
COULOMB SCATTERING IN A MAGNETIC FIELD

by

JAMIE C. CHAPMAN

B.A., University of California, Santa Barbara

(1958)

M. S., Case Institute of Technology

(1961)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF
PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1966

Signature of Author ......
Deparyment of Geology and Geophysics

May 13, 1966

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chairman, Departmental Committee

on Graduate Students



-11-

ABSTRACT

Considered was the scattering of a particle of charge q and

mass m in a uniform magnetic field by the Coulomb potential of a

charge Q fixed at the origin. The scattering was described quantum-

mechanically by a formalism in which the presence of the magnetic

field was incorporated as the dominant and controlling factor. Also

incorporated was the facility for varying the initial position of the

gyrocenter with respect to the line on which the scattering charge is

located, and for keeping track of the energies perpendicular and

parallel to the magnetic field.

The charge q was represented in a Born approximation cross

section by combinations of the energy eigenfunction set obtained as

solutions to the Schroedinger equation H = E in ao NMk o NMk
_ 2

cylindrical coordinate system. The Hamiltonian H = (p - qA) /2m
0

is that describing the motion of a single particle in the magnetic field

generated from the potential A. The parameters (NMk) are interpre-

ted in terms of energies perpendicular and parallel to the magnetic

field and in terms of the radius and radial position of the corresponding

classical orbits.

An exact result was obtained for the matrix element of the

Coulomb potential energy between these eigenfunctions. The diagonal

matrix element is characterized by a logarithmic singularity. The

maximum value of the off-diagonal element used in the scattering cal-
-10

culations was about 10 eV - m. A simple, limiting form was ob-

tained and utilized in a differential cross section.
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PART I

SUMMARY PAPER
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I. INTRODUCTION

Content

The problem of interest here is the scattering of a charge q in

a uniform magnetic field by the Coulomb potential of a charge Q

fixed at the origin. The treatment has revealed novel features

not present in the zero magnetic field Rutherford problem. The

scattering is described quantum-mechanically by a formalism in

which the presence of the magnetic field has been incorporated as the

dominant and controlling factor. If there is present any magnetic

field, no matter how small, this is the only correct approach. The

principal physical reason is the very omnipresence of the magnetic

field. Even though the Coulomb potential may be considered long

range in character, its influence must eventually become inconsequen-

tial as the scattered charge moves farther away along the magnetic

field. Also incorporated into the formalism is the facility for varying

the initial position of the gyrocenter with respect to the line on which

the scattering charge is located, and for keeping track of the energies

perpendicular and parallel to the magnetic field. At the heart of the

scattering calculations presented herein is the matrix element of the

Coulomb potential energy between Schroedinger wave functions repre-

senting the scattered particle. An exact result has been obtained for

this quantum average. The end result is expressed in terms of a

Born approximation cross section. Within limits to be discussed

later, the general validity of the results are dependent not upon the

size of the magnetic field, but upon its existence. Indeed, the results

simplify considerably for small magnetic fields. The treatment is spin-

less and non-relativistic. Other than these, the chief approximations

are connected with the fact that we have ignored the coupling of the

relative and center of mass motions, and have ignored the possible

binding of the charge q to the Coulomb center Q.
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Specifically, and in more detail, the charge q was represented

by combinations of the energy eigenfunction set obtained as solutions

of the Schroedinger equation

H 0 'kmmk -E 34Mk (1)

in the cylindrical coordinate system spanned by the unit vectors
A A A
f x = z. The Hamiltonian Ho is that describing the motion (see

Appendix A) of a single particle of charge q and mass m in a magnetic

field:

Ho  - (2)

The magnetic field was generated from the vector potential

A - (3)

through the relation

- c url A = (4)

Since the divergence of this potential is identically zero, we may

utilize the commutator [, T ] = 0 to combine the two cross terms

of (2). We note specifically that the term quadratic in A (in Be)

is retained. The radial Location of the gyrocenter and the perpendicular

and parallel energies are described by the set of eigenparameters

(NMk). We shall see that there are actually two orthogonal sets of

such eigenfunctions, one corresponding to cyclotron orbits which

enclose the origin and a second describing those which do not.

The Coulomb potential energy, with exponential or Debye

shielding incorporated, has the functional form (mks rationalized

units are employed):
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Q e-4. r

-A-c 

r

L.1X). 0 evr (5)

where r is to be replaced by o e' . This is the potential energy

of the charge q (Located at 7) due to Q fixed at the origin. This is the

agent or perturbation considered to cause transitions from one

quantum representation of the charge q to another.

Two such representations were employed in the cross section

calculations. One was a single eigenfunction 3'NMk ' leading to a

differential cross section. The second representation considered,

although not as extensively, was a uniform, flooding beam of sufficient

radial extent to encompass as much as desired of the Coulomb potential

field. This beam, characterized not only by its radial extent but also

by single values of the perpendicular and parallel energies, is of use

in the consideration of a total cross section.

One of the novel features of this problem is that we are dealing

with transitions from a one dimensional continuum in which are embedded

discrete states to a second such continuum-discrete system. The

continuum states are associated (through the eigenparameter k) with

the free or unbound motion of the charge q along the direction of the

magnetic field. The discrete states (belonging to the quantum numbers

N and M) are a manifestation of the binding of q by the magnetic field

in the plane perpendicular to the field. The transition probability and

cross section expressions must reflect this circumstance. These

expressions must contain, loosely speaking, one-dimensional density

of states functions for both the initial and the final z energies and states.
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Derived in appendix G is the Born approximation cross section which

takes into account this circumstance and which contains these two

density of states functions. It is a differential cross section, in a

way not connected with E.1 and to be made clear later. The expression

obtained was

c.7 1( 1-4, Ac)+1cM +2r, +I)
e = ~ E", H"• (6)

where w eB/m. The index a refers to the parameters (N Mlk I )
c 11

characterizing the initial state, and 3 the final state set (N2M 2 k 2

Conservation of energy between the initial and final states is implied

in this expression, since it has been integrated once on dE 2 over an

energy-conserving delta function. Also incorporated has been a result

not yet mentioned, namely, conservation of the quantum number M in

the basic matrix element (+ qhALj). This result, which has a direct

and interesting classical analog, will greatly facilitate formation of a

total cross section from the differential expression (6). We return to

the results of this investigation after considering other work,and the

relation of the scattering and bound state problems.

Context

Although of fundamental interest, this problem and the closely

related bound state problem have been little studied. This is in part

due to the formidable mathematical difficulties and in part due to Lack

of appreciation of the significance of these problems. By the bound

state problem we mean the properties associated with the solutions and

energy spectrum of the Schroedinger equation

(H. + A..) P, E b (7(7)
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wherein the terms quadratic in the product of the magnetic field and

radial distance are retained. This is commonly known as the problem

of the hydrogen atom in a strong magnetic field. However it is obvious

from (3) that this is not a complete description. It is also the problem

of the hydrogen atom in a (perhaps moderate) magnetic field and with

the electron in a highly excited angular momentum state. This is a

most interesting region because the electron, though bound (its wave-

function vanishing at infinity in all directions), may have a total positive

energy. As the electron occupies states more and more distant from

the proton, it may be more strongly bound by the magnetic field than

by the Coulomb potential. The always negative and decreasing

(as 1/e ) Coulomb binding energy may be overcome by the always

positive and increasing (as e ) magnetic binding energy. The electron

will always be bound in the direction perpendicular to the magnetic

field, whether by the Coulomb potential (negative energy) or by the

magnetic field (positive energy). This is not the case along the direction

of the magnetic field since the electron does not see the field in this

direction. If the electron is bound in this direction, it must have a

negative energy, and if not bound, a positive energy. The bound state

problem thus approaches the scattering problem as the binding becomes

predominantly magnetic in character.

These and other aspects of the bound state problem have been

studied by Bitter [1964, 1965, and private communication] and by

Praddaude [1964, private communication]. It is probably fair to say

that one of the most significant contributions to emerge from their

investigations has been the realization that the case of precisely zero

magnetic field is singular. That is, the point B = 0 in the treatment

of the hydrogen atom as described above is not a limit point as B -- 0.

They are separate problems having in common only the Coulomb binding.

This may be understood from consideration of the energy eigenvalue
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spectrum, some aspects of which already have been discussed above.

In an approximate solution to the bound state problem (valid for

S<< I ), Praddaude obtained an energy spectrum of the form

Eb - + 3( P1) (8)

Bitter has obtained a qualitatively similar form by means of semi-

classical arguments. The first term is the usual Coulomb binding

energy. The second represents the binding by the magnetic field.

The quantum number P is related to the angular momentum, or the

energy of azimuthal motion. The feature that we wish to emphasize

here is that, as B--0, these magnetic field states become more and

more dense (more and more states per unit energy increment).

Then, when B = 0, these infinitely numerous states discontinuously

cease to exist. The existence and behavior of this spectrum is a

significant feature of the bound state problem, and has profound

implications for the scattering problem. For example, it is conceivable

that an electron, initially unbound in the z direction and incident upon

a proton, could be temporarily or permanently delayed in its trip along

the field line by occupation of one of the states of this spectrum.

Unfortunately, the scattering formalism employed herein is not

powerful enough to detect this possibility.

There have been reported sporadic attacks upon the scattering

problem, most within the framework of the Born approximation. Each

has involved some approximation in the calculation of the matrix elements.

Tennenwald [1959) was apparently the first to point out the difficulty of

integrating the classical equations of motion and of separating the relative

and center of mass motions. Kahn [1960 considered the scattering of

Cartesian Landau eigenfunctions against a delta function potential through

use of a Greens function in the scattering integral equation. Goldman

[1963, 1964] and Goldman and Oster 1963] considered the influence of
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Coulomb

profiles.

problem,

interactions in the calculation of cyclotron radiation line

There was found one classical approach to the scattering

that of Barananenkov [1960].

II. THE CYLINDRICAL LANDAU EIGENFUNCTIONS

Properties

The cylindrical Landau eigenfunctions INMk' solutions of the

Schroedinger equation, (1), are factorable in each of the coordinates as

As derived in appendix C, the factored eigenfunctions have

' 4L

R"M e ayL

1M e

the forms

(10)

(11)

2k e' - (12)

2 -2
where 2 eB/2i (dimensions of m-), and N and M are independent

positive integers (including zero) having no formal upper bound.

Johnson and Lippmann [1949] have identified the reciprocal of 02

(or more precisely 1/2/32) as the minimum area in the x-y plane to

which a gyrocenter may be located. It is the minimum area occupied

by a single state. We have the numerical relation

* = [7 10

0

(13)

Wirn.
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The Laguerre polynomial, an oscillatory function having N zeroes,

has the explicit series representation

S(N*t )! (X )
L (x) s 1 (14)

Other equivalent representations are given in equations (C23).

The factored eigenfunctions are separately normalized to Kronecker and

Dirac delta functions such that

<N'M'kINk" I N 5m k > S , (k'-k) (15)
r mk NJ" M)I

., J<NM klNMhk> dkQJ 1. (16)

From these equations there follows the interpretation that the quantity

j thti(Fr) d-r ek (17)

represents the probability (a pure number on a scale of unity) of

locating the charge q in the volume element dT at ' = (e, < , z) and in

the quantum state characterized by the numbers N and M and the

continuous wavenumber k in the range dk. The appearance of these

eigenfunctions is illustrated in Figures C1 and C2 on pages 53 and 54.

These or closely related eigenfunctions have been employed by

Dingle[1952], Tannenwald [1959], Goldman [1963, 1964], and Goldman

and Oster 11963]. Their relation to the Cartesian Landau eigenfunctions

was considered by Johnson and Lippmann [1949].

Interpretation of the Eigenparameters (NMk)

Interpretation of the parameters (NMk) of the cylindrical Landau

eigenfunctions follows from construction of the appropriate quantum

operators and eigenvalue equations or from quantum-classical corres-

pondence arguments. The former is of course the fundamentally correct
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method; results obtained by the correspondence method should be

verified by construction of the operator eigenvalue equations. The

details and results of these procedures are to be found in section C3

(page 55). Although of vital importance to the understanding of what

follows, a lucid exposition requires more space than is available here.

Because of their importance, it is suggested that the interested

reader pause in this development and consult the ten or so pages of C3.

In particular, one should be aware of the role of the + signs of the

IM eigenfunctions, understand the distinction between the group I and

group II states, and have examined the results summarized in Tables

C1 and C2 and in Fig. C3.

III. THE COULOMB MATRIX ELEMENT

The Coulomb matrix element is denoted and defined as

<ZAG> JA 4kMk1  r cr (18)

It was also denoted in (6) by ( , q.~ .+ ). The exact result obtained

(section E2) for this integral was

2M. )!+ M)! + M)!

, 2 ") ' " +-) (19)

where Y stands for the functions

¥II 1. + , I± +(N,-z) (20)

in which conservation of energy has been incorporated and +(1 + m,

1-n, x) denotes a confluent hypergeometric function, the properties

of which are discussed in section E3. The parameter N E /i w
z z c
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is the z energy measured in units of h .. The + signs are associated
c

with forward or back scattering transitions in which the direction of

the z momentum is either the same before and after the interaction or

is reversed. In what follows, the shielding parameter p is set to zero.

The effect of a p > 0 is to depress the values of both forward and back

scattering matrix elements. The properties of the confluent hyper-

geometric functions are such that the matrix element for forward

scattering transitions is always greater in value than that of the back

scattering matrix element. The matrix element (19) applies to both

group I and group II states even though the signs of IM do not explicitly

appear. They are contained implicitly in the interpretation which must

be supplied to the quantum integers N and M. The steps leading to the

appearance of the Kronecker delta (expressing conservation of the

angular momentum canonical to the coordinate , in agreement with

the classical equations) indicate that transitions of the type group I

group II are explicitly forbidden. Only intragroup transitions are

allowed, and only with M conserved. Energy conservation appears in

connection with the cross section. The matrix element is symmetric

as regards transitions between any pair of states. It was not possible

to determine analytically if the matrix element exhibited a preference

for equal upward (increase in N) or downward transitions from a given

state. These and other properties of this matrix element are explored

in sections E4 and E5. The arguements Y are drawn in Fig. E2.

The general appearance of the matrix element is sketched in Fig. E3.

The value of an exact result lies not only with the result itself,

but also with the fact that it provides a known reference or base from

which to make approximations. Because of the analytical complexity

of this general result, we shall utilize in the cross section discussions

a simplified form in which is embodied the major contribution of the

result (19). The simplification proceeds from the fact that, for n > 1

and any m >, 0, the confluent hypergeometric function j(l+m, 1-n, x)
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approaches a value independent of x as x -- 0. The form is in

essence the constant term of a power series expansion in B V2/E 1

about the origin of the confluent hypergeometric functions of (19).

The procedure is described in section E6. The result is

> (I (N+M)! (N+P)'(
! (N+V+M)!

where V - N1 - N2 and N- min (N 1 , N2). Since the minimum values

of V, N, and M are respectively 1, 0, and 0, this indicates that the
-10

maximum value of the matrix element (19) is about 10 eV - m.

(See equation 5.) The result is valid for V2 /N Z 1, the numerical

value of which is

2
for B in w /m and E in eV. This is the principal forward scattering

zi

contribution to the matrix element in a region where the back

scattering contribution is certainly smaller and may be negligible.

As discussed on page 110 in connection with the weaker requirement

V I/N1 <<1, this inequality places no restriction on the size of N 1

relative to Nz1 ( i. e. , the partitioning of the total energy into per-

pendicular and parallel modes), but rather is a restriction on the

change of the quantum integer N compared to Nz . The milder in-

equality is equivalent to the requirement that the relative change in

z energy be small, that INz 2 - NZ1l /Nzl4<1. We thus have in (21)

a result which describes small angle changes in the momentum vector

not only for distant encounters but apparently also for the closest

possible encounters (the case M=0, any N and V, is interpreted

pictorially or classically as the case where the cyclotron orbit

passes through the z axis, upon which is located the Coulomb center).
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IV. BORN APPROXIVIATION CROSS SECTION

A cross section is a conversion ratio measuring the efficacy

of some agent (here, the Coulomb potential) in transferring the par-

ticles or states of an incident beam to some other accessible conditions

or states. It may be defined operationally as the number per second w

of events (particles, states, or groups of states) arriving at a detector

of appropriate configuration, normalized by the product of the incident

flux r and the total number of agents N within the scattering
sc

volum e:

SNsc r (23)

When the scattering agents operate independently of one another, the

number Nsc incorporates and corrects for the additive effect of each

independent scatterer upon the detector signal (proportional in some

way to w). In theoretical calculations describing single scattering, Nsc

is set to unity, as it is here. By the subscript z we have implied that

the predominant direction of the incident flux is along the z axis, which

is in this problem the direction of the magnetic field.

Considered here is the cross section for Coulomb scattering of

an initial cylindrical Landau eigenstate a = (N 1Mkl ) to a final eigen-

state p = (N 2 MVIk2). Of interest is the dependence of the cross section

upon the initial energies E_, and Ezl, and upon the initial location

of the gyrocenter (in the q-4 plane) with respect to the z axis upon

which is located the scattering charge. Also of interest is the most

probable change in the perpendicular and parallel energies and the

most probable radial gyrocenter displacement. We shall employ the

simplified form (21) for the matrix element needed in (6). The

numerical values of (22) indicate that the use of the simplified matrix

element does not severely restrict the validity of the final results.
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Substitution of the simplified form (21) into (6) yields

M+--N,+I (N+M4)! (N -f)! -FN+V
"=o -= "V I- +  N (24)

where the order-of-magnitude coefficient a; is

. -WET I x 1o 1 (25)

SB

The numerical expression bears units of (meters) 2 for 1 in w/mn

and Ez1 in eV. The explicit B dependence origLnated in expression

for the area-averaged flux of the initial eigenstate, While the factor

1/E was contributed by the initial and final one-dimensional density
zl

of z states functions.

