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ABSTRACT

The propagation of linear wave motions in inviscid, stratified, ideal
gas atmospheres is described by obtaining the relevant propagators (or
Green's functions for the initial value problem). The transient acoustic
oscillations, buoyancy oscillations, and gravity waves for an unbounded
non-rotating atmosphere are derived.

Introduction of the hydrostatic assumption is found to
eliminate the acoustic and buoyancy oscillations and modify the gravity
wave. Time independent potential vorticity motions result for an atmos-
phere in constant rotation, but these also lose their energy by radiation
when the influence of the earth's variable vorticity is taken into account
by the "P " approximation. A "filtering" method of synthesizing propa-
gation equations for elementary propagators from their contour integral
representations is given.

The excitation of the Lamb boundary wave from a point heat source is
analyzed. Rossby wave motions and gravity wave motions for an unbounded
planar atmosphere excited by several different kinds of switch-on forcing
are obtained. The quantitative details are obtained by steepest descent
integrations, but the "group velocity" concept is adequate for a qualita-
tive description of the resulting motions.

A theoretical analysis of forced hydrostatic atmospheric wave motions
on a rotating sphere is given. A conservation of energy equation is ob-
tained, several related spectral theorems are established, and the inte-
gration of the equation for forced tidal notions on a sphere by expansion
in Legendre polynomials is discussed.

An ?xample of the motion of a convectively unstable atmosphere is
given to illustrate instabilities that grow asymptotically as exp(ct),
exp(ct" ), and exp(ct'1 3 ), Re c > 0.

Thesis supervisor: Victor P. Starr
Title: Professor of Meteorology
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"if you will have a tree bear more fruit than it used to do, it is not
anything you can do to the boughs, but it is the stirring of the earth
and the putting of new mould about the roots that must work it. "

quoted from F. Bacon by M. Stone
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I. INTRODUCTION

A. On Atmospheric Wave Propagation

A fundamental goal in the study of the dyna iics of continuous

media is to describe the evolution of initial data with time, given various

possible forms of externally imposed forcing. This study is concerned

with the small amplitude motions of ideal gas atmospheres in simple

planar and spherical geometries. We shall obtain Green's functions

for the small amplitude motions of such atmospheres. These functions,

which we designate propagators, following the usage in the physical

literature, provide a dynamical description of motion over a time

period sufficiently brief that the nonlinear effects can be approximated

as time invariant spatial functions. The study of propagators leads

to a systematic classification of the various types of atmospheric

motions and provides guidance in the more detailed analysis of specific

dynamical phenomena in planetary and stellar atmospheres.

When a stable continuous medium is displaced, it experiences

an acceleration in the direction of its original equilibrium, waves

are excited which then transmit energy throughout the medium. The

equations governing such macroscopic phenomena are usually nonlinear.

Because nonlinear motions are in general quite difficult to analyze

directly in complicated physical systems such as atmospheres, it is

convenient to consider nonlinear effects as one type of forcing function
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which produces a response in a linearized system of equations. This

permits a simpler analysis of the coupling between various scales of

motion. The concept has been used by Lighthill (1952) and Unno-Kato

(1962) in discussion of the generation of acoustic motions by turbulence;

by various authors including Kibel (1955), and Dobrischman (1964) in

analysing the approach to geostrophic balance of large scale atmos-

pheric motions, and by Saltzman (1965) in the discussion of forced

mean planetary scale motions, as well as by many other authors in

other contexts. We shall likewise take this viewpoint so that the

atmospheric wave phenomena considered will be treated as linear

phenomena with nonlinear terms in the equations of motion considered

to be one kind of forcing function. In mathematical terms, we are

concerned with the reduction of nonlinear differential equations to

nonlinear integral equations. This is frequently the first task that

must be done in an abstract mathematical study of a system of non-

linear differential equations.

Observational studies of wave phenomena in the terrestrial

and the solar atmosphere have led to an increased understanding of

the various manifestations of transient motions that occur in com-

pressible ideal gas atmospheres. Unfortunately, little observational

information on the motions that occur in other planetary atmospheres

is yet available. Such studies would assist astronomers and meteor-
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ologists in distinguishing between the accidental and the essential

features of the individual systems. This is achieved to a certain

extent by the studies of laboratory generated fluid motions, but

usually, different boundary conditions lead to very different mathe-

matical problems in the analysis of such motions and make direct

comparison somewhat difficult.

Many of the observed atmospheric wave phenomena are excited

by energy inputs that are localized in time and space. Energy sources

are frequently a part of the nonlinear internal dynamics of the system.

Recent astronomical studies have shown the presence of motions in the

solar atmosphere ranging from those associated with the small gran-

ulations and having periods of a few minutes, up to large scale motions

with periods of many solar days and with spatial extent not much smaller

than the radius of the sun itself. Many physical effects including radi-

ative transfer, variable gas constants, and magnetic effects must be

incorporated into a complete dynamical description of stellar motions.

(These are not directly considered in this study). The smaller scale

motions of the solar atmosphere are excited by a zone of convection.

The large scale surface motions are thought to occur as a result of

the baroclinic release of available potential energy associated with

a north-south horizontal solar temperature gradient. Whatever the

exact mechanism by which these large scale motions are generated,



-4-

it is clear that their subsequent propagation will be intimately related

to the solar rotation and will be dependent on the confining effect of

the approximately spherical geometry of the sun. One should also

mention the extensive observational and theoretical study of variable

stars, which are found to oscillate radially with periods of a few hours

to several months.

The smallest scale motions in the earth's atmosphere are the

acoustic waves, and the detailed study of such motions is in itself an

extensive discipline of the applied sciences. The higher frequency

components of these motions are rapidly damped by viscosity and so

it is the "low frequency" acoustic waves which are observed geo-

physically, such as those excited by auroral disturbances and detected

at the ground. Acoustic waves are frequently observed in the form

of shocks or pulses. This is accounted for theoretically by the lack

of dispersion of energy in different wavelengths in the linear theory

plus the tendency of the nonlinear effects to intensify existing pres-

sure differences. At sufficiently low "frequencies" the motion is highly

modified by gravity and resulting motion is known as an acoustic-

gravity wave.

Acoustic-gravity waves may be excited in all highly turbulent

regions such as thunderstorms, boundary layer turbulence, clear air

turbulence arising as a result of shearing instability of the jet stream,
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air flow over irregular topography, or irregular surface heating.

Study of the elementary propagators of these motions permits con-

clusions to be drawn on the common aspects of all such motions and

simplifies the detailed analysis of each individual problem.

When the direction of propagation of a wave motion in a stra-

tified atmosphere is nearly horizontal so that the sine and the tangent

of the angle of propagation, measured from a surface of constant

gravity, are approximately equal, one is permitted a convenient

theoretical approximation known as the long wave, or hydrostatic,

approximation. Oscillatory motions in this case have frequencies

small compared to the parcel frequency. Figure 1-1, taken from

Mahoney (1966), depicts the vertical structure of the horizontal

velocity of a gravity wave imposed on a current of much longer tem-

poral duration. Wind data for such studies is obtained from the radar

tracking of falling spheres. Complicated surface phenomena such as

squall lines and rapidly moving cold fronts are related to ideal wave

phenomena in this approximation, both as sources of wave energy and

as manifestations of essentially hydrostatic degrees of freedom of

the atmosphere.

Many atmospheric motion phenomena are of sufficiently great

horizontal extent that the sphericity of the earth becomes important

in analysis. For example, it has been found observationally and
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theoretically that essentially instantaneous local introduction of thermal

energy of order of magnitude of 1024 ergs or greater, produces an

acoustic gravity wave, which propagates radially along the ground and

travels completely around the earth several times. The first realiza-

tion of such phenomena which was subjected to scientific investigation

was the explosion of the Krakatoa volcano in 1883. See the discussion

of Taylor (1929/30). Recent man-made "aeroclysms" have provided

a repeat performance, but those parties directly responsible have

agreed to discontinue such studies because of the resulting adverse

effects on the health of the planetary inhabitants. Figure 1-2, which

is reproduced from Wexler, and Hass (1962), gives the pressure trace

from atmospheric pulses originating in Siberia in 1961, and Whipple's

composite of the great Siberian meteor of 1908.

When the time scale of motions approaches and exceeds the

terrestrial day, one finds observationally and theoretically a wealth of

new motion phenomena, not directly present in nonrotating systems. It

is found that all atmospheric gravity waves which are excited have fre-

quencies greater than some average Coriolis frequency. Thus trans-

ient gravity waves will have a time period less than a day, except

possibly in the immediate vicinity of the equator, where zonal oscil-

lations of periods up to several weeks may occur. All atmospheric
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motions outside the tropics with time periods of several days or more

can be considered a vorticity mode motion. The conservative quantity

associated with this mode is sometimes called potential vorticity. Such

motions are distinguished by an approximate state of balance between

the pressure field and the wind field, which is known as geostrophy.

These motions are a prime concern of dynamic meteorologists, since

it is this mode of motion which releases the available potential energy

and gives rise to cyclonic storms.

As a result of the variation of the earth's vorticity, potential

vorticity motions in a resting atmosphere propagate as waves. When

these waves are analyzed into spherical harmonic components, the

phase propagates to the west. The phase speed is very slow for the

smaller scale potential vorticity waves, so that the distorting effects

of horizontal and vertical wind shears are extremely important in the

prediction of the actual evolution of such motions, and it is necessary

in practice to perform the requisite computations by the use of high

speed computers. One may distinguish between the smaller scale po-

tential vorticity waves and the transient and steady "planetary scale

motions", where the dynamics should be formulated on a spherical

earth. Figure 1-3, taken from Teweles (1963), shows a stationary har-

monic planetary wave as revealed by observation.
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Finallf, we mention the study of atmospheric "tidal" oscillations,

a branch of atmospheric dynamics with perhaps the most interesting,

and certainly the oldest, history of theoretical and observational study.

These are hydrostatic gravity-acoustic waves, occuring on a rotating

sphere. The prevailing opinion over the last century as to the form

of the forcing of these waves has wavered between thermal and solar

gravitational sources. The much greater magnitude of thermal for-

cing has recently been firmly established, but the exact form of the

forcing is not yet certain. Latest computations of Butler and Small

(1963) favor heating in the atmospheric ozone layer. Figure 1-4, taken

from a study of Avery and Haurwitz (1964) shows the observed surface

amplitude of the semidiurnal tide over the United States.



B. Historical Notes

The first systematic study of the dynamics of an atmosphere

on a rotating sphere was that of Laplace. He assumed that atmospheric

dynamics could be reduced to the dynamics of a homogenous ocean

with a free surface. The first initial value problem in geophysics

to be studied, was that for a point disturbance exciting a water wave.

The methods of solution, as given by Cauchy and by Poisson, were

rather complicated and the treatment of other wave motions in a

similar fashion was thus discouraged. Most other nineteenth century

wave studies considered time periodic motion. There the motions

were mathematically simpler and at the same time experimentally

accessible.

Within this framework the basic foundations for the analysis

of waves in stratified geophysical media were laid by nineteenth

century physicists, especially Green and Stokes. Hough (1898) con-

siderably advanced the theory of the dynamics of homogenous oceans

with free surfaces. Various meteorologists generalized Laplace's

model of the atmosphere as a homogenous incompressible fluid in

order to consider the release of potential energy in the theory of

cyclones. Lamb (1908), (1910) first gave a formulation of the motions

of stratified atmosphere in a constant gravitational field. Eddington

(1919) and later astrophysicists formulated generalizations appropriate
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for study of self-gravitating gaseous spheres. See the Handbuch der

Physik article of Ledoux and Walraven for detailed review of this

subject. Taylor (1936) and Pekeris (1937) formulated the Lamb theory

of atmospheric dynamics for a spherical rotating earth with the aid

of the Laplace-Hough tidal theory. Rossby (1939) gave simple ap-

proximate dynamic models for Laplace's oscillations of the second

class, and greatly stimulated the development of dynamic meteorology

by realizing the applicability of these models to weather forecasting.

The question of the approach of an initial line disturbance on a geostro-

phic ocean to geostrophic equilibrium was raised by Rossby (1938),

studied by Cahn (1945),and by Bolin (1955) for the motions of a

stratified incompressible fluid between two boundaries. Obukov (1949)

gave a mathematical analysis of the initial value problem for a localized

disturbance on a homogenous ocean, and Kibel (1955) generalized the

analysis of Obukov to a stratified fluid. Monin (1958) simplified and

extended this analysis, while Veronis (1958) gave results for the

initial value problem with the earth's variable vorticity considered

in the .. plane approximation. The propagation of a pulse in a non-

rotating nonhydrostatic atmosphere was first studied by Pekeris (1948)

and has been considered by many later writers, the latest being Van

Hulsteyn (1965).

Eliassen (1949) noticed that the use of pressure as a new
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independent variable in place of geometrical height led to useful simp-

lification in the formulation of the equations of atmospheric motion in

the hydrostatic approximation. Since the pressure is proportional to

mass, the effects of compressibility are eliminated except in the

boundary conditions. A similar but more limited formulation has been

achieved by Weekes-Wilkes (1947) in the theory of atmospheric tides

by using standard mathematical substitutions.

Theories have been developed by Dorodnitsyn, Lyra, Queney,

and later writers, for the study of the motion forced by air flows

over irregular topography or heat sources. Flows over individual

hills and ridges are essentially nonhydrostatic phenomena, unaffected

by the earth's rotation, while for sufficiently large scale motions, the

hydrostatic approximation and sometimes also the geostrophic approxi-

mation are made to facilitate analysis. On the other hand, the earth's

rotation can no longer be neglected for these forced long waves. See

Corby (1954) and Krishnamurti (1964), for reviews and further refer-

ence to the existing theory and observations for small scale topographic

waves, and see Rao (1965) for a brief review of geostrophic planetary

waves forced by topography and heating.

The importance of describing atmospheric dynamics as the

evolution of given initial conditions has been emphasized by Case (1962)

and Pedlosky (1964).
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C. The Purpose of This Study

In this thesis we shall examine various linear models of atmos-

pheric motion, formally considering omitted homogenous terms in the

dynamic equations to be included as part of the externally imposed

forcing. There are some observed atmospheric motions where the

omitted terms will be of smaller magnitude than the retained linear

terms and our results can be directly applied to the description of

these phenomena. When this is not the case, our analytic results will

not be quantitatively correct, but will nevertheless be of physical

interest.

In theoretical study of individual atmospheric phenomena, it

is frequently desirable to discard many dynamic terms in order to

isolate those aspects that are of greatest importance in quantitatively

determining the observed motion. In order rationally to determine

approximations to be applied, it is necessary to understand what is

being omitted. Some omissions can be expected to result only in

numerical errors whose magnitude may be evaluated by estimating

the magnitude of the terms so omitted. Other omissions change the

basic physics described by the equations. Such omissions can be

completely understood only by consideration of the relationship of

solutions of the approximated equations to solutions of the more

correct equations. A fundamental physical law of macrophysics is
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the principle of causality which states that input into the atmosphere

at a given time can only produce a response at some later time. It

is highly undesirable to formulate dynamical models in which this

condition is violated, nor does it make sense to allow inputs to enter

a system from regions exterior to the system under consideration,

when such external sources are not explictly specified. The flow of

information in a physical system which is governed by partial differen-

tial equations is intimately related to time differentiated terms in the

equations and to specified boundary conditions. We may wish to ob-

tain some kind of approximate solution to a well posed system by

obtaining solutions to a more approximate system of equations. These

approximate equations may not by themselves describe unambiguously

some approximate dynamics and it is then necessary to refer back

to the well posed dynamical description in order to determine what

additional conditions should be used to insure a unique approximation

to the well posed system.

The primary objective of this thesis is to provide an analytic

description of the role of time differentiated components in deter-

mining solutions for the equations of atmospheric dynamics. These

results may be used for guidance in the rational selection of approxi-

mate equations for the detailed study of individual motion phenomena.

Because the principle of superposition applies when a linear
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model is used, it is possible to arrive at a satisfactory understanding

of all possible motions by consideration of a few selected model

problems. The evolution of given initial conditions can be described

by the elementary solutions to simple impulses. To describe the

excitation of forced motions, it is convenient to study "switch on"

problems, where the source assumed is suddenly switched on at

t = oa. By superposition the same resulting forced motion must

occur when a steady source slightly changes its amplitude. Hence,

regardless of initial conditions, the final motion resulting from a

steady source must be equivalent to that predicted from switch-on

initial forcing. This analysis then gives a satisfactory derivation of

forced wave motions, when the assumption of steady forcing results

in a model equation without time differentiated terms to indicate the

proper direction of energy flow.
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D. Outline of Thesis Content

In chapter II we present a graphical description of the important

wave propagation parameters for the first one hundred kilometers of the

earth's atmosphere. This material is based on numerical data provided

to the author by Dr. R. E. Newell.

In chapter III, is provided a formulation for the dynamics of

stratified atmospheres. Chapter IV is devoted to a detailed analysis of

the elementary propagators of an isothermal nonrotating atmosphere in

the Boussinesq approximation. Many of the mathematical techniques to

be used throughout the remainder of the thesis are introduced in this

section. The elementary propagators studied are the "gravity wave"

and the "buoyancy oscillation" propagator. These two propagators

coalesce at points of observation vertically above the source.

The general problem of the propagation of an impulsive distur-

bance in a nonrotating isothermal atmosphere is first discussed in

Chapter V. The initial disturbance propagates spherically with the speed

of sound. The "wave tail" consists of an acoustic oscillation, a buoy-

ancy oscillation, and a propagating gravity wave. Next we consider

the propagation of a pulse in a hydrostatic stratified rotating atmosphere.

A gravity wave propagates outward behind a cylindrical front,

leaving behind a residual potential vorticity mode motion. The
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introduction of the " 3 -effect" via a simple model leads to several

new modes, the most interesting of which is an unstable inertial os-

cillation. The energy in the potential vorticity mode now propagates

outward as Rossby waves. A brief discussion is given of the "filtering"

process for synthesizing equations where solutions will be an elemen-

tary propagator, given the contour integral representation of the pro-

pagator.

In chapter VI, we analyze some simple examples of Lamb waves

propagating from point sources. The Lamb waves themselves are

nondispersive (in an isothermal atmosphere) but these waves are

found to excite concomitantly, buoyancy oscillations in a nonhydrosta-

tic nonrotating atmosphere, and inertial oscillations in a rotating

hydrostatic atmosphere.

In chapter VII, we introduce some Fourier integral techniques

which will be used in the following two chapters, and it is shown that

one may approximate details of wave sources, or internal wave dis-

sipation by the use of a multiple stationary phase computation.

Chapter VIII is devoted to several examples of the excitation

of Rossby waves in a stratified atmosphere, and chapter IX provides

several examples of internal gravity wave excitation.

In X is given the fundamentals of normal modes expansions of

the hydrostatic atmospheric wave equations on a spherical earth.
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This subject, initiated by Laplace, is known as tidal theory.

The material of the previous chapters is summarized in XI

and suggestions for further development of the theory of atmospheric

wave propagation phenomena is given. An example of atmospheric

instability is given.

The reader will find a somewhat more detailed statement as to

the content at the beginning of each chapter.

HEIGHT (KM)

0-

b 0 oo-

Figure 1-1. Vertical propagating gravity waves. Taken from Mahoney (1966).
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I I I r 1 , I I i i I I I I I I I t I I I I I I I I I I I I I I I I I .- I I I I I I I I I I AAO
1 1 1 1 , I I ; I I I I J 009



-19-

N

Figure 1-3. "Standing Planetary Waves", (geopotential height). Taken
from Teweles (1963).
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Figure 1-4. Amplitude of the "S2 ' semidiurnal pressure wave over
North America (units are 10-1 mb). Taken from Avery and
Haurwitz (1964).



II. CLIMATOLOGY OF WAVE PROPAGATION PARAMETERS

This chapter is intended to serve as an introduction to some

of the more important parameters which occur in the theory of atmos-

pheric wave propagation. To facilitate the discussion, we have pre-

pared cross sections and graphs of some of these parameters as they

occur in the earth's atmosphere. Data for the first hundred kilo-

meters was provided to the author by Dr. R. E. Newell.

This graphical data is primarily intended for qualitative use,

and is of less than the highest accuracy achievable by use of present

climatological data sources. This is especially true in the tropo-

sphere and lower stratosphere where many years of global radiosonde

data permit a much more sophisticated description of atmospheric

statistics than is possible by using only a few cross sections.

The atmosphere between 30 and 100 kilometers is studied pri-

marily by meteorological rockets, falling spheres, and meteor winds.

Dr. Newell has processed much of the available raw data for this

region in order to define latitudinal averages of the winds and temp-

eratures as well as the variances and covariances of these parameters.

The mean temperature data, averaged over the six summer

months, and the six winter months, has been used to compute quantities

which are important in the theory of atmospheric wave motions. These

quantities include the "scale height", the "buoyancy frequency", and

-21-a
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the "planetary stability". The scale heights, buoyancy frequency, and

planetary stability, computed independently from the numerical temper-

ature data, are given as meridional cross sections, and as hemispheric

average profiles computed from these cross sections. Small discrepen-

cies between the various cross sections presented may be ascribed to

random computational error inherent in finite difference computations,

and in the subjective analysis of the cross sections. All the larger

scale features are in general agreement. The results are summarized

by means of hemispheric average vertical profiles, in Figs. 2-3, 2-6

and 2-9. We use the notation ( ), to denote hemispheric average

of a quantity.

The scale height (RT/g) shown in Figs. 2-1, 2-2 and 2-3, is

merely the temperature, measured in more convenient units. The

most important features are the rapid decrease from 0 to 15 km; the

minimum at 15 to 20 km, especially over the equator; the increase

from 15 to 50 km, with a maximum found over the summer pole at 50

km; the decrease to 90 km, with minimum at 90-95 km, especially

strong over the summer pole. Beyond this level, the scale height

increases monotonically to very large values in the thermosphere.

