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1. Introduction

At the Large Hadron Collider (LHC), complex final states will be observed frequently and
therefore the predictions of the Standard Model for the production rate of such events will
have to be evaluated precisely. This requires the calculation of next-to-leading order QCD
corrections to the cross-section of a large number of production processes, such as multi-jets,



vector bosons and jets, top quarks and jets, etc. We need multileg amplitudes at one loop
accuracy. In the traditional method, one generates the amplitudes according to Feynman
diagrams, expresses the tensor loop integral in terms of scalar form factors and reduces the
required scalar integrals to master integrals using recurrence identities. In the case of five or
more particle processes the use of this straightforward method becomes cumbersome. The
number of Feynman diagrams and terms generated have factorial growth. Furthermore, the
presence of Gram determinants in the denominators of the reduction coefficients requires
suitably optimized numerical techniques.

In the last few years remarkable progress has been achieved in replacing the traditional
method with more efficient approaches which build on the properties of Yang-Mills theo-
ries more explicitly. In particular, very efficient recursive algorithms are available for the
calculation of tree amplitudes and facilitate the calculation of one loop amplitudes.! Many
of these new ideas have been stimulated by the suggestion of Witten to transform QCD
amplitudes to twistor space [J.

The new techniques could also be extended to the calculation of loop amplitudes.
One can apply the unitarity cut method [, which uses tree amplitudes as input and
so avoids the generation of Feynman diagrams. Recently, the four-dimensional unitarity
cut method has been further developed as an efficient systematic tool to calculate QCD
amplitudes [f, ff], building on techniques inspired by twistor space geometry [, fj—[[d]. The
phase-space integration and the reduction to master integrals are carried out explicitly in
terms of spinors. Many, mostly supersymmetric, amplitudes can be reconstructed fully
with this technique [§, @, [[4]. However, the mapping to master integrals is in general
incomplete, since it misses rational contributions that arise from multiplying 1/e poles
of master integrals with O(€) coefficients. This gap has been filled recently by methods
that target these rational contributions specifically, either by developing [[[§—[[J] recursion
relations for amplitudes [0, 1], or by using specialized diagrammatic reductions [22-PH).
As a result, for example, short analytic formulas are now available for all the one-loop six
gluon QCD helicity amplitudes.

We can, however, reconstruct the full amplitude with the unitarity cut method, pro-
vided the cut integrals are treated in d = 4 — 2¢ dimensions [2G]. A complete method for
one-loop calculations was developed in the pioneering work of Bern et al. [7-R9], and it
was recently re-examined in [B(Q]. The idea is that the (—2¢)-dimensional component of
momentum can be considered as constant, and orthogonal to the 4-dimensional compo-
nents. From this point of view, a massless d-dimensional scalar can be traded for a massive
4-dimensional scalar. Then, unitarity cuts can be applied to constrain the coefficients of
master integrals. However, the calculation of unitarity cuts is generally difficult because of
the reduction of d-dimensional tensor integrals. Eventually, in the papers mentioned above
one resorts to traditional reduction methods to complete the computation.

In [B1] we have reported results on an efficient implementation of the d-dimensional
unitary cut method. One-loop amplitudes can be reduced to master integrals for arbi-
trary values of the dimension parameter. An important result is that we can read out

1For reviews of this progress, see for example [, E]



the coefficients of the master integrals without fully carrying out the d-dimensional phase
space integrals. The problem is reduced to four dimensional integration, where we can now
capitalize on the recent advances in computation. The four dimensional tensor integrals
can be calculated using spinor integration for light-like momenta [13, L3, fl, B, BJ]. Recur-
sion relations for amplitudes with massive scalars have been developed [BJ] specifically for
generating the tree-level input for d-dimensional unitarity cuts.

In this paper we outline the d-dimensional unitarity cut method in detail and give
simple illustrative applications using spinorial integration for tensor reduction. Here we
work entirely in terms of standard double cuts; some work with generalized unitarity cuts
in d dimensions has appeared in [B(, B4, BJ]. A different method of constructing the master
integral coefficients of one-loop amplitudes, from the values of the loop momentum that
correspond to unitarity cuts, has been presented in [BH].

In section 2 we discuss the parametrization of d-dimensional cut integrals. We iden-
tify the 4-dimensional integral within the d-dimensional integral, leaving the final (—2¢)-
dimensional integral for last. The 4-dimensional integral can be performed by a method
of choice; here we proceed in terms of spinorial variables. We show the cut bubble as a
prototype of any cut integral and then set up the integral for a general amplitude.

In section 3, we derive the integral representations of the cut master integrals, namely
scalar bubbles, triangles, boxes, and pentagons. The physical arguments of [d, 4, BZ]
state that all possible integrands are related to these basis integrals simply by polynomial
factors in the (—2¢)-dimensional mass parameter. We relate these general integrands to
the basis integrands by dimensional shift identities, which here take the form of recursion
and reduction relations. (Recursion refers to the degree of the polynomial.) We derive
these identities and explain their application.

In section 4, we work through the examples of the five-gluon all-plus amplitude and
the four-gluon amplitudes and confirm that our results agree with [, B9, Bd]. The re-
duction is done using spinorial integration [, [l4]. These spinorial integrals are evaluated
using Schouten identities, Feynman parameter integrals and the holomorphic anomaly for-
mula [§. Since in the d-dimensional unitarity method the integrand of spinorial integrals
depends on an additional mass parameter, the size of the expressions is larger and the
recognition of the scalar master integrals is more involved than in the four-dimensional

case.

Appendix A discusses the kinematic region and domains of integration for a unitarity
cut. Appendix B gives further details of the various master integrals. Appendix C con-
tains helpful identities and formalisms for spinor integration, in particular with regard to
quadratic denominator factors.



2. The d-dimensional unitarity method

The n-point scalar function is defined by?

B d4 er 1
In_/(%)“ 2 p2p — K1 )2(p— Ky — K2)? . (p— S K2 21)

We operate in the four-dimensional helicity (FDH) scheme, in which all external momenta
are in four dimensions. In this formula, therefore, the loop momentum p is (4 — 2¢)-
dimensional, while all the K are 4-dimensional. We can decompose p = 0+ ii where lis
4-dimensional and fi is (—2¢)-dimensional. Then the integration measure becomes

/(;l;% - / (gj;;l/(i;j%?&e :/(3;2;4 I(féi);) /d,u2 (u?)~1,

and the scalar function is

4
I = I€4w) /duQ(,uz)lE/ d 64 _ _ 1 : .
(=9 Cr (@ — i) (T - K — 1) (- S Ky)? — i)
(2.2)
We will use spinor integration when we cut the 4D momentum Z, so we choose to decompose
it into a linear combination of a light-like momentum variable and a fixed vector K:

(=0+z2K, (>=0, :>/d4z7:/dz d* 5t (%) (20 - K). (2.3)

Eventually it will be convenient to choose K to be the momentum through the unitarity
cut. This is one of the most important ideas that enables our whole program to work.
Further we define

_ A
As will be clear from discussions in appendix A, in our cut calculation we have u € [0, 1].
Therefore

(2.4)

(4m)e . (47)¢ K2\ ¢ [l e
m/dl‘Q (,UQ) - m <T> /0 du u=17¢, (2.5)

¢ —€
Since % KT2> is an universal factor appearing on both sides of every cut calcu-

lation, we will neglect it throughout the rest of the paper.
Finally we arrive at the equation

)

1
I, :/ du ule/dz d 6T () (20 K)—= - !
0 (=) ((=F1)2=ps?) . ((=)=) Kj)?—p2)
(2.6)
where 2 is related to u through (R.4).
At this point we are ready to carry out the 4-dimensional cut integration. We do this

in the language of spinors.

2Qur convention is to omit the prefactor i(—1)"!(47)P/2 that is common elsewhere in the literature.



2.1 The cut-integration of bubble functions

The cut of a scalar bubble is the simplest kind of unitarity cut, so it is instructive as well
as useful to go through this case in detail. Then we will be able to set up the framework
for any other cut of master integrals or amplitudes.

The expression of the (double) cut of the bubble function is given by (.6)

ClL(K)] = /01 du ule/dz d4 520 K)O(P — p2)6((0 — K)? — p?), (2.7)

where { = ¢ + zK with ¢2 = 0, and p? is related to u by (R.4). We make use of the delta
functions to rewrite the integral as follows.

ClL(K)] = / 1 du u='° / dz d* 6 () (20 - K)§( — p?)6(K? — 2K - 1)
0
= /1 du ulﬁ/dz d* 5T (%) (20 - K)§(2K? 422K - (—p?)6((1—22)K? —2K - {)
0
= /1 du u16/dz(1—2z)K25(z(1—z)K2—u2)/d4€ ST (?)6((1-22)K%—2K - 0).
0

Here we have brought the integral into a form where one of the delta-functions, §(z(1 —
2)K? — 1i?), does not depend on £. Now we continue by transforming the integral to spinor
coordinates [[q:

0 =tA\, (2.8)

so that the measure transforms as
/ d4 05 (62) (o) = / dt t / (A dX) [X dX](e). (2.9)
0

Here t ranges over the positive real line, and )\,X are homogeneous spinors, also written
respectively as |£), |¢] in many expressions involving spinor products. The first step in spinor
integration is to integrate over the variable . This is never true integration, because all
we need is to solve the delta function of the second cut propagator. Thus we find

Cllx(K)] = /01 du u_l_e/dz(l —22)K26(2(1 — 2)K? — 1?)

/<e dey [¢ d) /dt t0((1 —22)K? —2K - 0).

The spinor and t-integrations are similar to the four-dimensional case [f, [4]; the only new
feature is the factor of (1 — 2z). After this integration, we get?

2

Cll(K)] = /01 du ule/dz(l —22)K%5(2(1 — 2)K? — uKT)(l —22).

3In this paper we take residue instead of the negative of residue when we do phase space integration.
This is just a matter of convention because when we calculate both sides of the cut equation, the sign
cancels out.



