before tackling the computation of the coupled shear and
sound modes and compute the solutions for the transverse components of the gauge
field, which we will need later anyway. Equation (6.82) can be expressed as the first
order system

A, ( 0 ( A
P=A - 2 q PA (6.86)
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This system as two exponents v = ±iw/2, and choosing the incoming wave condition

corresponds to the solution

AU = (1 - u) i / 2  -u+ -In (I - ) + o(q3, q2, W2) •

(6.87)

This solution also reveals a linear divergence in the gauge field modes with lower indices

like we suspected earlier. By raising the index or equivalently multiplying by u, this

component is immediately rendered finite. Even though we are primarily interested

in the metric modes, this solution will be needed because the melvinization mixes the

gauge field with the metric. Now all that remains is to solve the metric modes coupled

to the gauge field.
Since the the gauge field equations of motion are self-contained, we could solve for

SA, and then use its solutions to source the metric equations. However, this breaks the

formalism that has been developed so far and presented more completely in appendix

B by introducing inhomogeneous terms. Instead, it turns out to be easier to solve the

gauge field perturbations simultaneously with the metric. The source 6A couples the

sound and shear channels together, so the solutions are no longer completely indepen-

dent. However, we can still treat the channels separately because 5A, is completely

independent of the metric perturbations. Equation (6.84) will be used to eliminate

SAu. Then, we will effectively solve for the gauge modes 6At and 6Az twice, and then

match the solutions between the shear and sound channels by identifying the equivalent

gauge solutions.
Starting with the shear channel, equations (6.70) and (6.72) along with the gauge

field equations (6.81) and (6.83) yield the first order system

H0 0 0 0 q + 72 A Aqu(w2_q2f)

H0 0 0 0 1 0 0 H
At 0 0 0 0 0 10 6A
Az = 0 0 0 0 0 0 1 Az (6.88)

P qW W2 AqW Aq 2  1 0 0
PZY uf uf uf 0 0 F

0 0 -L 0 0 W 2±2u(2+q2u) qw(1±u2) P1U2f 1C )C
F4  u P4P4 0 0 I0 0 9W q 2 f

u2f K K

where IC = w2u - (2 + q2u) f. Applying the procedure that should be familiar by now,
the exponents of the system are v = 0, ±fi/2, where there is a multiplicity of three
for the complex values to give seven total. The four solutions we need are the three
incoming waves and the gauge solution v = 0. The gauge solution and one incoming
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wave solution are unchanged in the new gauge as claimed. The only new solutions are
the two new incoming waves, which couple to the metric modes. The new solutions are

H c2 = (1

Ainc2

Aa7c2  (1

H.ca= (1 -

- u)-iw/2 x O(q3, qW, V2),

-u)-im/2  Aq Inu + (q3, q2 w2),

- u)-iw/2 x O(q, qw, W2),

)- iw/2  + f+ ln1 +O(q 2 q, W2)
u 2 2

u)-iW /2 A + + U2 + f in  + O(q, q , )4 u+l

H nc3 = (1 - i /2 x O(q1 , q , 2 ) ,
Hzy

SA n S = (1 -

6Ainca = (1 -" Z

2u u + 1

u) - il /2 x O(q ,qW, W2),

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

(6.95)

(6.96)

where we have been particularly liberal about omitting higher order terms, which
quickly become rather complicated expressions.

Proceeding with the sound channel in the exact same way, equations (6.73), (6.75),
(6.77), (6.78),(6.81) and (6.83) were selected to construct the first order system. The
explicit matrix is large and generally uninformative, so it will not be written down
explicitly. The exponents of the system are exactly the same as in transverse gauge
case except for the addition of two pairs of v = ±iw/2. These solutions contain the
two incoming wave modes that we need to complete our solutions. Just as we expected
based on previous arguments, all of the transverse gauge solutions carry over. Hence,
the only new information is contained in the solutions

t

H inc2
aa

Hinc2H c2

_ u)-iW/2

- U)-iru/2

H nc2 = (1 - U)-iw/2

UA nc2 = (1 ) - i'/2

A2 = (1 )-iW/2

x O(q 3 , qw, w 2),

So( 3 , qm, W2),

SO(q W ,  
2 )2),

[A q 2 f lnu + .(q3, q2, 2)j2

x O(q 3 , q, w2),

[1 i( 1 )+u ](2 q2)j+ 2 + In + O(q 2 q 2)
U U 2 2)

(6.97)

(6.98)

(6.99)

(6.100)

(6.101)