The expression (24) is in fact four cross sections since our

notation encompasses upward and downward transitions for group I

and group II eigenstates. An upward transition is one in which the

quantized variables of the perpendicular motion are increased (by V).

The principal perpendicular variables of interest are the squared
22 22

gyrocenter distance P C2 and the squared cyclotron radius P e2

(equal to the normalized perpendicular energy E./'uw). The content

of the cross sections (24) is more easily understood when they are

rewritten in terms of integers directly representing the perpendicular

variables:
22

S 2 = 0, 1, 2, . 0 1 (26)

N _P 2 2 =0 1, 2, . (27)

The transformation is accomplished with the aid of the interpretations

summarized in Table C1 on page 60. The resulting expressions are

listed below. We note that S and N.L refer to initial values, and that

V gives the change in these quantities as well as in the energy E z1
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Direction
of Group I e /e I Group II e /e J

transition states or S 4 N-. states or S N.

14.VT s N +l ! (+v ! (++ S S+ VN+V!!

N_ o4L+ V) s, vZ (5+p)!

S _+5 + INj.- V) 1 SS+ !
N( +I (S-)!

,, " v : (NL- Y)!

For fixed N. and V , both the upward and downward cross sections exhibit

qualitatively similar behavior with respect to S. The most significant

quantitative difference is that o-t is always greater than -(, except at

the value S = N,. The tendency is thus toward outward radial motion with

a concomitant increase in the cyclotron radius. As S increases from zero

(gyrocircle of squared radius N. centered about the origin, the location of

the scattering charge), both cross sections rise from a minimal value

(zero for cr, and < o-, for @t ) at the origin to the same maximum value

(2N +l)a /V' at the group I-group II boundary point S = N, . This is the

single point at which o- = ~ . For all other values of S, Qa t is

invariably greater than- a, . The classical picture associated with the

point S = N.L is that of the set of cyclotron orbits of squared radius N,_

whose gyrocenters are situated on the circle of squared radius S = N .

That is, S = N., describes the set of orbits which intersect the z axis

upon which is located the scattering charge. The appearance of a maximum

at this value of the impact parameter S is thus physically reasonable.

As S increases beyond the group I-group II boundary point, both , t and
-I.

.e fall to zero as S except for the case V = 1. For Y= 1 the cross

sections do not vanish as S--" , but instead approach the limiting values

(NA+1) 0- and N. o; . In illustration of these features, we have sketched

on the next page the variation with S of the V = 1 cross sections for NL = 3.



-15a-

-+---------------------------(N±A ')

0 r  I I I I I I I I I I I I I
o 3 5- o 1

(s= . --

One important result not yet commented upon is that the minimum

change V= 1 is the most probable, no matter what the values of N.

and S. That is, in classical terms, minimal changes in pitch angle

and gyrocenter location are most likely. This is attributed to the

strong binding of the scattered charge by the magnetic field. That

the V = 1 cross sections do not vanish as S --- o -is attributed to the

long range character of the Coulomb potential and to the fact that some

discrete change must always occur in the quantized perpendicular

variables. The quantum integer AI is conserved, and there can be no

smooth transition from the minimum change V= 1 to V= 0, the case

of no change in the quantum integer N (and through energy conservation,

the case of no change in the z energy).

Although of great conceptual interest, the cross sections qo

are of little experimental interest (even in the case of massive ions)

since the gyrocenter location S is not under experimental control.

As an initial approach to the calculation of a quantity comparable

with experiment we should consider the scattering of a beam con-

sisting of a uniform distribution of gyrocenters out to some squared

distance S = S . As described in section C4, the beam is further
max

characterized by single values of the perpendicular and parallel

energies. The cross section derivation of section G3 must be modified

to reflect the different total energy of such a beam. It is only through
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the use of such flooding beams that one can arrive at differential

and total cross sections which admit of comparison with the familiar

B=O, Rutherford differential and total cross sections. Such a com-

parison would be made by suppressing the initial perpendicular

energy and utilizing the expression which relates the velocity vector

pitch angle after the interact on to the change V,

sin2o a = V /E, . (28)

We are presumably on good grounds for making such comparisons,

particularly and most significantly as B-- 0, when the simplified

matrix element (21) may be used with increasing accuracy. One should

also recognize that in summing over groups of states upon the surface

of constant total energy (see Fig. C3, page 64), one encounters an

additional magnetic field dependence. Although this dependence may

in fact be so weak as to be negligible, it originates in the summation

limits which define the extent of this surface.

V. FUTURE WORK

Now that the above results are at hand, and with experimentally

more meaningful results near at hand, the single most important

question to be answered is, When must the present magnetic field

scattering formalism be used in preference to the B=0, Rutherford

scattering formalism? At what magnetic field strength must the B=0,

Rutherford formalism be abandoned? Other questions of theoretical

and experimental interest are the relation of these results to the

laboratory frame (see the discussion of section G4) and an assess-

ment of the role and effects of bound states. With further clarification

of these and other theoretical results, the design of experiments

could be undertaken.
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PART II

SUPPORTING APPENDICES
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APPENDIX A

CLASSICAL MECHANICS OF A CHARGED PARTICLE

IN COULOMB AND MAGNETIC FIELDS

Al Introduction

Considered in this appendix are the classical mechanics of a

non-relativistic particle of charge q and mass m in Coulomb and

magnetic fields. The equations of motion are constructed by means

of the Lagrangian - Hamiltonian formalism in both stationary and

rotating cylindrical coordinate systems.

The problem is simplified by considering the seat of the

Coulomb potential (the charge Q) to be at rest in the reference frame

of the charge q. The transformation from this rest frame to the

laboratory frame is considered in connection with the analogous

quantum treatment of a later appendix.

The problem is complicated by our interest in the domain

where the Larmor theorem cannot legitimately be applied to reduce

the problem to the zero magnetic field case. This domain is reached

when the Hamiltonian terms quadratic in the product of the magnetic

field and the radial distance may not be ignored. Because of this,

the effects of the magnetic field cannot in general be removed by

rotation of the coordinate system about the direction of the uniform

and constant magnetic field.

Since we do retain the terms quadratic in the magnetic field

and radial distance, the classical formalism developed should be

applicable to the quantum description of highly excited (large angular

momentum) bound hydrogenic states in a magnetic field or to unbound

states of the charge q which are perturbed or scattered by the Cou-

lomb potential. This in fact is the main purpose of this appendix -
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to serve as an introduction to and foundation for the later quantum

treatment of the scattering problem. As we shall see, the inter-

pretation of the numbers and parameters arising in the quantum

approach leans heavily upon classical quantities and concepts. In-

deed, the starting point of the quantum formalism is the classical

Hamiltonian. Further, a coherent and connected treatment displays

the often-subtle relationships among the many types of momenta

which abound in a system containing a magnetic field.

We proceed from the system Lagrangian which we regard as

fundamental and Goldstein-given. From the Lagrangian are derived

the various momenta and the system Hamiltonian. The cylindrical

coordinate system force equations are found to be non-linear and

coupled in at least two dimensions. For the charge Q located at the

origin, rotation of the coordinate system about the magnetic field

at a constant, arbitrary velocity leaves the equations of motion in-

variant.

Generalized coordinates and coordinate systems other than

cylindrical were not investigated. Neither were serious attempts

made to obtain general solutions of the cylindrical equations. This

was due in part to the availability and increased utility of the (guaran-

teed linear) quantum approach.

A2 The Lagrangian Formalism

The Non-relativistic Lagrangian

The non-relativistic Lagrangian (considered to be a function of

the generalized coordinates x. and their time derivatives x.) for a
1 1

particle of mass m and charge q in the magnetic vector potential A

and the scalar potential A is

h ptVnr- 1A r + dee. (Al)

The potentials A and A are considered to depend only upon the
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coordinates x., and the velocity v upon both x. and x.. Only in the
1 1 1

Cartesian system, in which all coordinate surfaces are planes and

all coordinates have the same dimensional footing, are the velocity

components given by c. alone. The expression (Al) follows from

expansion (in powers of v /c ) of the radical in the relativistic

single particle Lagrangian [Goldstein, 1950, p. 207]

- -mc -A + A -' (A2)

2

with subsequent omission of the rest energy term mc2

The Relation of Canonical and Linear Momenta

Suppose now, for the moment only, that the Lagrangian (Al)

is expressed in terms of Cartesian coordinates. That is, the

generalized coordinates x. are chosen to be (x, y, z). Then, from
1

the definition of the momentum canonically conjugate to the general-

ized coordinate x.,
1

/ -- (A3)

there follows the oft-quoted vector relation

-_ ' YM - A. (A4)

It is important to note that, even though this relation holds for any

coordinate system, the momentum components as given by (A4) may

be called canonical momenta only for those coordinates satisfying

(A3). For coordinates not satisfying (A3), the relation (A4) must

be relegated to the lesser role of defining the linear momenta

associated with these coordinates.

The relation (A4) is often used in vector proofs and arguments

as though it did in fact represent the momentum components canonical
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to every possible choice of generalized coordinates. The results of

such vector proofs and arguments are valid as long as they remain

in vector form or are expressed in terms of Cartesian coordinates.

However, when cast in terms of other-than-Cartesian coordinates,

the results may appear to be perplexingly inconsistent with the

Cartesian expressions. At the root of this inconsistency is the

failure to observe the distinction between (A3) and the components

of (A4). When casting the vector results in terms of other-than-

Cartesian generalized coordinates, this pitfall may be avoided by

expressing all non-canonical momentum components in terms of

momenta which are canonical to the generalized coordinates.

Application to Cylindrical Coordinates

The foregoing distinctions are well illustrated in the familiar

cylindrical coordinate system spanned by the unit vectors q x 6

The generalized coordinates are chosen as the set (t , , z). We

shall employ these coordinates in the majority of our calculations.

The components of velocity and acceleration are

A A(A5)

a++(A6)

Here we see that v is not equal to $ but to e$ . We also introduce

at this time the specific potentials of interest, the magnetic vector

potential

A B X r (A7a)

- (A 7b)

and the scalar Coulomb potential,
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A. (A8a)

L7 e. e e (A8b)

The expressions for A describe a constant and uniform magnetic

field through the relation B = curl A. The particular form (A7b)

describes the field B = B z. The expressions (A8) describe the

potential field at the point = (, , z) due to the charge Q located

at F = (e' ,e, ze). With these potentials, the Lagrangian (Al)

becomes

+ - Oe +. (A9)

It represents the system of a particle of mass m and charge q

located atr= (, 4, z) moving in the magnetic field B = B z and

in the Coulomb field of a particle of charge Q fixed at the point r =
e

( e' 'e', Z e) That is, the charge Q is always at rest in the reference

frame of the charge q.

The canonical momenta are generated from the definition (A3):

= e P1 = mL (A10a)

x2 2  M '1 + 0B L (A1Ob)2 = P = -

(A10c)X3 =
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Application of the vector relation (A4) yields the triad of linear

momentum components:

(All a)

TO =+ E3 (Alb)

(Allc)

We see that the canonical components pl and p 3 are the same as the

linear components pe and pz, respectively. The. canonical momen-

tum p 2 is an angular momentum which we have identified as the

component Lz of the system angular momentum L. This identifi-

cation follows from the definition of L in terms of the linear momen-

tum p:

L- r (A12)

-(A 1 3b)
L= =L = re€ " -e )  (Al3b)

L. +(A13c)

It is to be noted that none of the foregoing momentum relations

explicitly reflects the presence of the charge Q. They would be

formally the same for Q = 0. They do explicitly reflect the presence

of the magnetic field.
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Equations of Motion

The equations of motion follow upon application of

o (A14)

For the generalized coordinates ( , q, z), these equations are

_- =o (A15)

C1 2 2 e s
4+,rE e zeC CeS# +4S~ ] 3 l (A16)

rn!0 eI_+ : e(, ____Cs___ +__ -o (A17)

where we have set ze and e equal to zero. Thus the entire posi-

tional dependence of these equations upon the location of the charge

Q is connected with % It is believed that this placement causes no

loss of generality which cannot be regained via the initial conditions

on the parametric functions (e, 4, z). With the exception of (A16),

these equations are identical to those obtained as components of

Newton's second law, ma = qE + qV x B. The equation of motion

(A16) is the 1p component of the torque equation F x (Newton II).

Were this component written out, we would see that the qB /2

term in the canonical angular momentum Lz is the time integral

(more correctly, the time primitive) of the torque exerted by the

magnetic field upon the charge q.

From the above equations it follows that the energy is a

constant of the motion depending only implicitly upon the magnetic
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field:

a. ;L + 4ri v eee2 12 E = CDAS+. (A18)

From the 4 equation of motion (A16) it is apparent that the angular

momentum Lz is a constant of the motion only for e, = 0. For this

location of the charge Q, the equations may be written in the simpler

forms

L < (A19)

,YE, (e. + ) (A20)

The condition 0e= 0 has permitted the incorporation of (A16) into

(A15). The form (A19) is valid for e 0, but then L is not a

constant of the motion. It appears also from (A16) as if L
z

approaches constant-of-the-motion status as Q is moved to infinity,

i. e. , as e -- . In this limit the entire problem approaches

that for Q = 0.

A3 The System Hamiltonian

Construction of the Hamiltonian

The Hamiltonian, a function of the generalized coordinates

and the canonical momenta, may be defined in terms of the La-

grangian, the canonical momenta, and the time derivatives of the

coordinates:

H = -; xi- d (x; (A21)
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For the generalized coordinates (e, 4, z) and the Lagrangian (A9),

application of (A21) yields successively .the forms

L 

.

Hro +(A22a)

replaced in the form c the canonizal p1 and p3 by the equivalentExpression (A22a) states tt the Hmiltonin is the sum of the(A2b)H+ + -(A22c)As before, we have set Ze and *e equal to zero. We have alsoreplaced in the form c the canonical p1 and p3 by the equivalent
Pe and pz in order to capitalize on their greater mnemonic value.

Expressions b and c are the formally correct ones, as they are

expressed in terms of the canonical momenta and coordinates.

Expression (A22a) states that the Hamiltonian is the sum of the

particle kinetic and Coulomb potential energies, which sum we have

earlier called E.

Equivalently, one may proceed from the commcnly-encountered

expression
2-.

H 2 _+ .A (A23)

so long as the components of the linear momentum p are eventually

expressed in terms of the canonical momenta p . Equation (A22c) is

seen to be of this form since p =(Lz/ )

Equations of Motion

The Hamiltonian equations of motion follow from the pair

a H
X; =a, (A24)
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- =  
(A25)

The first of these, applied to the Hamiltonian (A22c) for x. =

(e, , z) and pi = (Pe Lz', ) yields relations identical to (Alla),

(A13c), and (Allc). The second leads to the following set of

equations:

- ILe +

%Q 3

- - ,- (A28)

These equations are equivalent to the set (A15 through (A17).

A4 Numerical Estimates of Hamiltonian Energies

and Other Quantities of Interest

In Table Al are collected numerical estimates of quantities

pertinent lo the motion of an electron (q = -e) in magnetic and Cou-

lomb fields. The distances, angular momenta, and energies con-

sidered are expressed in units of meters 2, iff, and electron-volts,
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respectively. The estimates are given for two extreme cases.

The first is that of q so strongly bound to the charge Q that

the magnetic field terms are negligible. Estimates for this case

are derived from the Bohr picture of the hydrogen atom. The

entries in the H atom column of this table were calculated from the

value of a the lowest Bohr orbit radius and the value of the Coulomb
0

potential energy at the distance a . The first values to be calculated

were and , from which all others followed. The value of e was
_ t a 2  2-

obtained by equating + e to a and setting z = . The value

of ; then followed from the energy me ' This total average kinetic

energy was taken as 13. 7 eV on the basis of the virial theorem for

the central Coulomb potential.

The opposite extreme is that of a free electron in a magnetic

field. For this case Q is set to zero, and the standard relations for

cyclotron motion are tuilized. In these relations, the cyclotron

radius e is normalized by the parameter ~ defined as

--- =7.o x lo B] in , m -for B i W/ ' . (A29)

The primary significance of this important quantum parameter is

that its reciprocal represents the minimum area in the x-y plane

to which a gyrocenter may be located by any measurement

Johnson and Lippmann,1949]. Thus normalized, we have the relation

.. x Jo (A30)

2

for the energy E.in eV and B in weber/m . Alternatively, if E_ is

replaced by kT, this relation becomes

I . -.7 +3 (A 31)
(a C C I E33
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TABLE A1. Numerical estimates of Hamiltonian energies and other quantities
of interest, and comparison for the extreme cases of a bound and an unbound
electron in a uniform magnetic field.

Quantity or H atom in a magnetic Free electron in a magnetic field
parameter field

Distances

p2 + z a =5.3 x 10-11 m any value

2 1 -21 2-21 2 2 2mE 1.14x10 E .
p a =l.4x10 m pc 2  =1 3mo 2 B2

/2 2 2h _ 1.32 x10-15 2
1/ 1/ 6 B B m

Angular 16 rad eB [1.76 x 101 B]  rad
velocity 3 x sec c m sec

Angular
momenta

2. 2 2 22
mp cp 0.41h mpc = e B pc = 28 Pc h
1 2 -5 1 1 2
2 qBp - .xl B h - eBp c

2  1 2 1 2 22 [8.63 x 103 E
Lz mp + qBp 2 eBp cPch B

-27.2 ev

4.53 ev

4.53 ev

1 m (62-T( + p2 2 )

- 4.53 ev

2.4

I3.1 x

x 10- 5 B] ev

10-11 B 2

1.44 x 10 9

r

2
e

4TTe r
o

22
c

1

S.2-E

1 E,

4

ev (r in m)

0 for a centered orbit

1 2 2

2222.2 2e B Pc

8m

e2B 2 2

4m
e2B 2 2

8m

h eB- 1.16 x 10-4 B] ev

Energies

qQ

1 .2-mp
2

1 2.2
-mp p

E

2
z

2m p

qB
-2m L

z

2B2
8 m

hw
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for T in degrees Kelvin. Note that (3 is in general a large

number compared to unity. For E = 0. 1 eV and B = 0. 1 w/m2 , its

value exceeds 10 3 . A second important parameter for the case of a

free electron in a magnetic field is the cyclotron energy iw1c-i(eB/m).