Using the formula

Slale)) = 3 ", (2.10)

i

where the z;’s are the roots of g(x), we can finish the z-integration to get

1
Cl(K)| = / du w1 — u, (2.11)
0
where we have used the fact (see appendix A) that only one root is allowed, specifically,
z = (1—+/1—u)/2. Equation (R.11)) is simple enough that we can finish the u integration
directly to find*

ClL(K)] = @ Re(e) < 0. (2.12)
2

We can check the result (R.13) on the well known scalar bubble function given by

e L(1+e)T?(1—¢)
YK = 1 (—g? = . 2.1
2 (K°) 6(1—26)( ) oo T(1— 2) (2.13)
To take the imaginary part we need to use®
Im(—K?)"¢ = 2isin(we)| K?|7¢, (2.14)
thus
2i sin(me)T(1 + €)T'2(1 — €) _
OIS (K?)) = %) 2.15

When we try to compare with our new result (R.19), we must multiply (R.13) by the

following two factors: (1) &i):) (KT2>7€ from the discussion below (R.5); (2) i(47)%~¢ from

our non-standard definition of the scalar function in (R.1). Considering these two facts, one

C[1our K2
can check that %

we take [d*¢ 5% ((2).

= 8m, which is just a matter of a different normalization when

2.2 Cut-integral of an amplitude

Now we discuss how to apply the integration technique to the cut of an amplitude. The
general expression will be

1
= wuT e 2z (1—=22)K%6(2(1 — 2)K? — 12
C—/Od /d(l 22)K°6(2(1 — 2)K* — u®)

/d4£ SHUAO((1 — 22)K? — 2K - 0) AL (1, 03) AR (ly, b), (2.16)

4The following analytic expression is right only when Re(¢) < 0. This is the condition for us to use
integration by parts to derive all recursion and reduction formulas.

5To compute the cut with momentum K, we work in the kinematic region where only K2 > 0 and all
other momentum invariants are negative.



where Ay, Ar are the tree-level amplitudes on either side of the cut. In this formula, K is
the cut-momentum and ¢; and /5 are the (massive) cut 4D-momenta satisfying

zQ:K—zl, 27%:63:”2, leg—i-ZK. (2.17)

Now we explain the meaning of the expression (B.14). The second line is simply a 4D
cut-integration that depends on the parameter z. The techniques developed in [g, [4, BJ
can be applied directly. Then this result can be put into the first line, and the z-integration
can be performed trivially by using the delta-function. We arrive at the final expression

1 ~ ~ ~ ~
C = / du u_l_e/d4€ ST(?)5((1 = 22)K? — 2K - £)AL(£1,02)AR(£1,02),  (2.18)
0

where

K2 1—+1—
u? = - z= fu (2.19)

This is our setup for all calculations in this paper.

3. Identifying integrands: cuts of master integrals

In this section we study the cuts of the master integrals. Our aim is to relate these with
cuts of the amplitude, at the integrand level, so that we can read off the coefficients.

The general integrand arising from the cut of an amplitude looks like a series of terms
that are related to cuts of master integrals by factors that are polynomial in u. Therefore,
we define classes of integrals related to the cuts of master integrals by additional powers
of u. Through integration by parts, the powers of u can be stripped away. The result is
a set of “recursion and reduction identities” that relate any integrand to cuts of master
integrals. With these identities it is possible to read off the coefficients without any actual
integration.

3.1 Cut bubbles

Here we consider the whole class of integrands that will be related to bubbles by a recursion
formula. For n > 0, we define the following new function.

1
Bub™ = / du w1 U1 = u. (3.1)
0

The physical cut of the bubble master integral is C[I5(K)] = Bub(®). The function Bub™
represents a term that may arise from a general cut amplitude. It is simple enough to
evaluate this integral directly, but what we want is to relate it to the master integral. We
carry this out in rather general terms, to illustrate the idea for the more complicated master
integrals. Let us see how to find a recursion relation in n and eventually write Bub(™ in



terms of Bub(”. For n > 1, we integrate by parts to get
1

2 L2
Bub™ = _§(1 — )Py 4 / du g(n —1—e)(1 —u)? P!
0

0

1
2
= / du =(n—1—eV1—u(l —u)u "y !
0

3
2
= g(n —1—€)(Bub™ Y — Bub™).
The boundary term vanishes because Re(e) < 0. From this we get the following recursion
relation.
1
Bub® — =1 =g, (3.2)
(n + 5 — 6)
This recursion is easily solved. We write the solution in the form
Bub™ = £, Bub®, (3.3)
where the form factor is
n I'3/2—¢e'(n —
A /2 —e)l'(n—¢) (3.4)

=27 T(—eT(n+3/2—¢)

Notice that this form factor does not depend on any kinematical variables.
There is another expression for Bub("), obtained by a different choice of integration

by parts.

1

n—e 1 U

1 n—e 1 1 u e
0 2(71—6)/0 uvl—u 2(n—€) Jo uvl—u

It is useful to be able to recognize this alternative expression when it shows up as an

Bub™ = LT —u

n-—e

(3.5)

integrand. It is the same integral found in one-mass and two-mass triangles (for details,
see appendix B).
3.2 Cut triangles
We label the triangle such that the cut momentum is K = Kj. Then the cut-integrand is
given by

3(02 — pP)5((£ — K1) — p?)

(0 + K3)* — p?)

Using the general integration measure of (R.1§), we get

t 0((1 — 22)K? +t ((|K1]d))
K32 + 22K - K3 —t <E|K3|f] ’

C[I3(Ky; K3)] = /0 1 du u= ' / (0 deyede) | dt

After t-integration we get

1
(el K1le] el Pule]

1 1
1
= —/ du ulE\/l—u/ dxﬁ, (3.7)
0 0

ClIs(Ky: Ks)] = — /O i / (0 dey [¢ o] (3.6)



with

K2+ 22K, - K
p = 23 ;21 3K+ (1 —22)K;, (3.8)
1

P = .%'Pl - (1 - 1‘)[(1 (39)

After some algebraic manipulations we reach

1 1 7 ++1—u
ClI3(K;:K3) = — | duw '€ 1 3.10
[3( 15 3)] /O uu \/A—3H<Z_m>7 ( )
with
K, K5+ K2
Z=- L8 TS A = 4[(K: - K3)® — K{K3). (3.11)

V(K1 - K3)? — K7K3'

It can be shown that in our kinematic region, in which only K? > 0 and all other momentum
invariants are negative, we will have Z > 1.

It is hard to evaluate the integral over v for (B.10), but our strategy is that we never
need to evaluate it. While keeping it in integral form, we will be able to reduce general
integrands by our recursion and reduction formulas.

Recursion and reduction for triangles: we define the following dimensionless inte-
grals for all nonnegative integers n:

1 —_—
i (2) = / du v u" In (L ”1“> (3.12)
0 Z — vV 1—u
The physical cut is
1 .
C[I3(K17K3)] = _\/A—BTH(O)(Z)7 (313)

if we take the Z and Aj defined in (B.11)). The definition (B.12) was chosen because it is

free of dimensional factors. For n > 1 we can do the following integration by parts.
1
1 Z+v1—u
i (Z2) = u* ! 6<Z2—1—|—u ln<7> —-27 1—u>
(2) ( (G ) 2T |

- /01 du a2 (n — 1~ ) <(z2 ~14u)h <?_“T\/g> - 2zm> .

From this we derive the following recursion and reduction relation.

Z2—1)(n—1- 2Z(n—1-—
Tl”l(n) (Z) - _ ( )(n 6) Tri(n—l) (Z) + (n 6)
(n—ce) (n—ce)
Here the last term in (B.14) is the same one defined in (B.1]), which is related to cut bubbles.
The result (B.14) plays two roles. First, it is the recursion formula for coefficients of
triangles. After n steps in the recursion we arrive at n = 0, which is related to the cut of

the scalar triangle by the factor —1/4/As. Second, it establishes the reduction relation for

Bub~1, (3.14)



tensor triangles to scalar bubbles. For a given triangle, there is only one bubble that can
result from reduction, consistent with a given cut-momentum (here K7).
Now we solve (B.14]) and get
i (Z) = F{",(2)Tri®(2) + F{™,(Z2)Bub©®), (3.15)

in terms of two form factors, which are functions of only one variable Z, the identifier of a

given triangle. Explicitly, these form factors are given by

B (2) = —— (- 2°)", (3.16)
Fh(2) = = > 2201 e v S

Equation (B.1f) is not in the exact form that we want. We need to return to the language
of physical cuts by including the factor —1/y/A3z from (B.I3). The recursion/reduction
formula that we need is thus:

[ e ()] -

Fi(Z)C[I3 (K, Ka)] + Fiy (K, K3)C(KL)), (3.18)

where

n 1 ~(n
F{"y (K1, K3) = ———F"),(2). (3.19)

The relation (B.1§) is the main result of this subsection. Let us comment briefly on
how it will be used. Our d-dimensional unitarity cut method separates the complete cut
integration into the u-integral, fol duu~'7¢, and the massive 4D part. After doing the 4D
integral, we come to an expression of the form fol duw™ 1Y s Ji(w)C[L], where C[I]
is the cut of master integral I; and f;(u) =), a;u’ is the polynomial of u. Then we know
immediately that this term will contribute ), aiFéiz(Kl,Kg) to the bubble coefficient
and ), aiF?@?,(Z) to the coefficient of the triangle.

As in the bubble case, we derive a useful identity by integrating by parts in a different

way:
—1—e, n+1 7 /1T — 1 1 —1—¢, n+1 VA

Tri™(Z) = S S i “ —/ T .

n— ¢ Z—Vi=ully Jo n—e V1—u(l—u-—22)

Again, since we have Re(—¢) > 0, the boundary contribution is zero, so we end up with

VA un—i—l

1
du u='e .
n_f/o ‘o V1—u(l —u— 2Z?)

Tri™(Z) = — (3.20)

,10,



3.3 Cut boxes

In this subsection we will deal with box functions. There are several different cuts, but we

would like to simplify calculations by representing them collectively by the same expression:
5B = 1i2)0(([ - K) — 1i2)
(0= P2 = i) (0 = Po)? = i)’
where for different cuts we need to take different values of P, P». To be clear, we list the

six possible cuts of a box in table (B-21)), with K3, Ko, K3, K4 in clockwise ordering. There
will be two cut triangles related to each cut box consistent with the cut momentum K;

these are indicated here as well, for use in the reduction relations.

