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ABSTRACT

Fast-moving squall lines observed in the tropical oceans are treated as a gravity wave

generated by the latent heat release associated with deep cumulus convection. A simple

two-dimensional diagnostic linear gravity wave model forced by a zonally propagating

heat source is presented. The effect of cumulus friction, or momentum exchange due to

cumulus convection, is included in the wave momentum equation. Both monochromatic

and localized distributions of precipitation are considered. We will focus on the momen-

tum transport. In the troposphere, within the context of our model, vertical transport of

momentum owing to either clouds or gravity waves can be easily separated, whereas above

the clouds, only gravity wave transport exists.

It is discovered that, in the cloud layer, for the scales characteristic of squall lines,

mean cloud transport is the dominant mean momentum flux contributor. Compared to

aircraft observations, our model is able to simulate the mean momentum flux with both the

correct sign and magnitude. Within the wave momentum equation, cumulus friction,

however, is found not to be a major term.

Above the cloud layer, impacts of these gravity waves due to thermal forcing from

below are also inspected. In particular, the amount of energy gets radiated out of the cloud

layer on a global scale, the levels where wave breakings occur, and the associated

wave-induced acceleration. We find that thermally forced gravity waves are potentially as

important as mountain waves (perhaps the most well known and extensively studied

gravity waves in the atmosphere) at least in the lower stratosphere. Therefore, when

studying the momentum budget of the middle atmosphere, roles played by gravity waves

triggered by cumulus convection in troposphere cannot be overlooked.



In addition, our results indicate that only gravity waves forced by localized
precipitation are subject to breaking near the tropopause where the static stability of the
environment is locally low, and we think this breaking phenomenon is likely to happen in
the real atmosphere. However, in terms of the final overall residual momentum flux
leaked into the stratosphere, at least for the parameters chosen in this study, both
monochromatic and localized precipitation seem to be able to give rise to similar results.
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Chapter 1: Introduction

Deep cumulus convection has long been recognized as a primary mechanism for

transporting the thermodynamic quantities, such as moisture and temperature, vertically.

For instance, as first pointed out by Riehl and Malkus (1958), deep cumulus clouds can

carry the release of latent heat to the higher troposphere where the local vertical derivative

of the moist static energy (defined as h = c,T + gz + Lq, every symbol having its

conventional meaning) is greater than zero. However, it has recently been agreed that deep

convective processes are very important in determining the dynamic budgets in the tropics

as well. Stevens (1979) calculated the vorticity, momentum and divergence budgets of

synoptic-scale wave disturbances in the tropical eastern Atlantic. He found that each of the

large-scale budgets has a significant residual imbalance, suggesting that subsynoptic-scale

motions can strongly affect the wave dynamics (provided that errors of measurements are

sufficiently small). As a consequence, both thermodynamically and dynamically, there is

always an intimate relation between the convective-scale and large-scale motions in the

tropics. To gain a better understanding of this relation was the very goal of, for example,

GARP Tropical Atlantic Experiment (GATE) during the summer of 1974.

An enormous amount of literature appeared after GATE. Reed et al. (1977) looked

at the structure and properties of African waves; Thompson et al. (1979) focused on the

easterly waves in the Intertropical Convergence Zone (ITCZ) of the eastern Atlantic;

Norquist et al. (1977) studied the energetics and origins of African waves, etc. Two

excellent review papers are by Burpee and Reed (1982) concerning the synoptic-scale

motions, and by Houze and Betts (1981) on the convection in GATE.
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From the papers just mentioned, it is also clear that synoptic-scale is not the only

scale of motion observed during GATE. As will be described immediately, the mesoscale

cloud line is also one of the features which have drawn researchers' attention.

Cumulonimbi in the tropics frequently organize themselves into larger-scale patterns,

mostly lines. Terms such as "squall line" (Zipser, 1977) and "squall line system" (Houze,

1977) are often used to represent those fast-moving cloud lines. In Barnes and Sieckman

(1984), a cloud line whose speed relative to the ground is greater than 7 m/s is defined as

"fast-moving". Squall lines are found to form ahead of the wave trough of easterly waves

in GATE and to move to the vicinity of the next ridge downstream where they dissipate.

