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Neither Maxwell equations nor Maxwell ® 
will be used to find the order in chaos of 
electromagnetic coupling in a big system 

 
 

Abstract 

My goal is to study how a  big MWPC system, in particular the LHCb muon system, 

can be protected against unstable operation and multiple spurious hits, produced 

by incorrect or imperfect grounding in the severe EM environment of the LHCb 

experiment. A mechanism of penetration of parasitic current from the  ground loop 

to the input of the front-end amplifier is discussed. A new model of the detector cell 

as the electrical bridge is considered. As shown, unbalance of the bridge makes 

detector to be sensitive to the noise in ground loop. Resonances in ground loop are 

specified. Tests of multiple-point and single-point grounding conceptions made on 

mock-up are presented. 
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Introduction 

 The problem considered here is related to the LHCb Muon system which consists of about 1300 

multi-wire proportional chambers (MWPC), see ref. [1, 2]. The note has been based on a presentation 

made by author during LHCb week [3, 4] and further study. My goal is to study how a big MWPC system, in 

particular the LHCb muon system, can be protected against unstable operation and the multiple spurious 

hits, produced by incorrect or imperfect grounding in severe EM environment of the LHCb experiment.  

 There are 3 items to be considered: mechanism of penetration of parasitic current from the ground 

loop to the input of front-end amplifier in enclosed detector; how reduce current in ground loop; how move 

out of the front-end electronics (FEE) bandwidth the resonances which usually exist in the complex 

impedance of the ground loop. 

 Fig.1 shows 5 muon stations M1-M5 each of which is a ‘wall’ of many MWPCs. It is clear that all 

chambers will irradiate EM field and noise, and each individual channel can detect it. In addition, many 

other sources of EMI will contribute: other sub-detectors, LHC clock, etc.  

 

 

Fig.1. Schematic layout of the LHCb Muon system. 

The LHCb muon system consists of 20 different design configurations of MWPC (4 regions by 5 

stations). Four schemes are used: Wire Pad Chamber (WPC) in which the pad is a wire strip; Cathode 

Pad Chamber (CPC) where cathode is segmented into pads of various sizes depending on region and 

station. There are CPC in which one cathode has been segmented (Single Cathode Readout, SCRO) or 

both cathodes segmented (Double Cathode Readout, DCRO). In order to reduce the number of channels 

in the system in the inner regions R1 and R2 of stations 2 and 3 the chambers have combined readout of  
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both cathode pads and wire strips (CWPC). These chambers have been made as DCRO in region 1, and 

as SCRO in region 2. Station 1 of region 1 (the closest to the beam line) has been equipped with Triple 

GEM chambers [2], while region 2 with DCRO, region 3 with SCRO and region 4 with WPC.  Fig.2 shows 

example of multiple loops in ground through the screens of cables attached to the chamber M5R1 (CPC-

SCRO) enclosed by Faraday Cage (FC). Different chambers have different number of cables and different 

number of loops. 

 

Fig.2. Multiple loops in ground through the screens of cables attached to the chamber. 

 
Fig.3. Simplified schematics of the frond-end amplifier connected to the cathode or wire pad. 
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 Fig.3 shows simplified schematics of the front-end amplifier. One input of the preamplifier is 

connected to the detector cell, e.g. to the cathode pad with the detector capacitance Cdet, while the second 

input is so called ‘dummy’ (floating) with capacitance Cdummy which is much less than Cdet. The voltage 

Vn~100μV between 2 grounds, the detector and the FEE ground (input transistor), produces parasitic hit, if 

the charge Q1=Vn×Cdet exceeds the threshold, Qth. To be immune to such voltage in ground the dummy 

input must have the same capacitance as Cdet. But this solution increases noise and has been rejected.  

 

1. Detector cell as an electrical bridge 

 Another protection against penetration of the parasitic voltage from the ground to the amplifier and 

a mechanism, how Vn shown in Fig.3 is created when both grounds are well connected together will be 

considered below. 

The amplifier input connected to the cathode pad in CPC_SCRO is coupled via capacitor Cdet to the 

solid cathode, i.e. to the detector ground.  A connection of the solid cathode to the FEE ground is done in 

our particular case via the detector enclosing Faraday Cage (FC) in several points through the contact 

resistors which are not zero. The detector cell with its amplifier is represented in Fig.4 as an electrical 

bridge with the contact resistors (R1-R4) in arms. The amplifier is located in one diagonal and the external 

parasitic voltage source connected in series with its internal impedance is applied to another diagonal of 

the bridge. Fig.5 shows one cell of the WPC as a double electrical bridge.  