Box Cut K| Py P, |Triangle One's (K1, K3)|Triangle Two's (K1, K3)
K, Ky | —Ky (K1, K34) (K1, Ky)
Ky Koz | —K3 (K2, K41) (K2, K1)
K K3y —Ks (K3, K19) (K3, Ko) (3.21)
Ky Ky | —K3 (K4, Ka3) (K4, K3)
Ky Ky | —Ky (K34, Ko) (K12, Ky)
Kos Ky | —K; (K41, K3) (K23, K1)

After performing the t-integration we get

2z)

1
Cl(K; Py, Py)] = /0 du u—l—e%/w ey [¢ de) !

{lQ1€] (£1Q2|1]

_/1d V1—u 1d 1
= ; U U 2 ; mQQ,
where
Q=201+ (1 -12)Q2 (3.22)
and
P —2zP, - K

For future convenience let us give the names R1, Rs to these vectors at the point u = 0:

P2
R, =—-P,+ FZQK (3.24)
We define some additional variables:
P, - K)?
a; =R - K, @‘EPZ‘Z—(ZKQ)
P12 PP P-K
1 PP P-K
— 2 I
A:—ﬁdet Pl'PQ P2 PQK s C:ﬁdf;(PZK K2 ),
Pr-K P-K K2
R?2 Ry Ry
B = —det 1 , D = R; - Rs.
e (Rl-Rg R% 1 1t

— 11 —



Using the identities

2

QF = (1-u)f; + %7
Q1-Q2=(1—u)C+ a}l(o;’
(Q1-Q2)* = Q1Q3 = (1 —u)(B — Au), (3.26)
we can derive
b 1 (Q1-Q2) +(Q1-@2)? — Q3Q3
dr— = 1 , 3.27
oz 2\/(Q1 - Q2)* — Q1Q3 B (Q1-Q2) — V(Q1-Q2)? — Q1Q3 (327
B 1 | (D—C’u—|— \/1—u\/B—Au> (3.28)
2\/1—u\/B—Aun D—-Cu—+1—uVB—-A4u)’ '
where from (B.27) to (B.2§) we have worked out the u-dependence.
Finally we arrive at the expression
' 1 ! e 1 D—-Cu++v1—uvB—Au
Clu(K; P, P)| = ﬁ/o du u \/mln (D—Cu—\/m\/m>' (3.29)

Recursion and reduction for boxes: we define the following dimensionless integrals
for all nonnegative integers n:

1 n B — —
BOX(")(A,B,C, D) = / du u1me—2 1 <D Cutvl—uyB - Au
0

(3.30
B- Au D—Cu—\/l—ux/B—Au>( )

The physical cut is
ClIL(K; P, Py)] = WBOX@)(A B,C, D), (3.31)

if A, B,C, D are defined as in (B.23).
To derive recursion and reduction relations, we select the factor 1//B — Au and inte-
grate by parts. The boundary term is zero if n > 1; thus we have

Box™ (A, B,C, D) = 2 =179 g Box-D (4 B,C. D) — A Box™ (A, B,C, D)) + T
(3.32)
with
um— 1—e _ _
_ / " (AD — 2BC + BD) — u(2AD — AD — BO) (3.33)
A V1i—u (D = Cu)? = (1 —u)(B - Au)

This quantity 7' is related to triangle integrals. To see this, factorize the quadratic poly-
nomial in the denominator:

(D —Cu)* — (1 —u)(B — Au) = f152(1 —u— ZH)(1 —u — Z3),

with

(6%
Z? = — 5 ;{2. (3.34)
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Comparing with (B.11]) we can see that these Z? and Z3 correspond to the Z2 of some

triangle functions. Here in particular,
R, - K

Zi = — .
V(B K)? = 2K

(3.35)

In table (B.21) we have listed which kinds of triangles a box with given cut would
reduce to.
Using the above result with the cut-triangle expression from (B.20) we get

2 1 unflfe CZ CZ
T=—1[d ! 2
A/O Ve (1—u—212 * 1—u—222>
2Cz,(n—1—¢) 20z,(n—1—¢)
Z1A Zy A
where Z1, Z5 should be derived from (B.3H) with reference to table (B.21)), and Cz, and
Cyz, are given by

i Y(2y) i (Zy), (3.36)

Cyz, =D+ (Z7 —1)C. (3.37)
Putting it all together we find the recursion and reduction formulas.
—1-¢)B 1
Box™ (A, B,C, D) = M—Box("_l)(A,B,C,D) +—T (3.38)
(n_i_E)A 2(71—5—6)
(n —1 - E) B ( 71)
= ———"Bx\""V(A,B,C,D 3.39

(n —11 — G)CZI TI‘i(n_l)(Zl) _ (n —11 - E)CZQ TI‘i(n_l)(Z2)-
(n—1-042 (n—3—-€A 2

Solving (B.39) we get the following final result for the recursion and reduction relation.
To use this formula, it is of course necessary to understand the cut box integrals as being
defined in terms of the underlying arguments K, P, P», so that it is possible to find the

necessary Zi, Zs for reduction relations.

Box(")(4, B,C, D) = F{",(4, B)Box")(4, B,C, D) + F{")y(4, B,C, D; 21 Tri ) (2)
+EM. (A, B, C, D; Zy)Tri® (Zy) + E™ (A, B, C, D; Z;)Bub®,  (3.40)

3 —2

where these form factors are given by

(n) _ I(1/2—e)'(n—e€) (B "
FieaB) = s ormr 12— o (Z) ’ (3.41)

n n—k
~(n) I I'(n—e€) Cz, I'k—1/2—¢) E (k=1) /.,
Fizs(4,B,C. D 2;) = (n+1/2—¢) A Z; — Nk—1—¢ \A Py (Z0),
(3.42)
~(n F'n—¢ 1
Fi_gz(A,B,C,D;Zi) = T Tm+12-0A
T(k—1/2—¢) (B\"" (Cz =0-1) Czy ~(k—1)
_ [ — F. VA F. Z . 4
S D (B (me i+ LR @) G

k=1

,13,



Again (B.4() is not the final formula we are after. To get the proper physical result,
we need to replace the kinematic factor 1/2K2. The result is

/ldu ol [ 1 In <D—Cu+\/1—u\/B—Au>}
0 2K2\/B — Au D—-Cu—+1—-uvB— Au

2
Fy" (A, B)CIL(K; Py, Py)) + Y Fy"5(A, B,C, D; Z)ClI3(K{, K] +

—
i=1

= (3.44)

+FM™,(A,B,C, D; Z;)C[I(K)),

—2

where for the triangles, K y) and Kéi) are given by table (B.21]), and the form factors are

(4)

Fi@g(A7B7C7DaZz) = - 2K:; ﬁzl(ﬁzg(A7B7C7Dazl)a
n 1 =(n
F\",(A,B,C,D; Z;) = 5703 F",(A,B,C,D; Z;). (3.45)

3.4 Cut pentagons
The double cut will be
5(0% — p)5((£ — K)* — pi?)
(€= Pr)? = p2)((€ = P2)? = p2)((€ = P3)? — i)

Using { =0+ zK and doing the t-integration we reach

. N A (1—22) (| K]4]
CUs(s Py oy ) = ™ [ 6 ) 0 00 i i (4
with
Qi=—-(1-22)P + Piz_i#}(. (3.47)
Now we do the splitting and get
1 1-2
C[I5(K;P1,P2,P3)] = /0 du uilie / (f df> [f df] ((K2)2Z) (Il + .[2 + 13)
I (1K Q1]0) 1
N Q2Q110) (U1Q5@110) (UK {£1Q1]1]
o UEQ0)” 1
2T {0Q2Q110) (01Q5Q210) (LK €] (£]Qs]4]
I = (UEQsl0” 1

(£1Q3Q2[€) (£1Q3Qu1€) (LK €] {£1Qs]€]”
First we use Feynman parametrization and then write the integrand as a total deriva-
tive [§]. Next we do the Feynman parameter integration and finally we read out the pole

contribution.b

In general we need to be careful about changing the order of taking residues and doing the Feynman
parameter integration. One can check that in the case here, it is legitimate to do the Feynman parameter
integral first.

- 14 —



The general integration has been done in appendix C (equation ([C.20)). The result
can be summarized as the following replacement:

1 1 ln( m+<eyme]>
(K14 (€Qle] ((IQK|L) Qe )’

where x, is one solution to the equation (Q + xK)? = 0. First, notice that after summing
up residues of all poles, the term with In(—z) will not contribute, because the sum of all

residues of a holomorphic function is zero. After dropping it we have

1 J—
ClI5(K; Py, P2, Ps)] = /0 du u E(tlﬂi ?) (I + I+ I3) | residue »
I - (Ll KQ1]f) ( ey )
(01Q2Q116) (£1Q3Q11¢) (01Q1]4]
. wEQl ewa>
2T T QaQ1]0) (1Q3Qall) (€]Q2|4]

I = ({|KQsll) In ( (LIK]4 >
(€1Q3Q210) {£|Q3Q11€) (€|Qsl4]

where |resique means that we take residues of the two poles in (£|Q;Q;|¢). This type of
pole is discussed in detail in appendix C. Here, we apply the trick given by (C.4). More

concretely, we have

(¢ Pyj+) (€ Pij-) [PijJr Pij -]

(Q:Q;|t) = : : ;
(01Q:; 10 o
—Qi- Q5 £,/(Qi- Q) - Q¥
Tij+ = Q2 . (3.48)
Thus after taking the residue, we will have the following replacement
1 (Tij 4 — ij,—) _ 1 (3.49)

(€1QiQ;1¢) - [Pij+ PP+ Pij—) 2\/(Qi Q)% - Q?Q?'

Now, applying it to the poles from (£|Q2Q1|¢), we need to add the two contributions
from I1 and Is. Defining

(LI KQ1]6) = (UK Qs|l)

0= Gaan ™Y W

it is easy to check that Fia(Pi2) + ﬁlz(P12) = 0. This identity is important for the cancel-

lation of unphysical singularities.