Its numerical value is

~tCCL X Yx-- ., e V. (A32)

We shall see that fiw, is the spacing between the levels of the

quantized perpendicular energy EL . For B = 1 w/m2 , a respectable

laboratory field, this level spacing is 0. 116 milli-eV.

There are several features about this table which are interest-

ing, or will become so in the light of later quantum calculations. We

notice first of course that the cyclotron radius is in general much

larger than the Bohr orbit radius. Of the two terms which comprise

the canonical angular momentum L , the kinetic term for an atom is

far larger than the field term qB 2/2 due to the smallness of .

For a free electron, on the other hand, these terms are of compar-

able size. A further distinction is that L for the atom is of the
z

order of units of i, whereas Lz for the free electron can reasonably

be of the order of thousands of i. Likewise, in the case of the H

atom, the energies associated with the magnetic field are negligible

compared to the kinetic energies, whereas in the free electron case

these energies are comparable. It must be emphasized that the

entries are largely estimates and have at best order of magnitude

validity. They are intended to encompass the extremes of the

dynamical system represented by the Hamiltonian (A22).

A5 The Effect of Coordinate System Rotation

Rationale

In the preceding section were considered two limiting cases

of the physical system described by the Hamiltonian (A22b). In the
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first of these cases we saw that the energy term quadratic in the

magnetic field could reasonably be ignored and still leave a term

(the energy linear in B) at least partially descriptive of the effects

of the magnetic field. This is possible for the charge q in quantum

states and magnetic fields such that the energy term proportional
22

to B 2 may be neglected. The Hamiltonian for this limiting case

is

- Le

*n 7r .,., (A33)

This Hamiltonian has been studied in connection with the Zeeman

effect and the Larmor theorem. General solutions have been ob-

tained both classically and quantum-mechanically. The other ex-

treme case for which numerical values were given in Table Al

was for Q = 0, that is, the case of cyclotron motion of a free charge

in a magnetic field. The Hamiltonian is

+c +. I (A34)

General solutions are of course also known for this dynamical

system.

In both of these limiting cases, rotation of the coordinate

system brings about considerable simplification in the equations of

motion and the solutions. Hence it is natural to employ this tech-

nique in attempts at simplification of the equations of motion (A15)

through (A17), which may be said to result from the more general

Hamiltonian (A22).

Lagrangian-Hamiltonian Formalism in Rotating Cylindrical Coordin-

ates

We again utilize the Lagrangian-Hamiltonian formalism and
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begin by constructing the Lagrangian " from which may be

generated the equations of motion referred to a frame rotating

with angular velocity n . The prescription is

- JA (r-) . (A35)

Quantities referred to the rotating frame are starred; Newtonian

reference frame quantities are unstarred. The relations necessary

to carry out the prescription are given by Symon [1953, p. 240] ,

among others:

r - (A36)

dt t (A37)

d1F d* --

I H-6, (A38)

The first of these equations says that at any given point in time, the

position vector as viewed from either system is fundamentally the

same entity. That is, at a given point in time, both observers are

considering (from the common origin) the same point in space. The

remaining two equations relate the behavior of the position vector

over intervals of time. They consequently contain terms describing

the effects of frame rotation upon observations of the position vector

time behavior. Thus the second of the three vector relations states

that the Newtonian frame velocity may be resolved into the velocity
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as measured by a rotating observer plus the velocity of the rotating

frame itself (the Newtonian frame velocity of a point at rest in the

rotating system). The Newtonian frame acceleration similarly may

be resolved into components associated with the rotating frame.

The first term on the RHS of (A38) is the total acceleration of the

position vector as viewed from the rotating frame. The remaining

terms give the Newtonian frame components of acceleration due,

respectively, to frame rotation (the centripetal acceleration), to

motion with respect to the rotating frame (the Coriolis acceleration),

and to non-uniform frame rotation.

In what follows, the rotating frame is chosen to be a cylindrical

coordinate system rotating about the direction of the magnetic field

= (A39)

The dimensionless parameter E measures the rotation angular

velocity in units of qB/m, which for q = e becomes the cyclotron

frequency - . We consider that e may vary with time, although,

as we shall see, conservation of energy requires that E be constant.

Through use of the foregoing prescription, relations, and choice of

y_ , we write the Lagrangian for a particle of charge q and mass m

instantaneously located at r = ( , 4, z) moving in a uniform mag-

netic field B = B^ and in the Coulomb field of charge Q fixed at

r = ( e , e , z ):

- z

+ (A40)

We have omitted the stars from the generalized coordinates ( , ,',
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z*) of the rotating system, and will rely upon the presence of E to

indicate that these are coordinates in a rotating frame. This form

and the Newtonian frame Lagrangian are in essential agreement for

6 = 0. There is apparently no choice of e which will completely

remove the effects of the magnetic field from this Lagrangian.

We note that if the term quadratic in B can be ignored (due either

to the small value of the radial distance or the magnetic field, or

both), then the choice E = - 1/2 removes all remaining effects of

the magnetic field from this Lagrangian. This is the basis of the

Larmor theorem, that the sole effect of the magnetic field upon such

a system is a rotation of the system about the field direction at the

Larmor frequency eB/2m. The other obvious choice of rotation

speed is E = -1 describing coordinate system rotation at the cyclo-

tron frequency. For Q = 0 and a cyclotron orbit centered upon the

origin, the particle would be at rest for this choice of E

The canonical momenta are

' (A41)

+ + B (A42)

(A43)
-A YYn

The Hamiltonian, constructed according to the prescription (A21) is

1- -16- 'E>

Cos 0 (A44)
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The Lagrangian Equations of Motion

The Lagrangian equations of motion for the rotating frame

are

"" _ ___- - o. (A47)dt S 04D+ A60

For any value of ee, the z equation of motion is unchanged by the

rotation (compare A47 with A17). For 0e = 0 (the charge Q situated

at the origin), the remaining equations are also invariant. For this

location of Q, the canonical angular momentum Lz is conserved as

before, and (A46) may be incorporated into (A45) with the result

) o. (A48)

The fact that this equation is identical to (A19) does not necessarily

imply that the solutions are the same, but only that they are of the

same family. It is obvious that for the same physical situation, at

least one of the two initial conditions of (A48) would differ from those

of (A19). Further, L is not the same constant for (A48) as for (A19).

In passing, we note that (A48) is valid also for R,3 0 except that Lz
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is then no longer a constant of the motion.

By means of the usual techniques for obtaining energy integrals,

the equations of motion (A45) through (A47 may be combined to yield

(A49)

showing explicitly that energy is conserved for constant 6.

We conclude that, for 0e= 0, there exists no value of E which

will simplify the equations of motion since they remain invariant

under coordinate system rotation about the direction of the magnetic

field. For e 0, the equations can be somewhat simplified, but

apparently cannot be linearized for this coordinate system.
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APPENDIX B

SOME FEATURES OF THE CLASSICAL MOTION OF

A CHARGED PARTICLE IN A MAGNETIC FIELD

B1 Content

In the following appendix, we shall be faced with the assignment

of physical meaning to a quantum representation of a single charged

particle moving in a magnetic field. In preparation for this inter-

pretation, we consider here three constants of the classical motion

as well as three other dynamical variables whose time dependence

has been removed by averaging over one or more gyroperiods. Of

particular interest is the dependence of these quantities upon the cyclo-

tron radius and upon the location of the particle gyrocenter with respect

to the coordinate system origin. The system considered consists of a

particle of mass m and charge q moving in the constant and uniform
A

magnetic field B = Bz.

B2 Coordinates of the Perpendicular Motion

Compared to the motion in the plane normal to the magnetic

field, the z motion is relatively uninteresting and quickly may be elim-

inated from consideration. In discussing features of the perpendicular

motion, we shall utilize the following vectors and coordinates. The

particle is Located by the vector 'r extending from the coordinate

system origin to the instantaneous particle position. The plane polar

(or cylindrical polar) coordinates of this point are labelled (r, 0).

The particle gyrocenter is located by the vector Yro , or equivalently,

by the pair (r o , 0 ). The third vector of interest is the cyclotron

radius vector 7' extending from the gyrocenter to the particle. These
c
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vectors satisfy the equation

r = r + r . (B l)

The associated unit vectors satisfy the relations

x = r e rxc x e (B2)

This location scheme and the two cases of interest are illustrated

in Fig. Bi. One is the case r /r < 1 when the origin is inside the
oc

gyrocircle; the other is the case ro/rc > 1 when the origin is outside

the gyrocircle. There is also the singular, joint case r /r = 1.o c

B3 Constants of the Motion

There are three basic constants of the motion. One is

associated with the motion along the magnetic field and the others

with the motion normal to the field. They are the z energy E ,

the perpendicular energy E_ , and the angular momentum component

L (canonical to the coordinate e). Each may be cast into differentz
though equivalent forms:

S_. cos. (B3)

E rL 'Li a3-F

E ' r' sc (B4)

L= (r - Y, ) = cons+. (B5)

That these quantities are constant follows from equations (A16)

through (A18) for Q = O. The expression of the perpendicular quantities

in terms of the distances r and r follows from basic vector defini-
o c

tions. We consider here only the result for L . The z motion isz
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(inside gyrocircle)
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for B = Bz.

Fig. Bl. Coordinates used in classical averages-over-orbits.
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suppressed.

In general the angular momentum L may be defined as r x p

where p is the canonical momentum myV + qA. The angular momentum

is dependent upon location of the coordinate system origin through

the explicit and implicit (in A) appearance of r. The general vector

potential describing (through B = curl A) a uniform magnetic field is

(B x )/2.

Referred to an origin at the particle gyrocenter, the angular

momentum is

The vector expression for r - v ,c c

?3= 9C ) (B7)

satisfies the Lorentz equation mv = q (r x B) as well as our notionsc c
(embodied in the right-hand rule) about the diamagnetism of an unbound

charged particle in a magnetic field. The present magnetic field

orientation and the suppression of the z motion insures that L and all
c

other angular momenta will have only z components. The first term
2Ain (B6) thus has the particular form (-qBr )z, and the second

2
(qBr /2)z , with the result

c
L1 

'A 

(

r -- %B r ' 10 . (B8)

Recall our convention on charge sign, that q = e denotes a proton (say),

and q=-e an electron.

Referred to an origin located arbitrarily within or without the

gyrocircle, the particle angular momentum is

L [Ynr+4-X +(B9)
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Through use of the vector relations cited earlier, and the BAC-CAB

triple vector product identity, this expression may be brought to

the form

+ B r. r - ( r.x (B 10)

However, the third term on the RHS is identically zero since

r x O = (r r o)z. The final form,
o c c

L, - 4 ( ro - e ) r , (B11)

is manifestly the same for every point of the cyclotron orbit.

B4 Three Time-Averaged Dynamical Variables

In these time averages only the two-dimensional motions in

the plane normal to the uniform and constant magnetic field B = Bz

are considered; the z motions are suppressed. Again, we are

interested in the dependence of these quantities upon the location of

the particle gyrocenter with respect to the coordinate system origin.

The time averages, denoted by < > , are taken over a single cycle

of the cyclotron motion. The quantities considered are:

r 2> - squared distance, origin to particle;

E r> - radial component of the perpendicular energy;

SE0 - azimuthal component of the perpendicular energy.

Squared Distance, Origin to Particle

The first quantity to be considered is the time average of the

squared distance (F - 7) from the arbitrarily located origin to the



-41-

instantaneous particle position. From (BI) we write

2. A

Sf-~. - r r_ cos * r4 (B 1 2b)

from which the time average follows immediately:

r A > = + (B13)

Radial and Azimuthal Components of the Perpendicular Energy

The perpendicular energy E. is defined in terms of the

velocity as

E -i (B14)

The velocity v - r is equal to v r since the vector r changes
c C O

in neither magnitude nor direction. In arriving at the expression
A

(B4) for EL. , the velocity - was resolved along 0 as indicated by
c c

(B7). In this calculation, however, we resolve v , or equivalently
c

0 , into radial and azimuthal components:
c

ec =  Sc o. r - cos e o (B15)

where cc = 0 - 6 (see Fig. B1). The radial and aximuthal energies,

S(B6)

a S ; J~ cc. (B16)

Eo = E- CoS oC (B17)
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Origin inside
gyrocircle :

/ ,,Particle of
charge q, mass m

<1
Origin outside

gyrocircle: a>1
re

Locations of coordinate system origin with respect to the orbit of a classical
charged particle in a magnetic field (normal to the plane of the paper).

2.

rc

<Er

0 1
L~

Four quantities of interest for a charged particle in a magnetic field,
averaged over 1 gyroperiod, as a function of origin location:

L z  - z component of canonical angular momentum;

(r2) - squared distance, origin to particle;

(Er) - radial component of particle energy;

<(E~ - azimuthal component of particle energy.

E. is the total particle energy in the plane normal to the magnetic field.

Fig. B2. Results of classical averages over a cyclotron orbit.

< r5
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are not separately constant, although

The trigonometric relations,

of course their sum is constant.

r. r

r = , -re

(B18)

(B 19)- 2 r .r cos

2
may be combined to yield an expression for sin c in terms of the

cyclotron angle 0 . This expression,

r o sin e
1n ac = . > (B20)r, .r - ro r,. cos eB

is averaged with respect to 0 , which is equivalent to a time aver-

age. We have to consider the following integral, for the ratio

r /r (1, and forr /r >1:

< sin a, >
2 .

Sr, + r0 - - r re CO S 0

(B 2 1)

This integral was evaluated with the aid of formula (34a), p. 114 in

the second volume of the Grobner and Hofreiter Integraltafeln [1961]

The expressions obtained for the time averaged radial and azimu-

thal components of the perpendicular energy are

E . r

E-
EC

for ro/rc 1 (B22a)

for r /r ?1
o c

(B22b)
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< ES > E( ) 12- for r o/ 1 (B23a)

- for r /r > 1. (B23b)o c

The time-averaged quantities and the angular momentum are plotted
2 2

in Fig. B2 as a function of r /r . It is important to note that

these results may be considered also as averages over the angle 0

about the arbitrarily located origin, due to the lack of any angular

dependence.
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APPENDIX C

A QUANTUM REPRESENTATION

OF A CHARGED PARTICLE IN A MAGNETIC FIELD:
THE CYLINDRICAL LANDAU EIGENFUNCTIONS

C 1 Introduction

For later use in scattering calculations, we shall need a quantum

mechanical representation of a single charged particle moving in a

uniform and constant magnetic field. The representation and the

coordinate system chosen should reflect as nearly as is possible the

form and symmetries of the complete Hamiltonian. Hopefully, this

will simplify the details of calculation as well as those relating to

interpretation of the results.

We have utilized the set of energy eigenfunctions obtained as

solutions of the Schroedinger equation Ho N Mk e Eo NMk in the

cylindrical coordinate system spanned by the unit vectors z.

The Hamiltonian is

Ho =  z rn (C 1)

The eigenfunctions are factorable in each of the coordinates as

After a brief derivation and description of the properties of these

eigenfunctibns, we consider their interpretation and relation to

classical models and physical situations.

C2 Derivation and Properties

Since the Hamiltonian H is independent of time, the time

dependence of the solution (f, t) of the Schroedinger equation
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H 'TO (C3)

may be split off as a phase factor

H,

o (-,y-) C= -) e L(C4)

From this is constructed the energy eigenvalue equation

H, %, = E., T, (C5)

the time-independent Schroedinger equation. We henceforth replace

t' by fNMk to indicate the specific set (C2).

The cylindrical form of the Hamiltonian (C1) is

4 Q 2..

2em (C6b)

As was discussed in appendix A, the momenta canonical to the

coordinates x. = (, #, z) are respectively p , L , and pz. Their

quantum operator equivalents are . Implicit in the steps from

(C1) to (C6) is the use of the commutation relation [r, A ] = -ifi divA,

and the introduction of the divergenceless vector potential

A = r se (C7)

describing the uniform and constant magnetic field

curl A B. (C 8)
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Use in (C6) of the quantum operators mentioned above leads to the

coordinate representation of the Schroedinger equation (C5),

- - m ' +  0. - " - (C 9)

With the solution factored as in (C2), the z dependence is immediately

separable as

Ze (C 10)

where the z wavenumber k is defined by the relation pz = -ik. The

substitution

,=---e M= o, ,''" (C11)

removes the 0 dependence. We are left with the radial equation

dR4JR +=C12)

eBI 1- =rl a - k. + I---
where e - 3 nd Jk

-2
The parameter 9 has dimensions of inverse length squared (m-2).

Its reciprocal was shown by Johnson and Lippmann [1949] to

represent the minimum area in the x-y plane to which a gyrocenter

may be located by any measurement. The z and eigenfunctions have

been normalized to Dirac and Kronecker delta functions, respectively:

f Zk,(e) d *f- ( k,-I) (C13)
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ff*(.+ )  M+), dM, (C14)

The connection of this method of z eigenfunction normalization with

the density in energy of the states and the interpretation of the

probability density 4' is discussed later in this appendix. With the

z eigenfunction thus normalized and with the yet-to-be-obtained

radial eigenfunction normalized to a Kronecker delta, the product

NMk CF) 'NMk (f' ) dr dk is the probability of locating the particle

in the volume element dr at r and in the quantum state characterized

by the numbers N and M and the continuous wavenumber k in the range

dk. It is a pure number whose integral is unity:

// k ( r* ) I* ( ? ) d ak -=- . (C15a)

k -Y

We shall have later use for the more general and informative

antecedent of (C15a),

(f*k dxdk
N NM ic

- {( N'4 s M, M (C15b)

This sequence not only defines the meaning of the matrix element

symbol < >, but also expresses the diagonal character of the

eigenstate element (< '' ' I +' m k > -
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The change of variable x = e brings the radial differential

equation to the form

x- + + (- X) R = - (C16)

It is convenient to determine the asymptotic behavior of the equation

and its solution before attempting a complete solution. The foregoing

interpretation of the form V d'r dk together with the feeling that

there is no physical reason to have a pole or other singularity near

the origin of p" prompts us to require that the R solution remain finite

near the origin (be analytic at the origin). Thus-we take as the general

form of R the expansion

R = co s - - ( + a x + 6.x'+ .- .