The speed of sound C. = (V3 H) is important as the speed

of signal transmission in the atmosphere. Its inverse, c~, may be



-23-

considered proportional to an index of refraction which determines

the path taken of acoustic pulses. (Acoustic pulses obey the laws of

geometrical optics). Acoustic motions are refracted downward in

regions of increasing c (20-50 km and above 95 km). It is likely

that viscous dissipation strongly attenuates acoustic motions above

100 km. In this region, c monotonically increases to very large values.

The buoyancy frequency squared, N -/H (ca +

is given in Figs, 2-4, 2-5 and 2-6. Low values are found in the

troposphere, a sharp increase to high values in the stratosphere, a

gradual decrease to a minimum at 60 km, increase to high N2 in the

90-120 km region, and a monotonic decrease above this region. The

sharp increase of N2 from the troposphere to stratosphere, may be

considered the tropopause, considerably smoothed out as a result of

taking time and latitudinal averages. At a given time, and a given

location, the increase of N2, is yet much sharper, and may be consid-

ered a discontinuity in N2 , on the scale which our cross sections are

drawn.

The planetary stability, S , is defined as

s =N H V n
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and shown in Figs. 2-7, 2-8 and 2-9. The large scale features of S

correspond to those on the N2 and H cross sections. Small discrepencies

may be considered random errors. It is not possible to obtain exactly

the hemispheric average of S, from the product of N2 and H2 due to

latitudinal variations in S, N and H. That is:

Furthermore,

;~Amm( + of )j

The most important qualitative features of S is the large maximum at 40 km

and the broad minimum in the 60 to 90 km region.

The stability parameter S (or other quantities proportional to

it) is important for the theory of hydrostatic atmospheric wave propa-

gation, including atmospheric tides. That is, it often happens that

discussion of the vertical dependence of the motions may be separated

from the horizontal dependence by separation of variables, with the

result that it becomes necessary to solve a Sturm-Liouville equation

of the form:

where the coordinate i is the log of the ambient pressure, ca( :y

f is a dependent variable describing the motion, -f a) is some

external forcing and A is a separation of variables constant.
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The quantity A S C() -I (vE then determines the oscillation

of vertically propagating hydrostatic wave motions. Referring to

Fig. 2- 9 , we may think the region from 10 to 60 km as a "resonant

cavity" for wave energy, with the ground and the region from 60-90 km

acting as "barriers". Since S increases monotonically from 90 km,

the upper barrier will always be leaky, and permit some upward wave

propagation into the ionosphere. These considerations are modified

in the presence of wind systems, and especially when applied to discussions

of very low frequency wave propagation. See Charney and Drazin (1961).

In Fig. 2-10, is given the time for viscous decay by the factor

g"' of a harmonic wave of wavelength A . This gives an order

of magnitude estimate of the decay time of a motion where the shortest

"distance scale" is A . For most atmospheric motions, this "shortest

scale" will be a characteristic vertical dimension of the motion. A

simple derivation of the formula used may be obtained by applying the

one dimensional diffusion operator ( - V(a) to a wave of

the form ) e ,&/A obtaining the solution

(Here vIE) is kinematic viscosity). Viscous decay of more general
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motions occurs due to similar diffusion operators which are in the

equations of motion.

Because of the much greater variability of the wind fields

compared to the temperature, it is more difficult to describe simply

the wind structure which is important for wave propagation problems.

"Mean winds" vary extensively according to geographical location and

the time over which the wind is averaged. For example an annually

averaged wind might be an exceedingly poor approximation to the

mean wind "seen" by a transient gravity wave with lifetime less than

an hour. (Some approximation to the wind prevailing during the lifetime

of the gravity wave is what would be required). Rather than give a

detailed discussion of many possible atmospheric flows which will

significantly affect results from wave propagation, we have limited

our presentation to a simple model profile, Fig. 2-11, which is

characteristic of the winds observed in middle latitudes in winter.

The profile is characterized by a wind maximum at 15 km, the jet of

the upper troposphere, a minimum at 30 km in the upper stratosphere,

and the mesospheric jet, peaking at 60 km. These jets may be observed

to be as much as double the amplitude shown, in given synoptic situa-

tions. The tropospheric jet contributes to the trapping of the energy

of small scale orographic waves, while the mesospheric jet provides

an important trapping mechanism for low frequency planetary scale



wave motions.

Fig. 2-12 gives the average derivative of the scale height. Many

of the less important dynamic terms due to variable stratification can

be represented in terms of this parameter.
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Figure 2-1. "Summer" atmospheric scale height in km.
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Figure 2-2. "Winter" atmospheric scale height in km.
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Figure 2-3. Hemispheric average scale height.
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Figure 2-6. Hemispheric average N2
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Figure 2-9. Hemispheric averages S (nondimensional units).
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Figure 2-12. Derivative of scale height.
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III. FORMULATION

A. On the Mathematical Formulation

The more common mathematical notation of modern dynamic

meteorology is defined in the list in Appendix I. Less familiar sym-

bols are also defined in the text as they are introduced. The general

approach to be used in formulating linearized equations from the non-

linear equations which describe atmospheric motions will be illustrated

below for the equations of inviscid atmospheric dynamics, applicable

to nonrotating Cartesian coordinate systems. These equations are

atF(3.1)

PeR' (3. 4)

POO

We re.arrange the above system of differential equations so

that a tractable linear operator remains on the left hand side of the

system and the remaining terms of the nonlinear system together with

the forcing terms are given on the right hand side. Thus the total

forcing is given by external forcing plus internal forcing due to stresses

which are similar to Reynold's stresses. In order to effect this rear-

rangement, we shall choose some reference wind L/ , a reference
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potential temperature G , a reference pressure fT , and a reference

density p0 . These are chosen, consistent with the requirement of

mathematical tractability for the left hand side, to correspond to some

climatology of the atmospheric field variables. The total fluid velocities,

pressure, temperature, and potential temperature become respectively

(uw) = ("'L)U, V'4 V, VVW)

a + e't
P T +P' (3. 5)

e = PO + P'

The following constraints are imposed on the selection of the

reference variables.

(1) They are chosen to be time independent.

(2) The reference pressure is related hydrostatically to the

reference density. That is

T- = - PO(3. 6)

(3) The reference pressure, density and potential temperature

obey the ideal gas law.

rT R (P
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The previously given system of equations then becomes

L) LA"4LA 1 37P +(9i 0 )Pf K f 4, (7
3' Q~)e" +) (iV-3\70c; (3.8)

_ 4. L)V p \7+3s&L =+0(3.98)

.MI.

£ O e N. (3 . 10 )

The source terms are now dependent on the dependent variables of the

problem. Given proper initial conditions, we may solve linear systems

such as that given above. It is assumed in this discussion that boundary

conditions have been specified, and have been linearized in the same

manner. The "solution" obtained will be a function of the initial con-

ditions and also the dependent variables. For suffiently small amplitude

initial conditions, one may assume for a first approximation that the

dependent variables are zero and by iteration obtain improved approxi-

mations. The present work is primarily concerned with the inversion

of the linear operators, and we do not consider further the nonlinear

equations which are derived by this inversion. We assume that all

the systems of equations used in this thesis are derived in the manner

given above. The terms of the complete nonlinear dynamic equations

which are assumed part of the forcing functions will not be given

explicitly. These may be found in standard textbooks on atmospheric
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dynamics. For the remainder of this thesis, we shall omit the primes

on perturbation quantities and the subscript, "tot", on forcing functions

which has been used in the notation above.

The boundary conditions are chosen from physical considera-

tions. One should consider the boundary conditions as important in

determining the atmospheric dynamics as the system of differential

equations. One or more of the horizontal space variables must be

taken to extend to infinity if a spherical geometry is to be approxi-

mated by a planar geometry for describing motioris with distance

scales small compared to the radius of the earth. For sufficiently

small time after an initial disturbance is started, solutions will be

independent of the boundary conditions assumed, while for large enough

times the solution may be very dependent on the type of boundary con-

dition. If this is so, and furthermore, if it is not possible to specify

the boundary condition very accurately, then the accuracy of results

obtained will decay in time.

The most appropriate boundary condition that may be used when

a boundary extends to infinity is a specification as to how the region of

integration is to be continued to infinity. Since in practice, a solution

is only required for a finite domain, the specification of the medium

beyond this domain is only important insofar as it affects the solution

in the finite domain. One may use the term internal domain to refer
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to the region in which a solution is required. When the differential

equations have constant coefficients, we assume that the coefficients

remain constant out to infinity. For variable coefficient problems, the

boundary conditions are given as the asymptotic behavior of the coeffi-

cients outside the internal domain. This asymptotic behavior is to be

selected to reproduce the effect of the external domain on the in-

ternal domain, and not necessarily to reproduce faithfully the actual

variability of the coefficients outside this domain. For instance, if

an acoustic wave problem is considered in which the external region

is known to dissipate through the action of viscosity all acoustic wave

motions which leave the internal domain, then we would choose an ex-

ternal domain transparent to the acoustic waves. This may be achieved

by assuming that the speed of sound monotonically decreases in the

exterior region. It is unimportant whether this condition is contrary to

an actual monotonic increase of the speed of sound in the exterior region

or even whether it leads to a negative sound speed at great distances. All

that is necessary is that the solution of the inviscid equations with the as-

sumed sound speed is correct within the internal domain. The assumption of

monotonic decrease of the sound speed in the external domain is made since

it leads to wave solutions where practically all the wave energy leaving the

internal region will radiate to infinity. More generally, one may choose the
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asymptotic behaviour of coefficients so that wave energy will be

radiated outward whenever most of the energy leaving the internal

domain is dissipated rather than being down-reflected. In most cases,

the rate of energy dissipation can only be roughly estimated, and

furthermore will be dependent on the form of the disturbances excited.

Thus upper boundary conditions obtained by the above considerations

will in some cases give only a crude approximation to the actual wave

behaviour which would result from inclusion of dissipation. These

effects of viscous dissipation become important for large scale atmos-

pheric motions above one hundred kilometers, and furthermore the

actual winds and temperatures above this region are very poorly known.

Hence any motions in the lower atmosphere which are highly dependent

on conditions above one hundred kilometers are at present basically

unpredictable.

B. The Equations for a Nonrotating Resting Atmosphere.

The linearized equations for the small amplitude motions of a

resting atmosphere in a nonrotating frame are

+ '/pSP + IPP/p, = F(3.1

(3. 1

(3. 1
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P -C (g +. , e/G) :0 (3. 14)

where

C (3. 15)
6o

These follow from system (3. 7) - (3. 10), when the reference wind

is taken to be zero. An equivalent system was first discussed by Lamb

(1910). It is convenient to introduce the "Brunt Va isslg" or buoyancy

frequency, N , defined by

N/ = J(3. 16)

To simplify the reduction of this system to a single P. D. E., we assume

the forcing functions are zero. They may be reintroduced as needed.

The reduction is as follows:

1). Take A . (3. 11), eliminate p> by (3. 14), and

(3. 12), to obtain

t * w + '/ , + "/ a0 (3.17)

2) Take+( A ) * (3.11), and i (3.13), and

eliminate k{ ( ± + I\ from these equations. Eliminate P by (3. 14)

and by (3. 12), use + ( -e /0' to get
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The variability of coefficients due to vertical decrease of density may

be largely eliminated by introduction of the new variables

W

5#%(3. 1!
P = PO*P

It is useful to use for further reduction, the scale height H,

H r=1/Pj (3. 2(

and Eckart's parameter I defined by

'= .+t /. I -(3. 2:

Also useful is the identity

I s + (3. 2:

We assume the approximation

a __(3. 2

to apply to the first term in (3. 18) whence P may be eliminated from

(3. 17) -(3. 18) in terms of w defined by (3. 19). This gives the scalar

hyperbolic P. D. E.

9 ' N L eDC 7
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where (L%) is given by

= ( H'it1PLw)14J+ (3. 25)

Comments: a) The approximation (3. 22) is not suitable for discussion

of the one dimensional vertical oscillations of a variably stratified

atmosphere, but another easy reduction is available in this case, c. f.,

Lamb, p. 541. b) The parameter -ta) will be determined primarily

by the first term 1/r , which in the earth's atmosphere ranges

from approximately -2 in the troposphere to +1 in the stratosphere,

and vanishes for an isothermal atmosphere. If we were to carry out

similar reductions for other dependent variables, we would obtain

different expressions for 6 . The variable PQ V -A may be shown

to satisfy (3. 24) with 6(t) = . (c. f. , Moore and Speigel, 1964).

c) The inviscid equation (3. 24) should be augmented by viscous and

thermal diffusion terms for discussion of motions above the first one

hundred kilometers of the earth's atmosphere. If we use the simplifying

assumption that the viscous and thermal diffusion coefficients are equal

and vary slowly relative to the scale of motion then it may be shown

that the motions of a viscous atmosphere are obtained from (3. 24) by

substituting in (3. 24) for the time derivative

a \- 2(3.26)
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The inviscid equations are satisfactory for descriptions of the atmos-

pheric wave motions in the first one hundred kilometers of the earth's

atmosphere. d) Since 100 km zc. ., we may assume with negligible

error that the Laplacian operator in spherical coordinates, may be

given by

A (~ j -LA (3. 27)

where 62 is the Laplacian on the surface of a unit sphere. We

may hence use (3. 24) for describing motions in a spherical nonrotating

earth, provided the Laplacians are interpreted as above. e) The deriva-

tion of (3. 24) may similarly be carried out for a coordinate system in

constant rotation.

The result is that (3. 24) is replaced by

U ~ ~ o 4Z ")UL(L +$2 ))<L .N )(t ".jjt,)]cI.W o(3. 2 8)

Some useful mathematical approximations to (3. 24) are obtained

by assuming the following limits:

a) 1-4 -* , we obtain

[/6 3  L N - = (3. 29)

b) c. ..

[35' -- ~ N td+.t) 0 (3. 30)

c) e.R
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L S +(N4t (3. 31)

d) cN -->O

a%. 4Ha)~- 0 (3.32)

The physical justification for use of these more approximate equations,

is that for certain types of sources and for sufficiently large intervals

of time after the application of the source, the motions excited often

can be described by a more approximate equation than (3. 24).

It may be shown that in a) certain "acoustic" oscillations with

the frequency

=4 S_. L +&1)W (3. 33)
29

are no longer present, so we should refer to (3. 29) as the "acoustic

oscillation filtered" model. This equation still is hyperbolic, and

allows "acoustic motions" and "gravity wave" motions. In the approxi-

mate "anelastic" model b), acoustic motions have been suppressed

and disturbances propagate with infinite speed. The model c), is

usually referred to as the equation for a Boussinesq incompressible

fluid. The model d) is referred to as the "hydrostatic model" for

atmospheric motions, or the "long wave" approximation, and due to
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Lamb.

C. Formulation of Hydrostatic Atmospheric Dynamics.

The horizontal equations of motion, the thermodynamic and

continuity equations and the equation of state are written

(3. 34)

I CN H 2- z(P. C&)
(3. 35)

AW

(3. 36)

HON (3. 37)

The vertical coordinate used here is t i lo. 11 , the

log of the reference pressure. See Eliassen (1949). We use 4 = 2 SI

sin S for the Coriolis parameter, ' : 4+v is the horizontal

velocity field. The vertical motion is described by w),

W = Op -(3. 38)

Also A is perturbation geopotential height, t is perturbation, and

0 mean potential temperature, H is scale height. The "heights"

1 and H are related hydrostatically to the perturbation pressure

, and mean pressure ft , by
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h= P/P.

H =r/e. (3.39)

The vector operators, V , 4. , written in terms of latitude V

and longitude A are given in Appendix I.

It is often convenient to replace the equations of motion (3. 34)

with the vorticity equation and divergence equation, which may be

written

r/+ e I t 7 fV4'(3.40)

A V xF

re mA VN7t I"t = V F (3.41)

where 9 is the Laplacian on the surface of the

sphere. This system was first obtained by Love (1913).

We have substituted

C= 9# + (3.42)

Assuming boundary conditions have been specified to make Laplacian

invertible, 4' and 9 may be obtained from E by

61/i = K' (3.43)

The first of these expressions gives the vorticity written in terms of

9' or C , and the second, the horizontal divergence either in terms
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of # or

We may eliminate @ and w in (3. 35) - (3. 37), to relate h

and the divergence as

tt TT bZ = iH

If we eliminate 4 in (3. 40), we obtain

40+ 2 
ea-A

(Lali iJ

a 4 ( a r t
it rrbt INM,?tL

whe re

A- - h f A- W %

The equation (3. 45) is known as the inhomogenous potential

vorticity equation. The potential vorticity j , is defined as

y =-t( a. + 5ma-w i \ '. -

so that (3. 45) may be written

As * 3'e DA

We likewise eliminate 4 in (3. 41) to obtain

f1 IT;At h + A - r

(3.44)

,
(3.45)

(3. 46)

(3.47)

(3.48)

(3. 49)

.4.
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where we define ig as the operator

r = A (3. 50)

and r the source, is

r = 7 -F +. g/(3.51)

To further carry out the elimination, we define the "Coriolis

operators", F, and F%. by

F, = V ' 4 7 .)
(3. 52)

F = -

We eliminate Y in (3. 49) and (3. 45) to obtain

iomman + FIFL)J... .j,2)s(3. 5 3

We shall call (3. 53) "Laplace's tidal equation" since a similar

equation was first discussed by Laplace in regard to the theory of tides

in the ocean and atmosphere.

The essential physical approximation involved in the above deri-

vation are:

a) the motions are hydrostatic, e. g., K s-- N'

b) the atmosphere is a thin shell relative to the radius of the

earth.

c) viscous and thermal diffusion are neglected
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d) the earth is approximately spherical

The nonlinear terms omitted in the above equations may be

considered as part of the forcing functions r and $ . See Lorenz

(1960) for the nonlinear terms appropriate to the above system.

Assumption a) may be relaxed (c. f., Eckart's book) pro-

vided we do not include Coriolis terms in the vertical equation of

motion. Assumptions b) and c) are consistent. That is, the in-

viscid equations are only applicable in the first 100 km of the earth's

atmosphere and the vertical scale of this system is small compared

to the earth's radius. In order to remove assumption b), it is

necessary to carry out a more careful analysis in using geometric

vertical height, as done for instance by Yanowitch (1963). One re-

sulting modification is that in the continuity equation a term like
2b

is replaced with a term like + + w2 ,Lthe second term resulting

from divergence of the radial coordinate lines. Such terms as the

latter are of some importance for long distance propagation of radio

waves on a spherical earth, even though they may be quite small,

since they lead to a certain amount of downward refraction of the waves.

For atmospheric motions, the variable temperature and winds have a

much greater refractive effect on wave propagation, and the neglect

of radial coordinate line divergence may be neglected on this account.

(This approximation is sometimes referred to by radio engineers as



-55-

the flat earth approximation).

In order to introduce viscous and thermal diffusion effects into

the above system, one may assume the coefficients of viscous and

thermal diffusion are the same, and that their spatial variability may

be neglected in reducing the equations. Then, one merely substitutes

whereever there is a time derivative A , the term /(. -v4 3

where v = v(wyot) is the diffusion coefficient. More exact treat-

ment greatly complicates the system.

Assumption d), the neglect of the earth's eccentricity, is

generally accepted without question. For an analysis of this question,

see Hough (1897).

It is sometimes convenient for discussion of motions over

distance scales small compared to the radius of the earth, to approxi-

mate the Coriolis operators, F, and F by a mean scalar Coriolis

parameter .* . That is

F, z FL 2 0 (3. 54)

and likewise to approximate the operator .6 by unity.

(3.55)

or
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whence Laplace's tidal equation reduces to

fo (3. 56

which is known as the equation for internal gravity waves.

Alternately, we may assume the low frequency approximations,

F, s f. i

F O o(3. 
57

whence the Laplace tidal equation reduces to

(3. 58

which is known as the equation for atmospheric Rossby waves. This

low frequency tidal equation may alternately be derived by approximat-

ing potential vorticity y given by (3. 47) by

and approximating (3. 49) by the geostrophic relation

A L A ((3. 60

and eliminating either A or f in (3. 48).
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These approximations apply for motions with frequency small

compared to the rotational frequency of the earth, and for the motion

scale small compared to the earth's radius. For yet smaller distance

scales of the motion, a planar approximation to the sphere may be

appropriately applied. That is, we may introduce a local Cartesian

system centered at AO0 , 90 by

r e (cos Ge ) (A-'A0 )
(3. 61)

y * re (G-o)

We shall use the usual notation

so that for the planar approximation

2 A 0/ " (3. 62)
re

We shall for the purpose of discussion, assume one further

approximate equation obtained by combining the low frequency Rossby

wave equation (3. 58) with the high frequency, gravity wave equation.

This may be written in Caresian coordinates as

L 4 aL( =o (3. 63)

W- L 'rr"a -f(/V*pM)I-fa|^)

Variations of this equation have been used in the literature in an effort
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to extend the " e -plane" model to "non-geostrophic" motions. One

of the conclusions obtained from analysis of this equation is that it is

not suitable for the integration of initial value problems since it pre-

dicts unstable "inertial oscillation".

Since boundary conditions are frequently expressed in terms of

vertical motion w it is useful to relate the geopotential h to w

Eliminating to from (3. 38), (3, 39) and (3. 44) gives

W on a+ )4q 1(3. 64)

Further details concerning sources, boundary conditions, and

more approximate equations will be introduced when required in the

following chapters.
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IV. SOME PROPAGA TORS- MATHEMATICAL METHODOLOGY

FOR INVERSION OF DIFFERENTIAL OPERA rORS

The purpose of this chapter is two-fold. It is intended to present

in detail the simplest theoretical model for combined gravity waves and

buoyancy oscillations, and at the same time to present systematically

some of the mathematical techniques to be used in the remainder of

this thesis. The theoretical model we study is the "incompressible"

system given by (3. 31) which may be written

L3 + NtC6aJ2i Fr Ixj v, ep) (4.1)

where here FT g*,,vt-t) is an arbitrary forcing function. We assume

N to be constant. The most highly differentiated terms in (4. 1) give

the motions of an "ideal" fluid while the lower order term N' 1 gives

a correction for stratification.