Squall line passages are associated with violent weather displays such as sudden wind shift

and excessive rainfall. Furthermore, squall lines always have the low-level inflow along

their leading edge, amplified when they move from the east against low-level equatorial

westerlies, finally they eject the air rising in cumulonimbi toward their rear suggesting that

they normally move faster than the ambient flow at all heights. Figure 1.1, reproduced

from Houze (1977), shows the schematic cross section of a squall line system. Payne and

McGarry (1977) studied 46 squall incidents in phase III of GATE; Figure 1.2 depicts their

results for the frequency distribution of the location of the leading edge at the beginning

and the termination stages of squall lines. Again, it is clear from Figure 1.2 that on the

average squall lines move faster than easterly waves.

The temporal and spatial scales of squall lines are less than a day and a few hundred

kilometers respectively. Abrupt weather changes are associated with their passages as

well. All these properties are evidently characteristic of high frequency gravity waves

whose energy may come from the latent heat release when the deep convection occurs
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within the system itself. This suggests that we may model squall lines as a gravity wave

phenomenon with a prescribed deep tropospheric thermal forcing due to cumulus

convection.

As was stated earlier, cumulus convection can transport both thermodynamic and

dynamic quantities vertically. Nevertheless, less attention has been given to the momen-

tum transport as opposed to the transports of moisture and heat. This is probably attributed

to the difficulty of measuring pressure gradients with sufficient accuracy in the tropics.

Even among the studies that focused on the momentum transport, most are on the easterly

wave-scale which is about an order of magnitude greater than that of squall lines or gravity

waves. The major concern in this study, therefore, will be to use a simple gravity wave

model to investigate the momentum transport associated with a squall line system.

Stevens et al. (1977) and Stevens and Lindzen (1978) showed that the momentum

exchange by cumulus convection or the so-called cumulus friction is important on the

synoptic-scale easterly wave. Calculations of Rosenlof et al. (1986) indicated that the

inclusion of cumulus friction will result in a more reasonable simulation of the Walker

circulation. Stevens and Lindzen (1978) also demonstrated that the same physical process

might not be essential for gravity waves. However, we do have reasons, which will be

stated later on, to doubt this conclusion since a larger precipitation rate would usually

accompany squall lines and thus increase the effect of cumulus friction. It follows that a

more detailed examination is needed.

Some aircraft measurements of the mean momentum flux' by convective cloud lines

have been made by LeMone (1983) and LeMone et al. (1984). Using the squall line

1 Implicitly, the observed momentum flux contain contributions from both the cumulus
convection and gravity waves.
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coordinate system which is fixed to the earth with x- (and u-) axis being normal to the line,

positive in its direction of movement (Figure 1.3), they found out that the sign of -'- is

mostly negative regardless of the sign of a7/az. In other words, the upward motions in

cloud lines always transport horizontal momentum against the direction toward which the

lines are propagating. We are curious whether a simple model can generate results that are

consistent with observations. Because squall lines are treated as a gravity wave phe-

nomenon, there is, in addition to the explicit cumulus momentum transport, also gravity

wave flux. Nonetheless, what one obtains from the data is always the combination of

these two components. Given the fact that in the observational studies, no explicit attempt

to separate the wave from the cloud contribution have been made, it remains unclear which

component is the main flux contributor. With the aid of the model presented here, an

answer to this problem can be provided.

Away from the cloud layer, the vertical flux of horizontal momentum due to cumulus

clouds will vanish by definition, but the flux due to gravity waves continues to exist.

Eliassen and Palm (1961) showed that in the absence of damping, forcing, and critical

levels, the vertical momentum flux associated with wave perturbations is non-divergent,

and there is no interaction between waves and the ambient flow. Since density decreases

approximately like exp(-z/H) with height, H being the scale height, each wave field grows

like exp(z/2H) in the cloud-free region (ignoring the effects of wind shear and variable

static stability). An unstable breakdown of these waves will arise eventually and any

further growth of wave amplitudes will be prevented by the generation of turbulence

(Lindzen, 1981, 1988). It should be added that magnitudes of wave fields are a function of

not only the density stratification, but also the value of I c - U I, where - is the flow speed

and c is the phase speed of the wave. Hence, wave breaking amplitudes can occur with -
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approaching c which is still an amplitude factor. When breaking occurs, the Eliassen-Palm

theorems are violated and waves will deposit the momentum they were carrying into the

mean flow, thus exerting drag or acceleration on the mean flow.

