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Abstract

The Public Utilities Board of Singapore is responsible for management of the Kranji drinking
water reservoir and wishes to open the reservoir for recreational water use as part of their
"Active, Beautiful, and Clean Waters Programme". A field campaign was conducted at the
Kranji Reservoir to determine the microbial water and sediment quality of the reservoir for use in
a model that predicts the risk of gastrointestinal illness due to recreational use of the reservoir.

Water samples were collected at seven locations throughout the reservoir and sediment
samples were collected at two locations located near the shore. The samples were then
analyzed for Enterococci concentrations using a most probable number method. The measured
geometric mean concentrations found during the field campaign were 13.3 Enterococci colony
forming units (CFU) per 100 ml water and 1400 Enterococci CFU per gram sediment.

Based on the strengths and weaknesses of available statistics-based risk models, a model by
Wiedenmann was chosen based on the flexibility of the model and the quality of the underlying
epidemiological study. Using the model, no-observed-adverse-effect-level guideline
concentrations of 25 Enterococci CFU per 100 ml for swimming, 51 Enterococci CFU per 100 ml
for kayaking and 860 Enterococci CFU per gram sediment for wading were calculated.

Based on all available bacterial measurements of the Kranji Reservoir, an interim geometric
mean guideline of 25 Enterococci CFU per 100 ml water and 860 Enterococci CFU per gram
sediment is suggested. Single-sample maximums for a monitoring program should be set to 96
Enterococci CFU per 100 ml water and 2,500 Enterococci CFU per gram sediment. These
guidelines should be applied to the area of the reservoir open to recreation, which should be
restricted to the northem main section of the reservoir. Entry and exit from the reservoir and
wading should be restricted to a smaller area of shoreline until more sediment samples are
taken to determine safe entry and exit areas. Final geometric mean and single-sample
maximum guidelines should be based on a study of the pathogen-to-indicator-bacteria ratios in
the Kranji Reservoir.

Thesis Supervisor: Peter Shanahan
Title: Senior Lecturer of Civil and Environmental Engineering
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1 Introduction

The Singapore Public Utilities Board (PUB) is responsible for management of the water

systems of Singapore. This includes drinking water treatment and supply, wastewater

treatment, and storm water management. As part of their storm water collection

program, PUB manages a series of coastal estuaries that have been dammed to form

freshwater drinking water reservoirs. One of the largest of these reservoirs is the Kranji

Reservoir on the north-west side of the country. In recent years, PUB has implemented

a masterplan to provide more recreational opportunities to Singaporeans, as part of an

effort to increase the appreciation of Singapore's water resources (PUB 2007a).

This masterplan calls for the Kranji Reservoir to be opened up for recreational water

activities. Before doing so, PUB wants to evaluate potential illness risks to recreators

participating in the three proposed levels of recreation for the Kranji; swimming,

kayaking, and/or wading. In January 2009, a team from the Massachusetts Institute of

Technology visited Singapore, and completed a microbial water quality study of the

Kranji Reservoir. The data from this study are combined with the data from a previous

water quality study of the reservoir to determine appropriate guidelines and

recommendations.

Section 1 of this thesis was written as part of a collaborative effort with Carolyn Hayek,

Jessica Yeager, Kathleen Kerrigan, and Jean Pierre Nshimyimana.

1.1 Singapore and Water Supply

1.1.1 Physical Location

Singapore is an island nation in Southeast Asia, just South of Malaysia (Figure 1) with

a total land area of only 682.7 square kilometers (CIA 2009). For the purposes of fresh

water capture and management, PUB has divided Singapore into three main catchment

areas: the Western Catchment, the Central Catchment, and the Eastern Catchment.

This study focuses on the Kranji Reservoir in the Kranji Catchment (Figure 2), which is

located within the Western Catchment. The Kranji Reservoir is located in the

northwestern corner of the island (1 25'N, 103 043'E) (NTU 2008).



Figure 1:Map of Southeast Asia with Singapore Highlighted (CIA 2009)

Figure 2 Map of Singapore Western Catchment with Kranji Reservoir Marked (PUB 2007b)



The Kranji Reservoir was created in 1975 by the damming of an estuary which drained

into the Johor Straits that separate the Malaysian mainland from Singapore. The

reservoir is approximately 647 hectares in area and the catchment has four tributaries,

Kangkar River, Tengah River, Pengsiang River in the south, and Pangsua River in the

north (NTU 2008). The Kranji Catchment is approximately 6076 hectares in area (NTU

2008). The Catchment has a variety of land uses, including forests, reserved areas,

agriculture, and residential areas.

1.1.2 A Brief History

Singapore was established as a British port in 1819 due to its location and function as a

hub for trade with India and China. After World War II, Britain felt that the country was

too small to be a sovereign nation and instead granted them increasing liberties with

time. Singapore joined the federation of Malaya in 1963, but the union was short-lived

due to internal conflicts. In contrast to the other federation members, Singapore's

majority population was Chinese. This racial diversity spurred the call for a "Malaysian

Malaysia," leading to several race riots in Singapore. Singapore exited the federation

and became an independent nation in 1965.

1.1.3 Issues of National Water Security

Water security can be defined from a national perspective as the ability to supply a

sufficient amount of water to all of a nation's inhabitants. Singapore has 4.4 million

people and a water demand of 1.36 billion liters per day (Madslien 2008). While

Singapore receives a significant amount of rainfall-approximately 2400 millimeters per

year (Tortajada 2006)-it is considered water scarce. Singapore has no natural aquifers

or lakes and due to its small size there is little space to store water for use.

Prior to becoming a sovereign nation, Singapore negotiated treaties for water purchases

from Malaysia to meet their water demand. The first treaty was signed in 1960 and

expires in 2011, while a second treaty was signed in 1961 and expires in 2061. The two

countries have already met to discuss the terms of new treaties that will take the place

of existing water treaties once they have expired. However, Malaysia is demanding a

price that is fifteen to twenty times higher than that negotiated under the previous



contract, which was S$0.026 per ten cubic meters (Tortajada 2006).

In response to Malaysia's demands, the Prime Minister of Singapore has called for

water self-sufficiency by 2061, such that when the treaties on water exchange with

Malaysia expire, there will no longer be a need to import water. Recognizing that

meeting the country's water needs can be viewed as a problem of insufficient supply as

well as one of high demand, PUB has taken actions to both increase Singapore's

internal water supply and to reduce the national water demand through a strategy

known as "Water for All: Conserve, Value and Enjoy." The campaign to increase supply

consists of steps to re-use more wastewater, increase the supply of desalinized water,

and capture as much of the considerable rainwater Singapore receives each year as is

possible. By taking this two-pronged approach, Singapore is well on its way to

becoming self-reliant in terms of its water needs.

1.1.4 Rainwater Catchments

Rainwater catchments are an important part of the water supply for Singapore.

Stormwater is collected through a network of drains, canals and river channels and

directed towards one of the nation's fourteen reservoirs. These reservoirs currently

collect water from about half of Singapore's land surface. It is expected that additional

catchments will be built by 2011 to bring the total rainwater capture area from one half

to approximately two thirds of the country's land surface. The Kranji Reservoir is one of

these catchments.

1.2 Catchment Masterplans

PUB wants to use its water management system not just for providing water, but to

provide enjoyment to the people of Singapore as well. The Kranji Reservoir is an

important part of this plan, since it is located near some of the last remaining

undeveloped land in Singapore.



1.2.1 Active Beautiful Clean Waters Programme

An important part of the "Conserve, Value and Enjoy" campaign is the ABC Waters

Programme. PUB launched the ABC Waters Programme in an effort to achieve

national waters that are:

* Active - open for different recreational activities such as boating or fishing.

* Beautiful - aesthetically pleasing in a way that the nation's inhabitants can

enjoy.

* Clean - of sufficient quality for domestic, industrial, and recreational uses.

The program involves a variety of methods, one of which is using drinking water

reservoirs for recreation. By improving the quality, aesthetics, and access to

Singapore's waterways, PUB hopes to foster a greater sense of ownership and respect

for water in Singaporean communities.

1.2.2 The Western Catchment Master Plan and the Kranji Reservoir Project

The Western Catchment encompasses the western third of the country and is home to

about 1 million people or 27% of Singapore's total population (PUB 2007b). The

catchment remained largely undeveloped until after Singapore achieved independence

(PUB 2007b) and is currently an approximately equal mix of urban development,

industrial development, and natural environment (PUB 2007a). Residential areas are

concentrated on the southern edge of the catchment (PUB 2007b).

The Kranji sub-catchment is located in the northern part of the Western Catchment. It is

mostly undeveloped with some rural and manufacturing industry (PUB 2007b). The

Kranji Reservoir was created by an east-west dam at the estuary of the Sungei Kranji.

Most of the land around the reservoir is designated as open space under current zoning

regulations, with the exception of some agricultural land use and a small golf course to

the west and some light industry to the east (PUB 2007b).

While the Kranji Reservoir is strong in many aspects (including beauty, ecological



uniqueness and open spaces), the Western Catchment masterplan identifies that the

Kranji sub-catchment currently has low visitor rates. This is due to a combination of

factors. First, the site is relatively isolated since most of the sub-catchment is

undeveloped. Second, public transportation serving the area is limited. Third, there are

only two entry points to the reservoir (one on either side of the dam) and poor

connectivity within the site. Finally, public recreational activities are limited. Current

recreational opportunities include cycling, park visits, and minor fishing areas.

A proposal for improvements to the Kranji Reservoir has been made under the Western

Catchment masterplan (PUB 2007b). The proposed changes would be primarily made

to the existing entrances and play to the sub-catchment's strengths to boost low visitor

rates while still preserving the rich natural resources. The addition of a Kranji Reservoir

Visitor Centre west of the dam will provide educational information and experiences on

the wetlands and the reservoir. Minor changes to vegetation at the intake will also

prime the location for bird watching and construction of a bird observation tower is

planned. Also, the introduction of an electric 'eco-cruise' boat will help increase

connectivity within the site. Figure 3 from the Western Catchment Master Plan shows

the location of the activity and beautification projects planned for the Kranji Reservoir.

On the east side of the reservoir the existing fishing area will be improved through the

addition of jetty into the reservoir, and a native fish aqua-culture zone. The western

side of the reservoir has the most improvements proposed. Proposed activities include

a kayak launch, a visitor's center, an eco-tour cruise, and a nature walk.
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1.3 Previous Bacterial Water Quality Studies

A team from the school of Civil and Environmental Engineering at Nanyang Technical

University (NTU) conducted a major study of the water quality of the Kranji Catchment

and Reservoir system from May 2004 to December 2007. The final report by NTU

(2008) was submitted to PUB in March 2008. The goal of this study was to determine

baseline water quality and gather information to develop an integrated water quality

model for the Kranji system. The study collected information using seven sampling

stations throughout the catchment (marked with red dots) and seven sampling stations

within the reservoir (marked with crosses), as seen in Figure 4. The northern main body

of the reservoir has four stations: Station 4 (Sta 4), Station 3 (Sta 3), Station 1 (Sta 1),
and Three Arm Junction (3 Arm Jun). The southern arms of the reservoir each have

one station each, named after the rivers that originally ran through them: Kangkar (KK),
Tengah (TG), and Peng Siang (PS).

Station 4

Figure 4: NTU Sampling Locations (NTU 2008)

The NTU study (2008) determined bacterial densities in the reservoir at the seven

stations located in the Kranji Reservoir and identifies in Figure 4. The study measured



Enterococci and E. coli as the indicator bacteria for water quality. Table 1 presents the

results for Enterococci concentrations. Guideline concentrations for recreational waters

can be expressed as a combination of a maximum value and geometric means, or as

9 5 th percentile values (see Section 2.0 below for a more complete explanation). The

USEPA uses the former method, and the Singapore government the latter. The bold

and italicized values in Table 1 indicate stations that exceed USEPA (USEPA 1986)

values and bold values in Table 1 indicate concentrations that exceed Singapore

guidelines (SGNEA 2008).
Table 1: Kranji Reservoir Enterococci data (Sept 2005 to Sept 2007)(NTU 2008)

Density (MPN/100ml)

Geometric 95 th Standard Sample
Location Minimum Maximum Mean Percentile Deviation Size

Sta 1 Om 1 200 15 36 60 13

Sta 3 Om 1 100 4 14 27 16

Sta 4 Om 1 73 4.6 12 23 16

Arm Jun Om 1 200 19 42 69 13

Peng Siang 1 2000 42 323 600 16

Tengah 4.1 220 22 35 66 16

Kangkar 1 200 10 30 56 16

Note: Bold Italic values exceed USEPA guidelines, Bold values exceed Singapore guidelines

The results in Table 1 indicate that the 9 5th percentile Enterococci levels in the Kranji

Reservoir are generally lower than Singapore guidelines for fresh water with the

exception of concentrations measured at Station PS (NTU 2008). Stations 3 and 4,

which are located at the north end of the reservoir, had the lowest concentrations.