We shall first study the motion due to the simplest possible

localized source. That is we replace FT with '(A)Yt0Y) f1t) Tlt

F. = (%)S; ty) Ie) IIt) (4.2)

An understanding of this motion is helpful in the more difficult task

A
of studying the motions due to actual physical sources, F , 9 , and

A . Such studies are necessary for complete understanding of a

given kind of wave motion, but for understanding the gross features
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of the many different possibilities for atmospheric wave motions, it

is desirable to discuss first solutions for the most elementary sources.

We define the propagator of (4. 1) to be the solution A/(xV Cy a , *7

for the source (4. 2). That is

[I. a3 rN10LLW X/(4.3)

It is possible without loss of generality to take and all of

its derivatives to be identically zero for t4o since by using proper

delta function sources at C: o , one may obtain the same results as

if the initial conditions were nonzero.

The time delta function may be written in terms of a Laplace

contour integral as

e (4.4,

where the variable of integration is taken to be a complex variable, and

the path of integration is taken to run to the right of the imaginary axis.

This permits a natural association (isomorphism) of differential opera-

tors in time, acting onW , with the complex variable r-.

It is seen from (4. 4) that a function of the operator ,.4 , F( P )
operating on fit) may be written

n (4. 5
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where the term (/D outside the integral and the term 6' in the

integrand are seen to cancel each other formally. The integer n is

to be selected large enough to insure existence of the integral. It is

assumed that

a) The contour is taken to the right of all singularities of F4v /%.

b) Y1 is chosen large enough so that

I~fA f F Ir)/r 1 -+
R e -', P0

uniformly with respect to - O/ 4.r N r W/

The condition a) insures that the integral of Fe) /e" taken

over a large semicircle around the origin in the right half plane will

go to zero as the radius of the semicircle is taken to infinity. The

fact that the semicircle integral vanishes under these conditions is

known as Jordan's lemma. From a) and b) it follows that

F t 6A) S e =

for t .. o

which is the condition of causality. No response can occur before

the source Yt) is applied.

For ease in writing we shall introduce the convention that i-

may be used both for the operator ?/t occurring outside contour

integrals as well as for the complex variable r which occurs under

the integral sign. In this notation (4. 5) is written
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F o)St r w fQ ~e tS"(4.&61

The direct manipulation of equations involving an operator such as

b/) = r and evaluation of the subsequent expressions by contour

integration is known as the direct operational calculus.

Using the above notation we write (4. 1) as

( J L A -- 6 + NV ) \ W = - 4 A J y / Ytz) J t(4 .7 )

Assuming e - o , we define a new variable

Z = (N'+ cr') r' (4.8)

and the delta function

H ,) 'r ( N'++) sf0(4.9)

where , taken as a complex function of e- , is defined

so that the branch cuts are those of Fig. 4-1. Equation (4. 6), using

(4. 7) and (4. 8) becomes

( +iW tsa. +w = -(sN+6L) Cr~'a1(4v) yt(A.1(

The operator on the left is a Laplacian, which is inverted to give
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where

The contour integral used to evaluate the above fractional operator is

where the path of integration is taken to lie to the right of the imaginary

y.. axis.

Let V61 ) (' R)C't f NL) - & *

be the Laplace transform of W . The contour in (4. 12) may be de-

formed so as to enclose the singularities of We) as shown in Fig. 4-1

provided the integral around a large semicircle in the left half of the

Riemann sheet under consideration becomes vanishingly small as its

radius is taken to infinity. The examination of contour integrals around

large semicircles will frequently be necessary but will not be explicitly

discussed further in this thesis, since the requisite manipulations are

not of physical interest. The reader may assume, unless it is stated

otherwise, that such integrals have been verified to be vanishingly

small.

An integral such as (4. 12) may be evaluated directly by numer-

ical integration, so there is no need to reduce it to other complicated

functional relationships, such as in this case, a convolution integral of

two Bessel functions. However, in a study such as this one, which is

(4.12)
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intended to lay bare the essential features of the dynamics, it is desirable

to approximate complicated solutions such as (4. 12) by means of func-

tions sufficiently simple that their numerical graph can be visualized

without the need for detailed figures. These simple, approximate

functions are usually applicable only over a certain range of parame-

ters. Laplace contour integrals such as (4. 12) may be approximated

by polynomial functions for small enough time, and also by other simple

functions for large enough time. The graph for intermediate time may

then be visualized by mentally interpolating between the readily visu-

alized expressions for small and large time.

An expression useful for small time may be obtained from (4. 12)

by expanding WItr) in an inverse power series of r . This gives

where

The series is seen to converge for all finite & , and hence WA is an

entire function of time. Keeping only the first two terms of this power

series solution, we write

'TAt -4Nt * /t/) QN"ttJ+(4.N 14)



-65-

which is the desired simple expression for small time. The first

term may be intepreted as giving the motion of an ideal (inviscid incom-

pressible unstratified) fluid for a special kind of point source, and the

higher order term as giving corrections for stratification.

Expressions valid for large time are somewhat more difficult

to obtain but are often of much greater physical interest, since they

describe the ultimate evolution of the dynamical system. For large

time, we consider the contour integrals around the singularities of

W() , which are obtained by deformation of the original contour

integral. In Appendix III, A. we establish the complete asymptotic

solutions of the branch line contour integrals which occur in this

chapter. The numerical values of the singularities of W h) in the

problem presently being considered are branch points which occur at

r N
(4. 15)

r=* NS/R

The term "buoyancy oscillation" is used to refer to an oscil-

latory motion with oscillation frequency N . The two contour integrals

around the branch points t $N describe such a motion as t -+-o , and

hence we refer to the sum of these contour integrals as the buoyancy

oscillation propagator.



We t.fe vr(4.16

"a

In textbooks the term "gravity wave" is used to describe plane

wave solutions of homogeneous equations corresponding to (4. 1). For

such a solution to satisfy the homogeneous equation, the "dispersion

relation"

= N(,t L)rYL)
Xr " 00 0 )( 4 . 1 7

must be satisfied. (The restoring force of gravity is expressed through

the buoyancy frequency NI). This expression may be written

"no N(4.18

where

is the angle which the direction of propagation of the sinusoidal wave

motion makes with respect to the horizontal. The term t/g in (4. 15)

is likewise the sine of the angle of an observation point with respect to

a source lying in the plane I=o . Furthermore the contour integrals

around branch points at 7 = .N tIR give, as t-Poo , an oscil-

lation with frequency, N t/R . Hence we call the sum of the contour

integrals around the branch point singularities at .t 'N */R the

gravity wave propagator.
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W =ow~,(4. 19)

The propagator W is thus decomposed into "elementary" pro-

pagators associated with the different singularities of W(r) and we

write

W =W 4 *W W (4.20)

where We refers to the buoyancy oscillation propagator and WO

refers to the gravity wave propagator.

The integral of W(o )

around the two contours re , given in Fig. 4-1, is evaluated by use

of the asymptotic solution given in Appendix III, A. of this chapter. The

contribution from the integral taken around r= - 'N is the complex

conjugate of the contribution from the integral taken around r: <'N.

We find

x.1y ;frstR#9je I rcv) n

where

''t":~'(4.22)

and f..; is defined by the generating function
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- alt

a CA
I~ ?'/fl)~

o
= 0- 0

y I

We thus find a simple expression for the buoyancy propagator for large

time

/2. /

'i wC&/Y)/-Y rrt) (CoS (Nt -9.,) - E 8]

E 8 n.(s'w) t(

The gravity wave propagator is likewise found by integrating

Wa') around the two contours r, .

G =x

MO/ ; I/R)t -$6'

(- 'Re C [l(0a .') er'')N iT (t/9/g Figg gfi]

where *o is given above, but the Fri used are generated by

16 P I ) = . f, A
(R'gen -I) &a'-ie-s

We hence find the simple expression

(NIT /f Ecosu ±/) 6

where

( I (4.23)

where

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

-- "a
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(4.29)

The parameters N and Mk are characteristic frequencies at
R

which the atmosphere oscillates. Note that for Q '- g) 4.c I , the

time that must elapse before (4. 24) and (4. 28) are applicable is much

greater than if (I- '/R)IZI . When the above strong inequality

holds, the gravity and buoyancy propagators will oscillate together for

many periods before there is effective separation between these two

different kinds of waves. To handle this situation, we obtain an approx-

imate solution useful for the time interval 4 6 t (-*

Consider the integral
/+

sf(4.30)

where 6 . 4 I . We find an expansion:

)t - IW/ a
w = Re e' (+ t "

VINR £sf

where

and in general

PM= lu*4 ~~p e-i (4. 31)
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To a first approximation

(4. 32)

Srr 1N R

provided

The present results are summarized as follows:

a) For -to , the atmosphere is at rest.

b) A delta function source is applied at e =

At this instant a vertical motion is excited throughout the atmosphere.

At first it increases from zero as a linear function of time and decays

in space away from the source like R~' . As time increases, the

growth of the wave becomes less than linear.

c) For some time which is the order of V' the vertical motion

is oscillatory in time, with a frequency N and an amplitude that de-

.cays in time. There is an amplitude decay in space like (9t Y

This motion with frequency N is called a buoyancy oscillation.

d) At some later time of order LN ig) , another motion with

frequency (N4/g) is also observed. This motion is called a gravity

wave. One may consider the motion for times & i& N to be a con-

sequence of the gravity wave and buoyancy oscillation being nearly

completely superimposed and hence cancelling each other by destructive
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interference. For times greater than (W//?) these two wave components,

as defined by the singularities of W11) , have dispersed into separate

motions. For very large time the buoyancy oscillation and the gravity

wave amplitudes decay like . This decay is a consequence of the

energy flow out of any finite region surrounding the source. Such decay

is commonly found in wave problems where the domain of solution is

open to infinity.

In order to obtain a feeling for the accuracy of the description

of atmospheric motions afforded by the asymptotic solutions of this

study, it is instructive to examine a simple example where the "exact"

solution is readily computed from mathematical tables. For this pur-

pose, we use the gravity wave propagator obtained from (3. 41) with the

assumption (N *t') N'. This is equivalent to making the

hydrostatic approximation so we shall call this propagator "the hydro-

static gravity wave propagator". This propagator has the contour in-

tegral representation

.L......-- ,(4. 33)
&vwrNR (a r V^/(a-0

The small time representation to second order is

qSrfNg wc,= -- It
t + o(N±W (4.34)

R'?-- 9



-72-

The large time representation to lowest order is

-N/M
'frr NR Wo )cos *~t/'/) (4. 35)

The exact solution is

qrrTN VRV = Yo (t ) (4.36)

where J is a zeroth order Bessel function.

In Fig. 4-2, we have plotted (4. 34) and 4. 35) and denoted points

of the exact solution (4. 36) in the region of worst fit by x . We have

only plotted the first half oscillation of the solution. The asymptotic

solution (3. 64) gives results within (1%) for N i! t/R >Y. . The

conclusion reached is that VO is approximated by (4. 35) with error

less than 5% for Ntr- .8, while We is approximated by (4. 34) by
R

error less than 5% when .. 1. 2.

If the transition from the large time solution to the small time

solution were smoothly drawn in by hand, the resulting graph would

describe the entire solution with only a few percent error.

The point to be made here is that in an inherently inaccurate

science such as that of atmospheric motions, the approximate solutions

such as'obtained in this study provide as accurate a description of the

dynamics as is warranted, given the defects in the physical model.

Approximate solutions are frequently much more useful than exact
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solutions since they may be more easily manipulated and are easier to

"understand". In the remainder of this thesis we shall determine only

the lowest order approximations to wave propagation problems.

ImcrIMa

X IN/R

r0VC

X N

o.Recr

r,

X

Figure 4-1. Branch line contours for integration
buoyancy oscillations.

00

8 -

6-
First two terms
of the power series X's points ot exoct soltion
solution. 0 +-C--

4-\

x

of gravity waves and

NE/R t-*

Figure 4-2. Matching of the small time power series solution to the

large time asymptotic solution for the hydrostatic gravity
wave propagator.
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V. PROPAGATORS OF A STRATIFIED

COMPRESSIBLE ATMOSPHERE

A. Propagators for a Nonhydrostatic Atmosphere

In this chapter we consider equation (3. 24). We shall confine

our attention to solutions for elementary point sources (the propagators)

and do not consider the analysis for actual physical sources, which

may be studied once the propagators are well understood.

An important difference between t'he solutions of (5. 1) and those

of the incompressible model (4. 1) is that the solutions of (5. 1) are iden-

tically zero outside of a sphere with radius R = c t. The set of points

on the sphere YR= Ct is known as the acoustic front. This sphere

is a characteristic surface of the wave equation5 and propagators de-

fined on this sphere will have discontinuous derivatives of some order,

or may themselves be discontinuous or have delta function singularities.

Discontinuous or singular functions may be used in two different ways

for describing the state of the atmosphere in the theory of atmospheric

motions.

(1) They may be used as idealizations of functions which are

continuous but change their magnitude over a very small distance as

measured on some distance scale. For instance, the temperature

across a "cold front" on a hemispheric weather map is often idealized

to be a discontinuous function.

s
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(2) They may be used to represent the response of the atmos-

phere to physically unrealistic, but mathematically convenient, ele-

mentary sources. This is how they occur in this thesis. One integrates

over the solution for the elementary source to get the solution to the

physical source. In many cases usage (2) reduces to (1). That is,

at sufficient distance from a source, the atmospheric response may

be asymptotically equal to the response to some elementary source.

We now consider the inhomogenous acoustic gravity wave

equation

% 0.~"A . W v= - <T ( R) e !)(5.1)

where we define the acoustic oscillation frequency WA by

WC't/&H (- ec)) (5.2)

For purposes of mathematical simplification, we shall assume that

the parameters LOA , N , C are independent of e , and that

WA >> N > V./R (5.3)

The formal solution to (5. 1) may then be written as

MMOMSa- ( ; t L /:Leqf PuR) (5.4)
q imP dr-i-At)I T t)

where P (, R) is defined as
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P I%)) 1 .1(5.5)

The fractional differential operator in (5. 4) differs from that for the

incompressible atmosphere solution (4. 11), by the factor Q V OR

which may be considered to give a finite propagation speed for waves

in a compressible stratified atmosphere.

In order to evaluate the propagator (5. 4), we represent it by

the contour integral

(r
W . j eo, e (5. 6)

For e 4 R/c we may close the contour in the R e r a plane, and

hence by Cauchy's theorem obtain anull result. For (- R/O j

it is convenient to evaluate (5. 6) by expanding Pt-) R) in a power

series in 0~ , and then to also expand the integrand of (5. 6) in a

series in G . That is

C CTr

I
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Substitution of (5. 7) in (5. 6) and integration gives

brr R W = tI-PA)ht-.c) -t ( *4 +- Olt- j

The integration is carried out by the method of steepest descent. The

integrand has saddle points where ( - P e, ))= o

That is

6= r P ,*R% +N L7NG t t /R

which for sufficiently large time has the eight roots

- -A e
( t - 2/1C fi

(5. 10)
tl

0~= crf$L tmenQ±±& &' 3 tE#

In the vicinity of rA

(5. 11)

(5. 12)

cr z er P t r, R may be approximated by

A 
a +P~~sR) o:-RcrCuA (5. 13)

In the vicinity of t cr P t% R ) may be approximated byP")0 P r

(5.8)

(5. 9)
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p a w1k- f (5. 14)

while in the vicinity of Cop >+ C,+-> P(rR) may be approximated by

P(r>iR) : R. W>A(N/a) 'te'i (5.15)
(r C 'N 'II.

For large time the integral (5. 6) may be approximated by evaluation

in the neighborhood of saddle points, and hence

WA +VW 813 WG(5. 16)

where

IWA 4 rr R cr, 6. A e,ar f(5. 
17)

( r Ct Cvr N~t
W tAr RIN 2 /r 7

-os+ (iL+ N '/gR a.( 5. 18)

.3 rit'i . -t - o- 'CAl(5-.19}
WS (Re ecrefa t- N(

f~t Ia
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where we use

C ZN(5.20)

and we make use of the assumption (5. 3) that the characteristic frequencies

are widely separated in order to simplify the integrals.

It is assumed that t is sufficiently large that the value of these

integrals can be determined asymptotically by integration in the neigh-

borhood of the saddle points, and so the sum of WA , We and We

differs from the value of (5. 6) only by quantities that are asymptotically

zero.

The functions WA , \We and W may be evaluated exactly

using Appendix II, 3 and 7. We find

VWA = H( 'k. -- I-_ ) .W 5 1
<1rR N6 R |&(I)

rr RNL R(5.22)

p =: ~ -. ) 4R N C [SV e 6

(5. 23)

where' we use Appendix III, C, to evaluate the integral for Wp

asymptotically.
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The asymptotic error L is

E=a(rC'I (a t'13)

The term WA is designated the "acoustic wave" propagator. Note

in particular than an expansion of WA in powers of ( t R/c)

matches the first two terms of W given by (5. 8).

The term WS and W, are designated the buoyancy and

gravity wave propagators respectively. A precise estimate of the

solution in the neighborhood of t t ra is quite complicated, but it

is adequate for descriptive purposes to assume (5. 22) and (5. 23) give

the motion up to this point. The actual transition, somewhere in the

neighborhood of t 2&. , to asymptotically negligible buoyancy and

gravity wave oscillations will occur smoothly, so that when (5. 22) and

(5. 23) are differentiated the derivative of Hit-a) should be neglected.

The motion described by (5. 16) consists of: a spherical acoustic

front traveling outward with speed c , beyond which the atmosphere

is at rest; a tail of acoustic oscillations of frequency which decreases

to WA with increasing time; which is joined somewhere back of the

front by buoyancy oscillations whose frequency asymptotes to N as

o ; and gravity wave motions whose frequency approaches



-81-

B. Propagators for a Rotating Hydrostatic Atmosphere

In this section we examine (3. 56) for perturbations on a resting

planar atmosphere in the absence of boundaries. We shall assume

N 14 10 ,and 6(1) in (3. 55) are constants (not necessarily corres-

ponding to isothermal atmosphere values). It is convenient to use the

geostrophically scaled"Cartesian coordinates, R Y U( H)Y >AW

That is, we define the stretched height coordinate .

.g(5. 24)

We shall use the notation N = Nft p' for radial

distance in these coordinates, ( (+) for horizontal

radial distance, and C (iLL .. for the velocity of internal

gravity waves. Assume also that time is scaled so that fo =2Qe s"G =

The propagator for a rotating hydrostatic atmosphere is defined to be

the solution to

-/C )476 h ~)~t(5.25)

where J)v SY) c{t ) . In the remainder of

this chapter, we omit the " A " on . The spatial

operator is inverted to obtain the operational solution

.1 s-% c- ,(5.-26)
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The operator may be expanded in powers of to obtain a power series

evaluation

(q (rrpV 4H( t -P/ C) [t -/C) 4t .&~ . rC) ± i p) ] 5.7

which is useful for

According to the hydrostatic model, the atmosphere is at rest beyond

the surface ( & - P/C ), a cylinder with vertical axis through the

source. Signals propagate vertically with infinite speed. This infinite

speed of vertical signal transmission is a consequence of the hydro-

static relationship. The more correct nonhydrostatic model of the

previous section shows that actually the gravity waves propagate behind

the sphere (I+ ct'- - Ct e ,and that the amplitude

of all derivatives smoothly asymptotes to zero, rather than discon-

tinuously as in the hydrostatic model.

In order to evaluate the integrand for points of observation far

behind the wave front, we express the solution (5. 26) as a contour

integral

n 
1 ' d(5.28)

ob+ ~
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with

ha-) = qr)yFCP RJ -' /

The contour is deformed into steepest descent contours about

the branch points of i(6) at o-r = - iI/p , and a loop around
9

the pole at o- o . The potential vorticity propagator, hy , is

defined to be the integral of f. 0)LOC taken around the pole at

a- o and excluding the branch points. The gravity wave propagator

h g is defined to be .jj/ of the integral of e) IC 4 taken around
MI

the branch points at P- t c / p and excluding the pole at the

origin. Hence

h ( ~t = Pv e Ht)(5.29)

where

v -(5. 30)

and

*-f-i e (5.31)
arr if

(r = : iL I/"
The above definition of h g is such that 5i ', given

by (5. 22) when rotation is negligible and the hydrostatic approximation is

valid. The conditions under which the hydrostatic and nonrotating atmos-

phere assumptions are tenable may then be investigated by comparing
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hi and W 0, .

The integral for L v is evaluated by Cauchy's residue theorem:

hV RC, I c(5. 32)

The integral for hg is evaluated as

h 9  = H ( Pt - c-f? 7/p (tL. Pc(5. 33)

For more complicated sources, the simplest exact" solution possible

is the Laplace integral solution, and approximate description of the

ensuing motion by series solutions asymptotically valid for small and

'/large ti-ne is appropriate. In Fig. 5-1, is shown TO(C?.-) . This

figure illustrates the initial front and the oscillatory tail of the gravity

wave propagator.

If we compare h3  with the earlier obtained WG, it is seen

that the primary difference in the motion far behind the wave front in

the two cases is the difference of the oscillation frequencies: the present

propagator has the dimensional frequency

N/1'i.L(5.34)

while the oscillation frequency of (5. 22) is
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For comparing these two frequencies, we use time parameters appro-

priate to the earth's atmosphere. These are

fe y o-9 e "-'

o Sec.. (5. 36)

This leads to the conclusions for the earth's atmosphere that

a) The effect of rotation is negligible at points of observation

such that +0" e & #lo where 9 is the declination of the point

of observation with respect to the source.

b) The hydrostatic approximation is valid for points of obser-

vation such that s;n & -..- e ae.

The present criteria are a consequence of the directional dis-

persion of a locally generated gravity wave motion. The atmosphere

acts as a prism, such that the more horizontal the point of observation

with respect to a local source, the lower the wave frequency. An

equivalent statement of the above criteria is that the hydrostatic ap-

proximation is applicable to motim s with oscillation frequencies very

small compared to N , and the earth's rotation is negligible for

motions with frequencies large compared to f, , the Coriolis frequency.