It has been recognized that vertically propagating internal gravity waves play a very

important role in the dynamics of the middle atmosphere. One of the examples is that the

breaking gravity wave-induced acceleration on the mean flow can provide an explicit

source of "friction" needed to reverse the mesospheric wind shear, and to reverse the

pole-to-pole temperature gradient at the mesopause according to the thermal wind

relationship. Sources of atmospheric gravity waves can be orography, unstable shear

zones, geostrophic adjustment, convection, etc. Most of the studies to date emphasize

stationary waves attributed to orography (e.g. Klemp and Lilly, 1980; Palmer et al., 1986;

Tanaka, 1986; McFarlane, 1987), very little has been mentioned concerning gravity waves

triggered by convective complexes. Therefore, as these gravity waves of convective origin

propagate upward, questions such as how much momentum flux can be carried into the

middle atmosphere, at which level does the unstable breakdown occur subject to different

mean flow profiles, and how much is the wave-induced acceleration are certainly worth

investigating. It is hoped that results from this study can help us to understand more about

the potential roles played by these waves, even though the direct observations are yet to be

made.

To summarize, in this study, squall lines will be treated as thermally forced gravity

waves, and the momentum transport in both the troposphere and middle atmosphere will

be stressed. The purpose of the study is to address issues such as the importance of

cumulus friction, the determination of the dominant component of the mean momentum

transport within a squall line system, and the roles played by thermally forced gravity

Chapter 1: Introduction



waves in the middle atmosphere. In Chapter 2, the background of this study is given.

Chapter 3 is devoted to describing a simple gravity wave model. Results are presented in

Chapter 4. Finally, conclusions and some implications will be discussed in Chapter 5.
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Chapter 2: Background

2.1 Precipitating Cloud Systems in the Tropics.

Precipitating clouds in the tropics occur at scales ranging from small isolated

cumulus clouds to large cloud clusters. Cloud clusters are identified in satellite

imagery by their mesoscale cirrus shields, each shield being ~100 to 1000 km. Cloud

clusters generally have lifetimes of a day or less. Although the spatial spectrum of

clouds is log-normal distributed (Houze and Betts, 1981), owing to their size, cloud

clusters dominate the mean cloudiness and precipitation over the tropics. Studies using

radar and aircraft show that tropical cloud clusters are often composed of several

mesoscale precipitation features, also called the mesoscale convective cloud lines.

Cloud clusters in the tropics generally can be classified into two types: squall and

nonsquall clusters. Squall clusters are associated with squall lines with rapid propaga-

tion (-10 - 15 m/s relative to the ground), explosive growth and the distinct oval

leading edge. Nonsquall clusters tend to travel more slowly (< 3 m/s) and do not

possess notable cirrus shield or the oval leading edge. However, despite the travelling

speed and the outside appearance, these two types of cloud clusters, especially in

GATE, exhibit strong similarities in other aspects of their structures. In Table 1 of

Houze and Betts (1981), a fairly complete list of case studies of convective events

during GATE was given.

Although nonsquall clusters are not as dramatic as squall clusters, on account of

their sheer number, they are the predominant type of cloud clusters in the tropics. To a
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first approximation, we are going to assume that half of the precipitation in the tropics

is attributable to squall clusters. This assumption will enable us to estimate the global

impact of squall clusters on the middle atmosphere.

In the composite study by Barnes and Sieckman (1984) using GATE data,

mesoscale cloud lines are further classified into three groups according to their speed

(relative to the ground) VL: 1) slow-moving (V < 3 m/s), 2) intermediate-moving

(3 m/s < VL,5 7 m/s) and 3) fast-moving (VL > 7 m/s). Fast moving lines are located to

the west of the trough of easterly waves, moving toward the west at 11-14 ms (with

mean speed of 11.1 m/s), while the slow-moving lines are located to the east of the

trough and moving eastward to southeastward at 2-3 m/s (with mean speed of 2.2 m/s).