Upon substitution of this form into (C 16), it is seen that the coefficient

of the lowest power of x (i. e., x ) requires satisfaction of the

equation
M ="

We choose -= +, rejecting the negative solution and its accompanying

singularity at the origin. On the other hand, as x-~, we require that

R and R' remain bounded. In this limit equation (C16) becomes

X dX R

With solutions exp (+x/2). We reject the plus sign. Guided by the

behavior near the origin and for x large, we assume the solution

S= P :z X F ('X

Substitution into (C16) yields the equation for F(x),
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cLF dF C- M +Ix (M+I- x) . + ) F o. (C17)

This is a particular type of confluent hypergeometric equation whose
M

solutions are the Laguerre polynomials L (x), where N is a non-

negative integer

E i M+)
N 0- , • , - (C18)

This quantity must be an integer in order for the differential equation

to have such polynomial solutions and thus satisfy the boundary

conditions at infinity. This is easily seen from the general form of

the confluent hypergeometric equation, the solution, and its behavior

as x--.o* . From HTF I, chapter VI, we write

x y (c- X) - ay = o (C 19)

with the solution

a X+ a(a+) X
y= F, (a,c,) T+ C- + -" (C20)

We see that if c is to be an integer, it must be positive lest we

encounter a zero denominator in one of the terms of 1F1 . For our

case this condition is met, since c = M + 1. Similarly, we see that

if the infinite series (C20) is to terminate to a polynomial, then a

must be a negative integer or zero. If a does not meet this criterion,

then

f(c) x -C
F, (a,c,x) - ra) e x (C21)
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(as given in HTF I, p. 278). The appearance here of the eX indicates

that the confluent hypergeometric function must be forced to terminate

to a polynomial if the solution R(x) is to remain bounded as x -- oO.

The forcing is done by adjusting the parameter E, which quantizes the

perpendicular energy:

Eot; -. _ (zN+M4 M+I) (C2)
E- am (C22)

The upper or Lower sign in (C22) should be chosen to conform with

the choice made in the eigenfunction M. The Laguerre polynomial

may be defined in several ways, among which are

M ( IM)! x) (C23a)
N! Mi 1

e x -M d. x
_ e~-( X ) (C23b)

N (N+M)! (-X) "

j-o

These expressions were taken from chapter X of HTF II. Also given

is the normalization integral

f M L( M (#+M) (C24)
e ,XM LP (x) L ,(x) dX =2 4)

0m
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This integral is used to normalize the R( e) eigenfunctions, that is,

to insure satisfaction of the condition

These eigenfunctions are characterized by

i) the value zero at the origin, unless M is itself zero;
2.2ii) N zeroes in the range o C 0 f< c (excluding the end

points), contributed by the Laguerre polynomial;

iii) for M >> 1 and N=O, a single spike-like function
having a power law rise and an exponential fall-off.

We have illustrated these characteristics in terms of the radial

probability density RPD

RPD -) e X LN(xj (C27)
( t+ M ) ' *

This dimensionless function is just the integrand of the normalization

integral (C25) when cast in terms of the variable x = . As such,

it satisfies RPD dx = 1. All of the spatial structure of *k nik

is contained in RPD since

.=  
RPD

TJmk 1 NMk RPr (C28)

Several RPD functions for small M and N are plotted in Figs. C1 and C2,

The values were computed from (C27) using (C23c) to define the

Laguerre polynomial. The plots have been normalized to the height

of the largest RPD peak.
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Radial probability density for several cylindrical Landau eigenfunctions.Fig. C1.
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C3 Interpretation of the Quantum Numbers and Parameters

The Wavenumber k of the z Eigenfunctions

The interpretation of the +k appearing in the z eigenfunction is

straightforward. The continuous wavenumber k is essentially the z

component of linear momentum. It is also proportional to the z

component of velocity, since the vector potential A lacks such a

component. The eigenfunctions Z k satisfy the eigenvalue equations

k, +*< 
(C 2 9)

E9 Zk ( Z C30)

where the operator for loz is , and is /2 m for E That is,

the functions Zk are eigen functions of the continuous z momentum,

velocity, and energy.

The z component of the probability density flux (see a. following

appendix) reflects the radial structure ofk "

t_ (C 31)

The area-averaged value for any eigenstate (NMk) is

r k eJ k (C32)

The sign, in conjunction with the time factor exp (-iE t/i), specifies

the direction of propagation along the z axis. The functional form of

the z eigenfunction indicates that there is no reference point or Land-

mark along the z axis (as there would be if a potential center were

introduced), and that motion along the direction of the magnetic

field is completely free and unbound.
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Density in Energy of the a Eigenstates

With every set of quantum states characterized by a continuous

eigenvalue parameter, there may be associated a function giving the

density of such states in the space of that parameter. Depending on

the circumstances of use, the function may or may not be normalized

to unit length or volume of the configuration space containing the

system. For the continum eigenstates considered immediately

above, the eigenvalue parameter was chosen as the energy E z
The density of states per unit length along the z axis is

1 dk \ . M I I- -" ------- (C 3 3)

where dk/2H is the number of such states per unit z length. We shall

need this function in the transition probability or cross-section

evaluations. The function gives the number of continum states per

unit z energy and Length at a given point in z energy. It is an energy-

averaged limit function in the same sense that, for example, the mass

density ms dm/d'r is a point function representing a spatial average

over a suitably small volume.

The appearance of the factor (1/2II) with dk indicates that the

periodic or travelling wave boundary conditions

L Z) ( 2) (C34a)

AZ k a(C34b)

were applied for a finite system Length L after which L was allowed

to become arbitrarily large (L -I oo). The imposition of these condi-

tions insures that, for a given k, there is as much probability density

influx at z = -L/2 as there is outflux at z = +L/2.
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The Quantum Number M of the Azimuthal or M Eigenfunctions

Interpretation of the quantum number M as the component L z

of the canonical angular momentum is likewise straightforward.
h

With the operator for Lz as if , we see that

L=Mm +--t m • (C35)

That is, the functions M are eigenfunctions of the angular momentum

component Lz canonical to the azimuthal coordinate <. The meaning

of the plus and minus signs of M is considered in the next section.

The Signs of (M and the Radial Quantum Number N

Recognition of the significance of the + signs of M and the

interpretation of the quantum number N proceeds from a comparison

of the quantum and classical expressions for the angular momentum

component Lz and averages of the squared origin-to-particle distance

Q. . The quantum and classical forms for L , a constant of

the motion, are

- + Mt (C36)

L - -- ) (C37)

where qc is the cyclotron radius and eois the distance from the

origin to the gyrocenter. Notice that there are two sign effects

operating in the classical L : the sign of q and the sign associated

with origin location. For q > o, we see that Lz is negative for the

origin located inside the gyrocircle (q,/( <1) and is positive for

the origin located outside the gyrocircle ( 0/ec >1).

The squared distance Q is not, in general, a constant of the

motion. Thus we consider instead the classical time average
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(appendix B) and the eigenstate expectation value (appendix D):

S= iN+M+ (C38)

(C 39)

Both the quantum and classical expressions are positive. They do

not change sign with origin location or charge sign.

Upon equating the two expressions for Lz and the two for

< 9e >, we obtain the pair

Sa- I +- M (C40)

S e M (C41)

where 9 = es/21. What was implied a few lines earlier now

becomes obvious. Consider q to be positive and equal to e.

Since the classical Lz is negative, zero, or positive according as

to whether the origin is Located insidezon, or outside the gyrocircle,

we conclude that the + signs in the 4 eigenfunctions are the quantum

descriptors of origin location. That is, for q > 0,
r

- M denotes- < 1, origin inside gyrocircle;
r c
r

+ M denotes - > 1, origin outside gyrocircle;r
c

M = 0 denotes - = 1, origin on the gyrocircle.
c

The eigenstates may thus be classified into two groups:

Group I: (sign of q) x (sign of M ) < 0,

Group II: (sign of q) x (sign of M ) > 0.
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The group I results and eigenfunctions correspond to orbits which

enclose the coordinate system origin, whereas the group II orbits

do not enclose the origin. For a given charge sign, we must in

general use members of both groups to describe an experimental

situation unless we can insure either that all gyro-orbits enclose the

origin or that no gyro-orbits enclose the origin. It follows also from

equations (C40) and (C41) that the quantum number N is the eigenvalue
2.2.

of the operator representing either eo or 0 ec , depending upon the

various sign possibilities. These are listed in Table C1. That N is in

fact the eigenvalue of one or the other of these quantities may be

verified by construction of their operator equivalents. This procedure

is guided by the classical equations and is based upon the known

results for the eigenvalues of Lz and the perpendicular energy

E. - E - E . In Table C2, we have listed the eigenstate expectation
O z

values of several dynamical variables of the perpendicular motion.

Most of these quantities are evaluated in appendix D.

The entries of these tables provide a striking example of the

correspondence between classical and quantum constants of the

motion, and between classical time averages and eigenstate expectation

values. The former correspondence is illustrated by a comparison of

the classical equations expressing constancy with the analogous eigenvalue

equations. The latter correspondence is illustrated, for instance, by

a comparison of equations (B22) and (B23) for the classical time averages

of Ee and E with their eigenstate expectation value equations. The

consistency of such comparisons is comforting, as is the fact that, in

each case, Ee and E sum to E. . Although not considered classically,

it is interesting to observe that the expectation value of vanishes for

orbits not enclosing the origin and takes on the value w with the correct

sign for orbits encircling the origin.



Table C1. Classification and perpendicular eigenvalues
of the cylindrical Landau eigenfunctions '/N Mk

Charge Sign q > 0 (proton) q < 0 (electron)

Sign of the settMPp +M: e+ iM+ -M: e-iM# +M: e+iM# -M: e-iMo

Group II I I II

origin origin origin o origin
origin - <linside __

Significance 'O> 1 outside - <1 inside -< 1inside > 1 outside

ec gyrocircle gyrocircle gyrocircle gyroc ircle

Degeneracy Arbitrarily N + M + 1 N + M + 1 Arbitrarily

large large

Quantity Operator Eigenvalues

L + M- Mh + Mi - Mi
z i

2

E qA) E +1iw (N+ ) E +lhw (N+M+ ) E +h'W (N+M+ ) E +fih (N+ )
o 2m z c z c z c z c

EL E - E cic (N + ). f (N+M+ ) "1w (N+M+ ) liw (N+ )
o z c c c c

P2 e E /f i N+ N+M+ N+M+ N + 1

L
2 2 e z 22 1 N+M+

P e+ M N N+M+ N+ N+ +M+
c



Table C2. Eigenstate expectation values of the
cylindrical Landau eigenfunctions 'NMk*

Charge Sign q > 0 (proton) q < 0 (electron)

Sign of the set M } +M: e +iM -M: e iM +M: e+iM# -M: e-iM#

Group II I I II

origin origin eo origin origin

Significance s° >1 outside <1 inside <1 inside >1 outside
e gyrocircle " gyrocircle gyrocircle - gyrocircle

Arbitrarily Arbitrarily
Degeneracy large N+ M + 1 N+ M + 1 large

Quantity Operator Eigenstate expectation values

2 2 2 2 2N+ M+ 1 2N+ M+ 1 2N+ M+ 1 2N+ M+ 1

2 (N+) c ciN+)
E p /2m c (N + 2 2+ (N + 2 (N +

E z - qB)/ 2 m  c (N + ) c(N+2m+) c (N+2m+1 ) (N + ce 2 2 2 2 2

1/ 2 12 2l 1 / 1/M

L qB 0 0
2 2m c c

m_



-62-

Degeneracy of the Perpendicular Energy Levels

Of particular interest is the degeneracy of the energy levels

E -fi k /2m as given by (C22) and in Table C1. We shall for the

moment ignore the two-fold degeneracies associated with the sign of

k and with the (fermion) spin. The latter degeneracy would be

removed by the explicit introduction of the spin energy and wave

functions.

For the Group I (origin inside the gyrocircle) we have listed

the degeneracy in energy as N + M + 1. We are speaking here of

degeneracy as it is commonly used in the physical sense of the word.

In a purely mathematical sense (that is, divorced from all questions

of experiment and considering only the algebraic forms), the degeneracy

of this group is 1 (i. e., non-degenerate). The energy eigenvalue

expression contains explicitly both N and M. For given and separately

identifiable N and M, there is associated only a single group I eigen-

function. Physical degeneracy, on the other hand. is determined by how

many eigenfunctions belong to a given numerical (as opposed to algebraic)

value of the energy in this case the sum (N + M). At the root of this

usage is the recognition that an experimental energy measurement by

itselfl can yield only the sum (N + M), and not the separate and individual

N and M values. In this sense the number of eigenfunctions belonging to a

given group I energy level fiw (N +M + 1/2) is N + M + 1, as may be in-

ferred from simple numerical examples. There is no infinite degeneracy

associated with group I levels. For either N or M equal to zero, there

is no degeneracy at all.

1 This does not preclude a subsequent measurement of another

dynamical variable which might select a single eigenstate from the energy

degenerate mixture of N + M + 1 states. We are also assuming that the

instrumental energy bandwidth is no larger thanfiw c, i.e., that it is

capable of resolving a single level. This is at present experimentally

difficult. The best energy resolution obtained to date is about 20 milli-
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The situation is different for the eigenfunctions and energy

levels of group II (origin outside the gyrocircle). With each of the

group II levels there is associated an arbitrarily large positional

degeneracy. Here the energy depends only upon the quantum number

N. The quantum number M, associated with the location of the gyro-

center with respect to the origin does not appear in the energy eigenvalue

expression. Thus an arbitrarily large number of eigenfunctions NMk

belong to a given group II energy Level1i w (N + 1/2). This degeneracy

disappears for M = 0, but remains for N = 0 and M # 0.

Surfaces of Constant Energy

The distinction between the degeneracies of the grpup I and

group II discrete energy levels is clearly revealed in the appearance

of their surfaces of constant total energy. These surfaces may be

portrayed in a Cartesian quarter-space, the axes of which might be

labelled Nw 0, +Mft c' and E z. This has been done in Fig. C3 where

we have plotted the group I and II surfaces of constant energy for q = -e

(an electron), The surfaces for q = e follow upon interchange of the

axis Labels + Mfiw and -Mfi . In the positive quadrant, Labelled I,
c c

is plotted the surface

E. + kw, (MN+M-) conS+. E.(C42)

and in the negative quadrant, Labelled II, is plotted

E, + c (N+-) - cons+ - Eu . (C43)

The particular value of Eo used for this illustration was slightly less

than 10fiw . The same value was used for both surfaces. The allowed
c

positions (states) in this energy space are indicated by large dots. This

ev [J. F. Waymouth, private communication, 1964J with values ranging
up to 60 mev cited in experiments wherein it was desirable to attain the
best possible resolution. See for example the abstracts of papers A3
and C3(d) of the Seventeenth Annual Gaseous Electronics Conference
[1965], and Kuyatt, Simpson, and MieLczarek [1965]. The value of
B corresponding toaf c = 20 mev is 172 Jcuss-C
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figure will be helpful in visualizing energy-conserving transitions

from one state to another as a result of the Coulomb perturbation.

We discuss in detail only the properties of the group I surface since

those of the group II surface follow upon obvious and slight modification.

The number of states and the limits of the group I surface are

completely determined by specification of the total energy E o. We

have the relations

E E0 - I " "  (C44)

14,, = \j"*e er palr+- o (C45)

M Ox- i~n+eer par+ o " $f E (C46)

E rOc+a - a par+ (C47)

Note that < E zmin < fiw . Since N = M = (E - E i )/
-zmin c max max zmax zmin

he , the three sides of the surface are of equal length, and the

surface normal makes equal angles with the coordinate axes. The

surface forms one of the four sides of an equilateral pyramid. The

pyramid rests on a base of height Ezmin. Group I energy states having

the same value of Ez and belonging to the same (numerical) value of

the perpendicular energy Tiwo (N + M + 1/2) are connected by lines

parallel to the bottom edge of the pyramid. There are Nmax + 1 of

these lines having the sequence of E valuesz
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E E -w .. E - j .. E -N -tw
zmax zmax c zmax c zmax max c

=E .
zmin

These values are generated by the function EZ (j) where

E (j) E - (j + 1/2)1w c for j = 0, 1, 2, N . (C48)
z o c max

With these lines (or groups of degenerate states) thus indexed by j,

it is seen that the j-th line contains j + 1 states. That is, the j-th

perpendicular energy Level is j + 1 degenerate (j + 1 is a special case

for N = j and M = 0 of the earlier-discussed degeneracy N + M + 1).

The total number of states on the surface is obtained by summing over

the (j + 1) - degenerate levels:

N
max (N + 1) (N + 2)

Number of group I states = t (j + 1) = 2 max
j=0

If N is increased by unity) the number of states added is N +2.
max max

Conversely, if N is decreased by unity, the number of states is
max

reduced by N + 1. A unit increase in N results from an increase
max max

of E by an amount Tw c - Emin .
0 c zmin

Having outlined the properties of the group I surface, we now

relax the condition E = constant and describe the evolution of the
o

surface as E is increased. We supposethat initially Ezmin >0.
o zm

As the total energy E increases and so long as E zmin < w c, the

number of states remains constant. The surface rises smoothly and

continuously in the E direction while maintaining the same area andz
orientation. The increase in Eo goes entirely into E , the states riding

upwards as if they were beads on rods. However, as E is increased

further and as E zmin passes through the value fw , the value of N
zmin c max

is increased by one, N + 2 states are added, and E . assumes
max zmin

the value zero. An analogous kinematical picture may be developed

for a decrease in B or fio
c
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The properties of the group II energy surface are quite similar.