There is yet another class of motion possible on a rotating

plane, which are known as inertial motions. These are motions with
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an asymptotic frequency for large time which is the Coriolis frequency,

4,0 . One type of inertial motion arises as a limiting case of the gravity

mode of motion. As seen from the frequency relationship (5. 34), a

gravity wave which propagates in a horizontal direction is an inertial

oscillation with frequency f. . Such motion s commonly occur as a

result of the horizontal guiding of a gravity wave, either as a Lamb

wave, or as a trapped internal gravity wave guided by boundaries or

thermal inhomogen eities. It is also possible to excite inertial oscil-

lations which are independent of the gravity wave mode. We find such

a motion as one of the modes of oscillation present in hr , the

propagator for the 0 -plane equations. The physical significance of

this oscillation is somewhat obscure, but it is of mathematical impor-

tance for the equation considered, since it is found to represent a

motion that grows in time; that is, an instability.

In summary, for arbitrary impulsive point sources for the

equation (5. 25) one would expect to observe a motion consisting of

a) Gravity waves which decay algebraically for large time as

their energy is lost to infinity.

b) A potential vorticity motion which is independent of time.

In the presence of a mean flow, the motion will be approximately

carried with the fluid particles. In a resting atmosphere, this mode

loses no energy to infinity.
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c) Possibly some inertial oscillations, which will decay in

time (in the present case), as a result of wave radiation to infinity.

(This decay follows from conservation of energy of solutions).

C. The 0 -Plane Propagators and a Method of Filtering

We now consider motions on a 0 -plane. The 9 -plane

propagator for hydrostatic atmospheric motions is defined to be the

solution to

Ix rt) (5. 37)

where we use the notation introduced in B. Time is scaled so that

fo= . Inversion of the 1. h. s. gives

(5.38)

where we define hr(a) by

tw )=.(tr r} Le' '4,'~ 7Pq~*(LPX+ ' (5. 39)
C*) (r"L+ 1)

We shall evaluate (5. 38) for large time by means of contour integration

44M e (5.40)

The principle part of h1r as - ->ob is
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.... P-re / <- (5.41)
h ) rr P) e( 1--o--l )-

Thus as in B. the motion is confined within the cylindrical hydrostatic

gravity wave front

t = P/C (5.42)

The solution may be expanded in powers of ( t - P/C ) behind this

front. We omit this computation. To evaluate (5. 40) asymptotically

for large time, we must determine the saddle points of the exponent

of $ (o) . As -t - o , these s. p. approach the singularities of

hlr) which are

a) branch points at

cr = g , =-. ± i R/I
(5. 43)

b) branch points at the four roots of

4.0 2-(0-2+ I ) 4 2 9 = o (5. 44)

For values of 3, N, H) ,fo=I , appropriate to the earth's atmos-

phere, these roots are widely separated so that the following approxi-

mate formulae may be used for these b. p.

W C tej(I-. I ?jg).1 q . ( 9 e
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c) essential singularities at

cr = :t ' (5.45)

d) an essential singularity at

Or 0(5.46)

We deform the path of integration into the Re <r 4.o plane, and

hence into contours encircling these nine singularities of k (a)

and thus decompose h t6Y) tt,.) into the elementary propagators

MEfhW eun' C, C1  s-

Assuming e . j , the gravity wave propagator,

h ,will again be given approximately by (5. 33).

The propagators h., and hC,2 , not previously obtained, are

tentatively labeled compression propagators. They appear to result

from "coupling" of atmospheric compressibility with the inertial wave

mode and potential vorticity wave respectively. In the limit as r .- t ''j.,

-u)-- e , ( L ect)t(5.48)

where
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C.

hr -%) b. e
w /-,t

f(

where the parameters At. , b, are obtained from

the subscripts 1 and 2. The large time behavior of

thus be computed by application of Appendix III, B.

tation and merely quote the result that as tP4 -P*

" ~" (3/X

(5. 49) by exchanging

hc, and hC. can

We omit this compu-

(5. 51
h C2 L 'f ,t) _/

so that hc, and hc %. will be asymptotically negligible relative to the

other propagators in (5. 47) for sufficiently large time.

The inertial mode propagator b.x is determined by the behavior

of 1,1*) in the vicinity of r;:t . As o->' , wehave

(5. 52

As r- -* I ~

(5. 49

I + e-w ,) (5. 50

.... ~- a ( er-- ) e
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where

a. r e (St a./W L

b zrr e)'IX/&(5. 53)

Referring to Appendix III, C for the approximate evaluation of h1 by

a saddle point integration, we find

K 4p,6 jCy3 e f(&J e tv7](5. 54)

and hence

K algebraic terms in * (5. 55)

where gI (cCOsttT (k)W

A rough estimate from parameters appropriate to the earth's atmosphere

gives the e-folding growth and decay time for Mr, to be an order of 10-

100 days. Since the f -plane equation does not have any simple energy

integrals, it is not possible to discuss this instability of the inertial

oscillation in terms of the release of some kind of potential energy.

This instability does not correspond to any actual physical process,

but appears to be a numerical instability of the approximation scheme,
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and hence an undesirable feature of equation (5. 37).

The last propagator which occurs in the JS -plane problem

considered is h(S v , the potential vorticity propagator. The

asymptotic behavior of this propagator rnay be determined by expanding

() in a power series in e- and integrating the series term by

term with the kernel function - . Keeping only the principle

part of h(0? in expanding it in a series in r , we find

e 0 ) ( 0()) (5. 56
q IT Cr

The asymptotic solution for the propagator is

(14)tP L(5. 57

The wave oscillation frequency is seen from (5. 57) to be given

by

. (t.x (x* ) (5. 58

At fixed time, lines of constant phase will be located on paraboloids of

revolution in the coordinate system ( X Y , iY ). The focii are
40)

located at the origin.

That part of the initial disturbance which goes onto the potential

vorticity propagator contains all wave lengths. Along the positive axis
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at fixed x , the wave number of the disturbance is seen to be

The very long wave length components are first past the point x

The asymptotic formula is not valid along the negative X axis, and

there is no wave propagation in this direction.

It is of interest to compare the p -plane potential vorticity

propagator with the potential vorticity propagator (5. 37) in a constantly

rotating coordinate system. It is seen that the introduction of a gradient

of potential vorticity in the P -plane approximation transforms a time

invariant potential vorticity propagator into a wavelike propagator,

which decays in time as a result of radiation of energy to infinity.

A question that arises is whether this elementary propagator

can be studied independently of the other modes of motion. These

other modes may be of no physical interest. This will be so, if it is

possible to find a propagator equation which has only a single elementary

propagator, namely h v. It is not possible to obtain such an equa-

tion which gives afs exactly, but it is possible to obtain an equation

with a propagator which is asymptotically equal. To achieve this re-

sult, we define a propagator h q by retaining only the principle part

of hNe') in expanding it about 6=o . That is we define

= (qn ~'AF'e0eyxR) 5I
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Apply the operator

to both sides of (5. 59) to obtain the propagator equation

a3 GfR -i()S t) (5.60)

It is clear from the manner in which equation (5. 60) was synthesized

that it has the same asymptotic behavior as the potential vorticity

propagator M y . The contour integration evaluation of (5. 59) may be

carried out exactly to obtain the first term of (5. 56).

119 = (4 rr ( ) J6UraR(XP)ti(e (5. 61)

See Fig. 5-2 and Fig. 5-3. We shall refer to )t as the "Rossby

wave propagator" and refer to (5. 60) as the Rossby wave equation. We

shall return to the general theory of this equation in Chapter VIII.

It is possible to derive further equations which have solutions

asymptotically equal to elementary propagators, by exactly the same

procedure of expanding the Laplace transform of the propagator about

its principle part, in the vicinity of other singularities. We call this

process the "filtering" of the propagator to obtain an equation for the

elementary propagator. One more example of this filtering process

will suffice.
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Let us obtain from the nonhydrostatic acoustic wave, gravity

wave, and buoyancy oscillation propagators, defined by (5. 17), (5. 18)

and (5. 19), the corresponding propagation equations. After a little

algebra, one finds the following equations for WA, W , and W .

. t(5. 62)

+(t M a N-zr=.v- '$lp. EhZ)tt) (5.63)

The above equations for WA, W 6 , and Wg have solutions

which are asymptotically equivalent to the elementary propagators de-

fined by (5. 17) - (5. 19) or by (5. 21) - (5. 23).
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r -

Figure 5-1. 4 I P x hydrostatic gravity wave propagator, when we
let r = NLet/ , and we assume N a/c = I
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'fIr? x Rossby wave propagator.
36 x +(y + )Figure5 - 2.*
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Figure 5-3. The trough-ridge pattern associated with the three
dimensional Rossby wave propagator ( = trough
line, -- 0--- ft = ridge line (units are in tens).
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VI. THE LAMB BOUNDARY WAVE IN A

STRATIFIED COMPRESSIBLE ATMOSPHERE

A. Introduction.

If we eliminate w in (3. 17), (3. 18) in terms of P defined

by (3. 19), we find that p satisfies a hyperbolic P. D. E. similar to

(3. 24). This is

3 - i+ N At x -'/cLti 7 -Mya

where

: t() 8 H r P

We have assumed

and may be neglected. The form of fur. y, a, .) depends on the

energy sources assumed to be present. If the only energy source is

addition of heat, Q , then fo(XVae is

where

w = a

.fi x 1 ,t, t) = f -- ) +-(Nt+ )jJ t. Q

P is defined by (3. 21). From (3. 17), the boundary condition

may be written

( if k-C (6.3)a'

(6. i)

(6.2)

(6. 3)I- = o
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It was first recognized by Lamb that for the isothermal atmosphere

approximation, (6. 1) has a homogenous solution

reL

where P Cx,y ) , the pressure amplitude at the lower boundary

satisfies the equation for horizontally traveling acoustic waves.

For this isothermal atmosphere mode, the vertical motion is identically

zero, and p decays exponentially away from the lower boundary. We

shall follow the text of Eckart in referring to this mode as a Lamb wave.

In recent years there has been a renewed interest in two classical prob-

lems of atmospheric dynamics in which the Lamb wave is fundamental

to the theory. These are:

a) The propagation of "pulse" around the globe from a point of

origin. The high frequency nonhydrostatic components of this motion

have been of interest for the discussion of the long distance propagation

of energy from a nuclear blast, recorded as pressure fluctuations by

microbarographs. The low frequency, hydrostatic components (on a

rotating earth) are of interest for the discussion of the manner in which

wind systems attain a state of "geostrophic balance"
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b) The theory of atmospheric tides. The Lamb wave modes of

oscillation on a spherical rotating earth have been extensively discussed

as possibly the largest amplitude component of the pressure fluctuations

in atmospheric "tides" observed at the earth's surface. In particular,

present evidence indicates, that the semidiurnal traveling pressure wave,

corresponds to a Lamb wave forced by thermal heating in the stratosphere.

In tidal theory, the Lamb wave is usually designated simply as the low-

est mode, or more explicitly as the mode with " h. ", "the equivalent

height", being approximately 10 km.

In order to synthesize the solution of the inhomogenous system

(6. 1) and (6. 2), one might use a "spectral expansion". That is, we

seek solutions of the homogeneous system depending on the parameter A

tC / (6. 5)

+ rPA =0 , 0--

such that an arbitrary function of ; and t may be expressed as

an integral over A (the spectrum of PA ). Then in particular, we

might express , and the forcing f t , 0 , t) as integrals

over the A . That is
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X, (4tPA( Ox ~sY))

P 7KA-) = PA it) ~x.,Y.A$

and hence reduce the solution of (6. 1) to evaluation of the much simpler

inhomogenous problem

CA ) fv>o = -- F M > ) (6.6)

In general, the spectral expansion will be of some mathematical difficulty

to establish, but in the simple case that the coefficients in(6. 1) are for an

isothermal atmosphere and hence independent of ? , it is quite straight-

forward, to separate out the ; dependence by expansion in the spectrum

of the singular Sturm Liouville system

{i;K z)K = (6.7)

(A P (A~) )=
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The expansion is obtained " by integrating around the singularities of

the Green's function." (See chapter 10, B). The result may then be

expressed as

a rer +fos rtaK...Rf±L e' (6.8)

To derive more complicated expansions for physical problems, it is

often necessary to proceed heuristically by contour integral techniques,

but here theory is rigorous. See for instance Titchmarsh, Vol. I.

The physical intepretation of (6. 8) is that we may express any

function of a , as a Lamb wave and two Fourier integrals. The first

integral is the Fourier expansion for an unbounded medium and may be

associated with motion that arises in the absence of boundaries, while

the second term may be considered to represent image motion due to

the lower boundary.

We shall make use of the expansion (6. 8) to discuss in the re-

mainder of this chapter, propagation of Lamb waves in an isothermal

atmosphere. In the next section, we continue the discussion of Lamb

waves given by the nonhydrostatic model, while in the last section, we

shall consider Lamb waves given by the rotating hydrostatic model for

atmospheric motions.
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B. The Propagation of a Lamb Wave in a Nonhydrostatic Isothermal

Atmosphere.

We consider the equation

+a( t *.5jr -L POno ci ,) (6.9)

with a point heat source . (See (6. 2)).

= gx,(T - rj - (N t  A I ) St. (6. 10)

and the boundary condition

. r) p=.(6.11)

We shall assume the isothermal atmosphere approximation so that

Y 4?-
For simplicity we shall first develop the theory of (6. 9) for

unbounded planar coordinates and then sketch the extension to spherical

coordinates.

We use the eigenfunction expansion (6. 8) to separate out the

dependence in the I variable. This gives

: PL +PD *2 (6.(6. 12)
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where Pt is the Lamb wave propagator for a point heat source; f1%

and Fr are referred to as direct source and image propagators,

respectively.

Here . fo and .0 are given by

PC i ra') (6.13)

PL = 2,arePD(IY

00

or

KR fPoxY k)e C) (6.14)

rr r (6. 15)

and PO , and Potsatisfy theP. D. E.

+ N p L -- h-- tO .N/ ) (6. 16)

We are not here particularly interested in the analysis for PO

and P1 , so we merely here give the solution for P, and mention

that rcan be expressed as a line image source of Po . We find
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= (N ijJ . Pt~ ',YP1g(4r(tIU-)'t ( Nr t )a-X" (t) (6. 18)

which is essentially the result (5. 06), manipulated to give the gravity

waves and acoustic waves excited by a point heat source in an unbounded

atmosphere. For further approximate reductions, we refer the reader

to the discussion following (5. 06).

We now proceed to a more detailed discussion of the Lamb wave

propagation. Inverting the spatial operator in (6. 16) gives

-5 r7&Ko(d P/c.) J, (6. 19)

The first term gives

,J Eer k 4 6CC/s)

ftr+)' (6.20)

The second term may be evaluated exactly as a contour integral or con-

volution integral using

K OraAP1J It)CC" = A
Lc+t/V -C) (6.21)

**

VIL j

- eI do-
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An approximate description for large P/c is given by

jiL N' *( E)J Yt) N C S2i) ( -( (6. 22)

LfNKO r.3ft cP 'L (VLy4 (6.23)

Here (6. 23) is suitable for evaluation near the front (6 - , and

(6. 23) suitable for N (*' C'/) 7 / .

Now an actually excited Lamb wave motion will be greatly com-

plicated by the details of the physical source. Any reasonable source

will smooth out the singularity of (6. 20) at t ---el. , and lead to a

damping of the oscillations described by (6. 21) and (6. 23). The motion

then predicted is :

a) A sharp, essentially nondispersive pulse traveling horizontally

with the speed of sound.

b) A long decaying tail of buoyancy oscillations, with a period

of 5-10 minutes, (depending on what part of the troposphere or lower

stratosphere determines the buoyancy frequency). Comparison with

Fig. 1-2, (from Wexler and Hass) suggests that the above theory may

I
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account for the initial observed pulse and low frequency tail of the ob-

served pressure wave, but that without elaborate hypothesis as to source,

we can not expect to explain the higher frequency intermediate portion of

the trace, or the frequently observed very high frequency waves. Rather

extensive numerical computations of the acoustic-gravity wave normal

modes have been presented by Pfeffer and Zarichny, (1962), (1963) and

Press and Harkrider, (1962) and Harkrider (1964). These studies have

been relatively successful in explaining the observed pressure wave in

terms of the nonisothermal atmosphere Lamb wave and the first few

internal gravity wave and acoustic wave modes. These internal modes

may account for discrepencies between the present isothermal atmos-

phere theory and the observed wave. As a contribution to further under-

standing of this phenomenon, we wish to emphasize that the term ( i N

in the solution operator will convert an otherwise nondispersive wave

motion into oscillations with the buoyancy frequency. This point appears

to have been anticipated by Pekeris (1948), but has been somewhat

neglected in more recent studies, which have emphasized those aspects

of the motion which are related to dispersive wave propagation theory.

In order to extend the above analysis to a sphere, it is convenient
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to use a two dimensional spherical coordinate system with the source

located at the "north pole". We take 9 to measure colatitude -

that is re( is the great circle distance from the source. The Lamb

wave propagation equation (6. 16) then is equivalent to

...... 09 ) :f ..Itt) P$>1 )
-. rrsi (6.24)

We have here simplified somewhat the forcing so that it is a simple unit

impulse. It is simple to obtain the Green's function for a unit heat im-

pulse, by analogy to the analysis following (6. 16), once the result of

(6. 24) is known. The inversion of the spatial dependence of (6. 24)

(c. f., for instance Friedlander, p. 170) gives

P. ' L"ScJ -14) fr ('erA',XiNoLw.O0), a *Jft)6. 25)

One finds a uniformly valid approximation for large time is given by

r -~ are !t-) * .2.rriedrc

P - (t/crI + e c+'ct) (6.26)

are (re/ sin ()

It F re)- re I r-.)
Z I-( zre ill) J (6. 27)

where we have assumed in (6. 25) that

r IsctIs ).
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and where

= t-.rn (6.28,

(A result similar to (6. 26) has been found by D. B. Van Hulsteyn, (1965),

The first term in the brackets of (6. 21) gives the wave directly

from the source plus the contribution for the waves that have circled the

earth ' times ( j = 2, -- - ), refocused at the poles, and propagated

out again, while the second term in brackets gives the wave that has

propagated around the globe times ( , ), refocused at the

antipodal point and propagated out from there. (Because of dissipation,

the number of actually observed waves is limited to the first few terms

in this series).

The solution to (6. 24) for an unbounded plane approxirmation is

(c. f., (6. 20)).

Mo. 'AOn
i"' (erea) j

This is the first term of (6. 27) multiplied by (ine /) . For small

G so that (S" O/Q) ' 1 , the unbounded planar model gives the

correct direct source wave. However for Q , the planar

model overestimates the geometrical attenuation by this factor. After

the wave passes the equator of the coordinate system, the planar model

k
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continues to predict attenuation of a spreading wave, while the spherical

solution correctly predicts that the wave amplitude begins again to in-

crease as a result of propagation inward to the antipodal point.

C. The Propagation of a Lamb Wave in a Rotating Hydrostatic Atmosphere

We discuss the equation

C) f 4,*( ±* -*Nt /. r (6. 30)

where a-: I+

and

f".)(6. 31)

Eq. (6. 30) is the "internal gravity wave" equation (3. 56), where we assume that

the atmosphere is isothermal and that the only forcing is a heat input Q,

The boundary condition assumed is wzo , at u = , or from (3. 64).

rrTL(7) ( / %p(6. 32)

We shall take for .fn'v, ,,)

a.+./(6.33)
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which according to (6. 31), is a unit impulse of heat. The projection

of this unit heat pulse forcing onto the Lamb wave mode is given by

(6. 8) as 4L , where

~ sy v) ,,'0xyt )e<t r nJ)Ff (6. 34)

Let the projection of the perturbation geopotential height

onto the Lamb wave mode be written as

0 
- Pr

) (P/)T'tl" -&' ) (6.35)

Then ML satisfies the P. D. E.

h 4. (6. 36)

with 4L defined by (6. 34) and c is the speed of sound

C -. )N=H)It(6. 37)

The Lamb wave is then obtained by inversion of the spatial dependence

of (6. 36) as

.L-&(+LA ) ~' oLC Y/t) (6. 38)
Nr'At

which has the exact evaluation

L atC(6. 39)
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For 4 t one may use

a- H/t-e/c)LCos L(6. 40)
17 IA/ ) ( t  f)t/

while for( t-% ) 'J , wermay use

rr NAi

where he, is given by

rrf N'(6.41)

The term , , which does not decay with time, is interpreted as a

geostrophically balanced Lamb wave.

Thus in summary: The Lamb wave motion excited by a unit impulse

of heat consists of

a) An outward horizontally propagating inertial-gravity wave,

consisting of a discontinuous front t--- P , and a long train of decaying

inertial oscillations.

b) A residual time independent motion, associated with geo-

strophically balanced motions.

Variations of the above problem are common in the meteorological

literature. Earliest analytic work is that of Cahn (1945) for one dimen-

sional shallow water waves (or a rotating ocean), and Obukhov (1949) for
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two dimensional shallow water waves.

If the variability of the earth's vorticity is introduced through

the " -effect', it is found that the residual geostrophic motions

also radiate to infinity. See Dobrischman (1964). Assuming a constant

Coriolis parameter, the planar approximation results may be extended

to the direct source solution on a sphere, by weighting the solution by

a geometrical factor (S0 ) to account for the focusing of the

spherical coordinate system, ( G = angular great circle distance

from source). Further wave terms representing the contribution from

waves that have refocused one or more times at the source point and

at the antipodal point may be added, if dissipation is sufficiently small

to permit propagation for great distances. The quantitative generali-

zation of (6.40) to inviscid propagation on a sphere is

w here (6.42)
I Jr

where

F + gLr; - ?

p.co54cr0 .recrs J(6.43)

re

4
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and 'T, is given by (6. 28).

Presumably a more realistic model, including the variability

of the Coriolis force would give results qualitatively similar to (6. 42).
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VII. APPLICATION OF FOURIER INTEGRAL METHODS TO

ATMOSPHERIC WAVE MOTIONS

A. Alternate Methods of Analysis for Atmospheric Wave Motions -
The Method of Multiple Stationary Phase

In the preceeding chapters, we have presented solutions for

various types of atmospheric wave motions excited by point sources.