,15,



The sum of the I; and I contributions for the poles from (¢|Q2Q1|¢) is given by

B 1 {F12(P12 )+ Fia(Pro-) < (Pr24 | K| P2 4] <P12,|Q1|P12,]>
2¢/(Q2 - Q1)% — Q3Q? (P12,+|Q1|Pr2,+] (Pr2,—|K|Pr2 ]

+F12(P12,+) Fiao(Pro,— In ( (Pro | K| P12 y] (P12 |K|P12 ] >
2 (Pro,+]Q1]Pr2+] (Pr2,—|Q1]Pr2,-]
F12(P12 )+ Fof Pro ln ( (P24 |K|Pi2,+] <P127—!Q2\P12,—]>
2 Pia +|Q2|Pio4] (Pio,—|K|Pr2, -]
+ﬁ12(P12,+) Fia(Pra— ln ( (Pr2+|K|Pr2 4] (Pr2—|K|P12-] > } .
2 Pio 4 |Q2| Pro+] (Pr2,— Q2] P2,

Using the relation Fia(Pi2) + ﬁlz(Plz) = 0 we can combine the first term and third term
as well as second term and fourth term. Next we use ({C.13) and ([C.14) to get the final
result

1 <F12(P12,+)+F12(P12,—) Q2 Q1 —/(Q2-Q1)2 — Q3Q7
Q3Q%

2/(Q2 Q1) — 2 Q2 Q1+ (Q2-Q1)> — Q32
+F12(P12,+) — Fi2(Pr2,-) In Qz
2 Q2

where the first term has the right physical singularity while the second term does not.
However, we can rewrite the second term as

1 <F12(P12,+) — Fi2(Pra,-)

_ 1 2\y—1
2./(Q2 - Q1)? — Q2Q2 2 n(@1)

+ﬁ12(P12,+) ; Fia(Pia) ln(Qg)_1> '

Now we recognize that it is the residue of the following expression:

( UEQO o1 (UKl m@;)—l)

(£1Q2Q116) (£|Q3Q1¢) (£1Q2011¢) (£|Q3Q2|¢)

residues from (¢|Q2Q1/¢)

Because it is a holomorphic function, when we sum up all residues we get zero. This
illustrates how the unphysical singularities cancel out in the final result, so that we are left
with only the physical cut structure.

By similar manipulations we identify the pole contribution of (¢|Q3Q1]¢) as

B 1 Fi3(P13 4 ) + Fi3(Pi3, - ) Q3 Q1 —V(Qs-Q1)? — Q2Q?
21/(Qs- Q1) - Q3Q% 2 TQs Qi V@ QP - QIQT

and the contribution of (¢|Q3Q2|¢) as
B 1 Faa(Pagi) + Faa(Paa ) | Qs - Q2 — V(Q3 - Q2)? — Q3Q3
2\/(Q3 - Q2)% — Q3Q3 2 Q3 Q2+ /(Qs- @Q2)2 — Q3Q%

,16,



where

LIKQ1|l L\ KQsll
Fal) = (g 0= g
Collecting everything together we have
ClI5(K; Pr, Po, P3)] = — /01 du ule(t[é?;)

< 1 F35(P3g 4) + F32(Ps2. ) In Qs Q2 — /(@3- Q2)? — Q2Q3
2¢/(Qs - Q2)? — Q3Q3 2 Q3+ Q2+ /(Qs- Q2)? — Q3Q3

. 1 Fig(Pig+) + Fiz(Pis,-) 1y @3- @1~ V(Qs - Q1) — Q303
2¢/(Qs - Q1)? — Q307 2 Q3 Q1+ (Qs-Q1)? — Q307

N 1 Fio(Pia4) + Fia(Pia—) 1 @2 @1~ VI(Q2-Q1)% — Q%Q%) .
2¢/(Q2 - Q1)? — Q3Q% 2 Q2 Q1+ (Q2-Q1)? — Q3Q3

To write the result in a good form, refer to the spinor algebra in appendix C. There, in

equation (C.I7), we define the following function:

510:. Q5 Qu K] = 7 (3.50)
2
with
K-Qy Qi-K Q;-K Q7 Qi - Qr Q5 - Qk
Th=-8det | Q;-Qr @7 Q;-Qj |; To=-4det| Qi -Qr @ Qi Q
Qj - Qk Qi Q Q3 Qj Qr Qi Qj Q3
(3.51)
Our result can then be written as
1 VvV1i—u
. _ —1—¢
C[I5(K,P1,P2,P3)] == —/0 du u (K2)2 (352)

( S[Q3,Q2,Q1, K] Q3 Q2 — /(Q3 - Q2)? — Q3Q3
44/(Q3 - Q2)? — Q%Qz Q3 Q2+ v/ (Q3 - Q2)? — Q3Q3
S[Qs3,Q1,Q2, K] n Q3 Q1 —/(Qs-Q1)? — Q3Q}
4/(Qs- Q1) —Q3Q7  Qs-Q1+/(Q3-Q1)? — Q303
S[Q2,Q1,Qs3, K| n Q2-Q1—/(Q2-Q1)% — Q%Q%) .

4/(Q2-Q1)? - Q3Q1 Q2 Q1 +/(Q2- Q1) — Q307
It is important to notice that C[I5] is given by three different box cuts C[l4] multiplying
corresponding factors 25 I[(.; Thus the factor S[e], especially its denominator T, which is
the same for all three S[e], can be considered as another signature of a pentagon.

The reduction of a pentagon is very easy. Suppose that we find the integral

1 3 .
—1- Sld] (1)
l1—e, n

/Oduu u E 5 5O

i=1
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Then what we need to do is expand % (where T is the denominator of S[e]) in the form
flu] + T%, where f[u] is a polynomial in u and A is constant in u. That is, we write

1 3 . 3
1 S[i] (Z / _ (Z
1—e, n I 1—e¢ n I
/0 du u U g QKQC ; du u g 2K2 >

/ du u™" Ezf ')]+A§: Sl o)
2K2 kL R

Then A is the coefficient of the true pentagon, and f(u)T}[i]/2K? are the reductive coeffi-
cients of the corresponding boxes.

4. Examples

Here we present a few basic examples to illustrate the main points of our technique. We
begin with the case of five gluons of positive helicity. Later we list the wu-integrals for
four-gluon amplitudes, just to show the structures that arise. These amplitudes were first

computed to all orders in € in [27].

4.1 Five gluons of positive helicity

In this section, we demonstrate the cut integration for the all-plus helicity configuration of
the five-gluon amplitude. All cuts are of course trivially related by permutation symmetry.
Here we work with the cut Ci2. We show the calculation in some detail to illustrate our
method.

The cut momentum is Kjo, and we begin with the integrand

I =2A0((—01),1,2,(—2))AR({2,3,4,5,41)
w21 2] 1125 K345023]
(12) (€1 +F1)2 — %) (3 4) (4 5) ((ba + k3)? — pi?) (€1 + k5)? — p?)

The letter I will actually represent the full integral; we neglect to write the integral signs

and measures while we follow the steps. Notice that with our choice of direction of the
propagator momentum, we have {3 = K15 — /1, in keeping with the convention in (R.17).
After performing the t-integration and substituting u? = z(1 — 2)s12, we have

2221 — 2)%(1 — 22)[1 2J?
T B4 EE)
25 3] (Kl
= e e (4.2)

C(1—22) (0)Kl3) [¢ 5]
b= e e wasa (43)

(I1 + ), (4.1)

with

Q1 = (1 —22)k1 + 2K, (4.4)
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K2, (4.5)

Kis. (4.6)

After splitting the denominator factors with partial fractions, we can write the integral as
a sum of three terms, related to one another by permuting @)1, Q2, Q3.

I =P+ P+ B3,
u? VT —ufl 2% (U K12Qul) (2[5 3] ([ E12Qul6) + (1 = 22) (] K1a]3] (LICLI5))

P = - 8(3 4) (4 5) (£1Q2Q116) (£1Q3Q1¢)
1

ORI Qi
VTl 2 (K1Qalt) (215 3] (1K12Qalt) + (1 = 22) (1K 1]3] (A1@s15))

P, =

8 (3 4) (4 5) (11Q2Q116) (11Q3Q110)
1
K10 Qs
e WAVTull 2 (K1 Qsl) (215 3] (1 KraQal) + (1 = 22) (Ka3] (1Qsl5])
s 8(3 4) (4 5) (£1Q3Qn10) {£|Q3Q2[{)
1

X .
(€| K12]4] (£]Q3]]
4.1.1 Spinor integration

Let us start with P;. Upon writing it as a total derivative and choosing the auxiliary spinor
to be A1, we get

o / )12 (2[5 3] (EQild) + (1~ 22) (U K1[3] (UQuf5])
! o 8(34)(45) (11Q2Q110) (|Q3Q110)
y [16)(10)
| R1|0] (zz+1—x)’
with

Ri=zQq1 + (1 — .%')Klg.

There are four single poles from the factors (¢|Q2Q1]¢) and (¢|Q3Q1]¢). We can do the

z-integration first. Then we get

P C (1 —w)[1 27 (2[5 3] (| K12Qu]€) + (1 — 22) (¢|K12[3] (£]Q115]) "
' 8 (3 4) (4 5) (01Q2Q110) (11Q3Qu10)
D (o @
= (k)] <ln(z) : <£\Ku!€]>
_ VT —ull 2]KF) (2[5 3] (| K12Q1(f) + (1 — 22) ({|K123] (¢|Q1]5]) 1 2K 2|4
8(12)(34)45) (€]Q2Q11£) {£1Q3Q11€) Qs
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The next thing is to read out the residues of these four single poles. Notice that since
we can write

2Kl Kl

(€|Q114] (1Qq1e)’

and since the sum of residues of a holomorphic function is zero, we get

P = <U2V1 —u[l 2] (2[5 3] ({|K12Q110) + (1 -22) (¢| K12|3] (£]Q1]5]) In <€\K12’€]>
8(3 4) (4 5) (£]Q2Q10) (Q3Qu6) (€|Qn14]

residues

Similar calculations give

P, = (_ u?/T —ufl 2% (2[5 3] (¢| K12Q2]0)+(1—22) (| K12|3] (£]Q2]5]) n <€\K12’€]>
8(34)(45) (£|Q2Q11€) {£|Q3Q2€) (£|Q2l¢]

residues

and

P <u2\/mu 2% (2[5 3] (| K12Q3]€) +(1—22) (¢| K123] (¢|Q3]5]) In <€|K12|€]>
’ 8(3 4) (4 5) (11Q3Q110) (¢1Q3Q21¢) (1Qs14]

residues

4.1.2 Taking the residues

Now we need to take the residues of P;. Again we start with P;. The pole contribution of
(|Q2Q1|¢) can be written as

2
o (Pl SR )

(n2] K 12]m2] >
(2|Q2Q112) (m n2 (m|Q1lm] ’

(n2]Q1]m2]

where 71,72 are the two solutions of (¢|Q2Q1]¢) = 0 (see appendix C), and F}(n) is defined
as

(2[5 3] (n|K12@Qun) + (1 — 22) (| Ki2|3] (n|Q115])
(nlQsQ1|n)

Fi(n) = : (4.7)

Decompose F'(n) into two pieces that are respectively symmetric and antisymmetric under
the exchange 11 < no:

Fl(nl):Ff+Ff4a Fl(’r/?):Fls_FlA’ (48)

and the pole contribution can be written as

+ F'In

(12) 1 (Fls 1 Sl Kozl (2| @ufrpe]

(m|K1z2|m] <772|K12|772]>
(2|Q2Q112) (1 12) (m|Q1lm] (n2|Kiz|ne] '

(m|Q1lm] (m2|Q1[n2]

We substitute the solutions 77,72 and define

A=, (4.9)



Then we find

(12)? 1 P \/1+Au FA 4(1 + A)
(21Q2Q112) (m m) \E?@+¢Cz P u(l + Aw)

<1 2> 1 <F1(771)—|—F1 772 \/1+Au—\/1—u

(2[Q2Q112) (m m2) 2 \/1 +Au+vI—u

+F1( m) — Fi(n2) In A1+ A) )
2 u(l+ Au))

Notice that the second term can be interpreted as the pole contribution of (¢|Q2Q1|¢). This
observation will be useful to prove that the sum of all pole contributions is zero.
Now we consider the contribution of (¢|Q3Q1]¢). Using n3,n4 as the solutions with

2
B= <Sﬁ> , (4.10)
523

and the definition
2[5 3] (n[K12Q1n) + (1 — 22) (n|K123] (n|Q1]5]

Fa(n) = 0O : (4.11)
we get
(12)?° 1 <B%HJWM Vit Bu—yT—u
(21Q3Qu[2) (13 n4) 2 \/@ 4 m
Fo(nz) — Fa(na) | 4(1 +~§) > (4.12)
2 u(1 + Bu)
Putting everything together, we have
P u?y/1T —ufl 2)?
8(3 4) (4 5)
< (12)? 1 <F1(771)+F1 72) \/1+Au—\/m
(21Q2Q1[2) (m n2) 2 \/m+ \/m
Fi(m) — Fi(n2) | - 41 +1~4) >
2 u(1l+ Au)
N (12) 1 <F2(n3) + Fo(n4) @— m
(21Q3Q12) (ns n4) 2 \/m n m
Fy(n3) — Fo(na) | 4(1 +f3) >>
2 u(1 + Bu)

Let us examine the various terms in this expression. Some of the singularities are spurious.
First, the terms with ln% can be written as

wVT—u[122 4 <z[5 3] ((|K12Q1]€) 4 (1 — 22) ((|K12|3] <le1I5]>

8(34) (4 5) o (£1Q2Q110) {£|Q3Q1[£)

residues
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Since the function is holomorphic, the sum of the residues of all poles will be zero, so these
terms can be discarded collectively.

Then we are left with

P w?y/T—ufl 2]2< (12)? L Filp)+Flp), V1itAu—yT-u
{

605 \P@aammm 2 Vit iesvics P
n <1 2>2 1 FQ(n3)+F2 774 \/ 1+Bu— \/m

(2|Q3Q112) (13 ma) 2 \/ 1+ Bu+vV1—u
L1 (z[5 8] (01K12Qu 1) + (1 — 22) (A K1l3) <f|cz1|51> (1A

2 (£]Q3Q10) {£|Q2Q11£) (€1Q2Q10)=0 1+ Au
L1 (z[5 8] (01K12Qu]) + (1= 22) (A K1l3) <f|cz1|51> (1B

2 (£]Q3Q10) (£|Q2Q11£) (€1Q3Q10)=0 1+ Bu .

In this expression we have written the last two terms in a form where the poles need to be
substituted.

Similarly we have

o Cu?VT a1 22 < (3 5 L Falps) + Fi(n) | V14 CutVI—u
B {

8(34)(45) 5|Q3Q2[5) (ns 16) 2 \/1 L Cu—i—u
n <12>2 1 Fg(?]l)—l-Fg?]Q \/1—|—Au+v1—u (414)
(2[Q2Q12) (m m2) 2 \/1+Au—«/1—u '
L1 (z[5 3] (U K12Qal0) + (1 — 22) (¢| K12|3] (le2|5]> (At
2 (£]Q2Q11€) (£|Q3Q2[¢) (0QsQal=0  \ 1+ Cu
1 (z[5 3] (U K12Qal0) + (1 — 22) (¢| K1a]3] (le2|5]> L ArA
2 (€]Q2Q11¢) {£|1Q3Q2€) 0Qsil=0 \1+Au) )’
where
C = 21255 (4.15)
534545
and
_ 2[5 3] (n|K12Q2|n) + (1 — 22) (n|K12|3] {n|Q2|5]
Faln = Qs @a) ’ (410
_ 2[5 3] (nlK12Qa|n) + (1 — 22) (n|K12[3] (n|Q2|5]
Fi(n) = Qi) | )
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Similarly again for Pj, we have

P w21 —ull 2] (3 5) L Fy(ps) + Fs(ne) | V1+ Cu—+v1—u (4.18)
T84 A5) |\ (51QsQal5) (15 ) 2 M s Garvice

N (12)? 1 Fs(ns) + Fs(ns) \/1+Bu+\/m
(1Q3Q11€) (n3 na) 2 A L Bu—Vi—u

L1 (z[5 3] (0]K12Qs6) + (1 — 22) (¢|K12[3] <£\er5]> (1B
2 (£1Q3Q110) (£]Q3Q2|C) (0)Q3Q1|0)=0 1+ Bu

L1 (z[5 3] (01K12Qs6) + (1 — 22) (¢|K12[3] <£\er5]> (1€
2 (&QBQH@ <€’Q3Q2’€> (0)Q3Q2|0)=0 1+ Cu ’

where

z[5 3] (n|K12Qsln) + (1 — 22) (n|K12/3] (n|Q3]5]
(nlQ3Q2|n) ’

Fy(n) (4.19)

z[5 3] (n|K12Qsln) + (1 — 22) (n|K12/3] (n|Q3]5]
(nlQsQ1|n) '

Fe(n) (4.20)

4.1.3 Summing up the result

Now we sum up P, P», P3. First we check that the spurious singularities cancel out. For
1+A
In e We get

<2[5 3] (| K121 ]0) + (1 — 22) ({|K12|3] <€\Q1’5]>
(0)Q3Q110) (£|Q2Q11£)
_ <2[5 3] (| K12Q2]0) + (1 — 22) ({|K12|3] <€\Q2’5]>
(£1Q2Q11€) (£|Q3Q2|¢)
2[5 3] (| K12Qs3]0) {£|Q1Q2|¢) + (1 — 22) ({|K12|3] (£|Q3]5] <5|Q1Q2|€>
B (€1Q3Q11) (£]Q20Q11¢) (£|Q3Q2|¢)

where we should calculate only the pole contribution from (¢|Q2Q1|¢). However, the factor

(£|Q1Q2[¢) in the numerator shows us that the contribution is zero. Thus the singularity
1+A
1+ Au

For In <1f§ >, we have
u

in In disappears from the final result.

<2[5 3] (| K121 1) + (1 — 22) (¢| K123 <€\Q1\5]> n
(lQ3Q11€) {£|Q2Q11€)
<2[5 3] (£ K12Q3¢) + (1 — 22) ({| K12|3] <€|Q3|5]>
(€Q3Q11£) {£1Q3Q21¢)
_ {Q3Q110) (2[5 3] (£| K12Q2]¢) + (1 — 2) (€| K12|3] (£|Q2]5])
a (|Q3Q1]) (£]Q2Q11¢) (£|Q3Q2|¢) .

Again, the numerator factor (¢|Q3Q1]¢) tells us the sum is zero.
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For In < 1+C > we have
1+C’u

<2[5 3] (£ K12Q2f) + (1 — 22) ({| K12|3] <€|Q2|5]>
(]Q2Q114) {£|Q3Q21€)
n <2[5 3] (L1K12Q3]0) + (1 — 22) ({|K12|3] <€’Q3’5]>
(0lQ3@110) (£lQ3Q2|)
{1 Q3Q210) (2[5 3] {(¢([K12@Q1]¢) + (1 — z) {{[K12|3] (£]Q1]5])
B (1Q3Q110) (£]Q20Q11¢) (£|Q3Q2|¢) '

Again, the numerator factor (¢|Q3Q2|¢) tells us the sum is zero.

Now we consider the remaining singularities. For the first factor we have

wVT—u[l 22 (12)2 1

' REN U Q)
L Fa0m) + Fi(e) + Fa(m) + Fa(no) \/1+Au—m
2 s Vi—u
+u2mu 22 (12)? L
8(34)(45) (2|Q3Q1[2) (n3 ma)
XF2(773)+F2(?74)—F5( n3) + F5(na) \/1+Bu—\/m
2 \/1 +Bu++vi—u
+ﬁﬂ_m1] (3 5)° L
8(34)(45) (5|Q3Q2[5) (n5 76)
F6(775)+ 6(n6) + Fa(ns) + Fa(ne) \/1+Cu—\/m
2 \/ 1+Cu+vi—u
_wVIall2? (12 1 (Fi(m) + Fs () M—m
8(34)(45) (2Q2Q1[2) (m m2) M+ Vi—u
w2yT—ull 22 (12)2 1 \/ﬁ_m
TRENUD) PG gy 2 T ) I e Wiy
w'VT—ull 22 (35)° 1 V1+Cu—yT—u
TEEA D) Q) e ) A e

It is easy to check that Fy(n12)

case. Similarly Fa(n34) = —F5(n3.4) and Fy(ns6)

= F3(n1,2) up to the term (¢|Q2Q1|¢) which is zero in our
= Fs(ns.6)-

We need to carry out the

summation, especially to show that the factor /1 — u cancels out.

The summation can be carried out using the technique presented in appendix C, and

we get

L= 8(12)(23) (§Q4> (45) (5 1)

— 24 —

(T + u3 (2|kski ks — kskik3|2) U)



1 \/1—|—Au—\/1—u 1 \/1+Bu—\/1—u

t= \/1+uA A viu \/1+uB il iBuivi
B 1 \/1+Cu—\/m
\/1+5'u \/1+Cu+\/m
. (2|kskaks + kskaks|2] L V1+Au—1—u
4551593534545 — (2\kakiks — ksk1k3|2°u /1 + uAd 1+ Au+ Vi—u
B (3|kaksky + k1ksk4]3) 1 \/1 +Bu—v1—u
4551593534545 — (2kakiks — ksk1k3|2]® w /1 + uB \/1 +Bu++v1—u
(5|k1 koks + kskok1]5] 1 \/1 +Cu—v1—u

Ass1 593534545 — (2|kskiks — kskiks|2]? u+/1+ C’u \/1 TtCu+Vi—u

It is easy to see that T is a pure box contribution and U is the exact expression for the
pentagon. The coefficient u? in front of U is easy to deal with. Since there is a common
denominator factor in the three terms of U, we write

4 4 3
% BN <<u _ 551523534545 2> + 551523534545 2) ’ (4‘21)
(2]k3k:1k5 — k5/<:1k3\2] <2\/<:3k1/<:5 — /<:5k1/<:3]2]

and make the expansion. Some terms go to boxes, and the remainder is the pure pentagon
contribution.