In a balanced bridge, i.e. if R1/R2 and R3/R4 are equal (see Fig.4), any parasitic voltage V of any 

frequency can not penetrate to the input of amplifier. However, in an unbalanced bridge, i.e. if R1/R2 and 

R3/R4 are not equal, it can penetrate and produce a parasitic hit if the injected charge exceeds threshold.  

A polarity of injected into amplifier parasitic signal depends on unbalance factor, i.e. ratio R1R3/R2R4, 

which can be either more or less than 1. 

A full detector is represented as a set of electrical bridges according to the number of amplifiers 

(channels). Careful design of the detector has to be done in order to get balanced bridge in each channel. 

In practice it is a hard task, and the various channels are usually unbalanced with different factors. As a 

result, one can see often that some channels are more and some channels are less sensitive to the noise in 

the ground. It is well known, that the electrical bridge has maximum sensitivity to the resistor variation in 

vicinity of balance condition.  An unbalance by factor of 5 due to spread of contact resistors in practice, e.g. 

from 10 mΩ to 50 mΩ, provides a drastic penetration effect, the parasitic signal can exceed threshold by 

factor of 100.  
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Fig.4. Detector cell of the CPC-SCRO as an electrical bridge with the front-end amplifier 
located in one diagonal of the bridge and the parasitic voltage applied to another 
diagonal.  

 

 

Fig.5. Detector cell of the WPC as a double electrical bridge with common arm. 
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2. Multiple-point and single-point grounding conceptions 

The complex impedance with many inductances and capacitors connects the enclosed 

detector to the common ground, i.e. rack. This impedance has intrinsic resonances. Low frequency 

resonances due to decoupling capacitors used in series with screens of cables will be cut-off by 

FEE bandwidth. High frequency resonances located within FEE bandwidth will be considered 

below. For the inner chambers located near the beam the cables are routed along and near the 

grounded wall, such the transmission lines are created in the ground loop, see photo in Fig.6. In 

case of peripheral regions there is no such possibility and the screens of cables are considered as 

inductances.  

The multiple-point grounding scheme for the lumped lines attached to the chamber is 

presented in Fig.7. The detector (one cell, as an electrical bridge, is shown for simplicity) is DC 

connected to the wall in order to have the voltage reference (V=0) and for safety requirement. The 

wall, in turn, for same reason is DC connected to the common ground (rack) by the Copper braid 

with low ohmic resistance and high enough inductance (reactance) called main inductance in Fig.7. 

The cable screens in a return branch can be considered either as inductances or transmission lines 

in series to inductances. 

The single-point grounding scheme is presented in Fig.8. It has difference from the previous 

scheme in the capacitance which appears (see circle) after disconnection of all screens from the 

chamber side and connection to the wall. 

 

Fig.6. Cable routing from the inner-most chamber to the rack. 
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Fig.7. Multiple-point grounding scheme. 

 

 

Fig.8. Single-point grounding scheme. 
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3. Resonances in the ground loop 

The current in the ground loop is very high in case of series resonance. SPICE modeling will 

be used in this section to study resonances and to find methods of reduction of the current in the 

ground loop. Parameters used in simulations here are qualitative rather than quantitative. It has 

been considered already a mechanism how part of the current from the ground loop penetrates 

inside the enclosed detector and creates hit. The detector with so low resistors, as the contact 

resistors in arms of bridge, will be considered below as a short-circuit point and only current in the 

ground loop will be considered. The most dangerous case if the system is excited in resonance, it 

behaves similar to instability providing huge number of parasitic hits. In Fig.9 three schemes of the 

ground loops attached to the detector (Faraday Cage) are presented which interest for practice. In 

each case two models are considered: with short (lumped) or long (transmission) lines within the 

ground loop depending on routing of cables along the grounded wall. In the first scheme on top in 

Fig.9 the cable screens are DC connected to FC (multiple-point grounding), in the second one the 

cable screens are not connected on detector side (single-point grounding) and in the third one the 

screens are connected to the wall (also single-point grounding scheme).   

SPICE shows unique, i.e. one per chamber, resonance in the lumped model. The resonance 

is specified in this case by the capacitance ‘wall-to-rack’ together with the equivalent inductance of 

cable screens attached to the chamber. The inductance and the resonance frequency depend on 

the number of cables attached to a certain chamber. Multiple resonances appear in case of long 

lines in the ground loop. This case is much complex: the resonances are specified by the 

parameters and length of transmission line, capacitance ‘wall-to-rack’ and the number of cables 

attached to a certain chamber.  

So, one can conclude that the best is the single-point grounding scheme with connection of 

the cable screens on the detector side to the wall, see Fig.10. It has to be noted, that resonances 

have the same frequencies as in case of multiple-point grounding scheme. In case when the 

screens are not connected on the detector side the resonances are shift to higher frequencies. 