(6.102)



Ht n c3  (1 - u)-il/ 2 [2Aw + O(q2 , qt, 2)] (6.103)

H inc3 = (1 - u)-im/ 2 2iA +Am w + ln l + o(q 2 , (6.104)aa , (6.104)

H 3 = (1 - u) -ir /2 x O(q2 q 2) (6.105)

Hnc3 3  (1 U) - im/ 2 x O(q 3, qw, W2), (6.106)

6nc 3 =(1_ )-im/ 2  + + 2, , (6.107)

5Ainc3 = (1 - u)- i/ 2 X O(q3, q2 , 2). (6.108)

We can now match the modes across the shear and sound channels. In particular,
notice that (6.102) is identical to (6.92). Hence, all of the solutions labeled by Hinc2

can be grouped together as one metric mode sourced by the gauge field. Similarly, note
that (6.107) is a constant multiple of (6.95), where the constant is the dimensionless
frequency. So, all of the Hinc solutions are coupled together, but the shear channel
solutions need to be multiplied by w in order to make the integration constant the
same. Now that we have finished solving for the metric perturbations in the transverse
Schrbdinger gauge, we can return to computing the Schr6dinger Green's functions.

6.5 Helicity Eigenstates and a Minor Complication

We know how to express the Schr6dinger perturbations in terms of the AdS solutions,
and we have the AdS solutions in the gauge hSh = 0. So, we should be able to simply
write out the solutions for the Schr6dinger metric fluctuations and start computing
the retarded Green's functions. Unfortunately, we're not quite there yet, because of
one oversight. The relativistic boundary theory in AdS is a four dimensional theory,
while the non-relativistic boundary theory in the Schr6dinger spacetime is only three
dimensional. This is reflected in the fact that AdS 5 has three Euclidean dimensions,
while Schs has only two. However, when we solved the solutions in AdS. we exploited
the rotational invariance of the Euclidean dimensions to fix the momentum along the
z-axis. We need to undo this in order to get the correct momentum structure after
melvinization, because the y-coordinate needs to be treated differently than x and z.

We need to be a little more careful about how we treat the qy momentum. The
spatial momentum is k = (qy, 0, qz) 14 , where we have still used rotational symmetry to

14The coordinates are ordered (t, y, x, z, u) in order to match with the coordinates in Sch5 , with t
set to T after the melvinization. This is because the time coordinate in the Schr6dinger spacetime is
a null coordinate in the AdS parameterization we do the melvinization with.



set qx = 0. Then, we can define an orthonormal momentum space basis

ft= (1,6,0), = (0,1,0), f2 = (0, 2,0), fP (0,4,0), f = (0, 0,1).
(6.109)

It will be convenient to choose e2 = (0, 1, 0) and 1 = 2 x = b(-qz, 0, q,), where

q = Jq. Analogous to what was done earlier, we can decompose hAdS into sums of

helicity eigenstates according the to the 0(2) residual symmetry about the direction

of the momentum. There are three helicity states h = 0, 1, 2 corresponding to scalar,
vector, and tensor modes. These modes can be further subdivided into the tensor rep-

resentations constructed from our vector momentum basis by taking the tensor product

of any two basis vectors. For example, h Ads is the zero helicity mode corresponding to

the basis tensor constructed from ft 0 ft. Thus,

2

hAdS (w, h, (i) (w q) ph (q (6.110)
h=O (ij)ES

gives the decomposition of each metric mode into helicity eigenstates about momentum

in the k-direction, where PJi) (q are the basis/projection tensors. The projection

tensor indices run over the set S = {(tt), (it), (aa), (2t), (21), (bb), (3t), (31)(32), (33)}.

The full set of projectors is

pO,(tt) - ff, (6.111)

pO(3t) f3 (6.112)
il fji 11+ l'(612

pOl(aa) = 11 + ff^, (6.113)

po33) = ff, (6.114)

P,(it) = J + f1 , (6.115)

Ap 2t) = ff + ff , (6.116)
pl,( 3

l) -1 ^3 3 ̂1 (6.117)
pr'4" = f E + ff, (6.117)

pj 32) = Jf + ff , (6.118)

p2(21) = f1 ft f 2 (6.119)
p 2 (bb) ff f (6.120)

The solutions that we have found in te have found in the previous section are the hAds However,
Sh,(ij)"