To finish the program and read out the exact coefficients, we need to identify the
cut boxes exactly for this amplitude. They are the following (See also the subsection on
one-mass boxes in appendix B).

e (1) For box (12|3]|4]5), we have K = Kj9, PI = —ks and P, = —Ky5. Thus A =
— PR > (), D = %% > ) and B = D?. Notice that here A, B,C, D are defined

as in (B:25), and the quantities A, B, C' we have defined in this section are just —A/B

in various cuts. Then we find

2 /1duu16 1 \/1—|—Cu—\/ -
0 \/1—{—C~'u \/1—|—Cu—|—\/1—u.

e (2) For (1]2|3|45), we have K = —K19, P, = k3 and Py = —ky, thus by (B.25) we
have D = —23% >0,A:—%<OandB:D2. Thus

(4.22)

C[Ilz\3|4\5] -

534845

2 L | \/1+Bu—\/ —
Clhgas] = duu = . (4.23)
512523 Jo \/1+Bu \/1+Bu+\/1—u

e (6) For (1|2|34]5), we have P; = k1, Py = —ks and K = K12, thus by (B.2J) we have
D=%51>0, A= -2 < (and B = D Thus

Cllyjg345] = — (4.24)

512851

2 v 1 V1I+Au—+1—-u
duu=""°¢ In .
0 Vi+Au Vi+Au+V1—-u
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Collecting all results, we find the following coefficients. (These are the integrands for

fol duu=17¢€)

Cooi 519 (2|kskiks — kskiks|2] ( 4551523534545 >3
PR 32(12)(23) (34) (45) (5 1) \ (2fkskiks — kskiks|2]”

C _ 82152851 2 <2’k5k4/€3 + /{?3/{?4]{5’2]
Lj213415 16 (1 2) (23) (3 4) (45) (5 1) (2|ksk1ks — kskiks|2]

4551523534545 2 4551523534545
u — 5 +3(u-— 5
(2lkskiks — kskiks|2] (2lkskiks — kskiks|2]

4551523534545 43 ( 4551523534545 )2
(2 kskyks — kskyks|2)? (2l kskyks — kskyks|2)?

C _ 82152823 2 <3’k4k5/€1 + /{?1/{?5]{4’3]
11213145 16(12) (23) (34) (45) (5 1) (2|ksk1ks — kskiks|2]
( 4551523534545 >2 ( 4551523534545 )
U — 5 +3(u— 3
(2lkskiks — kskiks|2] (2lkskiks — kskiks|2]
4551523534545 43 ( 4551523534545 )2
(2 kskyks — kskiks|2)? (2l kskyks — kskyks|2)?
C _ 8%2834545 2 <5|k‘1 koks + k3k2k1|5]
1213145 16(12) (23) (34) (45) (5 1) (2|kskiks — kskiks|2]

4551523534545 2 4551523534545
u — 5 +3(u— 5
(2|kskiks — kskiks|2] (2lkskiks — kskiks|2]
2
4551523534545 43 ( 4551523534545 >
(2|kskiks — kskiks|2]? (2|kskiks — kskks|2]?

The coefficients given above are not the true coefficients yet (except for Cpentagon ), since

of course we need to use the recursion/reduction formula to get the complete € dependence
of the coefficients. However, this is easy to do by replacing u™ with the corresponding form
factors defined in section 3.3 with the parameters A, B, C, D given above.

At that point, the non-symmetric expression given above will also become symmetric
(the pentagon coefficient is already symmetric, as it should be). For example, the u? term

3
coefficient in Cyg 345 is given by ~ T ;;f;5i><4 5E T while in Cyjgj345 it is given by

_ 575523
61223 E A5G 0

the box (1]2/345) may be expressed as —a(€)s= T 2><2322>S<§14><4 SE ) and for the box
25
(1]2|3]45) as

3 3
*12%23 The latter is related to the former by index
shifting ¢ — 7 4+ 1, as it must be.

After using the appropriate form factor, the true coefficient for

—a(e) 1652, (1 2)(2 3)(3 4)(4 5)(5 1) "
4.1.4 Confirmation of the result

Now we compare our result against [29, BJ], where the basis is dimensionally shifted. From
our result we see immediately that the part of the amplitude that is reconstructed from
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the cut Cqo is

(K2 )2 S12 4
8<1 2> <2 3> <§24> <4 5>< > <2|k3k1k5 - k5k1k3|2] 4 51215[#'
1

(12)(23)(34)(45) (51

‘]

(ss151201j9345 10" + s12503T1 93105 [10"] + s34545 D134 (1",

where we have used u = A; and the dimensionally shifted basis. To compare with equation

(15) of 9] (or equation (4 1) of B0]) we need to use I4[u?] = —e(1 — )15, I5[uf] =
—€(1—€)(2 — €) 3972 as well as
t?"[’)@ /kl /k2 /kg /k4] = <2|]€3k‘4]€1 - kﬁlk‘4]€3|2] == <2|k‘3k31k‘5 - k‘5k31]€3|2] . (425)

We see that our result agrees exactly with the equation (15) of [29].7

4.2 Four gluons

In this part, we give only final results (as u-integrals) for four-gluon amplitudes, since the
method has already been elaborated in the previous five-gluon example. In principle one
then applies our recursion and reduction formulas of section 3 to find the coefficients. Here,
we choose instead to confirm our results against those in the literature, which are also given
in terms of the final u-integral, so we do not write the coefficients explicitly.

To begin with, we must establish our basis. For details, see appendix B. First, for
the zero-mass box, we have for example with the cut K19 that K = Ky, P1 = K7 and
P2 = —K4, thus

A = 813841/4, B = Dz, C = —841/2 — 812/4, D = —841/2, (426)

and so

Ol =

2 /1d 1 1 ! V1+Au++V1I—u it (4.27)
U U — In — , A= —. .
0 V1+ Au V1+Au — 1 —w

 s41812 523
Second, there are only one-mass triangles. For (12|3]4) with the cut K2 we have the

expression

1 1
ClI3(K12, K4)] = Tin duu™ " In (
0

14+vV1—-u
1—V1-u)’
Bubbles are simply v/1 — u in all cases. We will compare our results with known results
given first by [R7], in the form given in [B{].

(4.28)

e (1) For the helicity configuration (4 + ++) and cut Cj2 we find

o s2,[1 2][3 4] 2 /1 du w2 L V14 Au+v1—u
12 = - = )
8(12)(34) \ saus12 o \/1—|—Au V14 Au—VI—u
(4.29)
The integral in parentheses, with its additional factor of w2, is related to the box

integral K4 of [BJ). Using u = %, we get immediately %Kgﬁ

"There is a relative minus sign for the I510_26 term because our definition of master integrals does not
include the (—1)" used in @]
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e (2) For (— + ++) with cut Cy4; we have

2 2 1 B
Lt = 2 3[4 3] / du -1 _2813(81;5 s12)
4812[1 3]2 0 541
| 2812(541—513)u1n <1+\/1—u> N (2—|—Au V1+Aut+vI—u
st 1-v1-u \/1+Au V1+Au—/I—u
- 513
A=—. (4.30)

S12
2
To compare with the results in the literature, we must change coordinates via u = %.
We end up with

I o) ) RIBIE (o)

[1 3]2 51253, [13]2 541512
2[2 3]2[3 4]2 (841 - 813)
J: .
(R A

We find complete agreement with equation (3.17) of [B{].8

e (3) For (— — ++), the cut Cp2 is almost the same as for (+ + ++), just multiplied
2
by a factor of 12" This is enough to get the correct box coefficient. For the cut

[12]2
Cy1 we get
2 2 1
7 (12)7[3 4] /du e
541512 0
2(1 + A)2 1+ A 1— 1— ~
AR, FAutVIZu) LY Y2~ 5u—34u)|,
1+ Au V1+Au—+V1—u 6
A=21 (4.31)
512

It is straightforward to check this result against [B(): the term with the logarithm
translates to K4, the simple bubble is I5, and the terms in the brackets with /1 — u(u)
translate to Jo(s41). Again we confirm agreement.’

8To confirm agreement of these formulas, one must remember the relative minus sign for the triangle
integral in the basis of @]
9We need to use the following dimensional shift identities for the basis of [@]

_ t s t
76-2 — _97, _ st S5 v
4 Ja 2u14 ulg(s) u]g(t),
e 1
I37%(s) = 3 12(8) = Ja(s),

172(s) = ~2(s) + S Ea(s)
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e (4) For (— 4+ —+) with cut Cy4; we have

2(1 3)% 513 /1 PR [mm +3A(6 4 u) + A%(4 + 5u))
(242541 Jo 1242
+(1+71)2(8+82u+222 <\/1+Au+m>
8A3V 1+ Au V1i4+Au—vI—u
_(1+71)2£2+/Tu) . <1+m>
243 1-vV1—-u

A=21 (4.32)
512

)

This integral agrees with equation (3.69) of [BJ] after accounting for differences of
convention.
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A. Kinematics

In this paper we analyze unitarity cuts in Minkowski space with signature (+, —, —, —). The
kinematic region in question is the one where K2 > 0 and all other invariants are negative.
Let us study the consequences of these conditions in terms of the four-dimensional momenta
¢1 and #5 of the cut propagators. These vectors satisfy

Z% = Z% = MQ, K — 271 = ZQ. (Al)

First, we can choose a frame such that K = (K,0,0,0) and ¢; = (a,b,0,0). Then, {5 =

(K — a,—b,0,0). The mass-shell conditions become a? — b* = p? = (K — a)? — b?, so

a=K / 2 and b = K?/4 — 2. Since b is real, b> > 0, so we draw the following important
conclusion:

K2

w < i (A.2)

or equivalently,
u<1. (A.3)

In the procedure described in this paper, we decompose (71 = {1 + zK with ¢2 = 0. Under
this decomposition, we can write /1 = (b+2zK, ab,0,0) with a = +1. Using b> = K?/4— 2,
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a=b+ 2K = K/2, we can get z = (1 £+ +/1—wu)/2. Furthermore, since we choose the
positive light cone with §+(¢£?), i.e., b > 0, we have our second important conclusion: if
K > 0 we need to choose z = (1 —+/1—u)/2, but if K < 0 we need to choose z =
(1 + /1 —u)/2. Throughout the paper, we will always assume K > 0, thus

potzvi-u V21_“ (A.4)

The choice of this solution does not affect our discussion.