However, when compared to USEPA guidelines, all stations except for Station PS had

acceptable geometric means, but all stations had at least one sample that exceeded the

single-sample maximum.

The study of the Kranji catchment stations indicated that storm events contained higher

bacterial concentrations than dry-weather flow (NTU 2008). This is to be expected, as

higher bacteria levels are strongly associated with the first flush, during which a storm

event washes any bacteria on the surface of adjoining land into the drainage system.



This finding was not confirmed in the reservoir because the NTU study did not take any

storm-event samples from the reservoir.

1.4 Current Study

The data collected in January 2009 for this study will be combined with a statistics-

based risk model to determine the risk of illness to potential recreational users of the

Kranji Reservoir. The available risk models will be discussed, and an appropriate risk

model will be chosen for this study. The risk model will also be used to calculate

recommended mean bacteria concentrations and single-sample maximums for future

use of the reservoir. The data from this study and the previous study by NTU (2008) will

be combined and used to determine an appropriate area of the reservoir to be opened

for recreational use. Finally, based on insights gained during this study additional

studies of the Kranji Reservoir will be recommended.



2 Recreation and Risk Assessment

The link between water recreation and adverse health effects has been known since the

early 1900s. Common ailments associated with water recreation include

gastrointestinal symptoms, ear symptoms or infections, dermal symptoms, and

respiratory complaints (Pruss 1998). There exist many documented cases of viral or

bacterial outbreaks caused by contaminated water, particularly prior to the widespread

use of sewage treatment plants when there are many recorded outbreaks of

Salmonella-caused disease from using contaminated waters (Dufour 1984). Given the

wide range of infectious agents in water and the many health problems potentially

caused by recreational water contact, it is not economically feasible to test for each

possible pathogen. Instead, risk equations based on bacterium that are generally

indicative of the presence of pathogens (indicator bacterium) were developed to

calculate guidelines for the overall risk of illness associated with recreational water use.

Calculated indicator bacterium guidelines are used in monitoring programs that sample

bacterium concentrations in recreational waters on a regular basis. There are two types

of monitoring programs used to protect the health of recreational water users. The first

type is the method used by the USEPA and utilizes guidelines for geometric mean

concentrations and single-sample maximums. Water samples are taken at regular

intervals from the recreational water body and analyzed for the target indicator

bacterium. If the geometric mean of the last five water samples exceeds the geometric

mean guideline, or if a single-sample exceeds the single-sample maximum density, then

the water body should be closed to recreation. The geometric mean guideline is a level

of indicator bacterium that represents an acceptable amount of risk. Single-sample

maximum densities are statistically-derived maximum concentrations of indicator

bacterium present in a single sample, below which the guideline geometric mean for the

water body is unlikely to be exceeded.

The second type of monitoring program is the method used by the World Health
Organization (WHO), in which a water body is considered to be safe for recreation if the



95th percentile value of all samples is below the guideline levels(WHO 2003). This

method measures the long-term safety of the recreational water body, but does little to

protect recreational users against short-term increases in bacteria concentrations. PUB

currently uses the WHO method to evaluate recreational safety at six marine beaches

(SGNEA 2008).

2.1 History

2.1.1 United States Standards

The use of indicator bacteria as a way to quantify the quality of recreational waters

began in the 1920s. The American Public Health Association adopted criteria for

coliform bacteria in swimming pools as early as 1924, but identification of the risk from

contaminated waters in an empirical way did not occur until later. Total coliform counts

began to be used as an indicator of the safety of a water body in the mid-1930s, with

many states adopting a standard of 1000 total coliform colony forming units (CFUs) per

100 ml. This standard was based on aesthetic impairment of waters rather than a

determination of risk of illness (Dufour 1984). In the late 1940s a series of

epidemiological studies using total coliform as an indicator of water quality were

conducted by the United States Public Health Service (USPHS) in an attempt to

determine safe bacterial levels (Dufour 1984). While the USPHS studies were the first

to demonstrate a direct link between high coliform counts and increased amounts of

illness, the USPHS did not have enough data to determine actual risk equations.

In 1968, a National Technical Advisory Committee to the newly created Federal Water

Pollution Control Administration (FWPCA) recommended using fecal coliform instead of

total coliform as the indicator bacterium of choice (Dufour 1984). The FWPCA

recommended level was set at 200 fecal coliforms per 100 ml (Dufour 1984). This level

was based on three factors: the fact that fecal coliform are approximately 18% of the

total coliform count under average conditions, the observed health effects level from the

USHPS epidemiological studies on recreational water use, and an additional factor of

safety. In 1972, the United States Environmental Protection Agency (USEPA)

confirmed the 200 fecal coliform standard based on research that showed reduced



numbers of Salmonella infections below that level (Dufour 1984). Despite a widespread

criticism that the USPHS studies upon which the fecal coliform standard is based are

inadequate, this standard continues to be used by some US states.

Recognizing a lack of studies that related the risk of infection to the amount of indicator

bacteria in the water, the USEPA commissioned epidemiological studies at fresh and

marine water swimming areas beginning in 1973. The resulting freshwater data from

these studies were used to create the 1984 report "Health Effects Criteria for Fresh

Recreational Waters" (Dufour 1984), which determined regression equations relating

swimming-associated gastrointestinal symptom rates with the geometric mean E. coli or

Enterococci density per 100 ml of freshwater.

In a 1986 report entitled "Ambient Water Quality Criteria for Bacteria." (USEPA 1986)

the USEPA recommended acceptable indicator bacteria levels based on a historically

accepted additional risk of illness equal to 8 per 1000 swimmers. The recommended

geometric mean indicator bacterium concentration levels were determined using the

regression equations from the 1984 "Health Effects Criteria ..." report. In terms of

individual risk, the accepted additional risk means that there is an additional 0.8 percent

chance above normal environmental infection rates that a swimmer will contract

gastroenteritis from a single swimming event (USEPA 1986).

Table 2 summarizes the USEPA recommended criteria. Individual US state agencies

have adopted these or stricter standards (USEPA 2003). The standards in Table 2 were

developed on the basis of full-contact-immersion swimming, which is also referred to as

primary contact recreation. Secondary contact recreation activities, such as boating,

wading, and fishing, were not included in the 1984 epidemiological study. The USEPA

mean indicator density guidelines are meant to apply to both primary and secondary

recreational use, but states can apply for exemptions depending on local conditions. In

general, many US states apply the single-sample maximum allowable density for

Moderate Full Body Contact Recreation (column 5 of Table 2) as the standard for

secondary recreation, and the Designated Beach Area single-sample maximum (column
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4 of Table 2) as the standard for primary contact recreation. Section 3.5 contains

further discussion of single-sample maximum allowable densities.
Table 2: Indicator Bacteria Density Criteria (USEPA 1986)

Single-sample Maximum Allowable Density (Enterococci/100 ml)

Steady Sate Designated Moderate Lightly Used Infrequently
Geometric Beach Area Full Body Full Body Used Full Body

Mean (upper 75% Contact Contact Contact
Indicator C.L.) Recreation Recreation Recreation
Density (upper 82% (upper 90% (upper 95% C.L.)

(Enterococci C.L.) C.L.)
/100 ml)

Entero- 33 61 78 107 151
cocci

E. coli 126 235 298 409 575

C.L. = Confidence Limit

The 1986 USEPA guideline criteria presented in Table 2 are still considered to be the

United States standard for measuring risk of infection from freshwaters using

Enterococci or E. coli as the indicator bacteria. However, this is likely to change in the

future. There is a recognition that the current standards do not adequately account for

different usages of recreational waters, and that with new methods it is possible to test

for many more microbial agents directly instead of relying on indicator bacteria. In

2000, the United States Congress passed the Beaches Environmental Assessment and

Coastal Health Act (BEACH Act) which directed the USEPA to update their guidelines to

account for these factors. Starting in 2002, the USEPA and the CDC began series of

epidemiological studies to account for a wider range of variables that influence the risk

of illness from recreational water use (Yoder et al. 2008). However, the results from

these studies are not yet known.

2.1.2 World Health Organization Standards

In 2003, the World Health Organization (WHO) released "Guidelines for safe

recreational water environments: Volume 1 Coastal and Fresh Waters" (WHO 2003). In

this omnibus guidance document the WHO proposed guidelines dealing with a wide

range of issues that affect recreational waters, including drowning and injury prevention,

bacterial water quality, dangerous aquatic organisms such as sharks, and more.
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Chapter 4 of the WHO document discusses guideline indicator bacteria. Instead of

using a geometric mean guideline like the USEPA, the WHO uses a 95 th percentile

method for measuring bacterial concentrations (WHO 2003). In this method, 95% of the

water samples taken should be below the guideline values to be considered safe. The

WHO recommends a four-tier rating scheme based on the 9 5th percentile value of

Enterococci per 100 ml, summarized in Table 3.
Table 3: WHO Bacterium Guidelines (WHO 2003)

Class 9 5th percentile value of Estimated risk per exposure
Enterococci/100 ml Gastrointestinal Illness Acute febrile respiratory disease

A <40 <1% <0.3%
B 41-200 1-5% 0.3-1.9%

C 201-500 5-10% 1.9-3.9%
D >500 >10% >3.9%

The estimated risks are not based on a defined risk equation like the USEPA standards.

Instead, the guidelines are based on the results from a review of published

epidemiological studies by Pruss (1998), with extra weight given to two randomized

controlled trials conducted in marine waters. The emphasis on marine studies is based

on a belief that the risk of illness is always lower for recreation in fresh waters than in

marine waters (WHO 2003).

2.1.3 Singapore Standards

Current Singapore standards for marine and freshwaters are based on the WHO

recommended guidelines (SGNEA 2008). Adopted in 2008, the goal for Singapore

recreational waters is to achieve Class B waters or better. This translates to a guideline

9 5 th percentile level of 200 Enterococci per 100 ml or less. Currently, only six marine

beaches are monitored for water quality, and no freshwater bodies are monitored

(SGNEA 2008).

2.2 Risk Assessment

Environmental risk assessment consists of three interconnected phases. The first

phase is site characterization which includes the development of a site exposure model,
the second is risk quantification through the use of risk models, and the third is risk



management and communication (Salhotra 2008). While the first two phases can be

carried out through research and fieldwork, the third requires participation of the

relevant regulatory agency.

2.2.1 Bacteriological Site Characterization

Site Exposure Model

The first step in site characterization is to determine an exposure model for current and

anticipated use of the site. The exposure model identifies sources, exposure routes,

and potential receptors. In the case of microbial contamination, the three primary

sources are water, sediment, and surficial soil. From each of those sources, there are

three possible exposure routes for pathogenic bacteria: dermal contact, inhalation, and

ingestion (Haas Rose, & Gerba 1999). Potential receptors are divided into current

receptors and future receptors. Each receptor group is then split further into drinking

water consumers and recreational users of the reservoir. A complete exposure pathway

is one in which a potential receptor is possibly exposed to pathogenic bacteria through

an established exposure route; for instance a recreational user exposed to pathogens in

sediment via ingestion. A complete site exposure model for Kranji Reservoir is

presented in Table 4, where each highlighted square represents a complete exposure

pathway.

Even though there exist complete exposure pathways for drinking water consumers,

due to the extensive mixing and treatment by PUB before the drinking water reaches

the consumer the microbial risk is considered to be negligible. The reservoir is

currently used only for fishing from the bank, so current recreational users do not have

any contact with the sediment or with the water. Drinking water consumers are exposed

only through consumption of water from the reservoir.
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Table 4: Site Exposure Model

Potential Receptors
Current Future Reservoir

Reservoir Use Use

Secondary n e

Surficial Soil Ingestion

Water Ingestion

squares indicate a complete exposure pathway.