Unfortunately, in the LHCb muon system the worst scheme (multiple-point grounding) has 

been implemented as the simplest one. In order to minimize the current in the ground loop in this 

scheme the main inductance has to be maximized. SPICE shows that this inductance must be 

above 20μH at parasitic voltage amplitude 1 Volt between rack and wall. For further reduction of the 

current in the ground loop especially in this scheme it can be proposed to add small resistors in 

series to cable screens on both sides, see damping effect in Fig.11 shown for the multiple-point 

grounding scheme. Similar effect will be in case of grounding screens to the wall. 
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Fig.9. Ground loop models with short (left) and long lines (right). 
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Fig.10. Resonances in frequency range of 10-70MHz in various cases. 
Effect of main inductance 10μH and 20μH is illustrated (two peaks) 
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Fig.11. Damping effect by small resistors (few Ohms) in series to cable screens. 
Effect of main inductance 10μH and 20μH is also shown (two peaks). 
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4. Mock-up tests 

 Grounding problem of the LHCb muon system was studied on mock-up [5].  Mock-up is a 

part of the muon station with a size of 1.5m×5.5m (see Fig.12) on which various chambers were 

installed on supporting balconies and connected to the rack by all needed cables. How the real wall 

of chambers for the LHCb muon system will be implemented in detail one can find in ref. [5].  

 In Fig.13 the work station used on mock-up tests is shown. It is based on proposal 

presented in ref. [6]. MWPC in vertical position were tested on cosmic rays (CR) with this setup 

using self-triggering mode (2 bi-gaps operate in coincidence). To be able detect rather low rate of 

CR the noise count in each bi-gap must be below a few Hz.  

 The network which was tested is shown in Fig.14. One can see here how various parts of 

equipment were grounded. The main inductance (approx. 14 μH) used here is a Copper braid with 

a cross-section of 50mm×10mm, i.e. with very low ohmic resistance. Parasitic voltage, 2V pick-to-

pick, with a rather wide spectrum in range of (8-16) MHz has been found in the ground loop during 

tests, see Fig.21. CAEN2527 HV system was responsible for this noise in our case. It is the reason 

why 1 Volt parasitic voltage source has been used in the SPICE models. As shown in section 3 the 

main inductance reduces current in the ground loop. The noise count in Hz as a criterion of system 

performance has been used.  The noise level is accepted, if it is low and uniformly distributed from 

channel to channel at operational both threshold and HV. An example of not acceptable noise (high 

penetration of the noise from the ground loop) is illustrated in Fig. 16 and acceptable one in Fig.17. 

Such low noise, as shown in Fig.17, makes possible to count CR with rather low rate of about 0.06 

Hz per pad in coincidence pad-to-pad between two bi-gaps, as in case of M5R1 (CPC-SCRO) in 

vertical position of the chamber on mock-up. Fig.18 shows another example of good performance of 

the system in case of M3R2W (wire readout).  One can see profile of the wire strip width. CR count 

vs. HV scan presented in Fig.18, shows HV- plateau and cross-talks, as a slope of the plateau, i.e. 

two fundamental characteristics of the detector. 

  It would be impossible with the noisy system to get high performance in chamber operation 

as illustrated in Fig. 18 and Fig.19. 
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Fig.12. Mock-up with various chambers built at CERN, INFN and PNPI. 

 

 

Fig.13. Work station used in the mock-up tests. 
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Fig.14. Network of grounding of the equipment used in mock-up tests.  

 

 

Fig.15. Pick-up in the ground loop produced by CAEN 2527. 
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Fig.16. Example of high penetration of the noise from the ground loop. 

 

 

Fig.17. Correct noise count in Hz in each channel of M5R1: green line corresponds to one bi-gap, 
red – to another bi-gap. 
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Fig.18. Cosmics counted by M3R2W (wire readout) at vertical position of the chamber on mock-up.  
One can see profile of the wire strip width. 
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Fig.19. HV-plateau and cross-talks, as a slope of the plateau, measured on CR with M5R1. 
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4. Conclusion 

 A model of the detector cell as the electrical bridge has been proposed and used in 

considering the mechanism of penetration of parasitic current from the ground loop to the input of 

the front-end amplifier. Unbalance of the bridge makes detector to be sensitive to the noise in the 

ground loop. Results of grounding problem study in case of a big system, as the LHCb muon, are 

promising. Both multiple-point and single-point grounding conceptions are successful ones if the 

current in the ground loop is reduced to the accepted level.  

The single-point grounding scheme has advantage: much less current flows along Faraday 

Cage (at least by order of magnitude), and it is recommended, especially for CPC-DCRO (M1R2, 

M2R1, M3R1), see Appendix.  
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                                                                                                            Appendix 

 

 

 

Fig.A1. Single-point grounding conception in MWPC design. 
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