B. Special cases of master integrals

B.1 One-mass and two-mass triangles

Consider a cut triangle in the massless limit where K3 = 0 (so it is a one-mass or two-mass
triangle). From (B.I1)), we see that Z = 1 and /A3 = —(2K; - K3) = K? — K3. Thus we

have

1m/2m _ ! e 1 . 1++v1—-u
Ol (K1) = /Od \/A_gl (1_m>. (B.1)

We can integrate by parts to get a different expression:

VA <71 + m)

1

1 _
¢ 1

a1

0 0 € uyl—u

et e "\iI-vi—u
e 1
= —/ du u='¢ . (B.2)
€ Jo 1—u

Comparing this formula with (B.§), we see that the form is the same. In fact, if we
allow coefficients of scalar functions to be general functions of €, then there is no need
to distinguish one-mass and two-mass triangles from bubbles. Thus, if one likes, one can
think in terms of keeping only bubble functions in the basis and discarding both one-mass
triangles and two-mass triangles.©

It is, of course, easy to carry out the u integral in (B.2) explicitly and check it against
the known expressions for one- and two-mass triangles after restoring the correct normal-
ization factors.

B.2 Some boxes with massless legs

Here we discuss some special cases of boxes with massless legs. We follow all the conventions
of section 3. Suppose that P; is the momentum of a massless leg, so P# = 0. Then, with
the definitions (B.2), we find Thus for the special case where P12 =0, we have B = D?,
and thus

D—-Cu++vV1—uvB—Au = g (2—u%—i—sign(D)\/l—uUl—u%).

0\ ore concretely, we know that scalar bubbles, one-mass triangles and two-mass triangles all have the
form c(e)(—K?)"¢ where c(¢) is a function of e. This same “modified basis” has been used in @
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The expression in parentheses is a complete square, if

1+A e
D2 D’

or, equivalently,
D*+A-2CD =0.
With the definitions (B.25) subject to P2 = 0,

P K)?P}K — P)?

20 4 orp
D*+A-20D = w8

(B.3)

We see that this expression vanishes if P? =0 or (K — P,)? = 0. Under this condition, the
cut (B.29) takes the following special form.

1 1 ) 1 1—u%—|—\/1—u
CIL(K; P Po)] = g / du w1 R . (B4)
0 1—u% 1—u%—\/1—u

Here we needed the conditions
P?=P;=0, or P!=(K-P)*=0. (B.5)

Zero-mass box function: for this case we have all KZ2 = 0, so there are only two cuts,
Ki9 and Ko3. These are trivially related by index permutation. For cut K5 we have
K= K12, P1 = K1 and P2 = —K4. Define

= 2. B.6
i, o
We can see that
K2,\°
B— Au = (—#) 1+ au)
2 2
D—-Cu= <—&> <1—u(1+ Klg )>,
2 2K,
thus
K2 2
D—Cui\/l—u\/B—Au:—T(\/l—i—aui\/l—u) .
Using this we have
2 1 e 1 \/1—|—ozu—|—\/1—u>
Clliom(Ki2; K1, —K4)] = ——— [ duu 7€ 1 .
[4,0 ( 12 1 4)] K21K122/0 U U \/1+aun<\/1—|—au—\/1—u
(B.7)

This is exactly the expression that we find in the four-gluon examples ({.27).
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One-mass box function:
Kos. We will neglect details and give only results.
For cut K we have

we assume that K7 # 0, so there are three cuts, K7, K34 and

2 1 1 Vitou+v1—u
Cllsim(K1; K12, —K4)] = —5— [ duu™'"¢ )
a1 (K5 o 4] K§4K223/0 w \/1+ozun<\/1+ozu—\/1—u
K?K?
23434
For cut K34 we have
1 \/1+ozu+\/1—u>
CIL K3y K3, —Ks)| = n )
[4,1m( 34 3 2)] K34K23/ \/1+Oéu <\/1+au_\/1_u
K3,
K2,

For cut K4; we have

2 1 1
Cllg1m(Kyq1; Ky, — K. :—7/ du u=t¢ n
[ ,1m( 415 %4 3)] K324K223 0 \/1_’_au
)
= 702
K34

Two mass easy box functions:

(Lioivize),

(B.10)

We assume K7 # 0 and K3 # 0. Then there are four

possible cuts. For each one, it is possible to choose Py, P, such that the condition (B.5) is

satisfied, as shown in the following table.

Box Cut K| Py Py
Ky —Ky | Ki2
K3 —Ky | K3y (B.11)
K2 -Ky | Ky
Kos Ky | —K3
B.3 Zero-mass pentagon
Here we evaluate (B.59) for the zero-mass pentagon under the cut K. It is
1 1 1
0[1570m(K12;K1,—K45, —K5)] = / duu™ _GK—2 X (B12)
0 12
4 <2V€3k4/€5 + /{?5]{4]{3’2] 1 \/ 1+ Au —V1—u
AK3 K3 K3, K3 — (2kgkiks — kskiks|2)? w /1 + Au Vit et vIou
4<3|k34k‘5]€1 +k31k5]€4|3] 1 \/ 1+Bu— vV1i—u
AR K3,K3, K3 — (2lkskiks — kskiks|2]? u /1 4 Bu \/ 1+ Bu++v1—u
4<5|k31k‘2]€3 +k33k2]€1|5] 1

ARG K5 K3, K5 —
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where

K2, B K3 o K§yK3s

i-Bn p_Kso s |

(B.13)

B.4 Hexagons and beyond are not independent
The integrand of double cut of hexagon is of the form

5( = p2)5(({ = K)? — 1)
((— P)? = )T~ Po)? — ) ([ — Py)? — 2)(L — Py)? — s2)

The momentum vectors K, P; as well as { are four-dimensional, and moreover the four P,
are linearly independent in general. Therefore we can express K as a linear combination
of the P;:

Within the integral we may make the following substitutions:
Za, (€= P)? — 1i?) Zal 2 _9p -0 ZalP2—2K K—ZQZPQ K2

In the first step we used the delta function 6(¢2 — 12). In the second step we used (B.14)
while in the third step we have used the second delta function 6((¢ — K)? — pu?) = 6(K? —
2K - 0).

Using this result we can write

<zi PP - K) 5P — )5l — K)* — 12%)
24 0iBY = K2 ) (0= P2 =) (€ = Po)? = p2) (€ = P)? = p2)((L = P1)* = pi?)
1 8P — )0l = K)* — 1) s 0((l = P)? — 42%)
Z-%P? — K20 = P2 = ) (= Po)? = p?)(0 = Po)? = p2)((£ = Py)? = pi2)

5% — p®)s((l - K K)? —p?)
Z%Pz SR eD Dl SO TR R

Now each term is seen to be a cut pentagon. The lesson is that there are no further
independent cuts of scalar functions beyond pentagons.

C. Factors of the form (¢|QP|()

In spinor manipulation, we repeatedly encounter factors like (¢|Q; K |¢) and (£|Q;Q;|¢). Tt
is worth developing a systematic approach to deal with these factors. Let us consider a
general factor of this type, written as (¢|QP|¢).
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Method one: spinor basis. One way to find the poles from this factor is by expansion
in a basis of any two independent spinors:

[£) = la) +y[b). (C.1)
Then the roots of the equation 0 = (¢|QP|¢) lie at the solutions to the quadratic equation

0 = (a|QPla) + y(alQPIb) + (b|QPla)) + y* (b|QPIb) ,

which are
_ —({alQPb) + (b|QPla)) £ (a b) VA
o 2(0lQP) | 2
where
A= 4@ PP - QPP
With these two solutions |/ ) ,|f_) we have
b b
WQPI) = (€ ¢,) (¢ 0y ULLD) (C3)
{a b)

Method two: vector solutions. Here we describe a second approach, which avoids
having to choose basis spinors and helps manipulate a variety of expressions.
Given two massive momenta ), P we can construct two lightlike momenta P, , P_ by

solving

—20-P . P)2 —Q2p2 -2Q - A
Q2P =0, = a2= 22 iﬂ;g i 2@21;;:\/__ (C.4)

We have the following relations among these variables:

Pr =Q+zLP, (05)
A _ —x_ Py +x, P
"= (z4 —a-)’ 9= (T4 —2-) C6)
2 :
i = %, x++x,:—2€32P, x+—x:x+—x:§, (C.7)
_ T op . py__ T+ A
<P+|Q|P+] - (er_xi)( 2P+ P*) - (er_xi) P2’ (08)
1 1 A
(Pr|P|Py] = _m(_QPjL.P_):_mﬁ’ (C.9)
x_ x_ A
(P-|Q|P-] = —(x+_x7)(—2P+'P—):—mﬁa (C.10)
A
(P_|P|P.]| = ﬁ(—ﬂ%ﬂ) _ ﬁﬁ' (C.11)
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C.1 Application of second method
It is easy to check that
1
(w4 —a-)

This means, in particular, that P, P_ are exactly the two poles within the factor (¢|QP|¢).

(QPt) = (¢ Py) [Py P_]{L P.). (C.12)

When we try to identify the structure of the logarithmic part, we often encounter the
following two combinations.

PQIPN ((PQIPN @

Qauwu><@WPw1>‘x”‘PW (C.13)
<<P+|QIP+]> <<P|Q|P]>1 _ o _Q-P—\/(Q PP?-Q?P
(P,|PPy] ) \(P_[P|P] - Q PrJQ PO

Of these two arguments of logarithms, the one given in (C.13) is unphysical and so must

(C.14)

drop out of the final result, while the one given in () is the physical singularity iden-
tifying a given triangle, box or pentagon.