This study focuses primarily on potential risk to future recreational users of the Kranji

Reservoir. The primary difference between future primary-contact and future

secondary-contact recreational users is not the types of exposure, but the duration of

exposure. Secondary-contact recreators are expected to have a much less exposure to

the water and sediment, so the amount of pathogens to which they are exposed will be

much lower.

2.2.2 Risk Quantification

Dose Calculations

The first step in conducting risk quantification is the calculation of the dose to which the
potential receptors are exposed. The dose is calculated to determine the number of

microorganisms to which a receptor is exposed during a single event or over multiple
microorganisms to which a receptor is exposed during a single event or over multiple



exposures. Dose calculations begin with concentrations observed in the field. Since

concentrations can vary significantly at a given location from field sample to field

sample, it is crucial to use the geometric mean value in calculations.

The actual dose of microorganisms is calculated by estimating the amount of source

medium that the receptor has been exposed to and the concentration of the pathogens

in the medium. The best way to calculate the amount of source exposure is by a study

of the current users. Since this is often difficult to do, standard sets of data have been

compiled by various sources, such as the USEPA in their "Exposure Factors Handbook"

(USEPA 1999b) or in available published reports. The dose over multiple exposures is

estimated by taking the single event exposure and multiplying by the number of likely

exposure events. Tables of likely exposures are also available from similar sources as

those for the exposure factors. Exposure for the future recreational users of the Kranji

Reservoir is tabulated in Section 4.3. The concentration of pathogens in the target

medium is usually estimated through the use of an indicator bacterium.

Risk Equations

The key assumption behind any risk quantification is that there is a relationship between

the dose of the contaminant and the response of the receptor that can be expressed

using an equation or set of equations. Microbial risk relationships usually assume that

the relationship is immediate, and that it increases with increased concentrations of

microbial pathogens that are ingested. The relationship between dose and response for

microbial pathogens is often not known and has been modeled as a log-linear

relationship (Dufour 1984), as a logistic relationship (Fleisher 1991; Wymer & Dufour

2002), and using more complicated statistics-based models (Wiedenmann 2007).

Section 3 looks at these models in more detail.

2.2.3 Risk Management and Communication

The final risk assessment step is to take action to manage the risk, and communicate

the risk to potential receptors. The most common method of managing illness risk for

water bodies is by setting guideline standards for bacterial concentration. These

guidelines are usually expressed as an acceptable mean concentration of an indicator



bacterium, and acceptable maximum limits for single-samples. The agency responsible

for managing the water body is required to take periodic water samples to ensure that

the guidelines are met. If the guidelines are exceeded, the water body should be closed

to use, and the closure communicated to potential users.

2.3 Indicator Organisms

Using a single indicator bacterium to represent the water quality of recreational waters

has been standard practice for many years. Epidemiological studies of recreational

waters usually measure multiple indicator bacteria in order to find which one represents

the risk most accurately. No indicator is perfect, but often Enterococci is chosen as a

reasonable compromise. The indicator bacteria concentrations are an important

component of the risk assessment process.

2.3.1 The Ideal Indicator Organism

The choice of indicator organism is very important. According to Palmer et al. (1984)

the ideal indicator organism will have specific characteristics.

* "be associated with the source of pathogens;

* be able to provide an accurate estimate of the number of

pathogens present at the levels which pose a health risk; and

* be measurable by simple methods with considerable accuracy."

(Palmer, Lock, & Gowda 1984)

First, requiring the indicator bacterium to be associated with the source of the

pathogens is a guard against false positives. If the indicator organism reproduces

naturally in the environment, then the concentrations of the indicator bacterium may

indicate a problem when there is not one. E. coli and fecal coliforms have been shown

to grow in tropical soils, so their use in tropical climates such as Singapore is

problematic. As early as 1991, a study was conducted by researchers at the University

of Puerto Rico that showed that tropical streams could contain levels of fecal coliforms

higher than the recommended levels, yet be free from pathogens (Hernandez-Delgado,

Sierra, & Toranzos 1991). Enterococci may also grow in tropical soils. The USEPA



recognizes this problem (USEPA 1999a), but until more epidemiological studies have

been conducted in tropical waters there are no approved alternatives.

Secondly, picking an indicator organism that provides an accurate estimate of all the

pathogenic organisms is essential, but very difficult. There is a wide variance in the

causes of adverse health effects, and for some the cause is not always known.

According to a CDC report on illness associated with recreational water use in 2005 and

2006, most common etiologic agents were parasitic (43.6% of identified cases),

bacterial (28.2%) and viral (5.1%) (Yoder et al. 2008). The most common adverse

health effect of gastroenteritis is usually assumed to be caused by cryptosporidium, a

parasite that is usually associated with human fecal contamination. The common

ailment of swimmer's rash or itch is associated with avian schistosomes, a parasite

whose reproductive cycle includes snails and waterfowl, but in humans presents as a

rash which usually resolves itself in approximately a week (Levesque et al. 2002).

Swimmers ear (otitis externa) is associated with recreational water use, but the exact

cause is not known, though there is an unconfirmed assumption that the bacteria

Pseudomonas aeruginosa is the cause (Calderon & Mood 1982). In 2005-2006, the

CDC also recorded outbreaks due to Norovirus and Shigella sonnei virus in recreational

waters (Yoder et al. 2008). Given this wide range of causes and sources, it is

impossible to find an indicator bacterium that can accurately estimate concentrations of

all of these etiological agents. For this reason, most large scale epidemiological studies

focus on one or two waterborne diseases and attempt to correlate their target indicator

bacteria with the studied illness. See Section 2.3.2 below for a discussion of large scale

studies and the indicator bacteria that they chose.

Finally, Palmer (1984) states the ideal indicator organism needs to be easily and

accurately measurable. The biggest problem with the most common indicator

organisms is not the ease of measurement, but the amount of time that it takes to obtain

test results. All of the commonly used indicator organisms are bacterial in nature, and

whether a direct filtration or most probable number (MPN) method is used, a minimum

of 24 hours is required before results are obtained. This is changing however, as the
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development of quick polymerase chain reaction (QPCR) methods makes it possible to

quickly identify concentrations not only of indicator organisms but of the actual

pathogens. Unfortunately QPCR remains expensive and lacks easy portability.

2.3.2 Large Scale Epidemiological Studies

Since the 1980s there have been many epidemiological studies that sought to establish

the relationship between various adverse health effects and recreational water use.

The studied health outcome and the indicator organisms used in six of these freshwater

epidemiological studies are shown in Table 5. Section 2.3.3 and 2.3.4 will look at the

Dufour (1984) and Wiedenmann (2006) studies in additional detail. The summary data

of these studies was collected in two papers one by Annette Pruss (1998) and one by

Denis Zmirou et al. (2003). Each paper looked at the available published

epidemiological studies to determine the relative illness risks associated with

recreational use of waters, as measured by the chosen indicator bacteria.
Table 5: Description of select freshwater epidemiological studies (Pruss 1998; Zmirou et al. 2003)

First Author Year Country Indicator Health Notes
Outcome

Dufour 1984 US 2,3,4 GI Used for EPA guidelines

Ferley 1989 France 1,2,4,7,8 AGI

Fewtrell 1992 UK 2,4,5,6 All adverse
health effects

Seyfried 1985 Canada 2,4,6,7,12 All adverse
health effects

Lightfoot 1989 Canada 2,3,6 GI Unpublished Thesis
Van Asperen 1998 Holland 2,3,4,5,10 GI

Wiedenmann 2006 Germany 3,4,9,11 GI Only freshwater randomized
trial. Not included in Pruss,
Zmirou

1 = total coliforms, 2 = fecal coliforms, 3 = E. coil, 4 = fecal streptococci or Enterococci, 5 = enterovirus, 6 =
staphylococci, 7 = Pseudomonas aeruginosa, 8 = Aeromonas spp, 9 = Clostridium perfingens, 10 =
bacteriophages, 11 = coliphages, 12 = heterotrophic bacteria, GI= gastro-intestinal symptom, AGI= acute
gastro-intestinal disease

All of the freshwater studies except for Wiedenmann (2006) are prospective-cohort

studies, where participants of the study were recruited from people already using the

water for recreational use. Wiedenmann (2006) was the first randomized-controlled-trial

that looked at freshwater recreational use risks.
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All of the studies measured fecal coliforms, most likely due to historical use and ease of

testing. The second most commonly used indicator bacterium was fecal

streptococcilEnterococci. Additionally, a wide variety of other indicator bacteria was

used including the most commonly regulated indicator, E. coli.

2.3.3 1984 Dufour Epidemiological Studies

In 1984, Dufour published an article summarizing the results of an epidemiological study

commissioned by the USEPA to determine the link between water quality and

gastrointestinal illness (Dufour 1984). The prospective-cohort study recruited a total of

34,598 participants from beaches at Lake Erie, Pennsylvania, and Keystone Lake,

Oklahoma. Field surveys were conducted in 1979, 1980, and 1982 at the Lake Erie

location, and 1979 and 1980 at Keystone Lake. The study measured rates of illness

among swimmers and non-swimmers alike through the use of follow-up surveys

conducted by phone 8-10 days after the participant's beach visit. Swimmers were

defined as having complete exposure of the head to the water, while non-swimmers

were participants who did not immerse their heads in the water. Note that non-

swimmers may or may not have had contact with the water. Illness rates were

measured using two definitions, gastrointestinal illness (GI) and highly-credible

gastrointestinal illness (HCGI). Follow-up surveys defined GI symptoms as vomiting or

diarrhea or stomachache or nausea; HCGI was defined as having vomiting or diarrhea

with a fever, or stomachache/nausea with a fever (Dufour 1984). Of the indicator

bacteria measured, both E. coli and Enterococci were found to have good correlation

with gastrointestinal illness. Section 3.1 below describes the risk model derived from

this study.

2.3.4 2006 Wiedenmann Epidemiological Studies

The purpose of the Wiedenmann et al. (2006) trials was to provide a better scientific

basis for recreational freshwater standards. This was the first randomized controlled

trial conducted on freshwater. There were 2,196 participants recruited prior to

recreational contact, and participation was strictly controlled to achieve a representative

population. The study took place at five freshwater beaches in Germany. Exposure to
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water was strictly controlled, with swimmers directed to a roped off area of

approximately 10 by 20 meters. They were allowed to swim for 10 minutes, and

instructed to completely immerse their heads at least three times during their swimming

activity. The microbial makeup of the water in the swimming zone was analyzed every

20 minutes (Wiedenmann et al. 2006). Non-swimmers were restricted to a roped off

area of the sand, and unlike the USEPA (1984) studies, were not allowed any contact

with the water. This makes the Wiedenmann study the most controlled of all the

freshwater epidemiological studies. Illness rates were tracked through phone interviews

by doctors one week and three weeks after exposure to the water. To determine risk

equations based on this study, Wiedenmann defined gastroenteritis as diarrhea, or

vomiting, or nausea and fever, or indigestion and fever (Wiedenmann 2007). This

definition is not significantly different from the definition Dufour used for HCGI.

Wiedenmann also found that E. coli and Enterococci had good correlation with rates of

illness. Section 3.2 below describes the risk model derived from this study.

Measuring the risk associated with recreational water use depends on measuring the

correct indicator bacterium in the correct locations. Sampling locations are picked

based on complete exposure pathways to recreational users. The choice of indicator

bacterium is based on historical use by regulators, by the availability of epidemiological

studies that quantify the relationship between the indicator bacterium and the risk of

illness, and by the availability of risk models optimized for the indicator bacterium. Final

guidelines specify the indicator bacteria concentrations that represent the amount of risk

regulators are willing to expose recreators.
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3 Risk Models

A complete risk model for freshwater recreation is an equation or set of equations that

relate recreational use to the additional probability of illness to the recreator. Two

complete models for estimating the risk of gastroenteritis from freshwater recreation are

a model proposed by Alfred Dufour (1984) and a model proposed by Albrecht

Wiedenmann (2007). The equations derived for these models and the assumptions

behind these models are discussed in the following section.

3.1 Dufour Risk Model

The model that the USEPA currently uses to estimate risk for freshwater recreation was

developed from the epidemiological studies conducted at both fresh and marine water

beaches and reported by Dufour (1984). From the data collected in those studies,

Dufour (1984) developed a set of risk equations that link the concentration of E. coli or

Enterococci in the water to the additional rate of gastrointestinal illness. The USEPA

then used these risk equations to calculate the guideline geometric mean bacteria

densities shown in Table 2 (USEPA 1986). While the model that was suggested by

Dufour in 1984 is still the basis for the current USEPA guidelines, subsequent papers,

including one co-authored by Dufour himself, have suggested major revisions to the

model. This section discusses how Dufour derived the equations in the risk model, the

improvements suggested to the risk model based on the same data, and problems with

the Dufour model.