For the same value of E , the values of E , E zmin' and N
o zmax zmin' max

are the same as the group I values. For a given value of -M, there

are N + 1 states. Unit increase in N is matched by unit
max max

increase in the number of states. The positional degeneracy is

represented by states having the same value of Ez and belonging to

the same N value. In practice, this degeneracy is very large, but not

infinite because of the finite size of the confining experimental apparatus.

In stating this, we are ignoring the (probably small) effect of the

changed radial boundary condition upon the eigenfunctions and eigen-

value spectrum.

C4 Construction of a Uniform Beam

The Born approximation cross section resulting when only a

single member of the set 'M k is used in the perturbation matrix
NMk 2222

element is differential in nature, with the eigenvalue for P eo playing

the role of impact parameter. Evaluation of a total cross section

requires an incident beam of sufficient radial extent to intercept

virtually all of the perturbation potential field (considered here to be

seated at the origin). Further, the beam should be of uniform amplitude

in the radial direction. In the case of zero magnetic field, such a beam

is immediately at hand, and is provided by a single free particle

eigenfunction of the form exp (ikz). However, the provision of such

a flooding beam is not so simple for a free charge in a magnetic field,

due to the radial localization and binding by the magnetic field. The

construction of the wave function for this beam from the eigenfunctions

VNMk} is described below, and is guided by the interpretation
22 2 2of the

developed for the eigenvalues of 2 ec and o The roles of the

group I and group II eigenfunctions will be clearly exhibited, as will

the simple relation of this beam wave function to the energy surfaces

of Fig. C3.
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Definition and Representation

From members of the set _?NMk} we seek to construct the

wave function representing a charged particle beam having a uniform

distribution of gyrocenters extending from the origin out to the (at

present arbitrary) squared radial distance defined by the integer

S =2 2 . The beam is further to be characterized by single
omax

values of the energies E_. and E . We measure these energies inz

units of h c by means of the integer N. and the number N z

E Loc( + ) (C49)

E -a WC- H(C 50)

The integer N. will in some cases be the same as the quantum integer

N. From the interpretation of the quantum integers N and M in terms
22 2 2

of 0 eo and 2 c, it follows that such a beam is represented by

the function

UtN*S N C llNs[J0 k M=ofl)M) (C 51)

where ~r , t denotes members of the set {Mk} The normalization

constant C is yet to be determined.

The evolution of this form may be understood in a simple graphical

manner by drawing, about a definite origin, a series of constant radius

circles whose centers begin at the origin and are successively displaced

by equal increments along a radial line. Then, referring to Table C1

for the eigenvalues of 02 2 and 2 2 the circles should be labelled

in terms of the numbers N, M, and N_. There will be a finite number

of circles which enclose the origin. These are the group I states and

are represented by the terms in the first sum (to j = N L - 1) of

UN S There will be a single circle passing through the origin..N z
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This is the group I- group II boundary state Nok It has been included

in (C51) as the first term of the second sum, on M. This boundary

state could as well have been included instead as the j = NL term of

the first sum. The remaining terms in the second sum consists of

group II states and have as their analog the circles which do not enclose

the origin.

For a beam travelling as nearly as possible along the magnetic

field direction, we set NL to zero and omit the group I eigenstates (the

first sum in C51). The function UoNzS would then describe a beam

composed of particles having all of their energy in the z mode (zero

pitch angle).

Position Upon the Surfaces of Constant Energy

By locating each eigenstate of the sums in (C51) upon the constant

energy surfaces depicted in Fig. C3, it will be seen that the uniform

beam is composed of all group I-group II states having the same total

and z energy. That is, U Nz S is the simple sum of all states situated

upon one of the constant Ez lines (or levels) running axis out to

-M = -S. These (N_ Nz S) levels contain NL + S + 1 cylindrical Landau

eigenstates.

Normalization and z Flux

By requiring the wave function UNL Nz S to satisfy the condition

f u * ru dr ck =_ <uu> k = i, (C52)
k T k

the normalization constant follows as

C . (C53)
\o M ..+ S + I

This form for C should not be surprising in view of the number and

equal weighting of the eigenstates used to construct the wave function U.
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More generally, we can show that

< U.N_;, 415 ., USNo5 > N (-k) (C54)

where

C , + (C55)

This follows in a straightforward though interesting way through use

of (C51) and the eigenstate matrix element contained in (C15b). The

calculation of these results is interesting because the group I-group II

cross products inherent in (C54) contribute nothing and because the

smaller beam controls the result of the group II-group II product.

If we consider the probability density flux component Jz as an

operator, we can show in an almost identical manner that

<N/ NU±1 JIjUNN S(-#k>N=. (C 56)

The area-averaged flux associated with the N =O beam U0N S is
z

__ 2 4k (C57)

S m (S +2) z7r

This flux was calculated in a manner analogous to that of (C32), the

details of which are to be found in appendix F.

C5 Summary

The cylindrical Landau eigenfunctions qNMk were obtained as

solutions to the coordinate representation of the Schroedinger

equation

H, ' k = Eo Kk (C58)
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The Hamiltonian Ho is that of a single particle of charge q and mass m

moving in a uniform magnetic field. As discussed in appendix A, this

Hamiltonian is (p~ - qA)2 /2m. The equation was considered in the

cylindrical coordinate system spanned by the triad of unit vectors

Sx = . The uniform and constant magnetic field was generated

from the vector potential

A = B r - . (C59)

through the relation

- c = curl A= B (C60)

The solutions were factorable in each of the coordinates as

kN P4tk( ,, , - R,(e ) ( ) W§(). (C61)

The factored eigenfunctions have the forms

RN = -- (L e L)Q. (C62)

MiM

e ( 63)

Zk -k-- - (C 6 4)

where 2 E eB/21 (dimensions of m-2), and N and M are independent

positive integers (including zero having no formal upper bound:

N = 0, 1, 2, ...

M = 0, 1, 2, .....
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The Laguerre polynomial, an oscillatory function having N zeroes,

is defined in equations (C23). The eigenfunctions are separately

normalized to Kronecker and Dirac delta functions such that

<NMkINM>ftMk fNMJ d-r M N(MI>-k)f (C65)

By means of quantum-classical correspondence arguments, or by

construction of the appropriate operators, the eigenfunctions and

states may be divided into two groups. Physically, the group I states

correspond to classical orbits which enclose the origin, and group II

states to those which do not enclose the origin. Whether a given

eige nfunction belongs to group I or group II is determined by the

sign of the M eigenfunction and by the charge sign:

Group I: (sign of q) x (sign of M) < 0,

Group II: (sign of q) x (sign of ~M ) > 0.

The observables of which M and N are eigenvalues for the group I and

group II states are collected in Table C1. Several eigenstate expectation

values are listed in Table C2. The energy levels and surfaces of

constant energy are depicted in Fig. C3. The construction and prop-

erties of a beam characterized by single values of the perpendicular

and parallel energies E_ and Ez and by a uniform distribution of

gyrocenters are discussed in the preceding section.
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APPENDIX D

MATRIX ELEMENTS OF RADIAL POSITION AND ENERGY

BETWEEN CYLINDRICAL LANDAU EIGENFUNCTIONS

D1 Content

We give here details of the evaluation of integrals represent-

ing quantum averages of dynamical quantities associated with the

motion of a particle of charge q and mass m in a magnetic field

B = Bz. The system is referred to a cylindrical coordinate system
A A

spanned by the unit vectors ^ x = z. The particle is represented

by the cylindrical Landau eigenfunctions

4/ =(D1)

derived in appendix C and rewritten below. If such a dynamical

quantity is f(E, -p), then the quantum average of f, denoted by (f >,

is here defined as

-r

the integral to be taken over all space. Quantum averages of the

type (D2) are more formally known as diagonal matrix elements. The

definition may be extended in an obvious manner to include off-diag-

onal matrix elements here denoted by <,.M k, k, I -)N, ,k, >. The matrix

element (D2) is interpreted as representing the probabilistic results

of repeated measurements of the dynamical quantity f(', -) in a

system described by the wave function tm .

The matrix elements calculated include (Q (Q) ) and

T e~ ~~
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D2 The Set of Basis Eigenfunctions

The eigenfunctions used as a basis in these matrix element

calculations are the cylindrical Landau eigenfunctions obtained as

solutions to the Schroedinger equation H. Mk= E 4, for the

Hamiltonian H,= (p - qA) /2m. The cylindrical form of this Hamil-

tonian was developed in appendix A:

s e'A L-2 S

HO 7T -r 'O (D3a)

L 2-A2

+ tr_ + -Pr~P (D3b)

The solutions, factorable as indicated in (Dl), and the energy eigen-

values are

'PM = L. ejT
- _ _ _ "

ceI IL A

e LN (~L 1)

on V

4:;

2-

+ ++M M + I
2 rn 2 e (D7)

(D4)

(D5)

(D6)
-Pz
-tr
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where w ,eB/m is the cyclotron frequency, P2 = eB/2h is a para-
-2

meter having dimensions of (meters)- , and N and M are independent

positive integers having no upper bound:

N = 0, 1, 2, ...

M = 0, 1, 2, .

The choice of upper or lower sign in (D7) should conform to the

choice made in the eigenfunction , . The convention on charge

sign is such that, for example, q = -e denotes an electron. The

factored eigenfunctions are separately normalized to unity as either

a Kronecker or Dirac delta function. The Laguerre polynomial may

be defined as

L CX) - D!-c~SN (D8))

In evaluating some of the matrix element integrals, we shall employ

the generating function

M 4 - -
. Lj (X) I-L) e (D9)

valid for It l 1HTF 2, p. 189(17)]

D3 The Matrix Element <'( >
The range of the integer oc is -M . oc < o. Since q is

independent of p or z, we know immediately from the normalization

that the general matrix element has the form

H, m -(k,-k,) • R2 e R, e de (D10)

That is, the matrix element <e! > is diagonal in M and k. Impli-

cit in (D10) is the assumption that either the plus or the minus sign

is used in both ., and M . If, for example, the minus sign is used
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in i , and the plus sign in M , then the matrix element survives

only for M 1 
= M 2 

= 0:1 2

-- 5d * (D11)
O

This indicates that the only common point or union of the sets fe*"M#J

and (e{i ) is the point M = 0. Analogous properties exist in connec-

tion with the signs of Zk . With these properties in mind, we re-

write (D10O) as

e14 = Ra() R() dt (D12)

omitting the delta functions. The subscript 1 stands for the pair

(N1, M1). This may be cast into the form

<,! N@! oM,> (D13)

where I stands for the integral

I> {e - x M M (D14)1 = e x L (x> L (x dx ,

22
taken over the dimensionless variable x = p3q . By operating

upon (D14) with the generating function (D9) and evaluating the re-

sulting RHS integral fexr-x(,+ -- ) . x dx , we obtain

the identity
, M. M+a)! (,-S) -(1-0"

,=o )),.1 (I-s ) • (D5)

We note the restriction M +c >, o, necessary to insure convergence

of the integrals involved (D12, D14). An expansion of the denominator

of (D15) in ascending powers of st ( < 1) leads to the basid identity
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SH' "* I -(I- .'C
t ,, tH

Co

jo

SO°+!(). +i
- 1 j )

Case oc = 0. The Normalization Integral

This case serves as a check upon our procedures thus far.

Foroc = 0, (D16) becomes

=_ (sI: (D17)

from which it follows that

1~, 0

I
S + N)!

(D18)

M M
L , (x) LJ (X) dX M,, s N!

The relation (D19) expresses the orthogonality of the Laguerre poly-

nomials LN M(x)e -x M Ni
M

and LN2 (x) with respect to theN 2
weighting function

e x on the range 0 . x < co . In its full glory, the general matrix

element of ( (=1) has the form

(v) > = (D20)I N- aN, M 2 ,M,

Hereafter we shall usually omit the writing of the delta function

factors.

oO

'41 = C
14i

(D16)

f -X Me x0

(D19)
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Case oc = 1. The Matrix Element P2 e2>

For or = 1, the identity (D16) assumes the form

(D21)
N,2 iM+)+j)

02.J ~ ~ =
0

from which we obtain the result

= %1,
(,1+zJ+I)-

I S p + I

(M+ J)

(N1- I)
(D22)

It is seen that in general there are only three surviving matrix ele-

ments of 9 . The matrix element of q which is diagonal in M, N,

and k has the value

M + AN + I ) (D23)

where we have omitted the delta function factors.

Case C = -1. The Matrix Element (P2 2) -1(p 9 )
We utilize the expansion

in (D16) to obtain

j! I (D25)sfo IN, No
fro ~

The (convergent) sums on the RHS are rearranged according to the

transformations i-j + i and i, j + k. We have the option of choosing

j = .1 - i and summing on i from 0 to l 1, or of choosing j = 2 - k

and summing on k from 0 to 72. Both options are indicated:

Nro

I M, I

(D24)

(5,)j

--
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Np: ,,H M,-do& 02. 1 M -

15- te -10 CP

oC (CM-l,- i)! "

a (2- k) !

If we let N stand (momentarily) for either N 1 or N 2 and reverse the

order of summation, it follows from (D26) that

I
$r

J- o

'9

(M-'! o--- ( 7~P1~7J) (D27)

With the aid of a formula from Richards [p. 259, 1959] ,

may be performed analytically:

i -  I I (M +N)!
S N!

the sum

(D28)

We must now consider whether N stands for N 1 or N 2 .

is that

N = min(N1, N2 ) .

The answer

(D29)

In arriving at this identification, we found no comfort in (D26), but

were forced to consider the definition (D14). Using the expansion

LM (x) =

( a special case of HTF 2, p.

SM-. x) (D30)

192 (39)), the definition (D14) may be

written

(D26a)

(D26b)
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)I 14j H . (" - - rX--

IXLG LM (D31)

Using (D19), this becomes

N ~- (D32)

It appears at first sight as if the result of the summations of (D32)

depends upon the order of performance. However, this is not so.

Supposing that N 2 > N 1 , the basic reason is that, irrespective of the

order of summation, the Knonecker delta will select all of the terms

of the n-sequence and only the first N 1 + 1 terms of the sequence

m = 0, 1, 2, ... , N 1 , ... , N 2 . Thus the result (D28) is valid for

N chosen according to the prescription (D29).

The matrix element of ( 2 2)-1 which is diagonal in N, M, and

k is

7j M (D33)

We see that M = 0 is not allowed, in accordance with the restriction

-c + M >, 0. Again, the delta functions have been omitted.

D4 Radial Energy. The Matrix Element <(- ./zm>

The only term in the Hamiltonian (D3) not yet explicitly eval-
2

uated is the radial energy -/2m. This may be done by calculating

the matrix element of the operator - 1a or, knowing as we do all

other terms, by subtraction:

= f. (D34)
am :z e a r a er >
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Borrowing from appendix C the results <L, _± Mi and

-P = + k/ , and using (D7), (D23), and (D33), it is seen that

. EM . (D35)

The result is independent of both charge sign and the sign associated

with m. It is in agreement with the value listed in Table C2.
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APPENDIX E

EVALUATION OF THE COULOMB MATRIX ELEMENT

BETWEEN CYLINDRICAL LANDAU EIGENSTATES

E 1 Content

Given in this appendix are the analytical and computational

details relevant to the evaluation of the matrix element of the Coulomb

potential energy between the cylindrical Landau eigenfunctions L'NMk

described in appendix C. The functional dependences and the relation

to classical models are discussed. This matrix element is needed for

the Born approximation evaluation of the transition probability and the

cross section for the scattering by a Coulomb potential of a charge q

in a magnetic field.

Two Coulomb matrix elements were considered, one more

directly suited to our needs than the other. They differ primarily in

the machinery utilized for mathematically varying the position of the

scatterer Q (the seat of the Coulomb potential) with respect to the

initial position of the scattered charge q. This facility must be present

in the formalism since we cannot in experiment control the location of

q with respect to Q.

The Centered Coulomb Matrix Element

The more useful of the two (and the one reported on in detail

here) has been called the centered Coulomb matrix element. In this

case, the seat of the Coulomb potential was fixed at the origin and

one or both of the quantum numbers N and M used to vary the radial

distance between q and Q. The impact parameter is thus a discrete

rather than a continuous variable. It is this matrix element which

appears in going from the laboratory frame two-body problem to

the center of mass frame problem of a single particle moving

in a central potential field emanating from the origin.
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This matrix element, for which an exact result has been obtained,

was denoted by

<?A.Mj> , N M,kIZ.A.c I ,IN,, M,)k,> (El)

The subscripts 1 and 2 label the quantum parameters of the initial and

final cylindrical Landau eigenstates, respectively. The subscript c

indicates that the seat of the Coulomb potential (the charge Q) was

centered, i.e., fixed at the origin. The particular form of the Coulomb

potential energy used in this matrix element is

GL erA = -(E2a)

which in the cylindrical coordinates employed becomes

e (E2b)

The Debye or Yukawa shielding can be incorporated at little additional

mathematical cost, may be needed for convergence of the total cross

section, and can be removed at any time by letting ! -+ 0. We have

indicated in (E 1) that M fi, the quantized value of the angular momentum

canonical to the coordinate 6, is conserved in the transition. This re-

flects the cylindrical symmetry of the system for this location of Q, and

is consistent with both the classical and the quantum treatments

of the general problem. The conservation of M is expressed

by a Kronecker delta M' M 2 . This is convenient not only

because it leaves N and k as the quantum variables of this matrix

element, but also because it will facilitate formation of a total cross

section from combinations of the basic matrix element.

When this matrix element is utilized in a cross section, it will

be required that energy be conserved in the transition. Thus, as a

result of the collision, energy may be transferred into or out of the z

mode (change of k) at the expense or gain of the perpendicular energy.
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There will in general also be an accompanying change in the gyrocenter

location. The cross section derived from this basic matrix element

is differential in that it describes the effect of the Coulomb center Q

upon a cylindrical shell beam characterized by a single value of the

perpendicular energy and located at a certain radial distance from Q.