While the scale of motions ranged from acoustic motions to Rossby

waves, it was possible to discuss all these motions by similar math-

ematical techniques. This uniformity in procedure was possible be-

cause the spatial dependence of the solutions could be determined by

the inversion of second order constant coefficient elliptic operators,

and thus exact solutions could be obtained as certain operational ex-

pressions .

The purpose of this chapter is to introduce some convenient

Fourier integral techniques which may be used as alternate methods

for solution of the problems previously discussed. We can gain in

this manner further insight into the physical content of the theory and

obtain some modifications that are not possible to derive by means of

the techniques previously employed.

In this section we describe,in the context of a simple example,

the various alternate procedures which may be employed for solution

of the preceeding problems. Our primary result will be an approximate
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method for the evaluation of multiple Fourier integrals, known as the

method of multiple stationary phase.

We discuss here the two dimensional hydrostatic gravity wave

equation for a point implusive source. It is to be remembered that

these results are somewhat artificial since the ultimate rate of decay

of the motion will depend on the spatial dimensions of the source. The

equation considered is

N ) ' (7.1)

The previously employed operational technique gives the solu-

tion to this problem as

2 N (7. 2)

Evaluation of this expression by contour integration gives

NN--O..!.--... C. 5 (A/ / )(7.3)
x1IrN X

Alternatively we may use a Fourier integral approach based on the

spectral expansion

0o

= NN O 6 leof rI(7.4)

We hence seek solutions of the form
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= 9-;;tfW(K1#41t) e ,N E*(7.5)

which will satisfy (7. 1) provided ViT satisfies the ordinary differential

equation

a 2tNa) K (7. 6)

which has the solution

V 3 'Nt (7.7)

Three obvious integration procedures for the evaluation of (7. 5)

are a) integrate over F , then Y , b) integrate over r , then w , c) carry

out both integrationssimultaneously. These proceed as follows:

a) After integrating in r , (7. 5) reduces to

The b integration then gives (7. 3).

b) After integrating in Y , (7. 5), reduces to

fi6r w1e/%tJ x

..L.. /.ic(7. 9)
The integration in r may then be carried out exactly by introducing an

integral representation for the Bessel function, and by carrying out the

integration under the integral sign. This reduces the integral to (7. 8),

and is hence equivalent to a). We may also evaluate (7. 9) approxi-

mately by the method of stationary phase. That is, we take

I
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Ioa V ) C, os [a (OVa-CfI -7/rV
rr* -(L 4 f(7. 10)

Points of stationary phase occur when y -L e t) .

Omitting the details of this computation, we find

The lowest order term is actually the exact solution previously obtained.

c) The K and r integrations are now carried out jointly by

the method of multiple stationary phase. Since this is frequently the

most powerful method for the analysis of more complicated atmospheric

wave propagation problems, we shall describe the method, abstractly,

in some detail.

The integral under consideration is of the form

W I X, & t) -(Ir) Sdid r .Ce±0MI, r (7. 12)

where it is assumed that x , , and t are large parameters.

Rigorous derivations of the multiple stationary phase technique

are available in the mathematical literature. See for instance, Jones

and Kline (1958). We give here a simple derivation of the theory which

shows the computational procedure used. We shall assume that f tr, ri

has no singularities on the real r and r axes, and that the curvature in

rx and y space of the phase surface
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< ) K *x 1- t I -> t (7. 13)

does not vanish.

The phase is stationary at the points in ( x , r ) space and

( x, j , t )where

) (7. 14)

This forms a nonlinear system of equations in x and r , which

we assume may be inverted to obtain the wavenumbers of stationary

phase

Xs S 0 1x, do >

Y.s I Isp (,N>*a.; )(7.15)

For simplicity, assume there is only one ( As, cr, ) point of sta-

tionary phase in ( - , Y ) space. We evaluate the partial second

derivatives of C' ( x , y ) at the point of stationary phase. Let

these be:
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We expand the phase 4 in a Taylor's series about the point of

stationary phase.

cf~~)= 9. C4sa4L- + 6,,-'"'+ c.lt +Rs,)

where we use

and are all the cubic or higher order term of the Taylor's

series expansion of 4.

We likewise expand .: y1) in a Taylor's series.

:I), y * 

~

and furthermore expand e in a power series in R(A*'

The product of 1 ) . and this sum may then be expressed as

(7. 16)

(7. 17)

(7. 18)

(7. 19)
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a power series

fIK)V 4< __ ' = J + S 9jjA p"~ (7.20)

The first few terms of the series will usually be easy to obtain.

The quadratic form 2 + a b '+c. 7 L may be transformed

to normal form

2 +zb"+ C '?K.AA+ -tL(7.21)

where ( K1 , Ku-) are normal coordinates and A, At. are the eigen-

values of the matrix, M

M (2' J (7.22)

We introduce the polar coordinates K , P by the substitution,

(7.23)

and expand ( 7. 20 ) as

5. ', k' i'G; -j(sa, (7.24)

Assuming the analysis (7. 15) - (7. 24) has been carried out, the

integration of (7. 12) reduces to
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4PKIP, ).CO's So s
e P t e 1C(J 9 l(IE E* (A,*&' /# .. 25

=qpIr t.~)I/ kr )" t" - ~ ) 7 5

The integration may now be explicitly carried out with the result

[ FOw,,,rs,) (tPr Y-f( ) (7.26)

where

~SGot;In; A A~

This is an asymptotic power series in At , and A -

The following modifications of the above analysis will frequently

be necessary.

1) When more than one point of multiple stationary phase is

present in ( r. , r ) space, the sum of the contributions from all sta-

tionary phase points must be included.

2) When a. , b , and c all vanish, it is necessary to retain

in the exponential the third order terms in the expansion of 4 0,')

Generally the parameters A and A-. will increase as t -e

so that the first term in the sum will be adequate to describe the large
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time evaluation of the system.

Returning to the integration of (7. 5), we see from (7. 7) that

the denominator has a pole at W 0 . However, because of the rapid

oscillations of the numerator, the integrand is integrable at this point,

as may be seen by mapping the point to infinity.

The points of multiple stationary phase of the integrand are

given by

X = =- N /,y

E/e ~ ~ I =Z.l /y.
(7. 27)

which may be solved for K and "r to obtain

A;Nt
xC 9)

Expansion of the phase about these points gives

* Z(- r bs)
NT

+ Rbab'r

(7.28)

)x I Nt 3 (7. 29)
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where (K A) is the remainder involving cubic or higher

terms.

The integral (7. 5) is hence approximated as

R eN '1 1 - & r~' ' ' *(7.30)
q e r fa drc

where

o/ta') + oLL

Application of the multiple stationary phase computation then gives

CosNs \+ j1 O +-LI (7. 31)
an A X

It is known from the above analysis that

... -- (:irr NJ x) /Re a (7.32)

and also that

...- (yr W )}JIr)e Re r(7. 33)

has (7.32) as an asymptotic stationary phase approximation. This per-

mits a rapid asymptotic evaluation of the stationary phase contribution

to the Fourier integral
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)'"'fJ'i.lheeAVIP

where we assume that Fk,) has no singularities that contribute to (7. 29),

nor to a first approximation does it alter the phase. Then it will follow

from application of the stationary phase method that

. -;We* /x tNA/m

F34)

(7. 35)

Knowing that the exact solution (7. 32) is asymptotically equal to the sta-

tionary phase approximation to (7. 33), we can obtain (7. 35) by inspection,

provided we can obtain the points of stationary phase ( K ,, , s£ ),

here given by (7. 28).

More generally, let !P0>*) be a Fourier transform of a function

ti. vEx>4t) to be evaluated, and let ft) be the Fourier transform of

a known comparison function #/>% , ) . Assuming that the asymptotic

integration of P and $ is determined by single points of stationary phase

which are approximately equal, then St ("> at) is given approximately by

1 s))t ,Ie) rXs e#6je) O iI .'(7. 36)
t ics, I Ys A

where Ksp , Y is the stationary wavenumber for the Fourier integral

representations of I', and f.
This procedure will be applied to some further atmospheric wave

propagation problems in the next section.

+ leIj' t)= v rN x ) IF ( ise, a r i) e f F ## Ix-, ..,,. ) Lo
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B. Approximate Evaluation of Atmospheric Wave Propagation Problems
by the Method of Stationary Phase in Conjunction with Comparison
Functions.

In this section we discuss some more applications of the stationary

phase technique to the solution of atmospheric wave propagation problems

when a comparison problem has a known exact solution. Two possibilities

may be distinguished: a) The solution for a simpler source is known

exactly. b) The solution for a simpler equation is known exactly. Prob-

lem a) may be referred to as a source perturbation problem, and b) as

an operator perturbation problem.

We shall first illustrate the operator perturbation procedure by

reference to the problem of determining viscous corrections to inviscid

atmospheric wave propagation in an unbounded medium

Assuming for simplicity that the coefficient of viscosity, v,

may be equated to the coefficient of conductivity, and that these coefficients

may be considered locally constant, we may introduce dissipation into

the inviscid equations by making the substitution in the wave propagation

equation

(7.37)

wherever the operator )/ appears.

Assume we have found Fourier plane wave solutions for inviscid
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motions of the form e where

U+It + <(7 .3 8 )

Then the addition of viscosity will be equivalent to replacing #' by

4>, where 4' is given by

. vI;/2j (7.39)

with o +i *y * +.ka' We shall assume that v is a small

parameter.

Let w; I , y t3 e be a known inviscid solution for a localized

source, which has the Fourier integral representation

0

-- at

and let ks, be the only wave number which makes 466i) stationary:

Then in the limit as v -4 o , the solution to the viscous problem,

wV y te) will merely be

-) IAt * t (7.41)

It is necessary to modify this procedure if there exist two or more points

of stationary-phase, i , , such that i i t .It
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The derivation of (7. 41) follows from noting that the Fourier

integral representation of W, is known from (7. 39) to be

=V ((Cab cflou )

and that approximate evaluation of the integrand (7. 42) for small v is

determined by the same stationary phase points as in (7. 40). That is

V4t= P(-) -~0

for i evaluated at Ips,

As an example, consider the viscous gravity wave equation

fj -vA3) A3 + IV w = 0

The phase to the inviscid problem is given by

r *A 01'

where n = (x%; kiCM) is the vector wave number for plane

gravity waves. The points of stationary phase are given by

-0

This provides three equations for w , xy, a which may be solved

to obtain

(7.42)

(7.43)

(7. 44)

o:b ~ (7.45)
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X'''/) (7.46)

k*Isr--/I

where

/)(Y' l 16 k(7.47)

Let the solution to a given inviscid problem for motions propa-

gating from a local disturbance, be known as w; i %, v, *, */ .

Then the solution to the viscous problem, (7. 43), for the same I. C.,

may be approximated by

WV Wg x'k - (7.48)

From this result, the decay rate for viscous damping will increase

like # for increasing time and will be most rapid in the neighborhood

of the source. This result is only accurate for W -~ w; , but will

give qualitative information concerning the damping over a wider range

oft andR.

As another useful example, we consider the viscous Rossby

wave equation
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[( ~v 3)a3 +sL]. =0(7,49)

The phase for inviscid Rossby waves may be written

=Rif A'l 4 t(7.50)

Then the stationary phase condition, 0 , inverted for wave-

number gives

gM (7 .51)

Assuming the same initial disturbance, then solutions the the viscous

Rossby wave equation, 9v , are related to the inviscid solutions,

by (7. 41), which using (7. 51) gives

MOM- e R(7. 52)

again provided .- M*

As an example of the source perturbation procedure, assume

the Rossby wave equation

+am-\ow= - )J O(7. 53)
,ItI +0 |
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We know that for ( Jt) . (7. 53) may be inverted

to obtain the propagator

=t &nR To(2 a t R )(7. 54)

Let F(A) be the F. T. of -f4R) . (The F. T. of JY(R) is 1).

Then (7. 53) may be solved as

.o

R) $ : ' (7. 55)

Then by comparison with TR given by (7. 54), we see that the stationary

phase contribution of the integral (7. 55) is approximately

R%.I --4i 4fF(xs+) Ho( .otcx+R)5' f.*F(..) .(7. 56)

where K5 , . is given by (7. 51).

We shall find these procedures useful in the next two chapters.

go
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VIII. ROSSBY WAVES EXCITED BY TIME

DEPENDENT DISTURBANCES

A. Preliminary Remarks

The first class of problems analyzed in this chapter concerns

the Rossby wave motions excited by various point sources in a three

dimensional unbounded atmosphere. In section B, we discuss the mo-

tion which ensues after switch-on of the sources proportional to

Hit) cos(L.t), and Ri t) Ja(wot). These are simple models for un-

damped and algebraically damped oscillatory sources respectively. The

sudden switch-on excites transient forerunner motions of all frequencies,

and a forced wave motion of frequency w. . For comparison, we ex-

amine in C, the motion excited by the sourcee - cosl 'wet), an oscil-

latory source smoothly switched-on and off by a Gaussian modulation

factor. In this case, only a forced wave packet motion is excited, which

for not too large time, propagates outward without change of shape.

In D, we discuss the Rossby waves excited by switching-on a

traveling disturbance. When the source is taken to travel in the posi-

tive X -direction, the only wavelike motions excited are switch-on

transients; the forced motion excited attenuates exponentially away

from the source. In contrast, a source assumed traveling in the

negative x -direction excites wavelike forced motions as well.
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One of the major defects of horizontally unbounded models for

atmospheric motions is that wave energy propagating from a source

around the earth one or more times is not included in evaluating the

excited motion. At present it is not possible to estimate the impor-

tance of this energy relative to the wave energy arriving directly from

the source, but it is possible to describe qualitatively the propagation

of these secondary waves. We consider, in E.,Rossby's one dimensional

wave equation for propagation in a domain that is periodic in x . The

motion for an impulse, and x unbounded, was given by Rossby (1945).

Charney and Eliassen (1949) previously discussed the solution to various

problems for a periodic domain by summing numerically the Fourier

series representation of the solutions.

Many of the results of this chapter may be described in terms

of the asymptotic phase for the Rossby wave motions excited by a point

impulse. The phase g is given by

IL + /'L I "3. +

which may be considered a surface defined over the space x, aY>, .t

A surface of constant phase in time-space is the four dimensional mani-

fold obtained by the intersection of the I(x)v)> &>t) surface with the

plane 'i = $1. . The projection of these constant phase surfaces onto

4
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the R , t plane is a family of hyperbolas, while the projection onto

the x , ( v '- * NV/: ,7 ) plane is a family of parabolas.

One may consider each point of the phase surface to be approxi-

mated by its tangent plane, and hence to be considered locally a plane

wave, the local wave number, frequency, being the same as the normal

vector to ' . That is

we find from differentiating (8. 1)

IC/

WY+

/tI

and using

(8.2)

L =V j I y+ /f t jL L

Yft (8.3)

which is the same as the stationary phase wave number given by (7. 51).

The results obtained in the next section may be described as

follows. As soon as a point source is switched on, at a given point, very

high frequency Rossby wave motions of very small amplitude are excited.

As time increases the frequency decreases proportional to t-hA . We

use the usual term forerunners to describe the transient Rossby wave
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motions of all frequencies that are so excited by the switch-on of the

source. Eventually, at a given point of observation, the frequency

decreases to w& , the forcing frequency. At this time there is a

resonance-like increase of the wave amplitude to the value which is

forced by the time dependent source. This forced motion propagates

outward with the same time dependence as the source, but delayed by

a given phase factor.

We shall coin the term the Brillouin front to describe the sur-

face within which the forced wave motion is confined. The transition

from only forerunner motion ahead of the front to forerunner and forced

motion behind the front occurs over a transition region of finite but ever

decreasing thickness. (L. Brillouin, in the theory of electromagnetic

wave propagation in a dielectric medium, first described such a transi-

tion zone). The velocity with which the front progresses outward is

known as the signal velocity. This velocity may be identified with the

local group velocity for motion with frequency wo

The Gaussian wave packet of section C. propagates outward,

centered on the same Brillouin front, and attenuated by the Gaussian

factor fore and aft.

The traveling disturbance problem described in section D. shows

that when forced wavelike motions are excited, they are confined
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within another Brillouin front. The front in this case, for a westward

traveling disturbance, is a sphere intersecting the x-axis at the loca-

tion of the source and at a distance 2 (t downstream (to the right

of the source). The signal velocity of this front corresponds to the
1It

group velocity for motions with a scalar wavenumber equal to /u).

The one dimensional motions of E. are similar to those de-

scribed above except that the Brillouin fronts propagate only in the

positive x -direction and travel around the system to give secondary

wave motions.

In F., we discuss the upward propagation of internal Rossby

waves for horizontally sinusoidal sources. The primary intent here

is to determine the initial excitation of disturbances. This section

incidentally provides a rigorous verification of the internal wave

upper boundary condition selected by Charney and Drazin (1961), in

a discussion of the steady forced Rossby wave motions in a variably

stratified atmosphere.

In G. is given a discussion of a modified form of Rossby waves

which are frequently postulated in physical applications. When a

"divergence" or "compressibility" term is added to the Rossby wave

equation, the group velocity has a maximum, so that two modes, a

Rossby wave and a compression wave, are present for points
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sufficiently near the source, but in the neighborhood of the ( x ,. )

region propagating outward with the maximum group velocity, the two

modes coalesce into an Airy front.

In Figures 8-1 - 8-5, are sketched some of the features of the

various Rossby wave solutions.

B. On Rossby Waves Excited by Oscillating Sources

Consider the Rossby wave equation

( .3+6t) -ft)J7() 8.4)

where the vertical coordinate has been assumed to be stretched so that

N/.*,= . The motion forced by a source beginning at t = o is

given by
* It

(8.5)

We obtain explicit approximate solutions for

i) f It) = Ht) cs (wet) (8. 6)

ii) ) W it) o I w*"'o 0(8. 7)

For this purpose we use the contour integral representation of (8. 5),
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written

Lf, S.R Ffr),e'Nil?

-2.

SO

Sources (8. 5) and (8. 6) give

= fe
0 o~(c~ee)4ltCV=0

co

Ft (Cr) r f e0 X.&et) 'A O

(8. 10)

- I

(8.11)

The path of integration for (8. 8) is deformed into one of steepest descents.

Saddle points are located at

,/.

(8. 12)

When

(8. 13)
I espi 4. L'0

the original contour must be deformed past the singularity at w,

and the loop integral about we added to the s. p. integral. This

evaluation thus gives

(8.8)

(8.9)



-140-

0= (t (xR)) * Lit. ,, .

where we use

9-I

( ck"y:W0

ee. , &-erxpfe-LxtjF,
ON t i ow-

~tr

See Appendices III, D. and IV, D.for further details of the evaluation.

The forced motion, is given by

-5i1 <x4t + _ .. (ret'R),

while 'h, is a branch line integral evaluated approximately as

1 rwot
, = . t ot) - COS[W

The forerunner motion s. p. is evaluated approximately as

Lftz t.p. I- ..- R

The results for f,, s. p. and s. p. may be written

(8. 20)4. L f A (n )
lo 17 R -tx- COR)?btxLJ

(8. 14)

(8. 15)

(8. 16)

(8. 17)

(8. 18)

(8. 19)Fop c,,. )

SIP1 S.P.
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+2,sr ±(8. 21)

These asy nptotic approxinations are valid for C such that

tlX*)]-(' Iz*)(8.22)

(8. 23)
(A t(a*R))

In particular the analysis fails in the neighborhood of the Brillouin

front

t PI X t)
(8. 24)

where there is a s iooth transition from forerunner -:notions to forced

plus forerunner motions. (For (8. 24), the saddle point and singularity

at to coalesce). The details for w. a pole are discussed in Appendix

IV, D. One finds in this case that , in the neighborhood of -6 given

by (8. 24), is

z...Re 1exp ;wt*"Morn/~~t&
- mwR a 1 x4)12tJj(8. 25)
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c.f. (8. 12) for (4fs. p.

It may be shown that f, given by (8. 25) reduces to the transient

motion 9' s. p. as -2r ( ) and to 'I,,. +

as ( - -- so. On the Brillouin front , reduces to ,j- W,

one half the final forced motion.

The predicted Rossby wave motion at a point distant from the

source for the COSW.t forcing may now be summarized as follows.

Soon after the source is switched on (but long after the acoustic front

has arrived) forerunner Rossby wave motions of high frequency will

begin to arrive. The ratio of their amplitude to the final forced motion

will be approximately proportional to

A =fA.(A 02) =(- ()'arx0v I,

where we assume A t-l , AA. 4- I . As t increases, the

factor A, will approach 1, and there will occur a rapid increase of

amplitude, such that for A, =1, ' will have attained one half the

amplitude of the steady forced motion given by (8. 17), and for A , -- +I#6

where A is some small increment, the motion may be represented by

where =

represents the error ma de if the transient forerunner motions are

neglected.
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(y2+ N2/f2z 2 )2

lb

Forerunners

Forced

.

Figure 8-1. Sketch of 3-D Rossby waves excited by a switch-on oscil-
lating point disturbance.

Forerunners

Brillouin Front

I -D Forced

Rossby Wove

Figure 8-2. Sketch of l-D Rossby waves excited by a switch-on oscil-
lating point disturbance.

--- l
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In contrast, for the NIW)'T.{wue) source the forerunner mo-

tions decay as t ->o like t 4 (c. f., (8. 21)) while the forced motions

decay like -f"'' . The forced motion (c. f. , (8. 18)) are confined within

the Brillouin front (8. 24), but upon their arrival, there is only a small

increase of iossby wave amplitude over that due to the forerunners.

The difference of the wave amplitude directly ahead and behind the front

decays like t~"' as e -*.o . It is easy to formulate other Bessel

function-like sources, where the forced wave motion will be dominant

behind the front. This is the case for the source

a [Hit) T&o)

where it may be shown that again the forced wave motion decays like

t "''% , but now the transient motion decays like C3// . The reason

for this is the seemingly paradoxical result that the more singular in

time is the switch on, the more rapid the forerunner motions decay as

t* + o. This is true for any wave motion defined asymptotically by

a steepest descent integration over frequency such that the saddle point

approaches the origin as t 4oo . This is presumably a consequence

of the fact that for more singular sources, higher frequency, and hence

more rapidly radiating motions are then excited.
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C. Rossby Wave Packet Excited by an Oscillating Gaussian Modulated
Source.