3.1.1 Dufour Risk Equations - A Log-Linear Model

Dufour (1984) developed his risk equations using data from the epidemiological studies

discussed in Section 2.3.3. Dufour separated the data for fresh and marine waters then

plotted graphs where the dependent axis was the logioBacterium concentration, and the

independent axis was the difference between swimmer and non-swimmer illness rates

per 1000 swimmers (Dufour 1984). Figure 5 is a plot of the original data for Enterococci

in freshwater, along with the linear regressions found by Dufour. Two sets of data were

plotted, one for general gastro-intestinal illness (GI) rates (Equation 1) and one for

highly credible gastrointestinal illness (HCGI) rates (Equation 2) where GI and HCGI are
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as defined in Section 2.3.3. The data used to plot the points were developed by taking

the geometric mean bacterium concentrations for an entire year and the illness

difference rate for that same year.
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Figure 5: 1984 Linear Regressions (Data from Dufour 1984)

After plotting the data, the relationship between illness rate and bacteria indicator

density was assumed to be log-linear, of the form seen in Equation 1 and 2.

Additional GI Risk/1,000 people = -4.5 + 14.3 * log (Cen) (1)

Additional HCGI Risk/1,000 people = -6.3 + 9.4 * log (Cen) (2)

Dufour rejected Equation 1 as an appropriate risk model for GI risk because the

symptoms were less well defined and the correlation was weaker than that for HCGI

symptoms. Equation 2 is the final risk model Dufour suggested for Enterococci

concentrations in freshwaters, and this was the model adopted by the USEPA in 1986

(USEPA 1986).

3.1.2 USEPA Guidelines

In 1986, the USEPA used the Dufour risk equations to formulate the suggested

guidelines for recreational waters seen in Section 2.1.1 and Table 2. They

accomplished this by assuming an acceptable level of risk for recreational use of waters

over the baseline rate of HCGI in the recreator population and then solving Equation 2

(and the corresponding equation for E. colt) for bacterium concentration Cen. This



acceptable level of risk was set at 8 additional cases of HCGI per 1000 swimmers. This

is equal to an additional risk of 0.8% for each individual user per swimming event. The

guideline value for Enterococci in freshwater was calculated to be 33 Enterococci per

100 ml. Figure 6 shows the risk curve generated by Equation 2 over the range of

Enterococci concentrations found in the Kranji Reservoir. The dashed line represents

the EPA guideline of 33 Enterococci per 100 ml and the associated additional risk of

0.8%.
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_- Dufour Swimming
- Adult

------ EPA Guideline
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Figure 6: Dufour Risk Curve

3.1.3 Problems with the Dufour Model

Criticisms of the Dufour risk equations and the EPA guidelines derived from them

generally fall into three categories. The first is a criticism that the data was improperly

manipulated before deriving the risk equations. Secondly, the study that collected the

data has been criticized on several counts. Finally the assumption of a log-linear model

for the risk equations is a major source of criticism. The following discusses these

issues in more detail.
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Loss of Data

One of the most significant problems with the Dufour model is that the risk equations

were calculated by using the geometric means of the bacterial concentrations over an

entire year. The actual concentrations ranged over one to two orders of magnitude

during each year, and the standard deviation of the bacterial density was not given in

the original analysis. Since the higher concentrations probably account for a majority of

the incidences of illness, using the yearly geometric mean eliminates many data points

that might change the risk equations. In addition to averaging the data, the non-

swimmer illness rates were pooled across all locations, which would obscure possible

outbreaks at a specific location.

Prospective Cohort vs. Randomized Trials

Most epidemiological studies done on recreational waters have been prospective cohort

studies, including the studies upon which Dufour (1984) based his risk model. This is a

common type of epidemiological study, but it has several problems when compared to a

randomized controlled epidemiological study.

Prospective-cohort study participants are recruited from people who have already used

the recreational waters. Investigators usually recruit swimmers and non-swimmers (e.g.

waders or sunbathers), survey them at the recreation location, and follow up with

another survey a week to a month later to determine illness rates. Water quality

characteristics are measured on the day that study participants are using the water, but

there is no attempt to control the amount of exposure that the participants have with the

water.

Randomized trials represent a more rigorous approach to an epidemiological study. In

a randomized trial, participants are recruited before recreation takes place. The

locations, the amount of time in the water, and the type of exposure to the water (full

submersion versus partial submersion) are strictly controlled. Participants are screened

beforehand for symptoms of the target illness, and follow-up surveys are often of the

form of in-person interviews, or telephone and mailed surveys. Follow-up interviews are
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conducted as blind studies, in which the interviewer does not know if the participant was

a swimmer or a non-swimmer.

Randomized trials are a more accurate way to determine dose-response relationships

since they account for more of the relevant risk factors. However, prospective-cohort

studies are often used due to the expense and difficulty in designing and executing

randomized trials. There has been only one published freshwater randomized trial, that

of Wiedenmann (2006). Section 3.2 below will introduce the model proposed by

Wiedenmann based on that study.

3.1.4 Fleisher Risk Equations - Logistic Regression Model 1

One common criticism of the risk equations developed by Dufour is that the log-linear

model of the underlying epidemiological data is incorrect (Fleisher 1991; Wade et al.

2003; Wymer & Dufour 2002). In 1991, Fleisher published a paper that re-analyzed the

portion of the data from the 1984 studies collected in marine water using a logistic

regression model. The advantage of a logistic regression model is that it specifies the

probability of illness directly and has a sinusoidal shape that corresponds with dose-

response curves calculated from animal infectivity studies (Fleisher 1991). The general

formula for a logistic regression model is seen in Equation 3 (Wymer & Dufour 2002).

1
P = (3)

l1+e-(oc+flx)

In Equation 3, P represents the absolute probability of contracting gastrointestinal

illness from recreational water use. oc and f/ are terms that describe the shape of the

risk curve and are solved for by fitting the risk curve to data from an underlying

epidemiological study. x represents the logo0 indicator bacteria concentration.

Fleisher (1991) constructed a series of models using logistic regression in attempts to

find a useful risk model. One major difference in the way Fleisher (1991) and Dufour

(1984) constructed their models was that Fleisher separated the data from the three

locations used in the marine studies. He also did not use the non-swimmer illness rates

in his equations, choosing to solve for absolute risk rather than additional risk. After
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separating the data by location, Fleisher (1991) then attempted to derive generalized

risk equations using that data. Fleisher came to the conclusion that the risk varied so

significantly between the locations that the Dufour risk equations (Equation 2) were not

useful (Fleisher 1991). He also concluded that the underlying data was not sufficient to

develop a truly accurate risk model.

3.1.5 Wymer and Dufour Risk Equations -Logistic Regression Model 2

Wymer and Dufour (2002) revisited Dufour's 1984 data, and applied a logistic

regression model to the data. Unlike Fleisher (1991), they decided to incorporate the

background illness rate of non-swimmers into their model (Po in their equations). By re-

arranging Equation 3, and dividing P by Po, they derived Equation 4, which is the natural

log of the risk ratio ( absolute risk/baseline risk) and its relationship to oc, fl, and x from

Equation 3.

In/-) =oc +fx (4)I Po/1-PoI

Using Equation 4, Wymer and Dufour (2002) then calculated values for oc and f using

two different models. They concluded that by incorporating the background illness rates

into the model, their results accounted for much of the discrepancy between locations

that Fleisher found (Wymer & Dufour 2002). Despite this improvement, Wymer and

Dufour still concluded that the exposure-response relationship found in the 1984 paper

could not be extended to multiple locations (Wymer & Dufour 2002). They also

concluded that it may not be possible to derive a generic risk equation that would be

valid for multiple locations, since population susceptibility and pathogen ratios differ

significantly over time (Wymer & Dufour 2002).

3.2 Wiedenmann Theoretical Risk Equation

Wiedenmann (2007) proposed a theoretical statistics-based equation for recreational

water use risk. This risk equation is composed of several parts. The first assesses

population susceptibility, the second describes the risk of infection from a single

pathogen, and the third estimates the number of pathogens ingested. Equation 5 is the

risk equation proposed by the Wiedenmann (2007).

Risk = (MR - BR) * (1 - [1 - p(1)]z} (5)



The next three sections will examine this risk model part by part.

3.2.1 Population Susceptibility - (MR - BR)

The first term in Equation 5 measures the extent that a population is susceptible to the

disease of interest. MR represents the maximum rate of disease in a population if

everyone was exposed to the etiological agents. The largest this number can be is 1,

representing a perfectly infecting pathogen. In reality, pathogen infectivity widely varies.

For the pathogens that cause gastroenteritis, the maximum rate in any given population

is usually less than 0.1 (10%) (Wiedenmann 2007). The second part of the population

susceptibility is the base rate (BR) of the population. This is the rate that the disease

naturally occurs in the population without recreational water use. For gastroenteritis this

is usually between 0.01 to 0.03 (1-3%) (Pruss 1998)

3.2.2 Single Pathogen Risk - p(l)

The term p(l) in Equation 5 represents the probability of getting sick through the

ingestion of a single pathogen. This is determined by infectivity studies on human

subjects. For water-related diseases, such as gastroenteritis, which are caused by

more than one type of pathogen, the p(1) term represents the average single-pathogen

infectivity. The risk of illness from ingesting multiple pathogens, p(z), is calculated by

determining the probability of not getting sick [1 - p(z)], where z represents the number

of pathogens ingested. [1 - p(z)] is equal to [1 - p(l)]z. Finally, the probability of

illness from ingesting z pathogens is equal to (1 - [1 - p(1)]z).

3.2.3 Pathogen Ingestion - z

In Equation 5, the number of pathogens ingested is represented by the single term z.

Since we can't measure the number of pathogens ingested directly, z is an equation

that relate pathogen concentrations to indicator organism concentrations which can be

measured directly. Equation 6 is the expanded z term for the risk equation

(Wiedenmann 2007).

z = PIR * FIO * Vintake (6)

The first two terms in Equation 6 allow the conversion from measuring pathogen

concentrations directly to using an easily measured indicator bacteria. PIR is the
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Pathogen/Indicator Ratio and FIO is the Fecal Indicator Organism concentration. If the

pathogens of interest and the indicator organism had exactly the same die-off

characteristics, then the PIR would be a simple constant that could be multiplied by the

FIO concentration. However, the PIR is usually more complicated than a simple

constant. Based on experimental observations, Wiedenmann suggested Equation 7 for

the PIR (Wiedenmann 2007).

PIR = 1 0 q/(FI1 / 1 0 0 ml), where q = a + b * loglo (FIO/100 ml) (7)

a and b are constants that describe the shape of the risk curve and can be found by

conducting a study that measures the pathogen and indicator concentrations in the

target waters, or by curve-fitting the risk data from an epidemiological study.

Wiedenmann chose the latter method to determine the values of a and b for his model

(Wiedenmann 2007). Variations in a and b have different effects on the resulting risk

curves. a primarily acts to shift the risk curve to the left or right, while b determines how

quickly the risk changes between the base rate and the maximum rate.

The final variable needed to determine the rate of pathogen ingestion is the volume of

contaminated material that has been ingested, vintake. The intake term is expressed as

a percentage of the base concentration unit. Since bacteriological water quality is

expressed as the number of indicator organisms per 100 ml, the ingestion term for

water is divided by 100 ml (Wiedenmann 2007). When the concentration of interest is

measured in the sediment, the ingestion term is per 1 g (Donovan et al. 2008). The

complete ingestion term seen in Equation 8 combines Equations 6 and 7.

z = Vintake * 1 0 a+b* loglo CEN (8)

3.2.4 No-Observed-Adverse-Effect Levels (NOAELs)

A no-observed-adverse-effect level (NOAEL) is the bacterial concentration below which

illness rates for recreational users are not significantly different than the background

rate of illness. Wiedenmann et al. (2006) identify a NOAEL of 25 Enterococci per 100

ml (Wiedenmann et al. 2006) for swimming. Wiedenmann et al. (2006) suggested that

this would be the appropriate regulatory level for agencies to adopt. Figure 7 shows the

risk curve generated by Equation 5 over the range of concentrations found in the Kranji
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Reservoir. The dashed line represents the NOAEL of 25. Although the model shows a

risk of 1.1% associated with the NOAEL, this is due to the need to use a smooth

equation to generate the risk curve. The additional risk at levels below the NOAEL is

actually zero.