(6.110) along with the explicit expressions for all of the projection tensors can be used

to express hAdS as linear combinations of h Ads The melvinization relations given in



section 6.4 can then be used to express the Schrodinger perturbations in terms of the

helicity eigenstate perturbations. Firstly, we find that

hAdS hAdS hAdS = hAdS hAdS AdS _ AdS (6.121)
tt - O,(tt), t 1,(2t) x - O,(aa) 2,(bb),

hAdS (Syho(3t ) F zhl()), (6.122)

hAdS= 1 ) + ,Ad1)S ), (6.123)

1AdS A dSAdS AD

hAdS q hg,(33) + 2qqyzh 1,( 3 1) + 2O,(aa) + q2hb )), (6.124)

h2 AdS = ( z 3AdS) AdS (6.125)
hAdS = 1 2 hAd SA q

Ad2) 1)), Ad Ad(6.126)

hz AdS  1 z [q (h( 3) ) dS + AdS )] , (6.127)

+ qz

hzhdS _ A 2 AdS AdS 2 S3) (6.128)
q + q2  O,(aa) +  2,(bb) z hl,(3 1) + qh ,(3 3 ))

Observe that for q = 0, all of the expressions for h A d reduce exactly to the decompo-

sition that was used previously in solving for the AdS perturbations. This can also be

done for the gauge field, which has the much simpler representation

AAdS(w, q = AdS, q) (q. (6.129)
A h, (i)(W q) f(q-j (6.19

Hence,

AdS = Adds AAdS = Ads AAdS = Ads (6.130)

AAdS 1 (q A ds + qAAdS) (6.131)A 2+ q2  z 1,(1) +  1,(3)

SAd (A ( A - Ad4 ~s (6.132)
z / -- + qz .Iz ,(3) - qy l,(1)) •

It is now straightforward to find the expressions for the Schrodinger perturbations given

in terms of the h Ad
h,(ij)"

6.6 Shear Physics

At this point, we have finally developed all of the formalism we will need to begin

computing retarded Green's functions in order to extract the transport coefficients.



The simplest transport coefficient to calculate is the shear viscosity, but we will use our
formalism to extract a bit more. Although the following procedure is akin to hunting
a gerbil with an elephant gun, this process will illustrate the procedure necessary for
computing the more elusive sound channel quantities. For a much simpler derivation
of the shear viscosity the interested reader can consult section five of [12], in which the
0(2) symmetry in the q = 0 limit is immediately capitalized upon. Our approach will
serve as a good check on that result.

It was identified earlier (6.12) that there are four modes that compose the shear
channel, of which only three have a known physical interest. There are the three
metric perturbations A, B 1, Hz which couple to g, j, T,, in the boundary theory
respectively. The fourth perturbation is the gauge field component 6ASch. But, since it
doesn't couple to any of the hydrodynamic operators in the boundary theory, we will
almost immediately try to set it to zero. Recall from the hydrodynamic analysis of a
non-relativistic fluid, we were able to relate the shear viscosity to the retarded Green's
function GZ.,.xz via (5.24). So, we will begin by computing this retarded Green's
function.

For convenience, we will define dimensionless quantities that simplify the resulting
expressions, which is done by effectively raising an index on the various fields modulo
some scaling. In particular,

ASch  THU 6ASch HAdS HUAd (6.133)- 3 (h,(ij) = 'h,(ij)"

Technically, for the h(tt) mode we need to include a factor of f, but it appears
nowhere in the shear channel. So, it doesn't matter. Consulting the results of the
melvinization listed in appendix C.2, we can relate them to the parameterization given
by (6.5). Finally, after substituting in the results of the previous section, we find

A SchAdS ) HdS A+ (+ + -AdSA V K [qH1, (2t) + (1 + 262u) (qH ) qzH22) - 2K)6A A

(6.134)
Sch _ 1 AdS AdS T_ AdS 2 (6.135)
1 /K q,(2tqH ) - qyH,(3 2 ) z H2,(21) 6+ q A 2 ) (6.135)

Hx = qZH1,( 32) - yH2,(21), (6.136)
6ASch uK [-qH AdS± 6 yHA + H udS AdS (6.137)

where linearity of the solutions was used to remove an overall factor of 1/q. Here we
have related four Schr6dinger perturbations to four AdS perturbations 15 , and so the

15Note at this point it is important to distinguish the time 7-r in the AdS black hole from the time



number of degrees of freedom agree. The four solutions will be classified according to

the corresponding Hx)s mode that generates them. As a result, we can already infer

that there will be three propagating wave modes and one gauge solution.