Sometimes we need to use the spinor components of P, P_. For this we can expand
in a basis of two arbitrary spinors,

L ltwel) 5 e+l
P \/Z ) P \/% ’
where ¢ is a normalization factor. We can then solve to find
(blalb] (alP[D] Pb] {a b)
— s w = — — P=———]T"——""""-=.
(b P|0] (0| P[b] (b|P|b] V't
We must also consider factors such as
> PP
(PuIRPIP) = (PURT= 1Py ) =~ pRiP ). ()
+ ,I+ — T_
— P P_P
(RWHRJ:<RW¥L—4R>:—L—;QGMMAL (C.16)
1’+ — T_ 1’+ — Tr_

Now we can do the following sum, which is the pattern we encounter in cut pentagons.

(PL|RP|Py)  (P_|RP|P_) (P{|R|P_] (P_|R|Py]

(PL[SP|Py) ~ (P_[SP|P-)  (Py|S|P-] = (P-|S|Py]

(Py|RIP_] (P_|S|P\] 4+ (Py|S|P_] (P_|R|P,]
(Py[S|P-] (P-|S|Py]

(2P, -R)2P_-S)+ (2P_ - R)(2P, - S) — (2P, - P_)(2R - S)

- (2P - S)(2P- - §) = S?(2Py - P_) '

S[Q, P, S,R] =

If we expand Py, P_ in terms of @), P, then we find that this quantity can be expressed as
follows:
T
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with

R-SQ-RP-R S?2 Q-SP-S
Ty=-8det| Q-S Q% Q-P|; Th=-4det| Q-S Q> Q-P|. (C.18)
P.SQ-P P? P.SQ-P P?

The function T3 is symmetric under exchange of the first two, or the last two, arguments
of S. The function T5 depends only on @, P,.S and is symmetric in all three.

C.2 Spinor integral formulas

Here we derive some useful spinor integral formulas.

First let us consider

1 1 [ 4]
/(@ ) It W) e :/0 dm/<£ de) [de 9] <W>,
R=2zQ+ (1-2)K.

Now we take 7 to be one solution of ((|QK|f), i.e, the solution (JC.4) in which we have
substituted P — K, so

—x_P P_ P, — P

e S A A B e

Ty — T— Ty — T—

where x4 are defined as in (C.4) and Py as in (C.5§). Taking 7 to be P, we have

(E[RIn] = (E[RIPy] = (¢ P_) [P_ Py] (m ((+ *_*l,”) R E x)> -
Now using
1 1 1 c+d a+b
/0 dw(mc—l—d)(ma—i—b) T ad—be <ln d - b >7 (€19
we get

' o4 N _ (e —z )Py ]~z (K]
/Od <<E|R|f] <E|R|77]> (¢ P_)[P- P+](5|P+|€]1 < |Qle >

1 N x4 (0| K]
- WQK\@I( |Qle] )v (C.20)

where we have used the formula ([C.19) to simplify the result.!!

7t is important to realize that in principle we should also take the pole contribution of (¢ P_) from the
middle equation of () However, in many examples, there is a factor of (¢/|QK|{) in the numerator, so
this pole has zero residue.

,36,



References

1]

2]
8]

F. Cachazo and P. Svrcek, Lectures on twistor strings and perturbative Yang-Mills theory,
[PoS (RTN2005) 004 [hep-th/0504194.

L.J. Dixon, Twistor string theory and QCD, PoS(HEP2005) 045 [hep-ph/0512111].

E. Witten, Perturbative gauge theory as a string theory in twistor space, |Commun. Math)

Phys. 252 (2004) 189 [hep-th/0312171].

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, [Nucl. Phys. B 425 (1994) 217 [hep-ph/940322§].

R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4
super-Yang-Mills, [Nucl. Phys. B 725 (2005) 275 [hep-th/041210d].

R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD,
[Phys. Rev. D 72 (2005) 065019 [hep-ph/0503139].

F. Cachazo, P. Svrcek and E. Witten, MHV wvertices and tree amplitudes in gauge theory,
[JHEP 09 (2004) 006 [hep-th/0403047].

F. Cachazo, P. Svrcek and E. Witten, Gauge theory amplitudes in twistor space and
holomorphic anomaly, JHEP 10 (2004) 077 [hep-th/0409245].

A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4
super Yang-Mills from MHV wvertices, [Nucl. Phys. B 706 (2005) 15( |hep-th/0407214].

F. Cachazo, P. Svrcek and E. Witten, Twistor space structure of one-loop amplitudes in
gauge theory, JHEP 10 (2004) 074 [hep-th/0406177].

I. Bena, Z. Bern, D.A. Kosower and R. Roiban, Loops in twistor space, |Phys. Rev. D 71|

(2005) 106010 [hep-th/0410054].

[12]

[13]

[14]

F. Cachazo, Holomorphic anomaly of unitarity cuts and one-loop gauge theory amplitudes,
lhep-th/0410077.

R. Britto, F. Cachazo and B. Feng, Computing one-loop amplitudes from the holomorphic
anomaly of unitarity cuts, |Phys. Rev. D T1 (2005) 025019 [hep-th/0410179).

R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes,

Rev. D 73 (2006) 105009 [hep-ph/0602174).

[15]

[16]

Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD
amplitudes, [Phys. Rev. D 71 (2005) 105013 [hep-th/050124Q].

Z. Bern, L.J. Dixon and D.A. Kosower, The last of the finite loop amplitudes in QCD,

Rev. D 72 (2005) 125009 [hep-ph/0505055).

[17]

[18]

[19]

[20]

Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD,
[Phys. Rev. D 73 (2006) 065013 [hep-ph/0507004].

C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD
amplitudes with general helicities, |Phys. Rev. D 74 (2006) 036009 [hep-ph/060419§].

C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, All one-loop mazximally helicity
violating gluonic amplitudes in QCD, |Phys. Rev. D 75 (2007) 016006 [hep-ph/0607014].

R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,
[Nucl. Phys. B 715 (2005) 499 [hep-th/041230g.

,37,


http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RTN2005)004
http://arxiv.org/abs/hep-th/0504194
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(HEP2005)045
http://arxiv.org/abs/hep-ph/0512111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://arxiv.org/abs/hep-th/0312171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB425%2C217
http://arxiv.org/abs/hep-ph/9403226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB725%2C275
http://arxiv.org/abs/hep-th/0412103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C065012
http://arxiv.org/abs/hep-ph/0503132
http://jhep.sissa.it/stdsearch?paper=09%282004%29006
http://arxiv.org/abs/hep-th/0403047
http://jhep.sissa.it/stdsearch?paper=10%282004%29077
http://arxiv.org/abs/hep-th/0409245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB706%2C150
http://arxiv.org/abs/hep-th/0407214
http://jhep.sissa.it/stdsearch?paper=10%282004%29074
http://arxiv.org/abs/hep-th/0406177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C106010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C106010
http://arxiv.org/abs/hep-th/0410054
http://arxiv.org/abs/hep-th/0410077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C025012
http://arxiv.org/abs/hep-th/0410179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C105004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C105004
http://arxiv.org/abs/hep-ph/0602178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C105013
http://arxiv.org/abs/hep-th/0501240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C125003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C125003
http://arxiv.org/abs/hep-ph/0505055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C065013
http://arxiv.org/abs/hep-ph/0507005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C036009
http://arxiv.org/abs/hep-ph/0604195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C016006
http://arxiv.org/abs/hep-ph/0607014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB715%2C499
http://arxiv.org/abs/hep-th/0412308

[21]

[22]

23]

[24]

[25]

[26]

[27]

R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in
Yang-Mills theory, |Phys. Rev. Lett. 94 (2005) 181609 [hep-th/0501057.

Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitude. I: the general
formalism, [Nucl. Phys. B 758 (2006) 1| [hep—ph/0607015].

X. Su, Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitude. ii: the
five-gluon, [Nucl. Phys. B 758 (2006) 35 [hep-ph/060701§].

Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitude. III: the siz-gluon,
[Nucl. Phys. B 758 (2006) 53| [hep—-ph/0607017].

T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in
one-loop amplitudes, [JHEP 02 (2007) 013 [hep-ph/0609054].

W.L. van Neerven, Dimensional regularization of mass and infrared singularities in two loop
on-shell vertex functions, [Nucl. Phys. B 268 (1986) 453.

Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996)

479 [hep-ph/9511334].

28]

Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one-loop QCD computations,

Nucl. Part. Sci. 46 (1996) 109 [hep-ph/960228(].

[29]

[30]

[31]

[32]

33]

[34]

[35]

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4 super
Yang-Mills, |Phys. Lett. B 394 (1997) 109 [hep-th/9611127].

A. Brandhuber, S. McNamara, B.J. Spence and G. Travaglini, Loop amplitudes in pure
Yang-Mills from generalised unitarity, JHEP 10 (2005) 011| [hep-th/0506064].

C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut
method, [Phys. Lett. B 645 (2007) 213 [hep-ph/0609191].

R. Britto and B. Feng, Unitarity cuts with massive propagators and algebraic expressions for
coefficients, hep-ph/0612089.

S.D. Badger, E.-W.N. Glover, V.V. Khoze and P. Svrcek, Recursion relations for gauge theory
amplitudes with massive particles, JHEP 07 (2005) 025 [hep-th/0504159.

P. Mastrolia, On triple-cut of scattering amplitudes, [Phys. Lett. B 644 (2007) 272
[hep-th/0611091].

G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar
integrals at the integrand level, [Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007].

,38,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C181602
http://arxiv.org/abs/hep-th/0501052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB758%2C1
http://arxiv.org/abs/hep-ph/0607015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB758%2C35
http://arxiv.org/abs/hep-ph/0607016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB758%2C53
http://arxiv.org/abs/hep-ph/0607017
http://jhep.sissa.it/stdsearch?paper=02%282007%29013
http://arxiv.org/abs/hep-ph/0609054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB268%2C453
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB467%2C479
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB467%2C479
http://arxiv.org/abs/hep-ph/9511336
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C46%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C46%2C109
http://arxiv.org/abs/hep-ph/9602280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB394%2C105
http://arxiv.org/abs/hep-th/9611127
http://jhep.sissa.it/stdsearch?paper=10%282005%29011
http://arxiv.org/abs/hep-th/0506068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB645%2C213
http://arxiv.org/abs/hep-ph/0609191
http://arxiv.org/abs/hep-ph/0612089
http://jhep.sissa.it/stdsearch?paper=07%282005%29025
http://arxiv.org/abs/hep-th/0504159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB644%2C272
http://arxiv.org/abs/hep-th/0611091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB763%2C147
http://arxiv.org/abs/hep-ph/0609007