Consider the Rossby wave equation (8. 4) with -f(*) the source

-f(*/ C sI
fit) C ow

where we assume w. y r~' . That is, the motion is smoothly

switched on by a Gaussian modulation factor. The solution may be

written as a Fourier integral

emoo a-o/
Y---

For evaluation of (8. 27), we expand the phase in a power series in

(W -w, ), and retain terms to second order.

wexpfl[Gut (xL Ri

where

Fb.AJ) ex~bfLU~44J4 )ft I8XR].1...F i 4IN. C X P4hom'woe 3

(8. 26)

(8. 27)

(8. 28)

(8. 29)
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Substitution of (8. 28) into (8. 27) and computation of the inte-

gral gives

= i+i sn MV. 4 w (-Rf 2L-(8.30)

where the error term 6, defined as

+R ) (8.31)

is assumed much less than one.

The result shows that the Gaussian time-modulated disturbance

excites a Gaussian spatially modulated wave packet centered on the out-

ward propagating Brillouin front, t . The phases

move through the wave packet towards the source. Note the

geometrical attenuation, and the phase variation is the same as for the

switch on source motion, given by (8. 17).

For the above evaluation to be approximately correct, it is

sufficient that the saddle points of the integrand (8. 27) near the real

axis be approximately at A = w, . But these are located at the

roots of

e a e(8.32)

We assumne

y
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which implies

f(x+ R)1(8.33)

The first of these conditions is the same as required in (8. 31), 64 i

but the second gives the added restriction that the t be sufficiently

small. As * -+. , the motion described by (8. 27) spreads out into

a motion similar to that excited by a point impulse. The evaluation of

(8. 27), as t-.* , gives

(8.34)

tfO TrIr?

D. Three Dimensional Rossby Waves Excited by a Traveling Point
Disturbance.

Consider the equation

f( u )za .3  + +- U H 1+)"/(8.35)

where a coordinate system in translation with the source has been

selected. Multiple Fourier transform gives the solution

(8.36)
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where i (, " ,is the wave number vector. Introducing

the spherical wave number coordinates,

[n )(8.37)

= A-',[( y * + xA') /,

and using the fact that (8. 36) is even in k , we write the integral as

r { eJ KRCos(o) (8.38)
where P is the azimuthal angle

7 +am..)-F(y L+a%/X (8.39)

This representation is more convenient for steepest descents evaluation, '

but the details of the procedure are still rather complicated and hence

omitted. The contribution of stationary phase points of (8. 36) may be

evaluated directly by comparison with the Fourier representation of the

Rossby wave propagator

Jo cr Et({x-ut ) + R). =# (8.40)

We distinguish two cases. For U to , one finds that

if
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YO/,
(8.41)

'v rr R

where

SPOlt (8.42)

the integration being over the neighborhood of those points where the

phase of the integrand is stationary.

The term 4 s. p. may be evaluated asymptotically by using

(8. 40). The result is

,'*tJ ~ F 60 (x -1) ) (8. 43)

where

A 'it(8.44)

.e0 (('x-u&) +k)J (--t) )(8.45)

For U >o , one finds that

.. Nh- R/ 0 ) Cosf I? I -,, (8.46)
agR R

w-It J s,1gIn- g -1--Ivn -y (8 42A n d (8.1 43).
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In summary: for either () , a switch-on transient forerunner

motion %, is excited which is advected along with the flow. For U o

the forced disturbance propagates with infinite speed. Its spatial evanescence

is exponential. On the other hand, for U ?o , the forced motion has

a finite speed of propagation and the forced waves are only found within

the sphere

R = (8.,47)

which intersects the x -axis at the source point and a Ut downstream

from the source.

When (8. 38) is evaluated by contour integration, the pole of the

integrand of (8. 36)

(8.48)

coincides with the K saddle point when the Brillouin front (8. 47)

passes the point of observation. This can be described physically as

the arrival time for forced wave energy, which propagates with the

group velocity of wavelength of the motion forced by the traveling

source.

The motion excited after the source is switched-on -nay be

described as follows. The scalar wave length, t r, decreases

f
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Forerunners

Figure 8-3. Sketch of 3-D Rossby waves excited by a switch-on travelling
point disturbance.

Brillouin Front

Figure 8-4. Sketch of vertically propagating planetary waves excited by
a switch-on oscillating disturbance.
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with increasing time so that at any point in the v 'o half space, it

f/a
finally attains the resonance value' Xi 3). At this instance when

the Brillouin front passes the point of observation, the wave amplitude

rises sharply and for all latter time the steady forced wave motion is

observed.

The asymptotic evaluation of the forerunners as given by (8. 43)

is not valid in the neighborhood of the Brillouin front when there is

actually a smooth transition region from transient motions ahead of

the front to transient plus forced motions behind the front. We omit

here the analysis for this transition zone.

E. One Dimensional Rossby Waves in a Periodic Domain

Rossby's one dimensional model equation for the transverse

velocity, v , may be written

av + Vt (8.49)

where we assume the periodic boundary condition

V/10 I ) = V j >(8.50)

and the elementary vorticity sources

a) (8. 51)a)
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b)

c)

f (x, ) r Hit) cos e.e

f We>=) S/t) IC X L)

The solutions will be decomposed into a component of motion

excited directly by the source, V, , and the remaining motion, v.

which may be considered to have been excited by an infinite sum of

image sources. That is

V -v= +V 1

One then finds for the source a) , #or w,e) ;it)

0 x
V41 = -Ihx. (8. 55)

cr' IcIto

CW I _ e ~ (8. 56)

We use the Dirichlet series expansion

~(3 j#/0 -
r - ae-'

so that using Appendix II, 4,

- (8. 57)

JROINo

(8. 58)
y 0 r - H-Nv J2 [ t) '/4

(8. 52)

(8. 53)

(8. 54)
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V O = - II YOj(ecrM))J (8. 59)

Here vo is Rossby's (1945) one dimensional propagator for the

primary wave. The jI th term of (8. 59) may be considered to result

from an image source located at x 00--j1 . Such image sources occur

on the nonphysical strips, x'.o , to the left of the source. The

Rossby waves only propagate energy in the positive A -direction.

For the more realistic I-D model discussed in G. the wave propagation

speed is finite and only a finite number of terms will occur in the sum

(8. 59).

For the oscillatory source b), -fm4x,te ) -'x it Co wswt

the solution is again written v =V #Vx where now

~H1A) ~.tCw)re It (8. 60)

Vr (~tw.)-ago" .. 5. V to (8. 61)

The denominator of (8. 61) may again be expanded by (8. 57). Using

Appendices III, D and IV, D, one finds

VD = /-/) (v . vr) (8. 62)

4'

10
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where the forced wave components V,-, are given by

V,= - (XL. - vr+S) 5m s t. +s. .i.Ut (8.63)

and the transient wave components - are

with asymptotic error

6 .:- Q (26C (/ A ) '-(8. 65)

The ' th forced wave, Vrg , is of zero amplitude at a given

point x until the arrival of the Brillouin front at it A '' 4/.

so that the wave originally excited at t o has propagated around the

systemj times and arrived at X . The direct source wave arrives at

t g- J the once around the system wave at t V2±') and

so on.

Since there is no attenuation in the model considered, the wave

that has circled the system any number of times has the same amplitude

as the wave arriving directly from the source. When the p th Bril-

louin front passes a point of observation, the asymptotic error of the

2p' th switch-on forerunner wave becomes infinite. The actual smooth
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transition in this region from transient to transient plus forced motion

may be described by an error function, as given in Appendix IV, D.

Now let us consider the Rossby wave equation (8. 47) for the

traveling source, 4 (x,t) .=- M(t) j Ixt Ut) . In this case the

solution may be obtained by a Fourier series expansion as

--- - ---------- (8.66)

Taking r" , and using the "approximation"

2C ),. (8. 67)

the solution reduces to that for an unbounded domain. A more satisfac-

tory comparison between the periodic domain and unbounded domain

problems can be obtained by summing the Fourier series by contour

integration. That is, (8. 66), may be written

V= ---e ] (8. 68)f1(Q,&noe
f 'e

where the path of integration is taken slightly below the real axis. The

integrand is not singular at x t: (/L,) , and so the Fourier series

(8. 66) may be recovered by completion of the contour by a semicircle

in the 1- a o a plane, and by evaluating the residue at the zeros

of ( I - e~' ).

a
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The denominator may now be expanded in a similar fashion to

(8. 57) with the result that v may be written

V =P(x) V. + Vi
3-I

where

y .e PJ(8. 69)

Further evaluation proceeds by steepest descent integration. See

Appendix V. It is found that vi = VF; r V, where taking x; :x#i;,I

one finds

vTg94 (+E;)(C 0sr2 IKJ6).- (8. 70)

with

while for U 4 O

and for U >a

Hit x*/,) 1 - '/U S/M(J;4 )(8.71)

When '; Ut , the th Brillouin front passes the point of observa-

tion, and the &; asymptotic error estimate for Vr; blows up. The
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actual smooth transition from the j 'th transient forerunner motions

ahead of X;a= Ut , to forerunner plus forced motions behind the front,

may be described by an error function formula:

- 4/Y I I1Y

Y dMW I < R(rePFt(xV t ' 2 )(t"fVli (8. 72)

for xo ZUt

Summarizing: For u 4o (an eastward traveling source) there

is excited a steady forced motion, which decays exponentially away

from the source, as well as a transient forerunner wave. Both waves

vanish to the left of the initial point of excitation but propagate to the

right with infinite speed around the system any number of times. On

the other hand, for U q>a (a westward traveling source) the steady forced

motion is comprised of waves confined between the source at x= - Ut

and image sources at x' - Ut and the Brillouin front at b' = U ,

To the right of the front is found only the transient forerunner waves.

The transition region is described by (8. 72).

F. Vertically Propagating Planetary Waves

When topographic or thermal sources excite atmospheric wave

energy over distance scales comparable to the radius of the earth, it

might be anticipated that only the first few terms of some normal mode
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expansion will provide satisfactory resolution for the description of the

horizontal variability of the motion. In the next chapter, we shall give

further details as to the proper normal coordinates for a rotating

spherical earth. Here we heuristically simulate a normal mode expan-

sion by assuming a source proportional to &' where K is the

"wave number" or the disturbance. Assuming also that the Rossby

waves are of the form

the Rossby wave equation may be written

i t 4 -&)- B('Y f', ,e ) (8. 73)

where again N/ . I

First consider the elementary point source problem,

4 ty- 1i, >.)= w tnX I e rcT X

Then (8. 73) may be inverted to obtain

mai % E tyj4e L' /t) (8.74)

which for small v may be approximated by

W (L) .. (8. 75)
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with

a = (lce)t(y'*t (8. 76)

It follows by Appendix III, C, that as +

l' = (t")ew (8. 77)

where the asymptotic error & is

tw o( a (tK V to+ ))(8.78)

Variations of this model may be used to describe the radiation decay

of a planetary heat pulse originally concentrated along a given latitude

circle, and with a given longitudinal dependence.

Next we shall consider the forced source problem:

4 v, u wto) = ey e t) ) Q yot) (8.79)
)t

which may be considered to model either a pulsating line source or a

line source traveling in the x direction. The inverse of (8. 73) for

the forcing given by (8. 79) is written as to distinguish it from

(8. 74). One finds

j t 4 E N (8. 80)
leir
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which we approximate by

= o-'')^' (+O ,,L) cr'') ex]" (8.81)

This expression may be evaluated with the aid of Appendix IV, C, as

4-t'F (8. 82)

where the transient forerunner motions ir , are given by

(L (8. 83)

provided we take St given by (8. 77), and take 6 as

d.. j (8.84)

The forced motion 't is given approximately by

where the group velocity C, is

C = 2 (8. 85)

and the asymptotic error 6 is given by (8. 78). The Brillouin front

where the error term 6 given by (8. 84) blows up is described by

"a. (8. 86)
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In the neighborhood of this front, . may be approximated with the use

of Appendix IV, C. as

* 4rIt& 9) Ir ;ny '4I/ 1t
&V 0Z eIr / a j\Lf - 11,1/ (8.87)

Another phenomenon of some interest is the planetary wave

motion excited by a switch on source traveling in the vertical direction.

For instance, consider the switch-on model problem

roL k)z41=-( 1/t &04 t) (8. 88)

The solution to this problem may be represented by the Fourier integral

L)sI" e j r §0(8.89)

The Brillouin front for this problem is given by the parallel planes

I - (8. 90)

The steepest descents countour integration for evaluation of integrals

like (8. 89) is discussed in Appendix V. We reproduce here only the final

forced motion which may be written

- (8 91)

u / -------
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G. Modified Rossby Waves

The Rossby wave equation, modified so that the maximum speed

of "energy propagation" is finite, may be written

.. (A -- aL-Y * o .t -- ,(8.92)

The inverse of CL is known as the Rossby radius of deformation when

it occurs in the theory of Rossby wave propagation on an ocean of finite

depth. This term also occurs in the equations for Rossby wave propa-

gation in the atmosphere either as a result of atmospheric compressi-

bility, or as a consequence of the reduction of the degree of the Rossby

wave equation by separation of variables.

The solutions to (8. 92) contain not only the Rossby wave mode,

but another mode as well, which for lack of a better name, we labeled

in chapter V, the Ca compression mode. Here we shall only discuss

the 1-D propagation of (8. 92) so that f(iit) =frxc) . Let us then

consider the problem

with a i(8.93)

with a Fourier integral solution which may be written

GO

L/. =d e6BCX t ' K, L(8. 94)
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The integral may be evaluated for large time by a saddle point integra-

tion as discussed in Appendix VI. Assuming ft ,, , one obtains

for X y0

where

Ye = H x) 9q- -+#yo

( +u 6It)((f a ) C 5sOS A ) its

with

--2/)

and

where

While the Rossby wave mode is found to propagate only to

the east of the source, the compression mode 'c is found on both

sides of the source.

At great distances from the source such that /x O

and >6, the saddle points giving the Rossby wave coalesce with the

saddle points giving the compression mode, and the solution is given

approximately by

(8. 95)

(8. 96)

(8. 97)
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where3 f 33aOa'"p"p
;- ( r

The important point to note is that the Airy function modulation factor

decays exponentially beyond the "Airy front" traveling with speed

X. - (8. 99)

which may be considered the propagation speed of the modified Rossby

wave.

One may analyze the existence of modified Rossby wave motions

due to oscillating or traveling sources, as in the previous sections.

Again transient forerunner rnotions of all frequencies will be excited,

and the steady forced motion of each mode will travel out behind a

Brillouin front characterizing that mode. However, no disturbance

will propagate to the east at a speed greatly exceeding that given by

(8. 99). Phillips (1965) has reported experimental laboratory obser-

vations of Rossby waves excited by an oscillating paddle. Not only are

the Rossby waves observed to the east of the disturbance, but the ana-

logue of the compression mode is found westward of the paddle as well.
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A(t )

Figure 8-5. Sketch
waves. ;.::

x -
802

Airy Front for
Moditied Rossby Waves

-2 2

-5

of the Airy front modulation for modified Rossby

[L '#t"3 (y S..6,t.\ . See (8. 98).
36 6 Pa&&

it



-167-

IX. ON GRAVITY WAVES EXCITED BY

TIME DEPENDENT DISTURBANCES

A. Some Preliminary Comments

In this chapter are considered some elementary problems for the

dynamics of stratified nonrotating atmospheres. We shall first discuss

solutions for the hydrostatic model equation

(NpIt ."iOW".00% = 0.(9.1)

which is suitable for the description of the 2-D vertical motion in low

frequency gravity wave motions, at some distance behind the switch-on

acoustic front.

One may ask for the motion described by (9. 1) when the lower

boundary oscillates. This gives the boundary condition at = o

w71  J.c, e (9.2)

whence assuming W to be given by

WAW.. A^f-(9. 3)

reduces (9. 1) to

* 1 "w(9.4)

.0J-ol Woxj jc)f
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Similarly, if a boundary condition

W]L= 6 WO(C

is assumed, and if we assume W is given by

W=tx? ;,+-) (=. j ,b )(9.5)

then (9. 1) is reduced to

W + N = 0(9.6)

Solutions to (9. 4) and (9. 6) can not be determined without reference

to the more complete equation (9. 1). That is, the physical problem

specifies only a single boundary condition at -:-. a , but the reduced

equations (9. 4) and (9. 6) are hyperbolic P. D. E., which require two con--

ditions at a zo in order to obtain a unique solution.

The reduced oscillating boundary problem (9. 4) has character-

istics along the lines

SN c +C(9. 7)

where C is an arbitrary constant. All solutions will be of the form

rtrNai p(9.r8)

TLkewvise, the rrduced ravernling bouilnda-r prolem (9.IQ6) lhas

t
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characteristic surfaces

(9.9)

and solutions will have the general form

w Z A/14)e I(9. 10)

We shall refer to motions of the general form (9. 8) as "oscillating

(hydrostatic) gravity waves", and (9. 10) as (hydrostatic) "lee waves". The

problem at hand, then, is to describe how switch-on of the time dependent

boundary conditions (9. 2) and (9. 6) will excite gravity wave motions that

asymptote to an oscillating gravity wave or to a lee wave motion.

The vertical propagation of transient gravity wave motions

excited by a sinusoidal horizontal boundary is quite similar to the hori-

zontal propagation of 1-D transient Rossby waves. However, the forced

motions excited in the present model by a switch-on localized oscillating

boundary disturbance, are quite dissimilar to the Rossby waves, since

there no longer exists a Brillouin front separating a region of transient

decaying motions from a region where the final forced motion has ensued.

Rather, the outward energy propagation depends on the scale of the distur-

bances. This may be attributed to the fact that the group velocity of the

gravity- wave motions decreases for decreasing wavelength of the motion.
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Consequently, the onset of motion forced by a source exciting energy

in all wavelengths occurs over a very broad transition region that pro-

pagates outward with roughly the group velocity of the dominant wave-

length of the disturbance.

The ,iotion excited by a switch-on traveling boundary perturba-

tion is found to be confined within a Brillouin front traveling with the

velocity of the boundary perturbation and another Brillouin front at a

distance of 2 Ut behind the perturbation. The vertical propagation

of the forced motion again depends on the spatial scale of the boundary.

This problem is discussed in C.

In D. we analyze the horizontal propagation of forced gravity

waves in a rotating system.

B. Gravity Waves Excited by a Slowly Oscillating Source

In this section we solve (9. 1) subject to a switch-on boundary

condition, (9. 2). We shall first consider the special boundary condition

W e

The x -dependence of the source chosen has a "distance scale" /,

and has the ele nentary Fourier integral representation
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rr ( d(9. 12)
xL4aL - --r

such that

--.----- = (9. 13)

Let V be the solution to

(9. 14)

8. C. wj I4 e ' "**

Then w satisfying (9. 11) and (9. 1) is synthesized as

w = I*f*e109mgK (9,15)

But (9. 14) is solved by

MAT = (a- w.) ... IN)l /(9. 16)

which is equivalent to solutions obtained for oscillating Rossby waves.

The Brillouin front is given by the planes

'/4 = t wL(9. 17)

Evaluation of (9. 16) for large t gives
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= ()+Wr ++w (9. 18)

where

= e t; v< (9.19)

and

Wr : SfrT (K'Nzkv ) L' ecN'N'2)9 (9. 20)

We shall not use (9. 19) and (9. 20) for further reduction, since it

is somewhat simpler to proceed directly from W given by (9. 16). The

integral (9. 15) can be evaluated exactly with the result that

W =- 4  r...L jv + c7Yt) (9. 21)*

The pole at o -= z o, gives the final forced motion, while the other

poles give transient motions with an ultimate decay like S

That is w is evaluated as

W Fj x) ...vx *(9. 22)

Recall that

Of--I. =.P"T cx)' (9. 23)
- -%_r
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so that if we take N ./to = , it is found that

,o 4 + w fwot( +'(f z-) (9.24)
J40 t- 17 riT( )) wrZ -6))]

This establishes a Green's function solution for the motions excited by

an oscillatory source at the boundaries, for time large so that transients

have decayed to zero.

The steady solution to (9. 1) for the arbitrary boundary conditions

(9. 2) is then given by

WLtx +A/ /u #.Nx-N j (9. 25)

where % is given by

x.. Nf/ ) = VW0 (x±N, ) tjL.LwWO(9. 26)

The solution is seen to be of the functional form given by (9. 8).

The solution is composed of two pieces, the first of which,

e t LWNC xt + Wo(A -j , by itself satisfies the inhomogereous

boundary conditions. The second piece, given as an integral, vanishes

on the boundaries but is important for the determination of the pressure

perturbations and hence, for the wave energy radiated from the boundary.

The vertical motion defined by the first piece has a domain of dependence
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at a given point which is restricted to the two boundary points intersected

by the characteristic lines X/ t=- N/w. emanating from the point.

The domain of dependence for the second piece is the entire boundary.

C. The Lee Wave Mode

We consider here the gravity wave equation (9. 1) for the elemen-

tary boundary condition

wit) 7 x + U t) (9.27)

The solution may be obtained as the double Fourier integral

W dooP ..jI~C j)'-r --? (9. 28)
Y ~f ) Y*)N/Q)

This integral rnay be evaluated asymptotically by deforming the r con-

tour into a steepest descents path with K fixed at one of its points of

stationary phase. We ornit the details of this computation. The result

obtained depends on the stitionary phase wavenumbers

Nt (9.29)
x

We find that
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W WF * W (9. 30)

with

Wp = C,5Nf)J {bh*Vt) t-.51. v (9.31)
U)U) U

and W-r is a transient term that will decay exponentially for a bound-

ary perturbation of nonzero horizontal distance scale. This result agrees

with the steady state result of Queney(1945), except that the second wave-

like term is cut off at the source and 2Ut' downstream of the source.