Additional Risk of Gastorenteritis due to Swimming
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6.0% . -. Wiedenmann NOAEL

_ 5.0%

,I-

m 4.0%

3.0%

o2.0%

1.0% - - -- -r --- _ - - --I-

0.0%

1 10 25 100 1000
CFU Enteroccoci/ 100 ml water

Figure 7: Wiedenmann Risk Curve

3.2.5 Problems with the Wiedenmann Model

The main problem with the Wiedenmann Model is the derivation of the PIR term

described by Equation 7. The Pathogen Indicator Ratio is the weakest link in the

generalized risk model as embodied by Equation 5 and 6. In the past, the PIR has been

inferred from epidemiological studies, usually by assuming an ingestion rate.

Wiedenmann assumes a non-constant PIR that varies with the FIO, as seen in Equation

7.

PIR = 1Oq/(FIO/100 ml), where q = a + b * loglo (FIO/100 ml) (7)

Wiedenmann found the PIR for his model by assuming an ingestion rate of 30 ml for the

10-minute swimming period in his study (Wiedenmann 2007). He then calculated the a

and b in Equation 7 by fitting the risk curve to the observed data and seeking the a and

b values that resulted in a curve with the minimum sum of squared errors (Wiedenmann



2007). Wiedenmann's ingestion assumption of 30 ml is questionable however, since

research by Dufour on swimmers in chlorinated swimming pools shows that adult

swimmers ingested approximately 4 ml in a 10-minute recreational period (Dufour et al.

2006). The actual PIR is thus likely to be higher than the one calculated by

Wiedenmann.

Assuming that the PIR is incorrect, there are three options for modifying Equation 7.

The entire PIR could be adjusted by a constant factor, just the a term could be adjusted

by some factor, or just the b term could be adjusted by some factor. Figure 8 shows the

different risk curves obtained by varying the entire PIR by constant factors of 10 and

1/10, and the associated NOAELs for comparison of each curve.

Variation of PIR
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Figure 8: Variation of PIR

Adjusting the entire PIR by some factor results in approximately proportional change in

the NOAEL, as can be seen in Figure 8, where multiplying the PIR by 10 decreases the

NOAEL by 10 while multiplying the PIR by 1/10 increases the NOAEL by 10.

Figure 9 shows the risk curves obtained by multiplying just a in Equation 7 by a factor of

2 or 1/2. Adjusting only a in Equation 7 results in a less direct change than adjusting

- - I~I I -- --~-



the entire PIR, as can be seen in Figure 9, where multiplying a by two results in

lowering the NOAEL by a factor of five, while multiplying a by/2 more than doubles the

NOAEL.

Figure 10 shows the effect of multiplying just b in Equation 7 by a factor of 2 or 1/2. The

effect of varying b is even more dramatic than that of a. As can be seen in figure 10,

multiplying b by 2 raises the NOAEL by a factor of 5, while multiplying b by lowers the

NOAEL by a factor of 25.

Variation of a
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Figure 9: Variation of a
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Variation of b
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Figure 10: Variation of b
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The small changes to the PIR factors in Figures 8, 9, and 10 results in large shifts of the

NOAELs for each risk curve. In contrast, the risk equation is much less sensitive to

changes in the ingestion term Vintake. Figure 11 shows the effect of multiplying vintake

by 2 and by 1/2. The NOAEL is approximately halved on the low end, and doubled on

the high end. Compare this to changing either a or b by the same factor, in which the

NOAEL is on average changed by an order of magnitude. This shows that having the

correct PIR is very important in calculating risk of illness to recreational water users,

since even small errors in this term translate into significant differences in the calculated

NOAEL, and thus the safety of the water body.

3.3 Common Risk Assumptions

Both the Dufour (1984) and Wiedenmann (2007) risk models make three major

assumptions. First, the risk models assume that the ingestion of water is similar among

all participants and that differing exposures are insignificant compared to the bacterial

concentration. This assumption is a necessary one, and is not normally a significant

source of error, as long as the assumed ingestion rate is of the correct order of

magnitude. The second assumption is that using indicator bacteria as a stand-in for the

actual pathogens that cause gastroenteritis is an accurate substitution, as discussed in

Section 2.3. The last major assumption is that the pathogen/indicator bacteria ratio

remains relatively constant, and is similar temporally and spatially. We know that this

last assumption is not correct, as a disease outbreak in the general population will result

in higher PIRs in any recreational waters that receive wastewater (Wiedenmann, 2007).

This would happen because the pathogenic organism concentrations would be raised

by the outbreak while the indicator organisms would be unchanged. Spatially, the ratios

may differ if there is preferential die-off or growth of indicator organisms in the natural

media, such as E. coli and Enterococci growth in tropical soils (Hernandez-Delgado et

al. 1991). Differing ratios will result in the actual risk being lower or higher - as shown

in Section 3.2.5 for the Wiedenmann equation. The pathogen indicator ratio assumption

is one of the least studied variables, even though it is key to all risk models based on

using indicator bacteria to measure risk.



3.4 Dufour vs. Wiedenmann Risk Models

The Dufour model and the Wiedenmann model differ in several respects. First, the

Dufour model was based on a study that did little to control for the variables in

recreational use. One of the major variables is how much water is ingested during a

swimming event. The amount of water ingested is related to the amount of time spent

swimming, and the age of the recreator. The Dufour study did not attempt to control for

this variable at all, while the Wiedenmann study strictly controlled for it by restricting

participants to ten minutes in the water with at least three head immersions.

The Dufour model also did very little to model the pathogen/indicator relationship. The

Dufour study consolidated much of the data collected into yearly averages and the log-

linear model Dufour chose has only two variables to model all the different factors that

influence the risk. In contrast, the Wiedenmann model controlled for all of the variables,

so that the only parts of the risk equation that had to be derived from the

epidemiological study were the PIR and the range of risks as represented by MR and

BR. The MR and BR are easy to determine, since they are the bounds of the data

collected during the epidemiological study. Section 3.2.5 discusses the problems with

the PIR in the Wiedenmann model, but it is at least possible to correct for this in the

future. In addition, both the Dufour model and the Wiedenmann model may

overestimate the risk in tropical waters since E. coli and Enterococci can grow in tropical

soils, thereby causing a PIR that may be much lower in tropical climates than in

temperate climates (Hernandez-Delgado et al. 1991). There is a lack of data for tropical

climates, since there have not been any recreational freshwater epidemiological studies

conducted in a tropical climate (Zmirou et al. 2003).

Figure 12 shows the risk curves generated from the Dufour model and the Wiedenmann

model plotted together. The dashed lines represent the guideline values for bacterial

density in recreational freshwaters.
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Figure 12: Dufour vs. Wiedenmann Risk Curves

The two models come closest to agreeing in the zone of concentrations where the risk

is lowest, but they disagree on how quickly the risk rises with higher bacterial

concentrations. The Dufour model calculates a lower risk than the Wiedenmann model

over the entire range of likely bacterial concentrations. This lower calculated risk is most

likely incorrect since the Wiedenmann study showed the maximum rate of illness occurs

before extremely high bacterial concentrations are reached. One possible reason that

the Dufour model does not show this is because of the averaging of the study data over

one-year periods.

Overall, the Wiedenmann model is superior to the Dufour model. The underlying data

used to generate the model is from a much more accurately designed study, where

many of the factors Dufour ignored were accounted for. Also, the Wiedenmann model

is much more flexible, since it explicitly accounts for different ingestion rates and PIRs.

With further research, the Wiedenmann model can be fully customized for any location

and potential population. The Wiedenmann model is what will be used in this study to

calculate risk to recreational users of the Kranji Reservoir.
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3.5 Single-Sample Maximum Allowable Densities

Single-sample maximum allowable densities are an important part of any water

sampling program. One of the problems when determining whether a water body is

safe for recreation is the amount of time it takes to determine the mean concentration.

Because of temporal and spatial variations in bacteria density, a single sample may be

higher than the allowable mean without indicating excess risk. To avoid unnecessary

recreational water closings, it is important to have single sample maximums (SSM) as

part of the water quality guidelines. Exceeding the SSM indicates that the likely mean

indicator density is higher than the acceptable risk level, and that the recreational water

should be closed.

3.5.1 SSMs in the United States

The USEPA-calculated SSMs are used in many states in the US (USEPA 2003). The

different confidence levels in Table 2 were chosen by USEPA (1986) based on

judgment as to the allowable risk in letting the geometric mean be higher than allowed

levels. The lower confidence limits result in a lower SSM, which represents a more

conservative approach to risk. A higher confidence limit results in a higher SSM, which

means there is a higher chance that the geometric mean exceeds guidelines.

Ideally, the SSMs should be calculated for each recreational water-body. The USEPA

recommends this water-body-specific approach in an attempt to compensate for the

generalized nature of the risk equations(USEPA 1986). By using data that must be

collected anyway, the SSMs can be adjusted at each water body; however in practice

this is not often done. USEPA (2003) lists the standards that each US state has

adopted for their recreational waters and the SSMs if the state has adopted any. None

of the states have adopted SSMs that have been adjusted for the different

characteristics of the recreational water bodies in the state. The most likely reason for

this is the large number of recreational water bodies that are regulated, and the effort

that it would take to customize regulations for each water body. Another possible

reason is that the USEPA standards were developed for temperate water bodies, so for

much of the U.S. the SSMs may not change much, though further study is needed to

determine if this is true.
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3.5.2 Calculating SSMs

To customize the SSMs for each water-body, it is necessary to determine the statistical

distribution that describes bacterial concentrations in the water. Bacterial

concentrations in most natural water bodies exhibit a log-normal distribution. To test the

type of distribution that the Kranji Reservoir exhibits, the measured Enterococci

concentrations in water were checked by two statistical tests using the USEPA ProUCL

software (USEPA 2007). The bacteria concentration data for the Kranji Reservoir is

well fit by a log-normal distribution. Details of the distribution-fit test are included in

Section 4.6.

The SSM for a given water body is the one-sided upper confidence limit (UCL) for the

confidence level chosen. There are two methods that the USEPA recommends to

calculate the UCLs for a given log-normal distribution. The first is using Lands method

(USEPA 2002), where the SSM is calculated using the log-standard-deviation and the

one-sided H-statistic as seen in Equation 9 (USEPA 2002).

UCL = e ln-Os n (

Where x is the mean concentration associated with the risk level chosen (i.e. 33

Enterococci per 100 ml from Table 2), s is the standard deviation of the transformed

data, n is the number of samples used to calculate s, and Hi_, is the H statistic for the

confidence levels chosen. The H-statistic is found in tables based on the standard

deviation and the number of samples. In USEPA (1986), the authors of the document

appear to use this method to calculate the SSMs. Figure 13 is taken from the USEPA

document, and shows the equation used by the EPA (USEPA 1986).
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Figure 13: SSM calculation method (USEPA 1986)

The 1986 USEPA document does not specify how the authors calculate the "Factor"

multiplied by the standard deviation, but Lands method was published in 1975, and it is

not unreasonable to assume that the authors used the H-statistic.

A more recently proposed method for calculating the UCL is through use of the

Chebyshev Inequality (CI) method (USEPA 2002). The Cl method uses the variance to

calculate the minimum-variance unbiased estimator (MVUE) for the standard deviation.

Equation 10 gives the MVUE standard deviation (USEPA 2002).

-," , n -2 (10)
or =exp(2t) (g,(s1 /2) - g, s (10)

Where gn is found in available tables. The one-sided upper confidence limit on the

chosen mean is calculated using Equation 11 (USEPA 2002).

UCL I_, =I, +  1 1 (11)

Where a is the chosen confidence limit, and P L is the log of the mean concentration

associated with the risk level chosen (i.e. 33 Enterococci per 100 ml).