As will be described later on, a simple two-dimensional gravity wave model is

adopted in this study. Such a model is more suitable to the fast-moving cloud lines.

Compared to slow-moving lines, fast-moving lines are relatively well organized, more

or less move in the zonal direction, and thus more properly described by this simple

model.

2.2 Modulation of Precipitation and Convective Activity by the

Easterly Wave

After GATE experiment, many studies (e.g. Reed et al., 1977, and Thompson

et al., 1979) showed that over west Africa and the eastern Atlantic, convection, was

most intense just before or at the time of the synoptic-scale wave trough passage at

1 The convective activity mentioned here was primarily determined by the percentage
cover by convective cloud defined as the white-appearing cloud in the satellite infrared
images.
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700 mb; while the least amount of convection occurred in advance of or at the ridge. In

particular, such modulation of convection by synoptic-scale waves was most significant

during phase III of GATE.

As pointed out by Thompson et al. (1979), from both the sensible heat and

moisture budgets, the modulation of convective activity and precipitation by easterly

waves is clearly attributed to the variation in the large-scale divergence, convergence

and vertical motion fields, rather than to the thermodynamic instability. This is

consistent with what was discovered by Cho and Ogura (1974) for the Reed-Recker

(Reed and Recker, 1971) composite easterly waves over the equatorial western Pacific.

As far as precipitation and convective cloudiness are concerned, a close positive

correlation was also found; although the former generally leads the latter by a few

hours indicating the spreading of the cirrus shield beyond the time when the activity of

deep convection is at a maximum (Leary and Houze, 1979).

Owing to the apparent relationship between the convective activity and synop-

tic-scale motions, we will concentrate on squall lines that exist in the convergent phase

of easterly waves. A clear scale separation between the squall line and the convergent

phase of the easterly wave will also be assumed so that the former will "see" the latter

as its "basic state".

Finally, near the trough region, it is found that the radiative cooling (~1 OC/day) is

small compared to the large-scale apparent heat source (~10 OC/day), and the surface

evaporation (-4 mm/day) is also smaller than the precipitation (-20 mm/day) (Thomp-

son et al., 1979). Strictly speaking, the above statements were all based on the budget
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studies on the easterly wave scale. However, when formulating the gravity wave

model, we shall subsequently neglect both the radiative cooling and the surface

evaporation (see Chapter 3 for more details).

2.3 Momentum Transport by a Squall Line System in the Cloud

Layer

Schneider and Lindzen (1976) derived a representation of cumulus friction (or the

momentum exchange by cumulus convection). In particular, the effect of the momen-

tum flux due to cumulus clouds on the large-scale momentum equation can be

expressed as:

p-l' = Mc(u, - ), p = Mc(vC - ) (2.1)

where the overbar denotes the large-scale average, the prime is the deviation (caused by

the presence of cumulus clouds) from the average, M, is the cloud mass flux, V = (i,7) is

the large-scale horizontal velocity vector, and V,=(u,,v) is the horizontal velocity

vector within convective clouds. In order to derive (2.1), it has been assumed that the

fractional area occupied by clouds is much smaller than unity. As a matter of fact,

Ooyama (1971), Yanai et al. (1973) and Arakawa and Schubert (1974) have derived

expressions similar to (2.1) to represent the sensible heat and moisture fluxes due to

cumulus convection:

p' = Mc(sC -s ), (2.2)

p-qT7 = M(qc - q), (2.3)

where s is the dry static energy and q is the mixing ratio of liquid water.