Explicitly, the four sets of solutions are then

qz(1 + 26 2 u)(1 - U)-ic/2

( - 2 K

B2,(21) qz(1 - u) - ie/ 2

1 - VK

H 221) _ 1 U)-ie/2

H2 2 1 ) -q9z(1 - u) - ie/ 2

A2,(21) = (2~K

(1-
n +

2 2

je 1+u
SIn 1 +

2 2

(1- In
2

In - q2 In
2

- 2 In 1 + U
2

- 2 In 1 U

- q2 In +
2

1A! = [e - (1 + 2u6 2)q] ,

BI (e + q) ,

H'I -qz,

6A, = (e + q,) ,

,y(1 + 262u) +

q -

iq 2 f

2

Hnc I= qz(1 - u)- ie -

6(1- U)-ie/2(
X K (11

iq2f
2 2(12

1+u
+ 262u) in

2

iqye n I1 + 
2 2 '

e 1+u

- -ln -In,
iq2 f 2iqe

2 2

t in the Schr6dinger black hole, which is a light cone coordinate. Even though we used w for the
momentum conjugate to 7 in previous sections, we will now reserve w exclusively for the Schr6dinger
time coordinate t. Instead, e and e will be the dimensionful and dimensionless momenta conjugate to
7 respectively.
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1+ U2
(6.138)

(6.139)

(6.140)

(6.141)

(6.142)

(6.143)

(6.144)

(6.145)

Ainc =

1 V/I [

(6.146)

(6.147)

(6.148)

(6.149)



AA A q(U 2 - 2K)(1 - u) -i/ 2  i 1 +U) + 2 ]
A "=+- 1-u+-In +  ( 1 - u )

V2K nU U 2 2 2 1
(6.150)

B1 - 1 + ie 1-u+-In - (I~1 (6.151)
K 2 2 2

Hzx = 0, (6.152)

SA = R u 1 + ie 1 - u + - n I + - (1 - u) , (6.153)
THK 1 2 2 ) 2

up to an arbitrary overall normalization due to linearity of the solutions. We have also
suppressed higher order terms.

A couple of things should be noted at this point. As claimed, we explicitly see the
decoupling of the Hzx mode when the spatial momentum qz is set to zero, and we could
capitalize upon this simplification to easily compute the shear viscosity. Secondly, the
coordinates we have been using are not the light cone coordinates (t, (), which have the
physical meaning in the Schrodinger spacetime. So, the q, momenta is not a spatial
momentum and e is not a physical frequency. Recall the transformation that related
the AdS coordinates to the light cone coordinates (4.13). The corresponding relations
for the dimensionless momenta are

9 ' e =C. (6.154)

It doesn't matter at what stage we make this substitution as long as we keep track of
the powers of the momenta when discarding higher order terms. All that remains is to
impose the correct boundary conditions on our melvinized solutions.

The general solutions meeting the incoming wave boundary conditions 16 are linear
combinations of the four linearly independent vector solutions just listed. For example,
we have

A = Cz2,(12)A ,(21) + A t incA, + CAAA. (6.155)

16It is not quite so obvious that the AdS solutions that satisfy the incoming wave boundary condition
melvinize directly to the Schr6dinger solutions that also satisfy the incoming wave condition. In our
choice of coordinates this confusion doesn't arise because w oc e; however, we could have made a
difference choice of light cone coordinates that would change the sign between the two. The resolution
is that the AdS coordinates are the correct local description of the black hole, hence determine the
incoming wave condition. The Schr6dinger coordinates are related to asymptotic difference between
AdS and the Schr6dinger spacetime, and even though they give a different local descriptions at the
horizon they should not be used.



The prescription for computing real-time correlators requires that these solutions asymp-

tote to the boundary sources. Explicitly,

lim A, (u) = A', lim B1 (u) = B', lim Hz -(u) = H z,. (6.156)
U---+ U--+ U---

However, we see that (6.150) contributes a linear divergence to A1 near the boundary.

Since a finite solution is needed, this requires that we set CA = 0. As we will soon see,
this divergence is slightly problematic, because we are left with three degrees of freedom

but four boundary condition left to fix including setting the gauge field component to

zero. However, there is a small surprise. The boundary values of the four fields are not

linearly independent. In particular,

lim 6A,(u) = - /&5 lim B 1 (u). (6.157)
U---E U---

In order to set the gauge field to zero at the boundary, we will also have to set B6 = 0

as well. This is not terrible, but it prevents us from computing the retarded Green's

functions related to the energy density.