Land's Method versus Chebyshev's Inequality Method

The CI method was proposed to deal with sites that have small sample sizes with large

skew or standard deviations. In cases where there are few samples upon which to base

the mean, then Land's method may indicate an unacceptably risky UCL. Since the CI

method is significantly more conservative than Land's method, the CI UCL will always

be lower than the Land UCL. In USEPA (2002), Exhibit 7 lists combinations of standard

deviation and sample size for which the Cl method should be used. If the SSMs for
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Kranji were based only on the data collected during January 2009, then the CI method

would be recommended. However, when combining the data collected in January 2009

with the data collected during the previous NTU study (Hwa et al. 2008), a much more

complete picture of the variation in the reservoir can be calculated, and with a total

sample size of 135 samples, the Land method is most appropriate.



4 Data Collection and Analysis

Water and sediment samples were collected during January 2009 and analyzed for

Enterococci concentrations. Water and sediment ingestion rates were collected for

possible recreational activities. The ingestion rates and sample information were used

to analyze risk using the Wiedenmann (2007) model. The data collected during January

2009 was combined with the data previously collected by NTU (2008) and analyzed

using statistical methods to calculate recommended indicator bacterium guidelines and

single sample maximums.

4.1 Field Sample Collection

Field sampling occurred over the week of January 19 through January 23. 2009.

Samples were taken from the main body of the reservoir in the north and from the three

arms that feed into the reservoir in the south. Figure 15 shows the locations in the

reservoir where samples were taken.
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Figure ~4: Reservoir Sampling Locations (Google Maps 2009)



Sample locations Res-A through Res-D were chosen based on the completed exposure

pathways in Table 6 and on the locations used in the reservoir study by NTU (2008).

Res-A is where the boat launch and visitors center proposed by the Western Catchment

Masterplan (PUB 2007b) will be located, as seen in Figure 3. Sediment samples as

well as water samples were taken at this point since recreational users will have contact

with the sediment at this location. Res-B and Res-C in the main body of the reservoir

are in the same areas as Station 3 and Station 1 from the previous reservoir study by

NTU (2008), as seen in Figure 4. Since users are not likely to have contact with the

bottom sediment in the center of the reservoir, only water samples were taken at these

locations. Res-D is located next to a proposed pavilion and dock as seen in Figure 3,

therefore both water and sediment samples were taken at this location. Sampling

locations TG, KK, and PS are located in the three arms of the reservoir, and duplicate

the sampling locations of the same name from the NTU study (Figure 4).

4.1.1 Water

Water samples were collected from a boat provided by PUB in either Whirl-Pak sample

collection bags or clean sterile 1-liter containers. Samples were collected by removing

the seal, and then placing the mouth of the container approximately 10 cm beneath the

surface of the water until the container was almost full. The pre-labeled container was

then sealed and placed on ice in a cooler in the boat. Samples were kept on ice until

they were analyzed in the lab.

4.1.2 Sediment

Sediment samples were collected from the bottom of the reservoir by using a Kajak-

Brinkhurst core sampler provided by Nanyang Technical University. Due to lack of

space in the boat, samples were composited in the tube of the sampler by dropping it

three times in each sampling area. The drift of the boat ensured that there was spatial

separation between each drop of the probe. The composite sample was then removed

from the sampling tube and placed in a sterile 600 ml container. The pre-labeled

container was then sealed and placed into a cooler. Samples were kept on ice until

analyzed at the laboratory.
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4.2 Laboratory Analysis

To determine the fecal indicator organism concentrations for risk quantification, samples

were analyzed for Enterococci and E. coli concentrations. Samples were analyzed

using both a direct filtration method (Hach 2008) and a MPN method using IDEXX

Quanti-Trays and growth media (IDEXX 2008a). Water samples were diluted using de-

ionized water and sterilized equipment.

Sediment preparation presented an additional challenge. The USEPA does not provide

a method for testing of sediment for indicator bacteria. The method used for sediment

preparation was taken from the United States Geological Service Techniques of Water-

Resources Investigations Book 9, commonly called the USGS Field Manual (Myers et

al. 2007). Chapter 7 "Fecal Indicator Bacteria" of the field manual provides a method for

calculating the indicator bacteria concentration in sediment. Section 7.1.3.B of the

manual provides a five step method for processing of the bed sediments which was

used for this study and paraphrased below.

1. Prepare for processing by labeling the following sterilized containers; two

500-ml sterile bottles for eluting and collection of supernatant, and a dish for

dry weight analysis.

2. Composite the samples (The sediment samples were composited in the field

for this study).

3. Prepare an aliquot of the sample for dry-weight analysis.

a. Record the tare weight of a clean dry heat-tolerant dish. Ceramic

drying dishes were used for dry weight analysis.

b. Place approximately 25 g of the composited sample into the drying

dish. Record the new weight.

c. Place in an oven at 1050 C. Dry until a constant weight is obtained.

Samples were dried for 24 hours before being re-weighed.

4. Elute bacteria from the composited sample/

a. Place 20 to 30 g of sample in the elution bottle. Add 100 ml of

phosphate-buffered water with magnesium chloride per 10 g of

sample.



b. Label the bottle with the time that it should be removed from the wrist-

action shaker.

c. Place the bottle on a wrist-action shaker. When the bottle was placed

on the shaker, a kitchen timer was started for 45 minutes.

d. After 45 minutes, remove the bottle from the wrist-action shaker. Let it

rest for 30 seconds, and then pour off the supernatant into a new,

labeled, sterile bottle.

5. Analyze the supernatant using the selected bacterial analysis method.

The supernatant extracts of the soil samples were analyzed for Enterococci

concentration.

4.2.1 Enterococci

Analysis of Enterococci concentrations was performed using IDEXX Enterolert media

and Quanti-Tray/2000 MPN trays. The IDEXX provided Quanti-Tray enumeration

procedure for the Enterolert test kit was followed (IDEXX 2008a). A sample of 100 ml of

reservoir water and the contents of one Enterolert packet were placed in a sterile jar

with a screw-cap lid. The jar was sealed, and then shaken until no granules of media

were visible. The sample was then poured into a Quanti-Tray/2000 MPN tray, sealed,

and labeled with the sample identifier, date, and time. The sealed trays were placed in

an incubator set at 410 Celsius. Samples were removed and read 24 to 28 hours later.

Samples were read in a light-box with a 365-nm UV light, and the number of positive

large and small wells was recorded on the sample sheet. The most probable number of

colony forming units (CFU) per 100 ml was then read from the IDEXX-provided MPN

table (IDEXX 2008b).

A source of error was introduced into the study at this point as the trays were not read

properly. There are 49 possible large wells, composed of 48 square wells and 1 large

rectangular well, as can be seen in Figure 16. At the time the research was conducted

it was not understood that the large rectangular well should be counted. The possible

error from not counting the large rectangular well is on average 10%, with a range of 3%
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to 33%. The error only occurs if the large rectangular well was positive and not

counted. It is unknown how many sample counts were affected.

Figure 15: Quanti-Tray/2000 (IDEXX 2008b)

4.2.2 E. coli and Total Coliform

Samples were tested for E. coil and total coliform using direct filtration and incubation

on Hach m-ColiBlue24 Broth (Hach 2008). In the laboratory, 100 ml reservoir water

samples were diluted to 1:100, 1:10, and 1:1 and vacuum filtered. The filter paper was

placed on a labeled petri dish that contained a pad wetted with the growth media. The

petri dishes were placed in an incubator at 350 C for 24 hours, before being removed

and read. Due to the high turbidity of the waters, no useable results were obtained at

the 1:1 dilution level. Since there were no E. coli colonies at the higher dilution levels,
the only conclusion could be that there were less than 10 E. coli colonies in these 100-

ml samples. Because of the problems with this method, E. coli and total coliform were

only tested for on the samples collected on 01/19/09 and 01/20/09, and discontinued for

the rest of the sampling period.

4.3 Dose Calculations

After determining the concentration of bacteria in the field, the next step in conducting a

risk assessment is the calculation of the dose to which the potential receptors are



exposed. Exposure parameters for water and sediment ingestion were gathered from

available sources. Exposure values for kayaking, a key planned recreational use of the

reservoir, are not available in published literature, so an estimate for kayaking exposure

was made based on personal interviews.

4.3.1 Water Ingestion

Exposure rates for swimming are calculated using an average water ingestion rate

during swimming and a mean swimming duration. According to Dufour (2006) the

average amount of water swallowed during a 45-minute swimming period is 16 ml for

adults, and 37 ml for children under the age of 18 (Dufour et al. 2006). The USEPA

recommends a mean swimming duration of 60 minutes per event (USEPA 1999b).

Combining these factors, the ingestion rate per swimming event is 20 ml per event for

adults and 50 ml per event for children.

Exposure rates for kayaking were calculated using the ingestion rates for swimming and

adjusting them for the relative amount of contact with the water. Kevin Horner and

Daniel Smith are kayak instructors at Charles River Canoe and Kayak in Boston,

Massachusetts and were interviewed on April 11, 2009 about their kayaking patterns.

According to Mr. Horner and Mr. Smith the average recreational kayaking session is

approximately 2 hours and during that period their head was usually immersed 1 to 3

times. They usually enter their kayaks from docks so there is no contact with sediment.

Based on these interviews I assume an ingestion rate approximately half that of

swimming. This results in a per-event ingestion rate of 10 ml for adults and 25 ml for

children. This is a rough estimate, and any guidelines derived from this estimate should

be confirmed by an ingestion study of kayakers.

4.3.2 Sediment Ingestion

There are no soil and sediment ingestion studies that focus only on recreational

ingestion. Table 4-23 in the USEPA Exposure Factors Handbook (USEPA 1999b)

recommends a value for soil ingestion of 100 mg/day for children under the age of 6,

with an upper percentile value of 400 mg/day, and 50 mg/day for adults, with no upper

percentile value given (USEPA 1999b). The only guidance that was found on sediment



ingestion during recreation is from the State of Virginia. Guidance for the State of

Virginia (VADEQ 2008) calculates sediment ingestion rates for recreational contact by

assuming that the rate of soil ingestion is constant through 16 waking hours of the day,

and that the average recreational event lasts for 2 hours. This gives a fraction of daily

sediment ingestion from recreation of 0.125 (VADEQ 2008). Multiplying this fraction by

the USEPA-recommended values for daily soil ingestion, the total ingestion rate for

children under the age of 6 is 12.5 mg/day of recreation, with an upper percentile

ingestion rate of 50 mg/day. The total ingestion rate for adults is 6.25 mg/day with no

upper percentile value given. Table 6 summarizes the per-event ingestion rates for both

water and sediment.
Table 6: Ingestion Rates

4.4 Complete Risk Equation

To calculate the risk associated with recreational use of the Kranji Reservoir values for

all variables in Equation 5 and 7 need to be provided. Table 7 lists the variables and

associated values for these equations.
Table 7: Risk Equation Variables

Variable Value Source
MR 0.091 Wiedenmann 2007
BR 0.028 Wiedenmann 2007
p(l) 0.17 Wiedenmann 2007

a -0.67 Wiedenmann 2007
b 0.98 Wiedenmann 2007

CEN 1-2,000 Measured, NTU 2008
Vintake 0.006 - 1 Table 6
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Activity Ingestion Rate Per-Event

Swimming, Adults 20 ml water

Swimming, Non-Adults 50 ml water

Kayaking, Adults 10 ml water

Kayaking, Non-Adults 25 ml water

Wading, Adult 6.25 mg water

Wading, Child under 6 12.5 mg sediment, mean child
50 mg sediment, 95 t h upper
percentile child



Variables MR, BR, p(l), a, and b were provided by Wiedenmann (2007) from literature

review and the freshwater randomized controlled trial that he conducted. The

Enterococci concentrations CEN were measured in the Kranji Reservoir, and the value

vintake comes from literature reviews and personal interviews as discussed above and

shown in Table 6. Equation 12 is the simplified risk equation with all but the final two

variable terms inserted.

Risk = (0.063) * (1 - [0.83]10^((-0.67+0.98*1o l(FIO))*vintake)J (12)

FlO concentrations are input from the measured values in the reservoir, and the

appropriate vintake is input from Table 6.

4.5 Guideline Geometric Means

Guideline geometric means for the three PUB proposed levels of recreational activity

are based on the NOAEL determined in the epidemiological study conducted by

Wiedenmann et al. (2006). The NOAEL for swimming given by Wiedenmann et al.

(2006) is 25 Enterococci per 100 ml. This NOAEL corresponds to a specific number of

ingested pathogens, z in the risk equation (Equation 5).