Since most of the mass flux within deep cumulus clouds originates at the cloud

base, and the ascent of air parcels in clouds is rapid enough such that the pressure
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gradient force does not have enough time to operate on the cloud-scale momentum,

Schneider and Lindzen (1976) then suggested that V, is close to a conserved quantity

and can be approximated by V at the cloud base. Results obtained by Soong and Tao

(1984) using a two-dimensional cloud ensemble model showed that the parameteriza-

tion scheme of Schneider and Lindzen (1976) is basically correct but needs some

improvements. One of the improvements is to take the entrainment effect into account

in order to have a better evaluation of V,. In fact, in an earlier paper, Shapiro and

Stevens (1980) have suggested that the momentum entrainment/detrainment rate be

replaced by the mass entrainment/detrainment rate; but Cho (1985) showed that this

probably incorrect. Flatau and Stevens (1987) also estimated the effect of convec-

tion-generated pressure forces on the horizontal momentum in clouds, they found that

such effect is influential, especially for slow-moving lines. Because we have not come

to a full knowledge of the properties of V,, and also for the ease of calculations, it will

be assumed that V, is still an approximately conserved quantity.

Cumulus friction is obtained by taking the vertical derivative of (2.1), i.e.

S-- [M (V- V)]. (2.4)p az

Stevens et al. (1977) showed that cumulus friction is an important physical process

which has to be taken into account in the perturbation momentum equation in order to

simulate tropical synoptic-scale motions correctly. In a later paper, Stevens and

Lindzen (1978) concluded that the same physics may not be important for high

frequency gravity waves such as squall lines. However, this needs reexamination since

more precipitation normally accompanies squall lines and the importance of cumulus

friction will be increased. This can be explained in the following way: suppose we

decompose the large-scale variables into a mean plus a wave perturbation, then, on the
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right hand side of the perturbation momentum equation, the term representing cumulus

friction is:

[M (u' - u'C) + M', (U - u ). (2.5)
p az

Note that the overbar and prime now denote the mean and the wave perturbation

respectively. In some sense, the time scale of cumulus friction (t) can be defined as

p(am./azy, and this is to be compared with the time scale for the wave (',) L/2n/(c -iu), L

and c being the wavelength and phase speed of the wave. When /t,. 1, cumulus

friction is negligible; but obviously, an increasing precipitation or cloud mass flux will

result in a decrease in /jr,.

LeMone (1983) first analyzed the mean momentum transport by one of the cloud

lines observed during GATE. However, this line was a slow-moving one with speed

equal to 3.0 m/s and toward the east. LeMone showed that the mean vertical transport

of horizontal momentum normal to the cloud line (u' w) is not successfully predicted by

the traditional mixing length theory which requires that the direction of the eddy

momentum flux is always down the gradient of the environmental wind profile (il/az).

On the contrary, the cloud line transports the component of horizontal momentum

parallel to its axis (~vW) down the gradient of the environmental wind profile (17/az).

LeMone also concluded that the mean momentum transport is mainly achieved by

convective cores which occupy roughly 25% of the convectively active zone.

LeMone et al. (1984) further documented nine convective lines (both fast- and

slow-moving) during GATE and the emphasis was placed on those cases which

exhibited quasi-two-dimensional structure. Their results indicated that for quasi-2D

lines, upward motions are systematically carrying front-to-rear momentum, where
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"front" is defined as the direction toward which the line is moving. If expressed in

terms of the convective line coordinate system as the one shown in Figure 1.3, the

front-to-rear momentum transport (u'wF) just mentioned is then consistently negative.

On the other hand, as discovered in LeMone (1983), transport of momentum parallel to

the convective line axis is well explained by the traditional mixing length theory.

Furthermore, the momentum flux is shown to be mostly attributable to convective

(kilometer scale) updrafts originating from the undisturbed mixed layer ahead of the

convective line. From what is implied by the GATE data, the contribution from

downdrafts is unimportant. Finally, under the same normalization method, the magni-

tude of 7LiW for fast-moving lines is found to be about an order of magnitude larger than

that for slow-moving lines.

It should be pointed out that the observed mean momentum flux in the

aforementioned studies includes contributions from both cumulus clouds and gravity

waves, any direct indication concerning the major contributor to the mean momentum

transport is still in need. Given the simple model presented here, however, the

separation of the cloud transport from the wave transport becomes possible.