Cross sections derivable from the centered Coulomb matrix elements

are considered in appendix H.

After a cursory examination in the following paragraphs of the

physical situation represented by the other matrix element, we

present in section E2 the details of execution of the centered Coulomb

matrix element. As will be seen, the matrix element is reduced to

a finite series of confluent hypergeometric psi functions. The re-

markably simple properties of this formidable-appearing function are

described in the third section. In section E4 is discussed the variation

of the continuous argument of this function, with conservation of

energy incorporated. The section following combines the results of

the previous two into a picture of the behavior and properties of the

centered Coulomb matrix element. The sixth and final section

contains details of a physically interesting limiting case of the general

expression.

The Off-Center Coulomb Matrix Element

In the second Coulomb matrix element considered, but not

reported on in detail here, the problem of q-Q location was approached

in a different manner. In this case the scatterer Q was located

arbitrarily with respect to the origin. For a Coulomb center Q fixed

at the point r = (ieOe )e), the potential energy of a charge q

located at the point~ = (, ,z) is given by
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-A j;-~

A = e * (E3a)

This location of the seat of the potential away from the origin was

accomplished at the expense of an infinite sum and integral expansion:

4bo - f; Z )

Ty Le ) e (E3b)

This form was obtained from the expansion of the Green's function

(exp ikr)/R for the scalar Helmholtz equation by letting this k be purely

imaginary. The expansion is given by Morse and Feshbach [1963,

p. 888] and by Magnus and Oberhettinger [1949, p. 155]. We will

see that Oe and ze may be set to zero without loss of generality.

Since there is incorporated into this matrix element the facility

for arbitrary location of the scatterer Q with respect to the origin,

we are at liberty to dispense with the positioning feature contained in

the incident state representation of the scattered charge q. This is

accomplished by setting N to zero in the eigenfunctions '/NMk. Thus

the group I members of this N - 0 subset represent a cylindrical shell

beam centered about the z axis and characterized by a squared cyclotron

radius proportional to M, the minimal origin-to-gyrocenter value,

and a z energy proportional to k2 . The members correspond physically

to a non-degenerate beam composed of particles having the same z and

perpendicular energies, and a common gyrocenter. In the same sense,

the group II members of the N = 0 subset represent a cylindrical shell

beam whose squared radius is proportional to M and which is composed
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of particles travelling as nearly as possible along the direction of the

magnetic field with a z energy proportional to k 2 . The cross section

derivable from this matrix element is differential in that it describes

the effect of a differential ring of charge at the radial distance e

upon the group I or II cylindrical shell beam described above.

The matrix element is denoted by

lo> = < N2 M. k I j I N, M, k,> (E4)

where N1 is to be set to zero. We have indicated that the final value

M2 f of the canonical angular momentum Lz may differ from the initial

value M 1fi. This is not surprising since all of the foregoing classical

and quantum considerations indicated that Lz is not conserved for Q

located away from the z axis. Indeed, if the value of the matrix element

is found to have a maximum as a function of (M 2 - M I), then this

preferred M change may be taken as an estimate of the classical

integral- over -an-encounter

LO e. frre0 Jl ~ Cas# (E5)

obtained from equation (A 16).

Even with the simplification provided by setting N 1 = 0, the

mathematical difficulties introduced by the expansion (E3b) could not

be completely overcome. This matrix element could be reduced only

to a single integral. Because of this and because of the more general

character of the centered matrix element, the off-center matrix

element was not utilized. However it is mentioned here because it

describes a conceptually simple situation, and because it was attempted.

E2 Execution of the Centered Coulomb Matrix Element

The centered Coulomb matrix element is denoted and defined by

the expressions
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spaCe

*-I I, k,

The cylindrical Landau eigenfunctions

(E6)

NMk were given in appendix

C as

1 ( !

] NM ~ ,,)

I 2

e

(E7)

(E8)LM( )

+jM#

e

+ike
e

where 2 = eB/21i (dimensions of m -2) and

(E9)

(E 10)

N and M are independent

positive integers (including zero) having no upper bound:

N = 0, 1, 2, ...

N = 0, 1, 2,....

This shorthand notation for the ' / allows us to write the matrix
NMk

element as

H, tkM2, .k 1 ?A,-lN,,- Mi k,-

kM(~1) R4, (e) OL'A )L(P

22.

IZk a.- ~Pz
k
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o o

(E 11)

-a.

The matrix element (Ell) has been analytically evaluated in three ways,

giving in each case the same final result in terms of the confluent

hypergeometric function (c, )). Definitions and properties of this

function are given in HTF I [1953, chapter VI] , in the book by

Lebedev [1965, chapter 9] , and in NBS [1964, chapter 13] . In NBS,

this function is denoted by U (oc, ', z). We defer a discussion of the

properties of this function until it is seen precisely which forms must

be considered.

Method I

Let us consider the + integral in (Ell) for the transitions

+ M . - + M2E
- (E12)

The result is

), d f(E13)
o o

Had we instead considered the transitions

(E14)

,~C ~ + M 2 )
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the result would have been

dTr

M d = M,o "M,o (E15)
o

a result already contained in (E13).

We consider next the z integral for the transitions

fk -- - + k (El6a)

- kI --- - k2  (E 16b)

We have the sequence

e ____ J (E 17a)

Only the real part of the integral(E17a) survives, the imaginary part

being an odd function of z. The fact that the cosine is an even function

of (k1 - k2) as well as of z allows the insertion of the absolute value

signs. The step from(E17b) to(E17c) was made with the aid of TIT I,

p. 17(27). Had we considered the transitions

f e -- - k, (E 18b)+ k2 (E178b)

I' k 2J
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in similar detail, the end result would have been

e -A
S

__f Q K, (e I ;}k k') (E19)

The symbol K (x) stands for the modified Bessel function of the third

kind, of order zero. It is also known as MacDonald' s function. As a

function of the real variable x, it is everywhere positive and mono-

tonically decreasing. The dependences for small and large x are

K(x) x- - - (E20)

-x
K, (x) e-=; (E21)

Definitions and properties are given in NBS [1964, chapter 9] , in

HTF II [1953, chapter VII] , and in Lebedev [1965, chapter 5] .

We are left with an integral on the radial coordinate e , which
2 2

we rewrite in terms of the dimensionless variable x p ep

# r lrr (N+M)! (N,'M)!

.ex L 2x- x > (X) ,J,. (E22)

The integers N and V are defined in terms of N 1 and N2 by the relations

N min(N 1, N 2)

V N 1 - N2

The parameter ' is proportional to the squared z momentum transfer

and inversely proportional to the magnetic field B:

+ k, (E23)
u .
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The minus sign in this definition refers to the forward scattering

transitions (E16) and the plus sign to the back scattering transitions

(E18). We shall evaluate (E22) by alternating between two integral

representations of the aforementioned confluent hypergeometric psi

function. The forms we shall use have been taken from Lebedev [1965,

p. 268 and p. 278 :

2-

( 2 K, z) e O t (E24)

c e (+t) dt (E25)

The restrictions cited are that Re oc > 0 and Re-z > 0.

In preparation, we evaluate the simpler integral A defined as

A Ko(l i_) e-t j / d. p(E26)

Use of the explicit expression for the Laguerre polynomial Lm (t)n
together with the representations (E24) and (E25) allows us to proceed

through the sequence

A jo (v +J)!J K ) t (E27a)

(. r,.] kP (_,t,-zc (E27b)

1(n- i)l(+j!j!

f is! E- - ' (E27c)

-e (;( d-? (E27d)
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Returning now to (E22), we employ an expansion cited by

Erd6lyi L1938] in order to transform the product of two Laguerre

polynomials into a finite sum over a single such polynomial:
M 0

L (M) LJ W = :E"
* (-)! N+- ) (M+)! (+v+M)!

.t L M (+ ) (E28)

When this expansion is inserted into (E22), the resultant integral has

the form of A, and we may immediately write the end result:

I N, (N+)'< T>, = V N + ) !
* .7r. 6,-r (H+m )! ( N,4,-,mV (E29)

S(N-+M)! (N+v-+)! (M+;j)!

Two Alternate Methods

Before proceeding with a discussion of this result, we indicate

how it may be obtained in two other ways. This will provide reassuring

checks on the expansion(E28) and the representations (E24) and (E25).

We utilize the identity

- p o e of (E30)

to recast the original form (Ill) into

AtAW, > MIM f RNM R,4

f- /  * e, , . (E31)

After executing steps similar to(E17a)and(E17b), the integral in braces

(denoted by I ) may be written

77' cos k ~ e (E32a)

- (E32b)
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The transition from a to b was made by means of a slight generalization

(L > 0) of TIT I, p. 15 (11). We are left with an integral on t and one

on t . In order to check the generalization and to proceed further with

this second evaluation of < q As >, we rewrite the t integral

e d-- (E33a)
o 0

" 4e-. - (E33b)

The check is provided by (E33a). Upon integration by means of TIT I,

p. 146 (29), the radial integral remaining is just the previously en-

countered(E22). Choosing now, however, to integrate first on

and then on t, we utilize (E33b) and write the matrix element in the form

f e LC/( Lr4, ) L. 0(pFL). (E34)

2 2
If we again let x = p , we have to consider the integral

j e x LH (x) L.X) ,C (E35)

The integral I is quite close to the integral which expresses the N
M M

orthogonality of L (x) and L (x) with respect to the weight function
M -x 1 2

x e,

e x L ) L ) d (E36)
f N2. N )s. r4 !

See Lebedev [1965, p. 84] , HTF II [1953, chapter 10) , or section 3

of appendix D. What spoils the picture is the lack of agreement
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between the coefficients of x in the exponential and in the Laguerre

polynomials. This suggests that we force these arguments to be the

same, in order to utilize (E36). This is accomplished by means of a

generalization of HTF II, p. 192 (40),

.). .X t '

L,0_o Yj (YX) (E37)

Note that the superscript m remains unchanged in this scale-changing

expansion. This is the point at which the finite sum of(E29) again makes

its entry. If we now choose X = 1 and Y = 1 + t, the expansion (E37) be-

comes

L (x) = rt-S - (E38)

n j-o

Use of (E38) and (E36) allows us to take Ix through the following steps:

X, k=° N0- i r4% -k

.5 M r1 M1

f e S Lj (s) L (s) cis (E39a)
o

(14 rM)(t +.)_ (E39b)
(I+.) ,,++r + jo A- ~' J

At this stage, the matrix element has the form

t - (E40)

o

However, the t integral is just the representation(E25) for the confluent

hypergeometric psi function:
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f e (l+t) ,* ** , (E41a)

o

e - +LJ (E41b)

(E41c)

The end result,

._l (M +j)! (M- tI! (E42)

is the same as(E29).

Finally, the results (E29) and (E42) may also be obtained in a

much more roundabout and tenuous manner through use of (E2 8), TIT II,

p. 152 (82), and the relations connecting the Whittaker functions Mk, m

and Wk, m with the Laguerre polynomial and the confluent hypergeometric

psi function, respectively.

E3 Properties of the Confluent Hypergeometric Psi Function

General Relations

The functional properties we shall need may be derived from

three general relations. The first of these is the expansion in ascend-

ing powers of the argument

( -a)k k! k(a-(.k)-+()- *(l+ng )+ + "

r (a-n) k-

I) k (E43)

r (a) k=* k
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where Re a > 0 and n = 0, 1, 2, .... The finite series is to be omitted

for n = 0. This form was taken from Lebedev [1965, p. 264] . It is

equivalent to the forms given in HTF I, p. 26 1 (13) and in NBS, p. 504

(13. 1. 6). The series in convergent almost everywhere in the finite

complex plane: 0 < zi < co, phase zj < Tr. Pochhammer's symbol

(a)k is defined as

F(a + k)(a)k  a (a + 1) (a + 2) ... (a + k - 1) = (a) (E44)
k [ (a)

The (lower case) symbol '(z) stands for the logarithmic derivative of

the gamma function, F' (z)/ (z). The machine evaluation of this

function employed the starting and recursion relations

'(1) = - = -0. 5772157 (E45)

(1 + z) = (z) + 1 (E46)
z

where y stands for the Euler-Mascheroni constant. Note that %(1) is

negative, whereas f'(2), '(3), ... are all positive. We list also the

dependence

In a (E47)
Z---- 0o

This function is discussed in HTF I [1953, section 1.7]

Secondly, we shall need the Kummer transformation relation

{ (a, l-n, z) = zn i(-+n, I + n ) (E48)

in order to extend the definition (E43) to psi functions having negative

second indices.
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Finally, we cite the asymptotic expansion

useful for z sufficiently large. The meaning of sufficiently will emerge

in subsequent discussion.

The relations(E48) and (E49) may be found in any of the three

references cited earlier in connection with the expansion (E43).

The Particular Form of Interest

The confluent hypergeometric function appearing in the centered

Coulomb matrix element(E 2 9) has the form !P(1 + m, 1 - n, x) where

in general m and n are positive integers including zero. For our

application m and n have the values

m = M + 2j = 0, 1, 2, ...

(E50)
n = 2N+ V -2j = V, V+ 1, ....

The general relations become

(E51)

I ~ k+x

lk-o (m+)! (n+k). k!

+ . () (-k-- (1-k)) (E52)
(r+n! ko k!
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Sk- nr [1X

= M o ( n+)! -n! k! + (E53)
ki-

In the following paragraphs, we investigate the behavior of this function

for the two extremes x - 0 and z --- , and for x finite.

Leading Terms for Small Values of the Argument

The behavior near the origin of the function L (1 + m, 1 - n, x)

depends upon the value of n. From the series definition(E 52), we

must select the leading terms as x w-- 0 for the cases n = 0, n = 1,

and n > 2. For n = 0, it is fairly easy to ascertain that the function

goes as

[-In x - 'l(1+m) + 2(1,) ]/m! (E54)

for small x. Here one is tempted to ignore the lower case psi functions

in deference to the In x term and its limit

Inx - - co

x-. 0 + (E55)

However the logarithm exhibits such a mild singularity for x small that,

for a large range of x small, the lower case psi functions cannot be

neglected in comparison with In x. For example, the numerical values
-4

corresponding to x = 10-4 and m = 0 are

[ 1.7' - o,-S77I

Our point here is that the psi functions should be retained unless one

is dealing with an x small enough that In x is clearly much larger. We

consider next a case where they must be retained.
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For n = 1, the finite series contains arnd contributes the

single constant term 1/(m + 1)! The second term, for x--.O, must

come from the k = 0 term of the infinite series. Here again one is

tempted to ignore the lower case psi functions in deference to the

logarithm. However, in this case this is not legitimate for any small

x since it overlooks the important role played by the single power of

x. In view of the limit

-X
XJn x--o+ (E56)

(p > 0, not necessarily integer), it is clear that x times a lower case

psi function is of the same order as x lnx. Hence all four terms must

be retained. We conclude that '(1 + m, 1 - n, x) goes as

I --- x - + +( 1 (E 57)

(m+)! m J_ II X - 4' J (E57)

for n = 1 and x approaching zero. For small x, the quantities in square

brackets in (E57) and (E54) are always positive. For n > 2, the finite

series always contains a constant term and a term linear in x, whereas

the lowest term in the finite series is at least quadratic in x. Thus

the finite series contributes both the constant and the linear terms of

(1 + m, 1 - n, x) for n > 2 as x---0:

( , X) - - n (m+,)X (E58)

Note that the quadratic term would contain contributions from both the

finite and the infinite series. The results are collected in Table El,

as well as being transcribed according to the prescriptions (E50).

In the transcribed entries, we have indicated in parentheses the only

values of j and V which will meet the conditions n = 0 and n = 1.
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Table E1. Behavior of the confluent hyperglometric function

T (1+ m, 1 - n, x) as x --- 0.

Behavior of (1 + m, 1 - n, x) as x 0

n (1+ m, 1- n, x)

0 - in x -l(+ m)+ 2 2 (1)] /m'.

+1 1- (m+1) x[- n x - '(2+m) +2 (1)(m + 1)' l ml)x ix

>2 (n -) 1 - (m + 1) nx

Transcribed: m = M + 2j n= 2N + V - 2j

2N+V-2j f(1+ M + 2j, 1- (2N t V -2j), x)

0 N [-ln x - f(M+2N+1) + 2 f(1) /(M+2N).

1 N (M+2N+) 1 - (M+2N+1)x - nx - (M+2N+2)+2l(1J
V= 1 (M+2N+ 1) 1

(2N+ V -2j-1)'. ( M+ i)N+ j)> 2 (+2N+ ' 1 - (M+2j+) (2N+ V -2j) x
- (M+2N+ V )
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Behavior for Large Values of the Argument

As was indicated above, for x >> (m + 1) (m + n + 1)

S(1+ m, 1- n, x) 1-m (E59)

which when transcribed becomes

S(1+ M+ 2j, 1 - (2N+ V - 2j), x) x-1-M-2j (E60)

for x >> (1 + M + 2j) (1 + M + 2N + V). As a function of x, the j = 0

function is the largest, the j = 1 function being smaller by a factor of
2

x . As a function of M, the M = 0 function is the largest. For x large,

this function exhibits no N or V dependence.

General Behavior

With the behavior of (1 + m, 1 - n, x) for the extremes of x

in mind, we consider now the general behavior of this function for finite

x. The remarkably simple features of this behavior may be inferred

from the integral representation

)n (E61)

a transcription of (E25). We see immediately that the function is always

positive and is non-oscillatory. Its first and second derivatives are

likewise featureless. Since the first derivative is always negative,

and the function approaches zero as x -= o, the function f'(l+m, 1-n, x)

must decrease monotonically from a maximum located at the origin.

This behavior is supported by the second derivative which is always

positive.

The behavior of the function P(1 + m, 1 - n, x) with the indices

m and n is similar to its behavior with x. For fixed x and n, it follows

from(E61) that the m = 0 function is the largest, and that the functional
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values decrease monotonically as m increases from zero. This be-

havior stems not only from the factorial coefficient, but also from the

integrand factor It/(1 + t)] m

The variation with n is qualitatively similar to that of m.