Using the metric perturbation on-shell action (6.6) and the five dimensional Ein-

stein frame metric, the flux factor reduces to

N 2  2+ e + AH e + HE2 (5'4 + )] (6.158)
872 4 2 q2 2 - ide X 9 q2 - iv/-2w

Dropping the lone 6-dependent contact term, because we want finite distance correla-

tors, the retarded Green's functions to lowest order are then

GR7 2 w2L N 2T q(q + 2iTHw\
g,g (w, q)= - 2 (6.159)

GR( ~ -
2LgN 2T qwG72 L(N q2T=4qz- (6.160)S, = 16(q - 2iTHw (6.160)

GR -
2LTN2 HW 2

7,(W, q)2= (6.161),Tz X q) 16(q 2 - 27riTH) (6161)

where we have returned to dimensionful momenta and the light cone coordinates. We

have also suppressed the volume factor which becomes (27r) 363(0) after the Fourier

transform, because it is convention dependent and neatly cancels when we extract the

shear viscosity. Since, we need to compute the Green's function at zero particle number,
we shouldn't divide out by the volume factor associated with (. Now, using the Kubo's

formula derived earlier, the shear viscosity is

r -lim lim Im GR LN 2 T (6.162)
w-O q---O W Tzx,zz 32



The shear diffusion pole is also present in the correlators. This gives a diffusion con-
st ant,

1
D = (6.163)

27xTH

Lastly, all three of the retarded Green's functions perfectly satisfy the relations (5.22)
and (5.23) derived solely from hydrodynamical considerations.

These results provide a non-trivial confirmation of the calculation of the shear
viscosity in [12], and produce a diffusion constant consistent with their calculations for
the other hydrodynamic quantities. From our results, the equilibrium density is

r/ 7 2 L N 2T
P D 16 (6.164)

which is consistent with their result from calculating one-point functions up to a choice
of units. Also, it is unavoidable to mention that the entropy density for a black hole
can be calculated from the Bekenstein-Hawking formula, which gives

72 N2 LT
s = 8 (6.165)

This reproduces the well known result r/s = 1/47.

7. Conclusion

Our Schrodinger black hole has passed several non-trivial tests demonstrating that it
is indeed dual to a non-relativistic field theory defined on the boundary, and this is
but one illustration of many such examples that can be studied by using such a grav-
ity/gauge theory duality. In particular, all of the transverse/shear operators computed
beautifully satisfy the constraints placed on them by a purely hydrodynamic analysis
of a non-relativistic fluid. Other thermodynamic constraints placed upon the relation-
ships between the density, the entropy, and the shear viscosity held. However, several
more transport coefficients still need to be computed.

In this work, we have provided the essential tools for tackling the problem of
computing correlators in the sound channel. Through melvinization, all of the metric
perturbations can be evaluated; however, there are still several residual difficulties that
need to be addressed. As was seen in the shear channel, there was a linear divergence
in the melvinized gauge field that caused A0 to diverge. In removing this divergence,
the remaining fields were no longer linearly independent near the boundary limiting
the number of correlators we could compute. This problem becomes pathological in the
sound channel as the number of divergences dramatically increases. A necessary future



step and possible resolution to these difficulties is to melvinize two of the spherical

modes of the AdS metric, which appear in the consistent truncation. These components

have non-zero values in the Schr6dinger spacetime and mix with the sound channel in

the five dimensional Einstein frame. However, we leave further investigation of the

sound channel to future work.
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A. A Detailed Derivation of the Scalar Correlator

The action for the massive scalar field was given by (2.9), which yielded the momentum

space solution

fq(r) = 2KV(q) (q), (A.1)
62 K(qc)

once the appropriate boundary conditions were imposed. The modified Bessel function

of the second kind K has two series expansions depending on whether or not v is

an integer, which is a consequence of a blocked exponent in the defining differential

equation. For non-integer v, the series expansion is

oo OO

K (z) = z - " 3 a2iz2i + z" > b2i 2i, (A.2)
i=O i=0O

where the coefficients are given by

a2i F )F(v) (A.3)2-v+2i+1i!F( _ + i) '

b2i = F( - )F( (A.4)2v+2i+li!F(1 + u + i)

In order to evaluate the flux factor, the following results will be useful. For e <K 1,

1 1 (qE) q 1 ( 2° bol
K(qc) (qc- [ao I( (q) 2 b]) (A.5)