Risk = (MR - BR) * {1 - [1 - p(l)]z} (5)

Equation 8 represents the expanded form of the ingestion term z. Equation 8 has two

variables, CEN and vintake, and two constants a and b. The constants a and b are

provided by Wiedenmann (2007) based on epidemiological studies. Table 8 shows the

values Wiedenmann (2007) used to calculate the pathogen ingestion term z associated

with the no-observed-adverse-effects level found by Wiedenmann et al. (2006).

Z = Vintake * 1 0 a+b* l og l CEN  (8)

Table 8: NOAEL Ingestion Terms

Value used by
Variable Wiedenmann

a -0.67
b 0.98

CEN 25

Vintake 0.3



Using the values in Table 8 from Wiedenmann (2007) in Equation 8 and solving for z,

the number of pathogens ingested is 1.5 at the NOAEL found by Wiedenmann et al.

(2006). To calculate the NOAEL for activities that have a different vintake than the

intake assumed by Wiedenmann (2007) for swimming, Equation 8 is rearranged to

solve for the Enterococci concentration CEN, holding z constant at 1.5. Equation 13 is

the new equation, where the dependent variable is vintake, and the independent variable

is the Enterococci concentration which represents a NOAEL for each activity.
1.5

log10 CEN,NOAEL = 1.02 * logo 1.5 + 0.68 (13)
Vintake

NOAELs for the different proposed activities in the Kranji Reservoir are calculated by

setting the value of Vintake equal to the ingestion rates in Table 6 associated with each

activity, then solving Equation 13 for CEN,NOAEL. It is possible to calculate NOAELs for

both children and adults. However, due to the variability in child immune systems and

rates of ingestion, guidelines are usually set based on adult NOAELs.

4.6 Single-Sample Maximum Allowable Densities

Single-sample maximums were calculated using Land's (1975) method as described in

Section 3.3. Equation 7 has three inputs, the guideline mean, the log-normal standard

deviation, and the one-sided H-statistic. The guideline means are the NOAEL values

calculated using Equation 13. The standard deviation of the bacterial concentrations in

the reservoir was calculated using the data provided by NTU (2008) and the data from

the January 2009 sampling period. The one-sided H-statistic is interpolated for the

given standard deviation and degree of freedom using published tables (Land, 1975).

The guideline means were calculated as in Section 4.5.

Before calculating SSMs, the combined data was checked for outliers and log-normality.

Statistical analysis was performed using the ProUCL software provided by the USEPA

(USEPA 2007). The data for the reservoir was aggregated and input into the software.

The ProUCL software calculated three potential outliers at the 1% significance level.

These values were discarded, and the remaining data was analyzed. Appendix B

contains all the data used for statistical analysis, and the outliers are italicized. Table 9
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lists the standard deviation S, and the associated H-statistics for the degrees of freedom

available.
Table 9: H-Statistics(Land, 1975; USEPA, 2007)

Degrees of Freedom: 131
One-Sided (Upper) Confidence Levels

S 0.05 0.1 0.75 0.9 0.95
1.4 -2.1 -1.7 0.7 2.0 2.6

Single-sample maximums for each activity level were calculated at the 75% level for the

guideline means. The H-statistics for the 0.05, 0.1, 0.9, and 0.95 confidence levels in

Table 9 are given as references for the four-point Lagrangian interpolation used to

calculate the 75% level (Land 1975). The appropriate upper confidence limits were then

calculated using Equation 9.



5 Results

5.1 Sampled Values and Current Risk

Over the five-day sampling period, 35 water samples and 10 sediment samples were

collected. Of those samples, 29 water samples and 10 sediment samples were

analyzed for Enterococci, and 14 water samples were analyzed for E. coli. Due to the

high turbidity of the reservoir water samples, valid E. coli counts were not obtained.

Enterococci analysis for sample locations TG, PS, and KK did not begin until 01/21/09,

as only E. coli analysis was originally planned for those locations. Appendix A lists the

raw results from the January sampling period. Table 10 lists the sampling locations, the

bacterial concentration per sample, and the mean bacterial concentration over the five-

day period.
Table 10: Enterococci analysis results

Date 01/19/09 01/20/09 01/21/09 01/22/09 01/23/09

IDENTIFIER PN Colony orming Units / 100 m

Res-A 19.7 2 3.1 11.5 4.1

Res-B 4.1 9.4 10.9 5.2 19.8

Res-C 17.2 6.3 20.2 19.5 13.2

Res-D 12.8 10.9 41.4 18.7 10.9

TG NA NA 20.6 47.4 24.6

PS NA NA 67.6 23 31.8

KK NA NA 11.5 13.5 11.9

MPN Colony Forming Units / gram sedimeni

Res-A Sed 458 282 761 324 509

Res-D Sed 4430 2180 12600 3770 4790

During the sampling period, the overall geometric mean for the entire reservoir and the

sediment samples were 13 CFU / 100 ml and 1400 CFU / 1 g respectively. The risk

posed to potential recreational users if the reservoir remained at the sampled

concentrations is summarized in Table 11.



Table 11: Additional Risk of Gastroenteritis Associated with Kranji Water Quality - January 2009

Activity Age Relevant mean Wiedenmann

Concentration Risk

Adult 0.6%
Swimming

Non-Adult <18 13.3 CFU /100 ml 1.4%

Adult water 0.3%
Kayaking

Non-Adult <18 0.7%

Adult 1.7%
1400 CFU /g

Wading Mean Child < 6 2.9%
sediment

95% Child < 6 5.8%

Mean water concentrations are below the NOAEL found by Wiedenmann (2006),

meaning that the reservoir is safe for swimming and kayaking. However, the mean

sediment concentration was significantly higher than the calculated NOAEL for

sediment. A review of the bacterial concentrations in Table 10 shows that the primary

drivers of the high geometric sediment mean are the samples taken at location Res-D.

Section 6.1.2 discusses the potential cause of the high sediment concentrations at that

location.

Since the water quality varies significantly with time, it can be useful to look at the

possible range of risks associated with the Kranji Reservoir, and the risk curves

produced by the two different concentration-response models. Figure 16 shows the risk

due to swimming in waters with different concentrations of Enterococci. The solid lines

represent the adult risk curves for the different types of recreational contact. The units

for swimming and kayaking are Enterococci per 100 ml of water, and the units for

wading are Enterococci per gram of sediment. The shape of the curves is governed by

Equation 13 in Section 4.5. The curves for kayaking and wading are shifted only by

their respective ingestion rates from Table 6. The dashed lines represent the calculated

NOAELs that are discussed in Section 5.2.
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Figure 16: Additional Risk of Gastroenteritis

The risk curves for kayaking and swimming are very similar, which is to be expected

since their ingestion rates vary by only a factor of two. At any given concentration, the

risk due to kayaking is approximately half that of swimming, except for higher

concentrations when the maximum rate is reached. The risk curve for wading is spread

much further out, recognizing that the ingestion of sediment is much lower than that of

water. The risk curve for sediment is somewhat misleading however, since the

concentration of bacteria per gram of sediment is usually much higher than the

concentration of bacteria per 100 ml of water. It is important to note that the geometric

mean water concentration during the January 2009 sampling period was below the

NOAEL for swimming and kayaking, but that the geometric mean concentration for

sediment was not.

5.2 Guidelines and Single Sample Maximums

The guidelines for different activities are presented in Table 12. Guideline geometric

means were calculated using Equation 13 from Section 4.5. The SSMs were calculated

using Equation 9 as discussed in Sections 3.5.2 and 4.6.



Table 12: Guideline Geometric Means and SSMs

Swimming - Adult 13.3 Enterococci 25 73

Kayaking - Adult CFU/100ml 51 150

Activity January Geometric Guideline Geometric Mean 75%

1400 Enterococci
Wading - Adult CFU/g 860 2500

The guideline geometric means for swimming and kayaking are applicable to the water
in the area of the reservoir that is made available for those recreational activities. If
PUB chooses to restrict recreational access to a subsection of the reservoir as
recommended in Section 6.1.3 below, the guideline would apply to only the recreational
area. The sediment geometric mean guidelines need only apply to the areas of the
reservoir where recreators are likely to have contact with sediment. These areas would
include the shore near docks and any wading areas. However, this guideline would not
need to apply to non-near-shore sediment since recreators would be unlikely to have
contact with sediment at these locations.

Final guidelines adopted by PUB should be based on the type of activities that PUB
decides to allow and the area of the reservoir PUB opens to recreation. For example, if
PUB allows only kayaking, and entering and exiting the reservoir is allowed only from a
floating dock, then the target concentrations would be a geometric mean of 51
Enterococci CFU per 100 ml water, with no single sample greater than 150 Enterococci
CFU per 100 ml water and no guideline concentrations would be needed for sediment.
However, if the kayakers entered and exited the reservoir directly from the shoreline,
then a geometric mean guideline of 860 Enterococci CFU per g of sediment with
associated SSM of 2,500 Enterococci CFU per g of sediment would be appropriate.

If the guideline concentrations were exceeded, then the risk of illness is unacceptably
high, and the Kranji Reservoir would need to be closed for recreation until additional



sampling showed that Enterococci levels were below the guidelines. During the

January sampling period reported in this thesis, water Enterococci concentrations did

not exceed the calculated geometric mean guidelines or SSMs for any type of activity.

The Res-A sediment samples were also below guideline values, but the Res-D

sediment samples were significantly greater than both the guideline Enterococci mean

concentration and SSM for sediment.
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6 Conclusions

The goal of the Public Utilities Board is to use the Kranji Reservoir for recreational

purposes. To that end, it is necessary to determine appropriate guideline levels for

bacterial water quality, single sample maximums for the sampling programs, and the

area of the reservoir that is to be used for recreation. Current fresh and marine water

indicator bacterium standards in Singapore are set at 200 Enterococci per 100 ml, but

there are no freshwater beaches that are open for recreation or monitored for quality at

this time. Suggested guidelines for use at Singapore freshwater bodies are based on

potential exposure to water and sediment as well as the statistical distribution of

reservoir bacterial concentrations.

Based on the goals of PUB for the Kranji Reservoir, and by the analysis of water quality

data provided by NTU (2008) and data measured during January 2009, portions of the

Kranji Reservoir can be opened to use of the public for primary contact recreation.

Geometric mean water and sediment quality guidelines from Sections 6.1.1 and 6.1.2

are recommended as interim standards and a restricted recreational use area is

recommended in Section 6.1.3.

6.1 Suggested Guidelines

The choice of a restricted area for recreation in the Kranji Reservoir is based on

maximizing the recreational use of the Kranji while meeting the recommended water

quality guidelines.

6.1.1 Water Quality Guidelines and SSMs

The recommended geometric mean Enterococci concentration for primary contact

recreation is 25 Enterococci per 100 ml. This represents a level that should result in no

additional cases of gastroenteritis among recreational swimmers, and is equal to the no-

observed-adverse-effects level found by Wiedenmann (Wiedenmann et al. 2006). This

level is attainable for the reservoir recreational area recommended in Section 6.1.3.

During the January sampling period the geometric mean for the recommended area of

the reservoir in Figure 18 was 10 Enterococci per 100 ml. The overall geometric mean
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using all available sampling data is 7.3 Enterococci per 100 ml for the recommended

recreational area.

The single-sample maximum associated with the recommended guideline mean is 73

Enterococci per 100 ml. This represents a 75% upper confidence limit that the mean is

below the guideline value. The SSM was not exceeded during the January sampling

period, and was only exceeded three times in the historical data for the recommended

recreational area of the reservoir.

6.1.2 Sediment Quality Guidelines and SSMs

The recommended geometric mean Enterococci concentration for sediment is 860

Enterococci per gram. This level was exceeded by the geometric mean of all sediment

samples taken from the Kranji during the January sampling period. This level was not

exceeded by the sediment samples taken at Res-A (Figure 14). However, sediment

Enterococci concentrations from the Res-D location were larger than the Res-A

concentrations by an average of 5 times. One possible reason for the much higher

levels at Res-D is that it is located very close to a chicken farm located on the western

shore of the reservoir. More testing is needed to determine the variation of bacterial

levels in the sediment. It is possible that sediment levels near another chicken farm

located on the land between sampling location TG and PS are also elevated, but this

area is less important since there are no recreational facilities proposed in this area.

Until more research has been done on the sediment variation, contact with bottom

sediment through wading and entrances/exits to the reservoir should be restricted to the

dashed shoreline area, or to floating docks in the rest of the reservoir.