Here again, for fixed x and m, the n = 0 function is the largest, and the

functional values decrease monotonically with n. Because of the

factorial coefficients multiplying the confluent hypergeometric function

S(1 + M + 2j, 1 - (2N + V -2j), Y ) in the finite series (E29) for the

centered Coulomb matrix element, we postpone a discussion of these

results in terms of these particular values of n and m.

Computation

In Fig. El is displayed the variation with x of the confluent

hypergeometric function '(1 + m, 1 - n, x) for several values of m

and n. These numerical values illustrate and confirm the limiting values

and general behavior described in the preceding sections.

The functional values plotted in Fig. E 1 were computed through

use of subroutine CHGF3, a Fortran II listing of which is available.

This subroutine evaluates the series expansion (E52) in a direct and

straightforward manner. The expansion was regarded as the sum of a

four-term infinite series plus a finite series:

S(1 + m, 1- n, x)

= "'" )+ r'T k + ' (m +I)! k -o (E62)

The general terms Tk were evaluated recursively by means of the

relations

)(I + T11

< vnj *CMmvi ) X_ 1 (E63)
k \Ik) k (r --.-



x

E

I

Fig. El. Variation with x of the confluent hypergeometric function f(- w I I- n.X)

for several values of m and n.

X -
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TkF) ) k-
-rk (- n+k) k X

- (m+ + ) +--- t .n~w)k- + (3)

k-i

kT' [crk-)(+ k)X]
= k --c k Tk-'

where k = 1, 2, 3, ... (or up to k = n - 1 for T,

starting (k = 0) values are

L0)
o

Xn
x! I I + +)

j- N(i0)]

Ii x

The infinite series was evaluated until the successive values of the

running sum S 14 (p) of terms satisfied the inequality

S, (F) - 5+ ( P-)
< Error (E73)

(i'-')

(E64)

(E65)

(E66)

(E67)

The

(E68)

(2) X

11To !
(3) X

T. n

(E69)

(E70)

(E71)

(E72)

(A+k)- ' (Y +k))

= 0- )!
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Error values of 10-5 were used. Decreasing error to 10-8 did not

materially change the 8 digit results.

Also written was subroutine CHGF4 for the evaluation of the

asymptotic expansion (E53) of thefunction (1 + m, 1 - n, x). The

recursion and starting relations are

Lr kx k-I (E74)

]_:a L I (E75)

where (153) was considered in the form

~ (j X, °t,) = - (E76)

We see that the asymptotic expansion cannot be usefully employed unless

x >> (m + 1) (m + n + 1). (E77)

The routine is coded to evaluate the sum in(E76) up to but not including

the smallest term. This smallest term T t+1 is considered to be the

uncertainty in the value of the sum. See, for example, Morse and

Feshbach [1953, p. 434] or the monograph by Copson [1965].

E4 Variation of the Argument '

The argument of the confluent hypergeometric function appear-

ing in the centered Coulomb matrix element (E2 9) is the quantity

)k,±k. I±, ±k. I_.e I+ l I (E78)

(eB I3
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2 22 2_
where -2 = k and = eB/2h. The shielding parameterA, has

been set to zero. The plus sign refers to transitions in which the

direction of the z momentum is reversed (back scattering) while the

minus sign denotes forward scattering transitions in which the

direction of the z momentum is the same before and after the encounter.

We are interested in the size and variation of ' with parameters such as

the magnetic field B and the initial z energy E l.
The matrix element will be employed in a transition probability

or cross section which takes on non-zero values only when energy is

conserved. Thus for a given N 1, Pzl' and B, the only values of Pz2

which hold any interest are those given by

Te JPEI + (N,- N.) (E79)

When this relation is substituted into (E78), we obtain the expression

for Y in which conservation of energy has been incorporated

tI I I N±L) (E80)

Recall from appendix C that the group I (origin inside the gyrocircle)

and group II (origin outside the gyrocircle) energy eigenvalue equations

are

E = - b / m + w, (N+ M ) (E81)

Ez k/Zm +w (N+ ) (E82)

Because M is conserved in the transition, the forms (E79) and(E80)

apply to both I --- I and II -- II transitions. In addition, the conservation

of M precludes the need for consideration of I -W--*II transitions.



Table E2. Properties of the function y near the origin and at the end points of the
independent variable (N,-N±)/N,, with energy conservation incorporated.

Value of Y Slope of y
Value of
(NI - N2) N rl

(N1 - N 2  'Y+ (back) y (forward) y+ (back) .Y (forward)

IN 1 - N 2 1 (N 1-N2) (N 1-N2 (N1-N2) 2 (N1-N 2 ) (N1-N 2<<2N 1N4N1 I -  2 1 -
N z z1 2N 4N 2N 4N 2NZ1z 1  z z z z

0 4 Nz 1  0 2 0

-1 N 1  Nz 1 + -

N1
21 N N 1  N

N 1 N 1  N N 1  N 1
( 1) 2N 4N 2 N 4N 2N

zl . zl . zl- zl zl

(>> 1) .i IN1
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Y4.,

6 2 > slope >I

or/emn, ick scationfing bra nchpr

Aprxmt4 slope aeI N

0fi0 I

matrix element, with conservation of energy irancorporated.

Approximately to scale.
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The extent of the branches on the positive side of the origin

(the region of downward transitions and increasing z energy) is controlled

by the ratio N1/Nz. The curves of Fig. E2 were drawn for N1INz1 = 1.

For this value, there are about as many states available for upward

transitions as for downward transitions. As this boundary point moves

in toward the origin (that is, for N1/Nz 1 < 1), the number of energetically

accessible downward states decreases in relation to the number of

accessible upward states. For N1/Nz1 > 1, the curves extend further to

the right with the consequence that there are relatively more states avail-

able for downward transitions than for upward transitions.

As N1/Nz 1~ m, the branches coalesce and become asymptotic

(from above and below) to the line extending from the origin at a forty-

five degree angle. The figure presented by the branches thus has the

appearance of an airfoil, rather than a skew-truncated hyperbola. If we

view this limit as resulting from the limit Nz - 0, then(E83) becomes,

approximately,

Y+= IN,- :) Z Zy E )N,-HiI . (E86)

It follows from the definition of Nz 1 that this is the limiting form of 7 for

the extremes B -- "1 or E -* 0.

In the regions near enough the origin that the inequality

,< I (E87)

is satisfied, the leading terms in the expansion of (183) are

+NI + A ,l (E88)
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2-

The behavior of the energy conserving 7 as B -- 0 or as E1 - o is

contained in these expressions. The forward scattering values 7_ can

in this case be very small, and the back scattering values 7+ very large.

Note that the inequality (E87) places no restriction upon the size of N 1

relative to Nz1, but rather upon the change of the quantum integer N

compared to the initial N . That is, we can adjust Nz 1 over a fairly wide

range of values and still satisfy(E87). This inequality is equivalent to the

requirement that the relative change in z energy be small,

- -< . (E90)

Thus the forward scattering expression(E89) for y. may be said to describe

the small angle values of 7.

E5. Behavior and Properties of the Centered Coulomb Matrix Element

In the preceding sections we have discussed the behavior of

the confluent hypergeometric psi functions and the variation of their

argument y. Many of the results of these investigations appear in the

figures and tables numbered El and E2. Our task now is to combine these

results so as to gain some insight into the behavior and meaning of the

rather formidable-appearing expressions (E29) and (E42)for the centered

Coulomb matrix element.

Our interest centers primarily upon the off-diagonal or v > 1

matrix elements since these correspond to some change in the incident

eigenstate .NMk* We shall consider its symmetries and general behavior,

and obtain a relatively simple expression embodying the principal con-

tribution of the matrix element. The diagonal or V = 0 matrix elements
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correspond to no change at all in the incident eigenstate since M is

conserved and a change of N implies a change of k (if energy is to be

conserved between initial and final states). The shielding parameter p

holds little interest presently, and is set to zero. The general effect of a

FL > 0 is to increase y and consequently to decrease the value of the matrix

element, as we shall see.

In general, as a function of 7, the matrix element has a

maximum at the origin, or if 7 does not go to zero, at the minimum value

of 7. The matrix element is always positive definite, and decreases

monotonically as y increases from its minimum value. This behavior

reflects that of the component confluent hypergeometric psi functions

plus the fact that the terms of the finite series do not alternate in sign.

Whether the shielding is present or not, the forward scattering small

angle (small change in z energy) transitions contribute most to the values

of the matrix element.

The Diagonal Matrix Element

The v = 0 diagonal matrix element contains at least

a logarithmic singularity for any N and M. As may be seen from the

following representation of(E29), this singularity is contributed by the

j = N term of the finite series, since v = 0 implies = 0:

7r Q -r ( + ) -1 i r -+ 'V )
( .,A.,N , -r, - N! (N+v)!

+ I +M+ +NI-(V2Z)) Y)

+-.--+ L I + ), I -vij;r ((E91)
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This is a manifestation of the long range character of the Coulomb

potential. The singularity would, of course, not appear for M > 0.

The Off-Diagonal Matrix Elements

It is the off-diagonal or v > 1 matrix elements which will be

used in the Born approximation cross section calculations of the following

appendix.

The matrix elements are symmetric as regards transitions

between any pair of states. The matrix element for the transition

N2  A N+ v N N+ v

is the same as the matrix

element for the transition

N 1  N N2  N

Recall our useage of N as the minimum of (N 1 , N2 ) and of v as the absolute

value of the difference. This symmetry property is manifestly exhibited

by the forms (E29) and(E42), and is expressed in an abbreviated manner by

the equation

(E 92)

The general appearance of the forward and back-scattering

matrix elements is sketched in Fig. E3. These curves represent a crude

mapping of the energy-conserving ' vs (N 1 - N2)/N z 1 curves onto the

corresponding < q Ac > plane, such a mapping being guided by the

functional behavior of the confluent hypergeometric functions and by the

fact that the terms of the < q -Ac > finite series do not alternate in sign.

The points at the origin should be excluded as they are associated with

the v = 0 matrix elements.
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NM tIi
_T _

forwardc scQItering
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I )N ,N±I
regioi where P <
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sccav'ertng
branch

-I 0" ' I'

N,, Net
(Drawn -or N,/N, 1)

Fig. E3. Sketch indicating the variation of the off-diagonal

centered Coulomb matrix element, with conservation of energy

incorporated. Ordinate not to scale.
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In these curves are, of course, several flaws or points of

ambiguity which are attributable to the qualitative procedure used in

generating them. The dependence upon M is not indicated, although we

shall see that the matrix element decreases as M is increased. The

ordinate of this graph is compressed and is not linear as was that of its

antecedent, Fig. E2. Another significant feature which is not indicated

with fidelity in Fig. E3 is the ordinate value corresponding to Y = Nz 1.

This ordinate value separates the forward and back scattering branches

and may be moved up or down by adjusting the value of N 1. For example,

by choosing NZ1 >> 1, this ordinate value may be quite small compared

to the maximum value. Since we have seen that Nz 1 can reasonably be

quite large, this is a case of some importance in that it may justify

neglect of the back scattering contribution to a cross section.

Even with these faults, the figure does display two significant

properties of the centered Coulomb matrix element. The first of these,

as already pointed out, is that the matrix element for forward scattering

is always greater in value than that for back scattering. The second

property displayed in Fig. E3 is the preference for equal upward or

downward transitions from a given state. This property should not be

confused with the detailed balancing symmetry discussed at the

beginning of this section. We are here interested in which of the following

two transitions is favored:

N,+ V

upward, with decrease in z energy;

N
1

downward, with increase in z energy.

N 1 v

Note that this question involves three states, whereas the earlier involved

upward and downward transitions between any two states.
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The shape of the forward scattering curve in Fig. E3 indicates

that downward transitions are favored over equal upward transitions.

That is, provided states are available (and this is controlled by the ratio

N1/N z 1) , the forward scattering matrix element apparently exhibits a

tendency for the z energy to increase at the expense of the perpendicular

energy, and for the radial extent or size of the emergent eigenstate to be

smaller than that of the original state. These statements lose validity

for small angle transitions. As we shall be able to analytically demonstrate,

upward transitions are favored in the forward scattering region quite

close to the ordinate axis, where (v/N z 1) << 1. This discrepancy may

be attributed to the fact that, in our mapping of y into < q Ac >, the v

dependence of the factorial coefficient in the finite-series was ignored.

In the only region where the confluent hypergeometric functions exhibit

no dependence upon N 1 (the small angle region v /Nz << 1 of the forward

scattering branch), the v dependence of the factorial coefficient becomes

dominant, and indicates that upward transitions are favored. In all other

regions, it is assumed that these coefficients (which have no Nz 1 dependence)

do not dominate the behavior of the hypergeometric functions sufficiently

to modify the appearance of Fig. E3.

The back scattering matrix element exhibits no such subtleties.

In this case, any upward transition is favored over any downward transition

(it is unnecessary to restrict ourselves to equal upward or downward

transitions). Thus in back scattering, the dominant tendency is for a

decrease to occur in the z energy with accompanying increases in the

perpendicular energy and eigenstate size.

At this point there arises an interesting question, whether the

sum of transitions from a given state to all accessible states is pre-

dominantly upward or downward. Although this question is more properly

discussed in terms of a transition probability or a cross section, we may

at this point begin thinking about it in terms of the matrix elements.

Considering these only (ignoring the role of the density of states function),
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it appears conceivable that for smaller values of Nz1 (or for some optimum

value if the sum of N 1 and Nz1 is to remain constant), the total area under

the two LHS curves of Fig. E3 could be greater than the area under the two

curves on the RHS. The existence of a critical value of NZ1 (or of the

ratio N1 / N Zl ) separating regions of predominantly upward and downward

transitions has interesting implications since this number is to some

extent under experimental control. For example, as this boundary is

crossed, there should be enhanced radial diffusion. An electron cyclotron

maser might become self-pumping, or even oscillatory as the induced

radiation acts to decrease the perpendicular energy. One would expect

these effects to appear as the magnetic field is slowly increased. An

increasing magnetic field corresponds to a decreasing Nz1 which in turn

raises the value of the matrix element boundary point separating the

forward and back scattering branches.

E6 The Centered Coulomb Matrix Element in the Limit of Small Angle

Scattering

We have seen that in the region near the origin, that is, when

N1 - N21 < Nzl, the arguments Y may be approximated by the expressions

(E88) and (E89). We give here a simplified form of the forward scattering

matrix element valid when this inequality is satisfied. This form is in

essence the constant and linear terms of a power series expansion in

B V 2/EZ1 about the origin. It is obtained by collecting the zeroth and
zi2

first order terms of (E29) and then substituting = V /4Nz 1 .

The zeroth order term is

<. >o '. ar/E(E93)

- \M+ !) (N+V+M! N! (N+V)!I

Sm- + V)!
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where So is the finite sum

j=C (M+3J)! j! + -j)! (N-J) -

j - :ZN+-j

I V( M - :;-N + (E94c)I M +('- v)!
"" (M+N~V! N:

The analytic value of this sum was obtained by guessing. The zeroth order

term assumes the simple form

S ) ' V r! (N + + M
(E95)

This is the exact value of the forward scattering matrix element near the

origin (see Fig. E3). Note that we are explicitly forced to exclude the

value v = 0.

The first order term is at once more complicated because

of the necessity to provide separately for the cases v = 1 and v > 2. For

v > 2, the linear term of the confluent hypergeometric psi function is

~(ltM +Zj, I-1 N + P- 2.3 b'

(E96)- 2v ++ '-2! ) -
(M,2N+ PY!

(E94a)

(E94b)
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This form applies for all j from 0 to N. If, however, v = 1, the j = N

term must be modified to

(_ Y) JLY -(M+2H+) +-')] (E97)

The necessity for these two forms may be understood by examining

equation (E91) in conjunction with Table El. Upon combining these linear

terms with the factorial coefficients of the finite sum, the linear term

of the matrix element may be written in the form

(niM)! (N+v+M)! ' (N+ V)!------------- S,

+ 4 (- (- (M 2.)+ X (E 9 8)

2
where 7 is to have the value v /4N and S is the finite sumz 1

N (r. '2j+)! N+ -'-2J)+

- l (r1.j )mJ~ -+Zj (') (E99b)

j-o

The Kronecker delta in(E98) simply subtracts off the j = N term of the

finite series when v = 1, and adds on the logarithm-lower case psi
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function combination. Since this combination is always positive for the

present regime of v, the value of(E98) is always negative. Unfortunately

the simplicity and utility of this result is diminished by our present

inability to perform this sum. This in spite of its similarity to the So

of(E94). Nevertheless, what we have in this term is a parabolic fit about

the origin of the forward scattering branch depicted in Fig. E3. It is

particularly frustrating to be unable to simplify S 1 since we now have at

hand the constant and linear dependence in the magnetic field of a matrix

element in which this field has been incorporated as a major effect. A

simple form for S 1 would thus encourage further calculations of an averaging

or statistical nature.

Before moving on to consider the matrix element for back-

scattering when IN 1 - N2 1<< Nz 1, let us see what the constant (in Nz 1)

term has to say about the preference for upward or downward transitions.

For M f 0, there is a slight tendency for upward transitions to be favored

over downward transitions. This result follows from the observation that

the ratio

W+V

S+M +-11 N-++M (E100)

is greater than unity for M > 0. As discussed earlier, this result serves

to point up the significance of the v dependence of the factorial coefficients
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in the region near the ordinate axis on the forward scattering curve

of Fig. E3.

We consider next the value of the back scattering matrix

element when Y << N In this region, the argument + = 4N 1' the

numerical value of which may reasonably exceed 104 (equation (E84)).