Kv(qE) (qE)-" [ao + (qE)2vbo] ao Iao
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At first sight, this expansion seems unnecessary, because the second term should go to
zero much faster than the first. However, if we did that, we would have taken the e -+ 0
limit prematurely. The subleading contribution here will combine later with another
term in the numerator to contribute to the flux factor. Also,

ri,[(qr)2Kv(qr)] ==(qc)- v+ 2  (2 - v + 2i) a 2i(qE) 2 +...
i=0

00oo

. + (qe)v+2 > (2 + v + 2i) b2i(qc)2i  (A.6)
i=0

Thus,

3r r2Kv(qr) C -4(qc) v-2 (q) 2bo
(E 2K,,(qe) ) r=E ao ao

x (qE)-+2 (2 - v + 2i) a2i(q) 2i + (q)v +2  (2 + v + 2i) b2i(qE)2i
i=0 i=0

= (2 - v + 2i) a2i(qc)2 i - (2 - v)bo(q) 2" + (2 + v)bo(qc)2v
i=o

= L- 4  (2 - v + 2i) a2i(q2i + 2vb (q) 2  (A.7)
Si=0 a a

Only one of these terms is finite in the E --+ 0 limit. So, the rest need to be removed
by the program of holographic renormalization [9]. This is not a problem, because
all of these terms depend on square powers of the momenta. After the inverse Fourier
transform we get contact terms (delta functions), but we are interested in the correlator
at finite distances. Observe,

j dq4 -iqixi q2n 0 (q)(-q) -- (-1)" d4 xd4 X'6(2 n)(x - Xi) 0 (X) 0 (X'), (A.8)

where 6(2n) (x) is the 2n-th distributional derivative of the delta function. Hence, this
can only contribute to two-point functions with both arguments evaluated at the same
point.

These contact terms, which are often divergent, can simply be removed by sub-
tracting them from the on-shell action. The counter-term action for the non-integer
case is then

Set = 2R (2)qd4q4 2 2(q i 2i 0 (q) 0 (q), (A.9)
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where y is the induced metric on the boundary giving V = R 4/e 4 . This counter-term

action is clearly covariant and guarantees that the Euclidean correlators are finite. After

subtracting the divergencies via renormalization, the flux factor is finite and gives the

correlator
46R3 F(1 - v) 2v-4

(0(q)0)(q'))6 = -(2rx) 4 4(q + q') 22 1  q2  (A.10)

In the limit e -+ 0, this correlator goes to zero. We see that we also need to renormalize

the boundary operator to get a finite result. This is also equivalent to renormalizing

the source. The renormalized source is then

¢ren = 2-v0, (A.11)

which gives a finite correlator.

In the case of integer v = n, the situation is almost identical with the only sig-

nificant difference being the presence of a logarithm in the series expansion. We find

that
oo 00

K,(z) = z-n ajz2 + n z bjz2i, (A.12)
i=0 i=0

with the coefficients

( (n-1
(-1) (n 1) 2-n+2i+l  i! (A. 13)

a2i (-1)n (i+l)+(n+i+l)3)
2n+2i+1 i!(n+i)!

(-1)n+ 1
b*i =(- (A.14)2 2n+2i i!F(n+i+l)'

where 4' is the digamma function. A computation identical to the integer order case

gives

r-Kar r - Kn(qr) 4 (qW)n-2 (qc)-n+2 1 (2 - n + 2i) a*i(qE)2i +...
a0 i=0

.. + (qe)n+2 0 [(2 + n + 2i) In + 1 b2i(qc)  - (q) 2n In
i=o a°

a= (2 - n + 2i) a (q;E)i (q2 (n + 2) In + 1] b +...
a i=0

S- (q)2n In 2b (2 - n)

= -4 (2 - n + 2i) a2i(qE)2i (q2n 2n In + 1 0
i=o



Again, we use counter-terms in the action to subtract off all of the contact terms. The
appropriate counter-term action is then

Sct d4 qd4q' n (2 - v + 2i)F(1 - (q)
2R (2-) 4  4( 22ii!F(1 - + i 2i

i=0

. . + (q)2 (2nIn 2 + 1)] o()O(q'). (A.15)

Using the same source renormalization scheme as before, the two-point function is then

(O(q)O(q')) = -(2-)464(q + q')2 ( 2 2 ,n q2 (A.16)
22v-1 (n - 1)!2

B. Mathematics of the Hydrodynamic Expansion

While it is possible to simply guess the form of the solution for simple examples such
as the massless scalar, we would like to develop a systematic procedure for the hy-
drodynamic expansion of the solutions. In general, the equations of motion for any
combination of the field content are at most coupled systems of second order linear
equations with typically no more than two singular points. The approach for getting
solutions in the hydrodynamic limit consists of two steps. The first is reducing the
second order system to a first order system with a regular singular point, and the sec-
ond is expanding solutions in powers of the momenta about the regular singular point.
These steps we be discussed in reverse order to help illustrate the importance of the
ensuring there is only a regular singular point in the first order system.