Roughly speaking, these cutoffs are a result of the fact that the group

velocity of the motion excited is * L, so that no wave disturbance can

propagate out of the region Ix I Ut . The upstream cutoff should

alter the outward energy flow from the source relative to that computed

from the steady state theories.

D. On the Horizontal Propagation of Atmospheric Gravity Waves

When the vertical dependence of the hydrostatic gravity wave

equation is removed by separation of variables, the resulting inhomo-

geneous equation may be written

[A j- 4), Y/..]w = -----. V (9. 32)
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where C is a separation of variables parameter which may be equated

to 3j D D being the ocean depth for the equivalent shallow water

ocean wave equation. The solution for the elementary source

+fc)xt y,?t = -A2x) £(y) cPU.) (9. 33)

is a simple exact result which is classic. That is

w LTKh7XQr L+rTOJ(Q 2  ] )J:t&(t) = r H4(t, 'c)C - .(t(9.34)

See Appendix II, 5, and Obukov (1949).

Also classical is the result for the one-dimensional source

-P (xy ) = CF(X) Iyet ) (9. 35) ,

which is (c. f., Appendix II , 3 and Cahn (1945)).

W -o. C. 21C?*o)/tt) =(
t L- ' )1 (9. 36)

Q (rt4+t ~C,

The solutions(9. 34) and (9. 36) may be used as comparison functions

for the description of motions excited by other sources. Also we note

that the present theory applies to the acoustic wave motions excited in a

weakly stratified atmosphere for which one may use for an approximate

description
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[ a 3  - >. (wAL+ Wj=7-- f-1,y ) (9.37)

where we assume that .vA , the acoustic oscillation frequency, is

constant.

If we take tfx>Ybet) to be the elementary source

then (9. 37) has the exact solution

W :- -- C __ 4{((R) U M ttl(9. 38)
'T 0R 5t 4rTRbR

We now give here, as an example, the approximate solution of

(9. 32) for one dimensional switch-on periodic forcing. That is, assume

.= /4e) e , so that we consider

-L W = r 14(QS (9.39)

with inverse

- .. ~ e(at~~it) 1 /(9.40)

This result has the contour integral representation

W ..map11 C A' /C(9.41)

The approximate evaluation of (9. 41) is by the method of steepest

descents. Saddle points of the integrand are located at
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A e -('+.)''r
d cr-(9. 42)

with roots

at -. ,e(9.43)
S l~(Q/C /)L

We deform the path of integration in (9. 41) into the steepest descents

contour, as sketched in Fig. (9-2). When V/C t - I each branch

reduces to that considered in Appendix III, B. In the following discussion,

we shall assume this is the case, so that each branch of the contour may

be considered a parabola which intesects the In er-axis at the four points

3 -^ k. -fo{l *..l.(9.44)

Of these, the outer two points at

p r>1c { J+)6 (9. 45)

are saddle points. It follows from the discussion of Appendices III, B.

and IV, B, that we may evaluate (9. 41) as

W 1H ( t .4Wi0j1/2. r3 i Wp +W(9.46)

where W Is the residue contribution

t
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L2 L 2.

- /4.Wf, (9.47)

and w-y. is the saddle point contribution. By comparison with (9. 36)

w7  may be written approximately as

~, NUO ( - I~It/~j+ /il(9. 48)
Wr

for [g (a.. pl/Ij ,

and (Oj 'wl ) =- Ol'

where esP, is given by (9. 43).

In the neighborhood of the Brillouin front:

We = 1.1,,. (9. 49)

the result (9. 48) ,nay not be used, but an approximate expression for w

in terms of an error function may be obtained as discussed in Appendix

IV.

For A 4 £ , the steady forced motion as given by (9. 47)

decays exponentially from the source, while for W. 7f. , the
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motion is a traveling wave. In both cases this motion is confined with-

in the Brillouin front given by (9. 49).

Gravity Wave Radiation

Figure 9-1. Sketch of gravity wave radiation from an oscillating
boundary perturbation.

X S '

x

IM

Re a

X S P

Figure 9-2. Steepest descent contour for horizontally propagating
gravity-inertial wave.
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X. ON THE LINEAR THEORY OF ATMOSPHERIC TIDES

A. Energetics of the Tidal Equation

The energy conservation properties of the system (3. 34)-(3. 37)

result in several simple but useful theorems concerning the various

reduced systems of equations useful in tidal theory. Assume for sim-

plicity a domain, IV1 , bounded by two constant pressure surfaces, 0ej

and IT and by a vertical wall, 3 ( A, 0) . Furthermore, assume the

boundary condition at i is that w - CA/p* 5) =, but that

i, and 8Ae) are open. Then one finds from (3. 34) -(3. 37), the

energy conservation equation

+ =(10.1)

where * is the sum of the kinetic, available potential, and boundary

potential energy in PV\,

= . v + ax 3h Is (10.2)
M

The boundary flux V'74is given by

"I :: - h 4 foii t 1 4, c4 1 '3(10.3)

and j , the total rate of energy generation, is given by
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f CPO(10. 4)

M

which is assumed to include all nonlinear terms not explicitly given in

the formulation.

In the above integrals we use dM for an element of mass in

S, cS for a horizontal surface element, and dS for a horizontal

line element on B .

41 ,rrcrsG.gAJQ
SlM = )

s o re' coseSA J 5 (10. 5)

If £a and r are taken to be spherical shells, the only boundary flux

is the woh flux out the top.

Let us now specialize our discussion to consideration of strictly

exponential type solutions to the homogeneous tidal equations. That is,

assume all dependent variables have time dependence proportional to

cut. The homogeneous tidal system may then be written

if, (10. 6)

IVA
1 M 0
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Solutions to this homogeneous system, called eigen-solutions, will exist

only for certain values of or which are called the "spectrum" of the

system. The spectrum of the tidal system and the resulting eigen-solu-

tions must satisfy certain constraints which are a consequence of the

energy conservation law (10. 1). Let (e,, 9,, h, ) be an eigen-solution

with eigen-value (, , and ( Ca; Oz, 9h ) an eigen-solution with eigen-

value oa . Let * denote complex conjugate.

We define 6'a and e by

ti Mh(10.7)

Then from (10. 6) one finds that the energy in the product of the two eigen-

solutions is related to the flux determined by the two eigen-solutions by

the Lagrange identity

(,+ r,*-) C = (10.9)

When 1 = 2, the two eigen-functions are the same; this reduces to

f, * , = - e* (10.10)

It follows from (10. 9) that when boundary conditions are assumed which

result in vanishing boundary flux, :ad , then eit her the eigen-
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solutions are orthogonal in that E 0a = a , or else (a, + 0.

Similarly, when v 4 0 , it follows from the fact that e,1 is posi-

tive definite that Re r = ; the spectrum lies on the imaginary

axis. The same results concerning exponential solutions can be obtained

directly from the vorticity-divergence system, and other useful theorems

of a similar nature may be obtained without great labor. We shall, how-

ever, now proceed to the consideration of reduced tidal systems given

by separation of variables.

B. Integral Theorems on the Separated Homogeneous Tidal Equations

After eliminating o, e from the homogeneous system (10. 6),

and after separation of variables ( " = separation parameter), one

finds the homogeneous system may be written as

(10. 11)

and

r+a A,) o (10. 12)
H (w) + , &

Nb t0
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The latter Sturm-Liouville system for the vertical variation of tidal
/h..

motions may be written using h , as

( & (0(10. 13)

( a
where -

This system satisfies the Lagrange identity for two solutions,
At Atus

\AJ~~i))i)) C4.41-' Jfr)it')t j OW ' (10. 14)

where the Wronskian \AJ is defined by

In particular if we take A . ' , it follows that

W 0%

which relates the energy flow past Z to the imaginary part of A multi-

plied by the integral of the positive definite quantity S") -

Another useful result is the Sturm-Liouville eigen-function ex-

pansion, constructed from the Green's function. That is, let G Ia)',pt)
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be the solution to

(14 (10.41=
and which satisfies the condition of finite energy for o , - 2 . ,

CIe' * (10.17

Then G WiS 9,A") constructed by standard procedures, is an

analytic function oft for o - ar (#-C)ak, where C is some

real constant, and hence G() may be represented by Cauchy's

theorem as the contour integral

ci'S A (10.18

The contour r is taken to be a large circle plus a cut along the ,A -axis

for ("- C) >o . Integration around the circle gives a vanishingly small

contribution as the circle is taken to infinity, so that F may be restricted

to a loop around the cut on to both sides of (10. 18). It follows from appli-

cation of (10. 16) to both sides of (10. 18) that

... sA GW, e ',A) (10.19

where fl is a loop around the cut on the A axis.

The singularities of G on the real mt-axis will consist of one
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or more poles and a branch point, so that (10. 19) may be evaluated as

3j~t) ~t')'71,~) ' tAtA A (10.20)

where the *d,,M;) are normalized eigen-functions of the discrete

spectrum and 5(t) are the normalized eigen-functions of the continuous

spectrum. For the present expansion, the j= o mode is the Lamb

wave mode, and S a ,,-- A , are other possible discrete internal modes.

It is sometimes useful to evaluate the branch line integral over the

continuous spectrum as a sum of "leaky" normal modes. That is, one

may shift the location of the branch line to uncover poles on the Riemann

sheets -- "74.rI(A -C)4o ,or ai-.a r !)4-C)Vffr, whose residues

will give normal modes which "leak" energy. The normal mode expan-

S

sion, (10. 20), gives separation of the 1 -dependence for the inhomo-

geneous tidal equation.

We shall not discuss further the vertical tidal equation, since

there is available an extensive body of mathematical literature concern-

ing such problems. Let us now go on to the system (10. 11) and (10. 12)

giving the horizontal dependence of tidal motions. Assume a domain D

bounded by 5(),) . First, assume d- to be eigen-parameter, such

that there exist eigen-solutions c , , with eigen-value cr , and

eigen-solutions cL , -. with eigen-value om - Then one finds the
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Lagrange identity

(10. 21)

with

Jgathh 2. ) (10. 22)

a

(10. 23)13 (a)

Then Al 3;#j.

either the eigen -solutions are orthogonal in that C ) a , or else

are degenerate in that 1we:: -j. Also ,d , , , ,,

the r spectrurn is pure imaginary.

Assume now that cr: 'w , where tu is a real constant, and let

," be a complex eigen-paraneter. One then obtains a Lagrange identity

for two eigen-solutions as

, ±= s h2h,)ds (10. 24)

where , is again given by (10. 23). Thus, I& t,, h, ;a, , . 3

either 3 A,,dSzo , or else CIA, ;C, h t, have the same

eigen values, p ,- . Also t, ,i, 9 cia. =Lo , the ,
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spectrum is pure real.

For free harmonic tidal oscillations, Il) w , the hori-

zontal and vertical energy fluxes as given in (10. 3) must balance. Thus

(10. 24) and the vertical equation identities (10. 14) and (10. 15) may be

considered constraints imposed by this balance.

Equivalent to the reduced tidal equation (10. 11) is the homo-

geneous reduced equation for (t, C>, h ) written

+ t7 toLuV-v

4> C1k±"-V f+k 0p1 (10.25)

where we take 9 ft = i , re = I . If we assume for a domain of

integration the entire sphere, then boundary flux terms are absent.

Again let cr = , pure real. Then one may derive directly

from (10. 25) the identity, equivalent to (10. 24),,

Z rr rr

(-4A; -- C) f osedAdBA ,A (10.26)

Hence when A is taken to be an eigen-parameter, the above

orthogonality of the 6>s , for integrations on a sphere, makes it desir-

able to use 6as the primary dependent variable. The kh eigen-solutions
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for integration of the reduced tidal system (10. 25), on a sphere are

called Hough's functions. In the next section is given the theory of

the integration of the inhomogeneous tidal system.

C. Integration of the Separated Tidal Equation on a Sphere

We discuss integration of the system

( A )4000 .- (10.27)
Co05 (

(erA A) + Do9- ~

Cos a (10.28)

7' g h 4.- o 4 = -- o c(A-A') 50G-9') J(*)
COO (10.29)

which may be considered to represent the motion excited by a point

impulse of vorticity of strength V, , a point impulse of velocity

divergence of strength D. , and a point (nass impulse of strength x, 0

The natural boundary conditions for a sphere are that ( Y, 4) h )

be regular at 0. = :tfr1 , and periodic in longitude, with period

2 Tr . From the latter condition we have the longitudinal wave number

expansions
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wo

.0o

an'

e ,'wt erA/I I)

(10. 30)

!p1/)

H 0"19)

;

To simplify the notation, let

-r ab -=- '"'w

51di G {-o = Ib

and define the differential operators 0, , ft. , 03 , by

D;

D go- , + /

a Al fl) a0

t
~'7 1~

~1
& -hi ~

Using the above notation, and (10. 30) and (10. 31), the tidal equation may

be written

~T X' = Yb(o
(10. 35)

where T is the Hermitian operator

pr*

f /1 (10. 31)

(10. 32)

(10. 33)

(10. 34)

MOW
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oD2 - /D3 0

(10. 36)

is the m,'th wave number tidal motion vector

(10. 37)

and Y is the vector forcing function

VO
(10. 38)

Because the operators ),, D have Legendre polynomials

for eigen-functions, and D3 has a simple matrix representation when

Legendre polynomials are used for basis functions, the integration of

(10. 35) by expansion of in the Legendre polynomials of Pm 'th

order is quite straightforward. Before this integration is carried out,

it is helpful to obtain some general theoretical results concerning the

homogeneous system.

If one expands the homogeneous equation of motion system

(10. 11) in wave numbers, and eliminates the g& velocity, one finds
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the homogeneous tidal system may alternately be written as

where Vln) is the j 'th wave number, north-south velocity,

and A I'o) is the variable coefficient matrix

(2 (tlw% * t)

(10.40)

The alternate homogeneous system given by (10. 39) is somewhat simpler

to discuss theoretically than the equation TX o, since (10. 39) is in

standard form for a first order differential equation. The following

general facts are known: (See for instance Coddington and Levinson,

Chapters III and IV).

1. There exist two independent solutions V,) 2  H7 V

of the homogeneous system. These may be written as a solution natrix

tN li)

V (& I)

H1 #

2. If A) is analytic at a point z7:. , then /Vi i)

will be analytic in some neighborhood of )7 = j..

(10. 39)

(10. 41)

PbA

I

OF" 
t
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3. If A has a singularity at % which is at most a pole,

then lb is a regular singular point and /V(n) may be expressed as

1vl1') = Rip){1-10) (10.42)

where R () is analytic at 9, , P in a constant 2 x 2 matrix, 

is an integer, and E (0 )

4. If the singularity at % is worse than a pole, the point is

an irregular singular point, and WI/O) will not have the expansion (10. 42).

Referring to the definition of A1#1) given by (10. 40), we see that

the singularities are:

regular singular points zt-
(10. 43)