We assume that the Y value is large enough that we may employ the

asymptotic form (E60) of the confluent hypergeometric functions. In

this limit the matrix element assumes the form

<8-~ ~ /f~- , N(+M)! (N+Y+M)! -1-M

" N! (N+ ')! (M+-J)! -J (ElOla)

4-- "--- ° "

(N+ M) (N+ YM) I-M N (N + V) (M -)(ElOb)
Y) - +  ---------- + (E101b)

It is evident that all terms after the first may be ignored if

Y > N (N + ) ( 1-2-) . (E102)

Using only the first term of (E101b), the ratio (~-A,. <A,>

for the value += 4Nz1 is

<I.. > ( t Ev+0M)! )

< % t4 +V)!

M01 I r-alm ) (E 103)



-121-

This ratio is much less than unity, as indicated, if the original

criterion for the use of the asymptotic form (E60) is satisfied.
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APPENDIX F

PROBABILITY DENSITY FLUX ASSOCIATED WITH

CYLINDRICAL LANDAU EIGENFUNCTIONS

Fl1 Content

Presented in this appendix are expressions for the probability

density fluxf associated with any prescribed wave function !(i, t)

and in particular with the cylindrical Landau eigenfunctions

'PM = e (F1)

Discussed in addition is the derivation from Jz of the flux component

rF utilized in the expression connecting the cross section a- and the

transition probability or rate w,

w = Ns r. - (F2)

where N is the total number of scatterers effective in the volume
sc

under consideration. The flux F, is an areal average of J in the q-4
z

plane. It is necessary because in Jz is preserved the radial structure

of the eigenfunctions (Fl).

F2 Origin of the Flux Concept, and General Expressions

The concept of probability density flux J arises because of the

presence of the expression for J in the sourceless conservation

equation for the probability density F T :

(F3)+ -- o

where E '= (', t) and

=y (F4)

RNM (0 fm (0) Zk (0) -

- M
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The conservation equation follows from the time-dependent Schroe-

dinger equation (of which '(f~, t) is a solution) together with the

requirement of time invariance of the probability density norm 5f dr :

dL 0. (F5)

From this also follows the condition that the Hamiltonian H be

Hermitian, i. e. , that it satisfy

f HI-d-= f / H!P o (F6)

dr denoting the usual three-dimensional volume element.

In the cylindrical coordinate system spanned by the unit

vectors Q x p = z, the components of J are

i"L_ - f (F7)

T A# (F8)

: (F9)

F3 Flux Associated with Cylindrical Landau Eigenfunctions

The set of eigenfunctions indicated in (Fl) were obtained as

solutions to the Schroedinger equation for the Hamiltonian H =

(~- qA)2/2m. The factored spatial wave functions, normalized to

unity as Kronecker and Dirac delta functions, are:
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Zk= .- e (F12)

-2

where p2  eB/21i (dimensions of m 2, and N and M are independent

positive integers (including zero) having no upper bound:

N 0, 1, 2, 3, ...

M = 0, 1, 2, 3, ...

The derivation of these eigenfunctions and the interpretation of the

quantum integers N and M were considered in appendix C. The

magnetic field B = Bz was generated from the vector potential

A =8 ( (F13)

through the relation B = curl A. This form may be recognized as a

particular case (for the present coordinate system and orientation

of B) of the general vector potential describing a constant and uniform

magnetic field,

A x (F 14)

The cylindrical components of J generated from the Landau

eigenfunctions indicated in (Fl) and given explicitly in (F10) through

(F12) are:
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= o (O (F15)

RN- B (F16)

T7- -- yy -rr .
(F17)

The component J, iszero because the e eigenfunctions are real and

because the potential A has no radial component. The factors 1/4 2

in the and z components originate in the normalization constants

of the corresponding eigenfunctions. The choice of upper or lower

sign should conform to the choice made in the eigenfunctions.

That these flux components have dimensions of (m sec)-

instead of the expected (m2 sec)-1 is due to the method of normal-

ization of the z eigenfunctions. They are presently normalized to the

Dirac delta function S(k1 - k2 ) over the range - - < <a. In

view of this normalization (reflecting the presence of a continuous

eigenparameter), the probability density is given by 'NMk NMk dk

dk instead of the customarily encountered 4 . Similarly, the

flux of probability density associated with the eigenstate (N, M, k)

is correctly specified by J dk.

F4 The Averaged z Flux

The expression (F2) may be viewed as an experimental rela-

tion giving the number per second of events arriving at a detector

due to scattering of the incident flux 1' by agents (N of them
sc
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in the scattering volume, acting independently) of cross section a- .

The nature of both the incident flux and the events to which the detec-

tor is sensitive must be carefully specified and must be consistent

with the conversion process which the cross section represents.

Further, the flux Fr must in principle be an experimentally measur-

able quantity. This in turn implies that F . must be expressable in

terms of expectation values or diagonal matrix elements. We calcu-

late here the ". associated with a single eigenfunction '-PNMk"

The radially-varying flux component JZ dk of equation (F17)

represents the particle current associated with the state (NMk) which

flows across a unit area erected normally to the z axis at the radial

position e. Thus the quantity Jz () dk e dl d4 represents the
-1l

particle current (dimensions of sec ) flowing through the area odc lo.

The total current associated with the state (NMk) follows as

I 0 T(w) dk l~ce d (Fl8a)
Z

- +4k f SR,(Me e (F18b)

ti k (F18c)

We next calculate the area through which this spatially-localized

particle current flows. This average radial area is defined as

0l ' M f e (F19a)

o o

-M + .N + I (F19b)

The radial integral in (Fl19a) was evaluated in section D3.
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The flux r is then defined as the total current divided by the average

area through which the current flows:

I, -_ ( - (F20)

This result is interesting in several respects. It says that the area-

averaged flux associated with the state (NMk) increases with the

magnetic field B (through P2) and decreases as the integers N and M

become larger. The magnetic field dependence stems from the fact
22

that the argument of the radial eigenfunctions RNM is P . Thus

as B is increased, the eigenfunctions occupy smaller and smaller

areas. The same total current must flow through a smaller area with

the result that the flux (referred to a constant area) increases. The

integer dependence reflects the fact that the radial area occupied by

the eigenfunctions 1 NMk increases as these integers increase.

Both of these effects are evident from Figures C1 and C2, pages 53

and 54. Finally, if we may be allowed to compare the r of (F20)

with the product n v, then the quantity 2 2 (dk/27r)/(M+2N+l) may be

thought of as the number density associated with the state (NMk).

The flux ' may be defined equivalently as the ratio of

expectation values,

which may be used to calculate the area-averaged flux associated
- k (F21)

zizF'j n Ln Tr r kIt is this more general definition (with replaced by UNN
which may be used to calculate the area-averaged flux associated

with the uniform beam U of section C4.
z



-128-

APPENDIX G

DERIVATION OF THE DIFFERENTIAL CROSS

SECTION FOR SCATTERING IN A

MAGNETIC FIELD

G1 Introduction

When the cylindrical Landau eigenfunctions are employed as

the basis set for Born approximation calculations of scattering in a

magnetic field, the transition probabilities and the related cross

sections involve transitions from a one dimensional continuum in

which are embedded discrete states to a second such continuum-

discrete system. The transition probability and cross section ex-

pressions must reflect this circumstance. Most expressions found

in texts do not. Although they may be generalized on an intuitive

and dimensional basis so as to encompass the present situation, it

was thought prudent to derive the expressions by some standard

method. Accordingly, we present here, in abbreviated form, the

Dirac time-dependent perturbation theory derivation of the differen-

tial transition probability for scattering (by a time independent poten-

tial) from one Landau eigenstate to another. No attempt is made in

this discussion to connect the formalism with experiment, other than

the interpretation of the expansion coefficients. We begin with a re-

view of the method, following closely the development given in Roman

[1965].

G2 General Formalism

The aim of the method is a solution of the complete Schroe-

dinger equation

where ~= (, t), in terms of the eigenfunction set (f of the unper-
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turbed problem, described by the time - independent Hamiltonian

H . However the solution, once obtained, is not used directly.
o

Rather, the expansion coefficients are interpreted in terms of a

probability of transition from one eigenstate of Ho to another, such

transitions caused by the agent or perturbation H1.
The time independent Hamiltonian Ho is presumed to satisfy

the energy eigenvalue equation

Ho * = Et. *. (G2)

where the subscript a stands for the set of eigenparameters (sim-

ultaneous observables) which characterizes the state represented

by the eigenfunction Y. These eigenfunctions are also presumed

to be orthogonal,

and complete in the sense that any arbitrary (though well-behaved)

function may be described in terms of the t:

- i -

Ot q) ' 4 ' ( ) e (G4)

Here 3 stands for the parameters characterizing the state i .

The expansion coefficients follow upon application of ( G 3),

E t

=) e .I (G5)

The meaning of the coefficients follows from the requirement that

f be normalized to unity. Consider first the sequence
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, cc C1 O

P C, • (G6)

Now set 6 =- and sum on - to obtain

Thus jc,,,I is the probability (a pure number) of finding the system

described by the state function <t in the basis eigenstate ec .

With these preliminaries in mind, we define an expansion

solution of the complete problem (GI) which is analogous to the

expansion solution of the unperturbed problem:

Si-

The coefficient g takes into account the effect of the perturbation H1

(whether time dependent or not). Substitution of this solution into

(GI) followed by use of the orthogonality relation (G3) yields the set

7- H, e (G9)

where

Wt a ( EO- E )/(a . (G 10)

This set of coupled (by H 1 ) equations is exact and is equivalent to

(GI). The problem of solving (GI) has been transformed to one of

determining the coefficients g. Once the g coefficients are in hand,

they are interpreted in precisely the same way as were the coefficients

c in the general solution (G4) of the unperturbed problem.
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The solution of the set (G9) proceeds by iteration. As a first

guess, it is assumed that '(', t) may be approximated by j(F, t),

r (G11)

which implies that

(o)
3,~-( ) = Cq )  . (G12)

This approximation, when substituted into the RHS of (G9), permits

an integration yielding a once-refined expression for g,

+ ,) *e) . (G13)

To proceed further, we must know more about H 1. When the

actual H 1 is time independent (as is the Coulomb potential energy),

the H 1 in (Gl) and in (G13) is assigned the time dependence of a step

function. It is considered to have been turned on at t = 0 and remain

constant in time until t' = t at which time it is turned off. The tran-

sients thus introduced are later removed by a limiting and averaging

procedure. Adoption of this time dependence for H 1 enables the

integration of (G13) to the form

z,' - ) . . + 9( - (a) (G14)

The next step is the application of the initial conditions. In-

formation about the state of the system at t=0 must be supplied. Sime

the system was described by the state function j at t = 0, this means

a specification of the coefficients c on the RHS of (G14). Since our

avowed interest is in transitions from one basis eigenstate to another,

we specify that initially the system was in the single eigenstate r.
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That is, we subject (G14) to the initial condition

= sd,Y

To reflect the fact that the initial system is entirely in a single

eigenstate, we have set the index nl to ac. The expression becomes

(I,) -I jW -*

9(t) j- -l (G16)

Thus for a system initially in the basis eigenstate c , the probability

of a transfer (caused by H 1 ) to the eigenstate 3 is

t
,400 12

1+ I, H,,) I.2.
(G17)

i -
4Kl '

The transition probability per unit time is then defined by the tran-

sient smoothing limit

%A S w LI/ J coom (G 18)

If we apply this definition to (G17) and utilize the relation

L -a WL t

we obtain the general expression

W - r1 ) , 12-
4K I

for the transition probability per unit time.

(G15)

= T g W) (G19)

(G20)

+ O,"
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G3 Application to Cylindrical Landau Eigenfunctions

The formalism developed above is now applied to describe

transitions from one cylindrical Landau eigenstate to another.

The relations (G2) through (G4) become, respectively,

H, +NMk = ENMk +NMk (G21)

Nk) fN S M k) (G22)

JCTL k q :) -= Ukj Cr Nk ,dk -  (G23)

where T, U, N, and M are quantum integers and - and k are con-

tinuous wavenumbers. Because of these wavenumbers and because

the general symbol I now contains an integration over a wavenumber,

the interpretation of the coefficients c, developed on the basis of

equation (G7), must be modified. In the present case, speaking with

reference to (G23), the quantity

CTu NMM j d.r ald

is the probability (a pure number ) of finding the system described

by the state function JT.,occumpying the basis eigenstate NMk.

The continuous wavenumbers v and k are understood to lie in the

respective intervals dv and dk. This interpretation is the root

of all modifications of the general expressions and permeates all

that follows.

The expression (G15) which selects a single initial eigenstate

becomes
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CNMk )NMk
N9N, M) M,

S (k-ks) .

When substituted into (G14), one obtains the analog of (G16),

( ) -I

MHM, k,), m24kj .

k 1, t

H eLA

The transition probability per unit time becomes

W=Ic 2.

)HI~)) S(E- E)

where c refers to the set (Nl)M,,k) and 3 to the set (N 2 , M 2 , k2 ).

Since E = i2k 2 /2m, differentials of wavenumber are related toz
differentials of z energy as

dE (G27)

In terms of z energy differentials, the transition probability rate has

the form

-( " (. H,+r12 J I E

(G28)

Because the quantum number M is conserved in the centered Coulomb

matrix element, the argument of the delta function has the form

E - Ea = E, - E, , - iw, (N,- Na) . (G29)

(G24)

(G 25)

k, d kL (G26)

;Ldk = -FI
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If we insert this into (G28) and integrate over the final z energy, we

obtain

1,a ) H.-

(G30)

where energy conservation is implied in the matrix element of the

perturbation H1.1 The expression (G30) is the differential

probability of transition from Landau state a = (N1Mkl) to Landau

state ( = (N 2 Mk 2 ) per unit time for Ez1 in the range dEzl. The ad-

jective differential is not connected in any way with Ezl, but with

the value of M (and in some cases N 1 + M).

follows upon division by the z flux

The cross section

+z4Q +) a7k

=L
cl Eg,

Tr + + 1)~+'

(G31)

The expression obtained is

Z I ( q/ Y)J
*a r, -~c~ A,

(M+LN, + 1)
-----

+ ii LAOC C H- NJ)
eal~HN 2

(G32)

z m
E 3 (, NO,

W 2_T

t j
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G4 Separation of the Two-Particle Hamiltonian

The problem as stated above and as treated in this work has been

simplified in at least one important respect. The problem has been

considered from the beginning in a frame in which the seat of the

perturbation potential energy is at rest. That is, the original,

Laboratory frame, two body problem has been treated in terms of an

equivalent single particle moving in a fixed potential field. We

consider here the implications of this simplification in the context of

the present problem of interest.

For two particles of charge and mass (q, m I) and (Q, m 2) moving

in a uniform magnetic field, the Hamiltonian describing their motion

is approximately,

H + +Z JL,- , (G33)

where

AA - 3 x r, (G34)

The charge q is instantaneously Located by the position vector r and

the charge Q by r . Included in this Hamiltonian has been the kinetic

energy of each particle and the Coulomb interaction potential energy,

depending only upon the distance between the charges. Their magnetic

interaction, for example, has been ignored. The vector potentials

(G34) satisfy the gauge condition V.A. = 0 so that the commutator
1

[, A] = 0.

As is customary in analogous zero magnetic field treatments,

we transform the system to the relative (i) and center of mass (R)

coordinates by means of the prescriptions

_R- r=- r, 2. (G35)
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Y + m, j; r, (G36)
R" +,+;r 2  " + r,,

Note the effect of making m 2 (the charge Q) so massive that it may

be considered fixed. As m 2 --~, the vector R goes into r 2 , in this

limit a constant vector which may be set to zero. This corresponds to

location of Q at the origin. The motion of the system is described,

in the limit m 2 oo, by the vector r = rl.

When the Hamiltonian H(F 1 , r 2) of (G33) is subjected to these

transformations, the resulting form H(r, R) may be written as the

sum of three parts,

H (C,9 ) - HR(-) + Hr Cr) + He C (,R (G37)

where, as indicated, HR describes the center of mass motion and

H the relative motion. The component H consists of terms repre-
r c

senting the coupling of the relative and center of mass motions.

The forms of these components are as follows:

HR = - + , . (G38)

-+ - ,

+ - +Z L. (G39)
2.M MIn.
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H=~ =- -

S % m, ; mm, (G40)

where M (ml + m 2) and E m 1 m2/(ml + m2
The object of these manipulat ions is to force the coupling terms

(of this or any other transformation) to vanish under conditions which

do not severely restrict the generality of the problem at hand. Then

the remaining two components of the motion may-be studied separately,

there being no interaction between them. It is seen from (G40) that we

cannot in general achieve this objective by means of this transformation

alone. Only if the charges and the masses of the two particles are the

same does He vanish. For this case, when Q = q and m i = m 2 = m,

the Hamiltonian becomes

H =  + + ?A ()-I) (G41)

where 4 = m/2 and M = 2m. The center of mass moves as a free

particle in the magnetic field. The relative motion takes place in a

Coulomb field fixed at the origin, as well as in a magnetic field.

In the limit m2--oo, the Hamiltonian becomes

H g A (3 '11 )  (G42)

where we have set R = r 2 = constant = 0 as described earlier.

Even though the usual center of mass and relative coordinate

transformation does not by itself separate the motion of two charged

particles moving in an external magnetic field, Knox [1963] and
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Dexter and Knox [1965] have cited a further transformation upon the

Schroedinger equation constructed with the transformed Hamiltonian

(G37). This apparently goes further but does not completely separate

the motion. The possibility remains, however, that the coupling terms

could be considered as small perturbations. This further transformation

was not investigated.
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Crystal Silicon, to 10, 000 Bars".

The year beginning June, 1960 was spent in Northwest Greenland
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Laboratory in New Mexico, studying air fluorescence.

The author enrolled at MIT in the Fall of 1961. During his
stay in Cambridge, he spent two summers and other periods in the
employ of Edgerton, Germeshausen, and Grier, Inc. This association
was most beneficial. Activities there included an absolute measure-
ment of the transient 3914 X air fluorescence pulse from the nuclear
detonation Starfish, study and interpretation of the EM and optical
signals from such detonations, feasibility of a Lyot birefringent optical
filter operating simultaneously at four wavelengths, and photometric
measurements of the outer corona during the solar eclipse of 30 May 1965.