B.1 Expansion About a Regular Singular Point

Consider a linear system of differential equations given by the equation

(x - zo)Y' = A(x)Y, (B.1)

where A(x) is holomorphic at x = xo. Then, x = xz is said to be a regular singular point
or a singularity of the first kind. A unique solution to such a system always exists, and
can be computed by a generalization of the method of Frobenius [18]. Consequently,
the solution can inherit all of the subtleties related to repeated and blocked exponents.
However, in practice blocked exponents rarely occur, so we won't consider them further.

Suppose that no two eigenvalues of A(zo) differ by a positive integer (i.e. blocked),
then the equation (B.1) has the general solution

Y = P(x)(x - Zo)A(xO), (B.2)



where P(xo) = I and P(x) is holomorphic at x = xo. The power series expansion of

P(x) has the same radius of convergence as does A(x) and its coefficients can be com-

puted via algebraic operations. It is worth noting that there is a further simplification

if there is a complete basis of eigenvectors for A(xo)" 7. Then, A(xo) can be diagonal-

ized to give A(xo) = SAS - 1, where S is the eigenvector matrix and A is diagonal with

eigenvalue entries. The solution given by (B.2) simplifies to

Y = P(X)(X - Xo)SAS-1

= P(x)S(x - zo)AS - 1. (B.3)

It is now easy to show that
Z = Q(x)(x - xo)A (B.4)

is also a solution to (B.1), where Q(xo) = S and has the same radius of convergence as

A(x). The biggest advantage to this simplification is that (x - zo) A is now diagonal,
hence each column of Z is a linearly independent solution of (B.1).

This gives the solution as a power series expansion about the regular singular point,
but it is not the hydrodynamic expansion we are looking for. This can easily be seen,
because we need to impose boundary conditions at different coordinate points. Hence,
we need exact solutions and not a series expansion about the singular point. If there

is natural scale set by some parameter of the system, then this problem is solved by

taking a hydrodynamic expansion in powers of the momenta.

Consider a single vector solution given by z = F(x)(x - xo)", where v is an eigen-

value of A(xo) and q(xo) is the corresponding eigenvector. Instead of expanding the

solution as a power series in x, we can expand as a double series in the momenta

F(x) = F(xo) + Fi,1(x) + Fq,1(x)q + FI,w(x):w + Fq2, 1 (x)q 2 + O( 3, qtD, W2), (B.5)

where Fqm,w n(Xo) = 0. The differential equation for the single vector solutions reduces

to

(x - xo)F'(x) = A(x)F(x) - vF(x), (B.6)

Equating powers in (B.6) after substituting in the hydrodynamic expansion given by

(B.5), recursive sets of differential equations are obtained. We also have one boundary

condition to impose at every order to fix the integration constant. Ideally we can

determine q(x) order by order in the momenta to get solutions that are exact in the

coordinate x in the radius of convergence.

17Again, this happens almost always in the sorts of systems studied via gravity/gauge dualities.

However, if there are degenerate eigenvectors, we could put A(xo) in Jordan canonical form instead.
This means that some solutions will get coupled together spoiling some later simplifications.
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B.2 Reducing the Second Order System

Now that we know how to find the general solution to a first order system with a
regular singular point, we need to convert the initial second order system to a first
order system. Given an arbitrary second order linear system of equations of functions
yi, one can reduce it to a first order system using the substitution y, = pi, which gives
a first order system at the expense of doubling the number of equations. Consequently,
every linear system is equivalent to a first order linear system. However, we have to be
careful that the resulting first order system has only a regular singular point, because
the theory of irregular singular points is significantly more complicated, especially for
matrix solutions.

It is often the case that the coefficients of the second order equations have second
order poles. Let y' = F(y', Yk) be such an equation, where Fi is linear and second
order poles can only occur in the coefficients of the second argument"1 . Then, the
linear substitution y' = pi results in an irregular singular point because

p = ' = Fi(pj, yk)

and Fi(y, yk) has a second order pole. This can be corrected by instead making the
substitution y' = pilfi(x), where we will soon determine fi(x). So,

S= fj(X)F Y yk f3(X)yi. (B.7)

This indicates that if y~ = Fi(y, Yk) has a second order pole, (B.7) has only a first order
pole if fi(x) is linear in x - x0o. It is common to let fi(x) be the emblackening factor of
the metric, which in the case of the AdS and Schr6dinger black holes is fi(x) = o - x2 .