6.1.3 Recreational Area

In order to provide for the safety of recreational users, the recreational use of the

reservoir should initially be restricted to the designated recreational area in Figure 18.

Additional areas of the reservoir should be opened to recreation if sampling

demonstrates that bacterial levels in that area are in line with the main body of the

reservoir. The non-recreational area has historically presented significantly worse water
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quality than the recommended recreational area. When comparing the water quality

data in the two areas, the recreational area exceeded recommended swimming single-

sample maximums only three times out of 65 samples, while the non-recreational area

exceeded recommended single-sample maximums twelve times out of 70 samples.

.I

I T
Figure 17: Recommended Recreational Areas

By restricting recreation to the recommended area, the likelihood of the reservoir

exceeding the recommended guideline values is much reduced, resulting in fewer water

closures. In addition, wading and entrance/exits to the water should initially be

restricted to the dashed areas of shoreline, unless floating docks are used. Shoreline

J(



areas with a solid line represent locations where the sediment quality is possibly above

guideline means. The safe shoreline areas represent a conservative estimate. More

shoreline can be opened for use as additional sediment testing identifies safe areas.

6.1.4 Sampling Program

Water and sediment samples should be collected and analyzed for Enterococci

concentration at least weekly to ensure the safety of recreational water users. Samples

should be taken at the southern end of the allowed recreational area in the Kranji

Reservoir because the highest bacteria concentrations have been measured in the

southern sections of the reservoir. If the geometric mean or single-sample-maximum

guidelines are exceeded, then the Kranji Reservoir should be closed to water recreation

until additional sampling shows that the indicator bacterium concentrations have

returned to safe levels.

6.2 Point Source Control

An obvious step to improve water quality in the Kranji Reservoir would be to institute

controls on point sources into the reservoir. An example of a possible point source that

is close to planned recreational areas is the chicken farm on the western shore near

Res-D. The high sediment levels at Res-D may be attributable to the settling of

bacteria-laden particles from the chicken farm. The chicken farm currently has a

sedimentation basin to treat its discharge, but it has not been properly maintained. By

requiring the farm to make improvements to the sedimentation basin such that it

removes a significant amount of settleable particles, the sediment quality in the

reservoir may improve. Additional point sources are likely to be identified with further

study.

6.3 Further Study

Two studies are recommended to fully characterize the risk to recreational users of the

Kranji Reservoir. The first recommended study is a DNA-based analysis of the

Pathogen/Indicator Ratio of the Kranji Reservoir. The second recommended study is to

determine the risk levels in the reservoir associated with storm events.
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6.3.1 Pathogen Indicator Ratio

New methods of DNA analysis using quick polymerase chain reactions (QPCR) now

make it possible to measure concentrations of different pathogens in the water directly.

It is possible for a relatively short study to be performed on the Kranji Reservoir to

determine the PIR directly, rather than through inference from other studies. A PIR

obtained for the Kranji Reservoir could also be used for other tropical freshwater bodies.

6.3.2 Storm Event Risk

Currently all water quality data for the Kranji Reservoir has been collected during dry-

weather flow. The previous study by NTU (2008) only sampled the reservoir during dry

weather, and the January 2009 sampling period took place during an exceptionally dry

period. There had been no storm events in the two weeks prior to the sampling period,

and there were no storm events during the sampling period. A study of the reservoir

water quality after a storm event should be conducted to ensure that the safety of

recreational users is not jeopardized. NTU (2008) showed that storm flows from the

catchment had significantly higher bacteria densities than dry weather flow, so there is

an assumption that the reservoir will experience elevated bacterial counts after a storm.

A study that examines how quickly the reservoir returns to safe levels after a storm

should be conducted.
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Appendix A - Raw Results

Water Sample Results

MPN
Sample Sub- # Large # Small Enterococci

Date Name Lat Long Catchment Wells Wells 100 ml
19/01/09 26.1-44.2 26.112 44.28 Res A 14 3 19.7
20/01/09 26.1-44.2 26.112 44.28 Res A 1 1 2
21/01/09 26.1-44.2 26.112 44.28 Res A 3 0 3.1
22/01/09 26.1-44.2 26.111 42.278 Res A 5 6 11.5
23/01/09 26.1-44.2 26.111 42.278 Res A 3 1 4.1
19/01/09 25.9-44.5 25.957 44.51 Res B 4 0 4.1
20/01/09 25.7-44.5 25.766 22.549 Res B 5 0 5.2
21/01/09 25.7-44.5 25.766 22.549 Res B 9 9 19.8
22/01/09 25.9-44.5 25.94 44.534 Res B 5 4 9.4
23/01/09 25.9-44.5 25.94 44.534 Res B 9 1 10.9
19/01/09 24.7-43.7 24.748 43.731 Res C 7 9 17.2
20/01/09 24.7-43.7 24.72 43.76 Res C 5 1 6.3
21/01/09 24.7-43.7 24.726 43.754 Res C 11 7 20.2
22/01/09 24.7-43.7 24.755 43.727 Res C 13 4 19.5
23/01/09 24.7-43.7 24.755 43.727 Res C 10 2 13.2
19/01/09 24.7-43.5 24.792 43.534 Res D 7 5 12.8
20/01/09 24.7-43.5 24.73 43.5 Res D 9 1 10.9
21/01/09 24.7-43.5 24.73 43.5 Res D 21 11 41.4
22/01/09 24.7-43.5 24.732 43.504 Res D 15 1 18.7
23/01/09 24.7-43.5 24.732 43.504 Res D 9 1 10.9
21/01/09 23.7-43.4 23.746 43.499 TG 13 5 20.6
22/01/09 23.7-43.4 23.753 43.497 TG 26 8 47.4
23/01/09 23.7-43.4 23.753 43.497 TG 19 1 24.6
21/01/09 24.8-42.8 24.804 42.825 KK 5 6 11.5
22/01/09 24.8-42.8 24.8 42.822 KK 4 9 13.5
23/01/09 24.8-42.8 24.8 42.822 KK 8 3 11.9
21/01/09 23.9-44.0 23.926 44.005 PS 33 9 67.6
22/01/09 23.9-44.0 23.903 44.035 PS 13 7 23
23/01/09 23.9-44.0 23.903 44.035 PS 21 4 31.8



Sediment Sample Results

wt
MPN Sediment

Sample Sub- # Large # Small Enterococol Proportional Tested
Date Name Lat Long Catchment Wells Wells 1100 ml Dry Wt (g) MPN/gram

19/01/09 26.1-44.2-S 26.112 44.28 ResA-S 11 2 14.5 0.33 33 458.3
20/01/09 26.1-44.2-S 26.112 44.28 Res A-S 5 6 11.5 0.43 31.63 281.7
21/01/09 26.1-44.2-S 26.112 44.28 Res A-S 15 8 27.2 0.38 29.84 760.6
22/01/09 26.1-44.2-S 26.111 42.278 Res A-S 9 0 9.8 0.32 30.79 324.4
23/01/09 26.1-44.2-S 26.111 42.278 Res A-S 9 11 22 0.45 29.28 508.5
19/01/09 24.7-43.5-S 24.792 43.534 Res D-S 38 22 119.4 0.28 29.37 4,426.7
20/01/09 24.7-43.5-S 24.73 43.5 Res D-S 18 48 87.8 0.42 29.92 2,183.1
21/01/09 24.7-43.5-S 24.73 43.5 Res D-S 48 22 298.7 0.25 30.08 12,633.9
22/01/09 24.7-43.5-S 24.732 43.504 Res D-S 23 42 93.8 0.26 30.16 3,768.6
23/01/09 24.7-43.5-S 24.732 43.504 Res D-S 44 10 125.9 0.28 29.81 4,792.7
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Appendix B - All Water Data for Statistical Analysis

SIDENTIFIER
Res-A-01/23/09
Res-A-01/22/09
Res-A-01/21/09
Res-A-01/20/09
Res-A-01/19/09
Res-B-01/23/09
Res-B-01/22/09
Res-B-01/21/09
Res-B-01/20/09
Res-B-01/19/09
Res-C-01/23/09
Res-C-01/22/09
Res-C-01/21/09
Res-C-01/20/09
Res-C-01/19/09
Res-D-01/23/09
Res-D-01/22/09
Res-D-01/21/09
Res-D-01/20/09
Res-D-01/19/09
ST 1-09/15/05
ST 1-07/26/06
ST 1-09/04/06
ST 1-10/02/06
ST 1-12/18/06
ST 1-01/22/07
ST 1-02/05/07
ST 1-03/19/07
ST 1-04/23/07
ST 1-05/21/07
ST 1-06/05/07
ST 1-07/09/07
ST 1-08/20/07
ST 3-09/15/05
ST 3-09/29/05
ST 3-10/12/05
ST 3-11/16/05
ST 3-06/19/06
ST 3-07/26/06
ST 3-09/04/06
ST 3-10/02/06
ST 3-11/16/06
ST 3-12/18/06
ST 3-02/05/07
ST 3-04/23/07
ST 3-05/21/07

MPN/100mI
4.1

11.5
3.1

2
19.7
19.8
5.2

10.9
9.4
4.1

13.2
19.5
20.2

6.3
17.2
10.9
18.7
41.4
10.9
12.8
4.1

2
4.1

1
200.5

73
18.5
20.7
25.9

3
23.9

63
122.3

1
4.1

3
4.1
4.1
3.1
4.1

2
1

34.4
6.2

2
1

IDENTIFIER
ST 3-06/05/07
ST 3-07/09/07
ST 3-08/20/07
ST 4-09/15/05
ST 4-09/29/05
ST 4-10/12/05
ST 4-11/16/05
ST 4-06/19/06
ST 4-09/04/06
ST 4-10/02/06
ST 4-12/18/06
ST 4-01/22/07
ST 4-02/05/07
ST 4-03/19/07
ST 4-04/23/07
ST 4-05/21/07
ST 4-06/05/07
ST 4-07/09/07
ST 4-08/20/07
JUNC-09/15/05
JUNC-07/26/06
JUNC-09/04/06
JUNC-10/02/06
JUNC-12/18/06
JUNC-01/22/07
JUNC-02/05/07
JUNC-03/19/07
JUNC-04/23/07
JUNC-05/21/07
JUNC-06/05/07
JUNC-07/09/07
JUNC-08/20/07
KK-01/23/09
KK-01/22/09
KK-01/21/09
KK-09/15/05
KK-09/29/05
KK-1 0/12/05
KK-11/16/05
KK-07/26/06
KK-09/04/06
KK-1 0/02/06
KK-11/16/06
KK-1 2/18/06
KK-01/22/07
KK-02/05/07

MPNI100mi
2

10
107.1

2
5.1
5.1

1
5.1

3
11.1
11.1

10
4.1

1
2
1
1

73
67
4.1
5.2

2
1

200.5
20

39.1
22.2
53.5
12.7
31.7
199

62.2
11.9
13.5
11.5
14.5

1
3.1

1
8.4

2
7.5
6.4

200.5
20

6.2

IDENTIFIER MPN/0Im
KK-04/23/07 15
KK-05/21/07 7.5
KK-06/05/07 15.3
KK-07/09/07 134
KK-08/20/07 54.4
PS-01/23/09 31.8
PS-01/22/09 23
PS-01/21/09 67.6
PS-09/15/05 38.4
PS-09/29/05* 770.1
PS-10/12/05 7.4
PS-11/16/05 8.4
PS-07/26/06 12.1
PS-09/04/06 16.9
PS-1 0/02/06 9.9
PS-11/16/06 11.1
PS-12/18/06 200.5
PS-01/22/07 84
PS-02/05/07 25.6
PS-04/23/07* 1986.3
PS-05/21/07 1
PS-06/05/07* 1553.1
PS-07/09/07 10
PS-08/20/07 177.5
TG-01/23/09 24.6
TG-01/22/09 47.4
TG-01/21/09 20.6
TG-09/15/05 13.4
TG-09/29/05 9.8
TG-10/12/05 14.3
TG-11/16/05 8.5
TG-07/26/06 4.1
TG-09/04/06 22.6
TG-10/02/06 8.7
TG-11/16/06 8.7
TG-12/18/06 200.5
TG-01/22/07 10
TG-02/05/07 24.3
TG-04/23/07 218.7
TG-05/21/07 49.7
TG-06/05/07 43.9
TG-07/09/07 41
TG-08/20/07 22.5

* Outlier - removed
before final analysis.