irregular singular point 5m (04

Moreover, it may be shown, (see Eckart, p. 264), that the power series

expansions of /Mii) about I -. begin with

v { ;- * ) *(10. 44)
~~~H 0" 1 L

which is the same as for Legendre functions.

One may also determine directly from the other formulation

given by (10. 35) that HNOX4Vo(Iw1O)*fP'% , {{) regular at

. I . It follows from the equivalence of the two formulations that

-f I/) determined from (10. 35) will be regular for the domain -6 I
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Expanding H"In) in a power series about I=-o (using either (10. 35)

or (10. 39)) one finds a recursion formula which separates into a recur-

sion formula for odd powers of I and another for even powers of /.

It follows that the H ?1 will either be symmetric or antisymmetric

about the equator.

Eigen-solutions to either (10. 35) or (10. 39) may be determined

numerically by a trial and error process. That is; one solves the initial

value problems

a) H R o (9) for odd solutions

b) e4') I /f'0l o for even solutions

When the integration is carried out from the equator '= a , to the pole,

1 = 1, the solution as q -+ 1, will, in general, be of the form

H"A ) '=0C c -e' t + Afri- ex -'1' t)(10.45)

and will hence go to infinity like (1) except at the zeros of

A I Aiu) , which are eigen-values of the tidal equation. One may

vary either ,m or w until the integration is regular at 7 = 1, and

hence determine the eigen-values. For more information concerning

this procedure, see for instance the book of Hartree.

The alternate, more classical procedureJ, is to expand the solu-

tion In m'th degree Legendre polynomials Since these are already
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40

regular at the points I =- * , the singular eigen-solutions

equation are automatically discarded. Hence we use

Pr :- -

)( t

to the tidal

(10. 46)

= 2 P~e,) X2
A)=t- (10.47)

The X1 are the coefficients of the tidal noticn vector expanded in

Legendre polynomials.

When the expansions (10. 46) and (10. 47) are inserted in (10. 35),

the tidal system reduces to the matrix equation

luw)

flUi4i) L.
P95

where is the matrix operator

L IF.,
L ; =CF,:

Fit

Y, is the forcing function matrix

2V.Y -keE-flDan- (i0. 50),) e

~c. f

-: -- S,;

(10. 48)

(10.49)

0

-'044 n,

4wwwwm

(10. 50)
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and F,' is the "Coriolis" matrix

F .--- - - - - >> - ------ ------------ ------- J+-, (10.-51)

and may be obtained from combining the well known recursion formulae

(Vs') P7 NO =101 P)7+JD-J- P+ F

to give

- ,3  PMn )'t)))(10. 52)

The solution to (10. 48) may be written

X **)(10. 53)

where the inverse matrix L is constructed as follows. We

define the 3N x 3N matrix J N by taking the first N x N terms in

each of the component matrices of the matrix L defined by

(10. 49). Since this matrix is finite, it has the inverse

L = ^ (10. 54)

N)

where D :; , a,) is the transpose of the matrix of cofactors of

- ,N) and DNIw ) = d e+.)1L*\u.
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Then the inverse matrix

-Li

LV is defined as

I)8'4
NWO -* * (10. 55)

where we augment LeW) with zeros so that it has the same number

of elements as L , and define convergence as convergence of

each element. The elements L ,,; (S.,,) are meromorphic functions

of the parameters w andx.

We define the "approximate" matrix L by replacing the

variable Coriolis parameter 4 in (10. 27) -(10. 28) by a constant average

value , . This matrix is given by

$Ipq 0.x1 -

-

bZ 1f4L So)i I ,-

and has the inverse

(~LMTh ml)

al (Ma)

~'%AW MDt/4 1 0 it
Ii~n~I) ~s flhsn+I) I)

'~40 - ~~L4J ~

( tv

An

*

o

(10. 56)

maw
(10. 57)

L 9N) '- I

- 140

(w,."^ )
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where

, # ,,Z,,I (10. 58)

The inverse matrix L as a function of A. is finite except for a

discrete infinity of poles on the real t axis, where

,, I w,e() =10.59)

The poles of V are similarly obtained as the limit of the sequence

of t> roots given by

DO (10. 60)

which defines again a di screte infinity of points in the real r axis,

'^ r, I ., - - ;b.,i-- , which for j sufficiently large, are

qualitatively similar to the A-o; given by (10. 59).

There are two limiting cases where the roots of (10. 59) and (10. 60)

agree exactly. These are

a) The large w (nonrotating earth) limit. That is

", E .~ ('v 1iw,3u - b(a.Al *p(10. 61)

b) The Haurwitz-Rossby limit for small p . That is for 0:

(10. 59) and (10. 60) have the w - roots given by j 8 :.- "or
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--Ao O)(10. 62)

The "approximate" dispersion relation (10. 59) is sketched in

Fig (10-1). The branches include an eastward propagating and west-

ward propagating internal gravity wave for WCi .P > , external

gravity wave and Rossby wave branches for - c, 4e. o , and

4- fo , and an internal Rossby wave branch for 0 4i 4.

Little accurate information is yet available concerning the roots of

(10. 60) except for the westward propagating internal gravity wave mode,

which is of primary interest for the discussion of the observed atmos-

pheric thermal tides. See the monographs of Wilkes and Siebert for

further information concerning this branch.

Note that for small negative ,A , there will be two complex

w roots of (10. 60), as seen by comparison with (10. 59). These

complex roots of (10. 59) exist for M in the range

(10. 63)

as may be seen by explicit computation (assuming & "W ''

In order to use the inverse matrix L , it is helpful to ex-

pand the elements , in partial fractions. That is

=(

L., ="i" (0. 64
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where the , i are the roots defined by (10. 60), and

N

...ap" (a A '";) (10. 65)
Nmu - IM*1

M ) A D A 'I-

Substituting (10. 53) in (10. 47) and summing over the Legendre poly-

nomials gives

$1 (10. 66)

where G 1) is given by

(E ) '.o n j9M (10. 67)

The expansion (10. 66) expresses the solution as a sum over

normal modes of the rotating atmosphere. It is not difficult to obtain

from the 1,- ('I) the normalized eigen functions of the tidal equa-

tion, but we omit this computation. If the G.- (I) are known, there

is no need for the eigen-functions. We shall call 9,,Pi) the Hough

transfer function since it transforms the forcing function Y into

the solution function X(.

In order to complete the discussion of the initial value problem,

we expand each Q (>i) in partial fractions in w = -r

3 (10. 68)

______ 4 G0.fL,04(V"
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Then (10. 66) may be evaluated as

X ,I (& 9 o-t (10. 69

In general for each(#, m), W> will be real and consist of two

gravity wave modes and one Rossby wave mode, except for possible A

small and negative as given by (10. 63), where there may be one exponen-.

tially growing and one decaying mode. The physical significance of such

instabilities is not well understood.

Added Note: Lindzen (1966), Mon. Wea. Rev., 94, 295, has given a detailed

analysis of the roots of (10.60) for th > , lw = I , corresponding to

the forced diurnal tidal motions. This motion fits in Fig. 10-1 approximately

in the neighborhood of the dashed line through the W > 0 axis. Lindzen

finds that for this frequency there is both the internal gravity wave branch

with largest amplitudes near the equator as well as an external branch with

largest amplitudes in middle latitudes. This may be interpreted in terms of

Fig. 10-1 as requiring that the effective Coriolis parameter f. decreases

with increasing *# .Since for large tk'I , both branches asymtote to ,

it follows that at least over a certain range of £W there will be two

sequences of A roots rather than a single sequence.
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XI. CONCLUDING REMARKS

A. Survey of the Analysis of Atmospheric Wave Propagation

The present theory will not be compared in detail with observed

atmospheric wave motions. It is apparent that the results presently

available on atmospheric wave propagation are but a beginning in a comp-

licated subject. The present work is primarily intended to describe,

within the framework of the constant coefficient approximation, the

initiation of various forced atmospheric wave motions. This has been

done by the analysis of elementary examples, selected for reasons of

physical interest and mathematical simplicity. Dispersive wave motions

have been studied by many earlier authors by similar means, but the sub-

ject has not reached the attention of many able mathematicians capable

of establishing a general mathematical theory of the subject. Such work,

concentrating primarily on the mathematical details involved, would not

be unwelcome. One might mention, as contributions to such a theory, the

work of Lighthill (1960) and Whitharn (1961), (1965), as well as the re-

lated work of Keller and his colleagues at NYU. See for instance Lewis

(1965).

There remains much to be done in the development of a theor-

etical physical description of atmospheric wave motions by means of

classical analytical methods as employed in this thesis.
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Little is yet known concerning the details of energy flow through

the atmosphere by atmospheric wave motions. Perhaps the best obser-

vational evidence of this phenomenon is given by studies of wave motions

propagating upward out of the troposphere. On the theoretical side, there

is needed an increased understanding of the importance of variable strati-

fication in the "trapping" and "guiding" of atmospheric wave energy. The

most obvious direct extension of the models considered in this thesis to

variably stratified atmospheres would be to use "locally constant coeffi-

cient" solutions in the neighborhood of a source to match to asymptotic

variable coefficient solutions obtained by solution of the relevant "Hamilton-

Jacobi" equations.

The dynamics of the upper atmospnere, above the range of validity

of the inviscid wave propagation models, requires the inclusion of molec-

ular transport processes. It is, however, not possible to decouple the

dynamics of this region from the dynamics of the lower atmosphere be-

cause of the extensive upward leakage of wave energy from below. While

it is an open question as to whether this energy flux is sufficient to be of

first order importance in determining the vertical temperature structure

of the upper atmosphere, the available wave energy is seemingly adequate

to maintain many of the observed motions of the upper atmosphere. The

theoretical models of this thesis can be expected to overemphasize some-
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what the propagation of wave energy away from an original point of excita-

tion and hence into the upper atmosphere. Variable coefficients will re-

sult in wave-guide like localization of the wave energy. In many instances,

these "wave guides" will "leak" energy by energy tunneling through the

"wave guide" walls and by dissipation at the lower boundary, so that nor-

mal mode descriptions of the motion will in general require complex

normal modes.

For the purpose of analyzing models for the quantitative description

of observed atmospheric wave motions, it is necessary to have detailed

observational information concerning the energy sources requisite for the

excitation of the motion. It is to be recalled in this respect that these

energy sources will consist of all terms entering the governing dynamics

which are not explicitly incorporated into internal dynamics of the model

discussed. Modern statistical techniques may be used for the organization

of this data.

In conclusion, we consider a simple example to illustrate the appli-

cation of the methods of this thesis to the analysis of atmospheric insta-

bilities.

B. Remarks Concerning Atmospheric Instabilities

Several physical processes by which the atmosphere may release

stored up energy are known, but the mathematical description of these
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phenomona is quite rudimentary. As a simple example illustrating some

common mathematical types of atmospheric instabilities, consider the

equation for 2-D motions of an unstably stratified atmosphere, written as,

[ ~ t?)i+ Z? 0 (11.1

where

is an assumed constant unstable stratification parameter. Assume the

domain [o,.o) and the elementary switch-on bottom boundary condition:

w R - lNit) aN t*kmA, .,n>eo

The operational solution to this problem is then
/I.

W (. 0-'W.) V(11.2)

Assume that v i7; , to.> and that: a) . ;b) f 0 =o

For large time, the motion decomposes into the following modes:

a W awWp + WC.. 4WC (11.3)

where Wp is the motion forced by the sinusoidal forcing, we is the

"convective mode" and w& is an unstable gravity wave mode. The

forced motion, determined by the o-. ,w, pole of the solution operator,

is given by
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Wp=ewo t upIe "" 
t (11. 4)

The convective mode and gravity wave mode are given by saddle points

in the neighborhood of the a: v and a-= L.. branch points respectively.

('a 0)L. L (t
Let A =- .and = ±* )ra . Then these motions are

found to be given approximately by

- |Wjre

S .- i e10%0o

.. A ( -v

f /A4)

: -0 j

S it)

The time dependence of

evaluated as

1) e (Al0

W-t, w j

A v te

, is approximately

(11. 8)

4 Cos 1(2. 4)t.-- n
(4 . -.) ( 'Tr t ) AA

COV 0i)

Wc r t>;-J7W e (11. 5)

+ "'/<,

* St2 .SC o (11. 6)

(11. 7)

(-1 9)
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The asymptotic time dependence of atmospheric instabilities will

in general depend on the assumed form of forcing and initial conditions.

One may distinguish between weak instabilities, where the growth rate of

the instability is algebraic or less, and strong instabilities, where the

growth rate is greater than algebraic. Weak instabilities usually occur as

a consequence of some unrealistic assumption concerning the excitation of

the motion, while strong instabilities appear to be related to physical

processes of energy release. It seems reasonable to classify the strong

instabilities according to their order of growth as entire functions of the

parameter t . Thus the above convective mode instability is of expo-

nential order (order one), while the unstable gravity wave is of order 1/3

or order 1/2, depending on whether rotation is present or absent. The

decrease of the growth rate in the presence of rotation may be considered

an illustration of the general principle that "rotation inhibits convection".
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APPENDIX I

Partial Glossary of Special Notation Used

A; £n Airy function

c, speed of sound, ( ti/e, ),.

C horizontal velocity vector

speed of internal gravity waves, or some other constant
o defined in the text.

C.p specific heat at constant pressure

CV specific heat at constant density

erf. c & complementary error function

Coriolis parameter 2 0- 4%

I. constant Coriolis parameter 2.f1 si ,

a, b, t; I ) hypergeometric function

F . Fourier transform

F. Z + F7 3 + Ft Z , external force per unit mass ve

F1, FCrl eF r

FS ,L Coriolis operator

H14 x), Hti+)

H

F(4)

force of gravity

geopotential height for pressure coordinates

Heaviside function . h x)

atmospheric scale height

ctor
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14

Jo L

o(n

IC. Ie)

N

re

Re

R

S. D.

S.P

4

T

zeroth order Hankel functions

unit vector in direction of increasing longitude

unit vector in direction of increasing latitude

zeroth order Bessel function

unit vector upwards relative to gravity

wave number vector

Bessel function of imaginary argument

buoyancy frequency (9 /e

perturbation pressure

Legendre polynomial of I 'th degree, and n 'th order

partial differential equation

rate of addition of heat per unit mass times G/T
mean radius of earth

real part of a complex quantity

radial vector, t K + . x^ ,.

steepest descents

saddle point (or stationary phase)

planetary stability Nt4L/ 4.[2L r t ..

rate of mass addition per unit volume

time

temperature OK
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) : V)w) velocity vector for geometrical coordinate system

W Xy, #t.) vertical motion propagator

x := re cs9 (A-A.., displacement from a reference longitude A0 .

y - reIa,--o) , displacement from a reference latitude

vertical coordinate for geometric coordinate system

-lit fl , vertical coordinate for pressure coordinate system

2r54Co, gradient of planetary vorticity at a fixed point

either gas constant CP/c , or vertical wave number n&.

flu) Eckart's parameter, -i) -

rt") Gamma (factorial) function, j e- A d

7C/, c/t) Dirac distributions

horizontal gradient operator ( M 4 7 A ,for
spherical coordinates)

three dimensional gradient operator in wave number space

horizontal divergence operator ( - -- -J +.J-U- 1 ** e7'~r raes 0 Ti Fl serfor spherical coordinates) r e rCos

a 7 , V horizontal Laplacian operator

+ + , three dimensional Laplacian

6 asymptotic error term

t) E' See (3. 25), (6. 1)

contour to the right of all singularities of the integrand
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sinG

6- latitude or (perturbation) potential temperature

O mean reference potential temperature

K gas constant Ir

A longitude

A' separation parameter for the hydrostatic wave equation

-U kinematic coefficient of viscosity

1f Lce) mean reference pressure

(perturbation) density, or horizontal radial distance, (X',6vt)

mean reference density

complex variable equivalent to the operator /

(f' + e'), vertical motion parameter
at

W0 frequency of motion

t4u frequency of forced oscillation

S. e average angular velocity of the earth

"for all"

"such that"

Notation such as ( ) , ) , ( )* , () , is defined in the

text to indicate modifications of the above definitions. We frequently

use ( J4 to indicate a constant parameter. For the mathematical

definitions of special functions employed, the reader may refer to the
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mathematical tables of Abramson et al.

In defining contour integrals, nQtation is used whose meaning

should be clear from the mathematical context. For example, we use

e ) Jd to indicate a counterclockwise loop integral from aC -

u-. (5.0.)

about a singularityat ace , and Jf )Jr; /fto indicate

sDe-go

counterclockwise integration from , t - along a steepest descents path.

(i+0 2)

~S 0

I M R'

SRe o-

Figure A-1. Steepest descents contour for III, B.
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APPENDIX II

Elementary Propagators, -ite) and their Operational Representation

;It)

1. (xpt)Y2

2. *it)TXwt)

4. H(t) o

5. H4 t C05 w) %-C

5 ' ) f*t.

6. a) Ht (e -

b) Nt? Cow

c) 1- (Ct) sA5 -6

7. H ji) - c
L t

9. H l4-.0 - ! c

9. 14 it) e Ltece rO

2.(ft t

Fir) F(t)

(uL~wL) )V't

- /L 04C r 4L)

e ( cif' dtr

+atA ) '"' ;I

((t , ,4L)',5it
+ w A

e - j ff/

(I

e -o' /"

eeggtcr. te

0*

Some

Fe)
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APPENDIX III

On the Asymptotic Evaluation of F) r t)

To evaluate (0 , we use the contour integral representation

Fi.. -t--, it 1:10) ele (II. 1)

100'4. t

This integral may be evaluated by the steepest descents technique. A

path of steepest descent is defined as a contour along which

IM (oC t + lo3 F(O))

remains constant. Assume , to be sufficiently large that t > Re 1 ogFr)

so that the s. d. path terminates in the Ii - ,0 plane. Assume

that Fts) has n poles at o-. 3= - n , that lie between the

steepest descent contour and the path in (III. 1). Denote the residue at

the 'th pole, c; , by R;

R = %-' *(.- cr,.) F ) (111.2)

Then by Cauchy's theorem, Fl. r);'It) may be written as

Fir $tx= r rr)+ 1.( ie(111. 3)

where V ( )' denotes integration along the steepest descent
S.C.

contour.

Assume further that in the vicinity of the k 'th saddle point,

cr-,.o- ,,that Frv) has an expression
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Fitr) = u/r) Girt&)

where Gic (6) is one of the elementary propagators given in Appendix

II that has the same saddle point as Fie) at a- , and . 'er)

is regular at rga. ,,, , ' et - ,,,,,)+-a*---O-e

It follows that FIo) nit) is given by

More detailed examples of the evaluation of r ) G (c Y)Ft) are

given below,

Example A.

:0:

al ) = I+ I *~

The S. D. contour for (c-4) Sit)

Cr -

G , 1r) = ( l- -- it) ~2.

is a loop integral about the

XIT(rr t.)
o -

where the notation indicate s the branch line contour,

The higher order terms in (o) may be similarly evaluated. One finds

Ga (o) ct ) = CIt) (- *J - i r(4)z--'

(IHII4)

(III. 5)

(III. 6)
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where 6 Z

Example B

_a e ' /it&.-j)'iz

.Uo') Cua ) = .<wj C (111.7)

r -<- )' 1

The steepest descent contour for erp Ct.-a te (--;)ais approximately the

parabola - - ( +- . CrC ,> with a saddle point occuring at

p a r a b o+a(\
(r9t*%)

See Fig. A-1

The value of G,,scy )

steepest descent integration that

s.I cr) C, ) t t)

is given by (II. 8), so it follows from

(t .t01,L) ) e It - ,/y)

vrt f

Example C

g4 o-) Gk Ir) 0

The saddle points,

located at

0 -

67.
We use

e,

=(t)

(III. 8)

(III. 9)

are
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We integrate -1/u) Go t1) 4r) G

in Fig. A-2 to obtain

where

.oiY/y

al e c

along the .. PI. contour sketched

. ) -~MEY (-3rt o

For -7rr/ 4. *Sra5 4=

for N arbitrarily large. Hence for real a , - 0

The exact power series evaluation of G (e) Y/t) , is given by

(II. 7)

Example D

(III. 10)

(III.11i)

(III. 12)

The steepest descent contour for 4 Oy

in Fig. A-3. Saddle points occur for

It follows by comparison with (II. 4) that

is sketched

c i ) ) e
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a

Jie) Ge (cr ) itle ) =. (- c) R e dqi ()) IttI)J

where H[2Ia t)'J is a Hankel function

H'f2( tA )J = ( +
L A 

e L(a
) 'tI -'vJ/ ,

and the asymptotic error 6 is

6- = C (.)

S.P

S.P.
X

Figure A-2. Sketch of the steepest descent contour for III, C.

(III. 13)



-221-

APPENDIX IV

On the Asymptotic Evaluation of Fr) het) for a Saddle Point

of Fir) Near a Pole of F < r)

This appendix describes the application of the "Pauli-Greenspan"

modification of the steepest descents integration, which is applied when

the steepest descents contour of (III. 3) "coalesces" with one of the poles,

<r . o' . Assume for simplicity that

where G tr)fp.) is one of the elementary propagators considered in

Examples B, C, or D or III.

Three possibilities are then distinguished.

a) The pole at .'w. lies within the steepest descents contour

such that | cr, - tof 1 t'

b) The s. p. has coalesced with the pole. That is j s w J**
c) The S. . contour has crossed the pole and so the pole is outsi'

S. p, contour, and furthermore / cr,, - ,'w, j - -

For a) the pole gives no residue contribution to the integral,

which is hence given only by the S- p. integration. For c) the integral

is evaluated as the residue Gtit') e plus the S. p. integral. For

b) the asymptotic error resulting from the usual method of 4. p. integra-

I .1)

Cd 6-

de the
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tion is unacceptable, and so the steepest descents integration is carried

out with (a- - 1'w a ) taken to vary along the S. p. path.

When Gat") e is expanded about the saddle point, one then

obtains integrals of the form

Sbb

where A measures the distance from the saddle point and

C M. I )(IV. 
3)

is the distance of the saddle point from the pole.

Setting A = rp e'" ,the integral reduces to

x 6g)=j @Ift a IL (r~~~~) (IV. 4)o

which may be evaluated by (II. 9).

The term b will be b _ ' e 4 s) where 4 (acr) : t iM .. .

The lettering of the examples given below corresponds to that

used for Appendix III.
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Example B

F - of ) -- e
cg -- I.(AO

Using ), -

Hence for (. + / ) -- w . C -'

F(b) 5i[ e S
cai&,

. . '"^'r..

b = lI #(d~s) t- a

one finds

.. Lerfc [e '"ir ~ ~ w )-1iaf&

Example C
.. . e ,

0 ~ -'~~- e
FH~) -

Using

Hence for

r-c.') F to

04 1..'4

b e 3e=

we have

(1-t) 93

6 w + Lerf Ce ((IV. 9)

Example D.

F(r )

we use

Hence for

F'1 hm

(IV. 10)w o

d-4 r ,
rs = *

(( (wae ) e / )

* .L.

(Iy. i1)

(IV. 6)

(IV. 7)

(IV. 8)

,we have

IM fi'tr
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To interpret the above evaluations, one may use

. tt

er. ,fei o $ifs 0v) t 3(IV. 12)

Applying the x -+ -o limit of 1c(P ) to the approximate

solutions (IV. 7), (IV. 9) and (IV. 11), and using (IV. 5), it may be shown

that above expressions provide a smooth transition from the result ob-

tained by s. d. integration with the pole inside the contour, to the s. d.

plus residue evaluation which is obtained when the pole lies outside the

s. d. contour.

Im'"

ol Pole Inside S 0 Contour

S P

P de -- "9*

RerC

b) Pole on S D Contour t

dt.--S P
Pole

Re ar

cl Pole Outside S. D Contour
Pole

I -- S P

Sx

Figure A-3. Sketches of steepest descent contours for III and IV, D.
("forced ftossby waves"), illustrating the shrinkage of the S. D.
countour with inceasing time.
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APPENDIX V

On the Evaluation of Fourier Integrals Occuring in Forced Atmospheric

Wave Propagation Problems.

It is sometimes convenient to employ Fourier integrals to solve

atmospheric wave propagation problems. Restricting ourselves to 1-D

problems, we consider integrals of the form

Int (tK) eM(V1)

Such integrals may be decomposed into elementary integrals in a fashion

similar to that described in Appendix III. Since the procedure to be

followed in the evaluation of all such elementary integrals is similar,

we may for definiteness restrict our discussion to the evaluation of the

forced Rossby wave problem

){eaq.j ;rut e j 6 k (V.2)

(For another example related to water waves, see Greenspan (1956)).

The integral is evaluated by deforming the path of integration

into a steepest descent path of the term e . This path

has saddle points for X>Q

K = * (V. 3)
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while for xe.o , at

(V. 4)

Thus for x>O, we deform the contour into a double lobed steepest de-

scents contour from . K through the e= s. p. into

the origin and then both around through the n= s. p. to I... c r=-o

This contour is then connected to the Re K axis by arcs at infinity in

the T.. n > o plane. For x &.o , we deform the contour into the

e & 0 axis path of integration.

Having deformed the original contour into a steepest descents

contour, the second term in (V. 2) may be integrated by a saddle point

integration, and the first term evaluated by Cauchy's theorem.

First assume x>0; then for (A + Ut) 70, poles lying inside the

steepest descents countour give residue contributions, and when (x + & ) o

poles lying outside the contour give residue contributions. Likewise when

A 4 0 , poles off the In. x axis give residue contributions

for + Ut) O , and poles on the .T.., C oaxis, when (x * Ut) O.

The following table summarizes the information needed on the

residues of the integrand.
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Location rel. to contour

K : ( t t ( x +z 10 ) X > 0 o

it U)' (x+ot6) < o, x >0

(x + U4 o, 0
U At

For L > o the poles are located at

Domain

x ' Ut
o A.v4

Ut 4. x
x 4 -- V t

Location

outside
inside
outside
outside

inside
inside
outside

outside
outside
inside

I = * (e* )"L

Residue

no
yes
yes
no

Carrying out the computation described above we find:

for V 4 O

d.(- IL

5o
U $

(V.6)

for IJ>ca

Sim +te)V _Igoo imeoc,'.

-2ILK the
i --

5 D.

The evaluation of the steepest descents integral gives

:St k 4

Ql t 4

So

C$ N 5o .1 . - 3) ~ ~= ...Lrb)(W) COSL Nox t)L!t

Pole Domain Residue

yes
no
no

no
yes
no

(V-.?)

(V. 8)
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for X>o

The error term 6 is

./t.

Imk

x x S. P.S.P.R
ReM

Figure A-4. Sketch of steepest descent contour for Rossby waves
forced by a traveling switch-on disturbance.

)( e-

-I

)
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APPENDIX VI

On Multiple Saddle Point Integration

This appendix discusses the application of steepest descents inte-

gration to integrals, when the integrand has multiple saddle points which

may coalesce for some values of x and t . The example of propaga-

tion of 1-D modified Rossby waves illustrates the procedure. (See for

instance the section of Jefferies and Jefferies on dispersive wave mo-

tions for further details).

In the theory of the propagation of 1-D modified Rossby waves,

there occur integrals of the form

Let + tic) = ICax+SK*e/(I, )

are located where dr=o .

. Saddle points of e

That is

rt( t 7 t. T ( 2 s

First assume (t,, Then (VI. 2) has the roots

K = k S rs

tr = ks

"0 s* 4(4 19 o 4Lk, x

(VI. 2)
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It follows that for (Btv/ )- >> ,,-->> ) , the integral

may be asymptotically evaluated as

Ity.t) = i*) I, <stI ) + Iz$I*e)

Cntr

k prr

5 . P

We use

At Lui o

Asymptotic evaluation of

I c( Kt ) =

- I atk
01 - 1

(fe)/Lrijj

i, and h2. then gives

(Be) Ag 4..' "L

q.a~ +i1tICOSjal+f) tnv]

Lu.S-'

Ltst /2t &SL( r ...ir + adp 116

When $e e , the integrand (VI.1) has no s. p. on the

I Lx,t)

where

(VI. 3)

(VI. 4)

(VI. 5)

)

(VI. 6)

VT,9 )]
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real axis so that for large 6 , the solution is in this case asymptotically

zero. When St/r ~ - the two pairs of s. p. coalesce and the decom-

position (VI. 3) is not possible. The procedure then, is to expand the ex-

ponent of the integrand about the point on the K - plane where the two

pairs of saddle points coincide. That is, at the "turning point" rp, , where

_ X-(1CL-3&t ) (VI. 7)

The third derivative of the phase at this point is

so that

Itue 2 J10 g a / (VI.8)

Recalling the definition of the Airy function, A; (x) , is

00,

A; x) e Ax IA3

we find

y , t- . 3 ATPAx - Cos (X (I.9
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But

Ai)cit = t2) ek , 0

(VI. 10)

A 3/

with S= 30.

Hence I(vot) decays as2ifor x ->i'1/p ao

while for )t/wa' f N, I(xt) is proportional to the product of two

wave trains

d%(3Z Q1Cr2. sce)(
os*)^-- - o a.)"c tt) 3o r 1

The single wave (VI. 9) gradually nerges into the T, , .I waves,

(VI. 6), as 86/ar - *

The transition point

X//0 (VI. 11)

between exponentially decaying motions, and oscillating -notions, is

called the "Airy front".
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