C. Conventional Confusion

C.1 0 and 6 and Null Coordinates, Oh My!

Since it seems that every author has a different convention for studying both the AdS
and Schr6dinger black holes and without fail they all like to use the same variable
names for related but very different quantities, it will be helpful consolidate the various

18This restriction on the form of F(yj, Yk) is completely general for our purposes, because the fact
that we are deriving equations of motion from an action principle is a strong constraint. The goal
is to expand about the horizion, and in the metrics considered singularities can only occur via the
emblackening factor in the denominator. Only the time and radial coordinates of any field have these
functions. So, only second order poles can occur on the zero order terms, with one power coming from
lowering the index on w and the other from lowering the 0~ index.



conventions and relate them to our convention. We will start with the AdS black hole,

since it can be recovered by taking the appropriate limit of the Schr6dinger black hole.

Then, we will list several common coordinate choices and parameterizations for the

Schr6dinger black hole.

Recall our coordinate description of the AdS black hole,
R2 R2

dsAds = (-f (r) + d + dy + d ) -t dr2  + R 2 d+ , (C.1)

f(r) = 1- 4, (C.2)

where we have made the choice of denoting the time coordinate by T since we want to

make sure that the AdS time coordinate is distinct from the Schrodinger time coordinate

after melvinization. In this coordinate description, the horizon is at r = rH and the

boundary is at r = 0. In [1, 2], an alternative parameterization is used which inverts

the radial coordinate but preserves the fact that the radial coordinate is a length by

multiplying by the appropriate factor of the AdS radius. In these coordinates,

d2 R2 2 (C.3)
dSAdS = (- f (r')dT2 + dx2 + dy2 + dz2 ) + dr'2 + Rd (C.3)

R2 R2 r4
r' = ro = f(r') = 1  (C.4)

r rH r

These coordinates have placed the horizon at r = ro and the boundary at spatial

infinity. Fortunately, the conventions for choosing a dimensionless radius are the same.

In particular,

T2 r 2  R 4

U = 0- -o (C.5)
H H

For completeness, this gives

R2  R2

ddS R= (-f(u)dt 2  2 d + dz 2) + 4 uf( du2 + R2dQg (C.6)
rSi2 4 2f(U)

St2 2 2 2 2  2 2 2R
S(_f(u)dt2 + dx2  dy2 + dz2) + 4u2f)dU2 R d . (C.7)

R2U 4U2f(U) 5

The diversity in parameterizations for the AdS black hole is minimal. With the

additional of an extra dimensionful quantity, there are many choices for coordinates in

the Schr6dinger black hole. We will start by considering a representative sample of the

options for coordinates at zero temperature, and the finite temperature metrics are all

related to these. Our choice at zero temperature was

ds2ch = r ( -dt2 + 2dtd + dX2 + dz 2 + dr2 , (C.8)



from which we can recover the AdS metric by setting 13 = 0 and identifying

Y V2' T =
v2

Alternatively, a redefinition of t and ( can remove the factor of the 20 giving

ds = R2 (dt 2 
+ 2dt'd' + dx 2 + dz 2 + d r

t' = v/2t, 1
vl"-/

which is used in the most recent verion of [13]. These are related to the AdS coordinates
by setting

t' = P(y + 7),
1

' = (Y - ).
20

(C.12)

The last metric worth considering is from [19], which is

S 2 d R2

dsch r(-/2d - 2dudv + dx2 + dz2 ) + -,dr

t' v20/ t
U =

R2 R2

(C.13)

(C.14)
R2

r =

To recover the AdS coordinates from the null coordinates use

S= (T + y), ) = 2- (7 - y).
2/

C.2 Melvinized AdS Black Hole Perturbations

In section 6.4, it was explained how the Schr6dinger field perturbations could be ex-
pressed in terms of the AdS perturbations via an application of the null melvin twist.
For completeness, the explicit results of the calculation are given. For additional clarity,
all of the perturbations are the bare perturbations in string frame without any extra
dimensional factors introduced. For the ungauged theory, we find that:

h S c h = h A d S

hSch = hAdSuu I t1U

SSch h AdS
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hSch = h A d S
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(C.9)
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(C.11)

(C.15)

(C.16)

(C.17)

(C.18)
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