2.4 Impacts of Gravity Waves on the Momentum Budget in the

Middle Atmosphere

It has been recognized that vertically propagating gravity waves play a significant

role in the dynamics of the middle atmosphere through wave breaking or dissipation.

In his seminal paper, Lindzen (1981) developed a theory to parameterize the turbulence

and stress owing to the breakdown (or saturation) of gravity waves and atmospheric

tides. The theory was refined by a series of later papers (Lindzen, 1984, 1988). It is
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assumed that once the amplitude of waves becomes so large that the total (mean plus

waves) temperature lapse rate is convectively unstable, waves will break and the

subsequent generation of eddy diffusion will act to eliminate further growth in wave

amplitude.

Following Lindzen (1981), there are numerous other studies concerning the

gravity wave breaking effect on the mesospheric circulation (e.g. Holton, 1982, 1983;

Holton and Zhu, 1984) together with some observational and diagnostic studies (e.g.

Hamilton, 1983; Smith and Lyjak 1985) to support the theory.

There is now also an increased interest in the possible influence of the gravity

wave breaking on the stratospheric and tropospheric circulation. Lilly (1972) noted

the removal of the energy and momentum from the troposphere and lower atmosphere

by the breaking of large amplitude mountain lee waves may be a significant factor in

the evolution and maintenance of the large-scale atmospheric circulation. In Tanaka

and Yamanaka (1985), the influence of the mesoscale mountain wave breakdown on

the general circulation of the lower stratosphere is studied. Lindzen (1985) suggested

that waves break in the mesosphere might have collapsed in the upper troposphere or

lower stratosphere already, and this primary wave breaking serves as a filter to set a

constraint on the maximally allowed wave amplitude in the atmosphere higher above.

Mahlman and Umscheid (1984) found that successful stratospheric circulation simula-

tion can be obtained by including smaller scale gravity waves. McFarlane (1987) also

concluded that large-scale momentum sinks resulting from breaking mountain waves

play a very important role in determining the structure of the general circulation of the

lower stratosphere and the troposphere.
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Orography, as we all know, is not the only mechanism which is capable of

exciting internal gravity waves. In fact, both Holton (1982) and Matsuno (1982)

suggested considering a spectrum of gravity waves (i.e. different phase speeds) in order

to reasonably simulate the mesospheric general circulation. Other possible sources of

gravity waves include unstable shear zones (Kelvin-Helmholtz instability), geostrophic

adjustment and the development of convective complexes and squall lines.

As described earlier, squall lines can be viewed as gravity waves forced by an

internal heat source due to the release of latent heat. Except for the form of the forcing

function (internal vs. boundary) and the lower boundary condition of course, thermally

forced gravity waves are really not physically different from waves forced by

orography. However, most studies are for gravity waves having orographic origin, and

thus far very little has been done concerning gravity waves triggered by thermal

forcing. It is hoped that results of this analysis will provide some insights into the

potential roles played by thermally forced gravity waves.
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Chapter 3: A Gravity Wave Model

3.1 Physical Aspects

a. Cumulus parameterization

Following Yanai et al. (1973), the large-scale (for the present case the scale

characteristic of squall lines) heat source ( Q, in OC/day ) is:

pcQ + V -Vs + w = L(- e) - pW + Q, (3.1)

where the overbar denotes the average over the cloud and non-cloud area, the prime

stands for the deviation from the average, s = cp + gz the dry static energy, L the

latent heat of condensation of waver substance, c the rate of condensation, e the rate

of re-evaporation of cloud droplets, Q the radiative cooling rate, and the eddy term

is due to the convergence of the cloud heat flux. The aim of the cumulus

parameterization is to represent the right hand side of (3.1), except Q, in terms of

large-scale variables. In order to achieve this task, assumptions have to be made.

Arakawa and Schubert (1974) suggested a cloud ensemble which is steady,

entrains continuously but detrains only when the cloud loses its buoyancy at the

cloud top. Q in (3.1) for this cloud ensemble can then be expressed as follows:

pc,Q = M, z +D(s -s -LID)+ QR (3.2)

where sD is the detrained static energy, D the rate of detrainment, 1D the detrained

liquid water and Mthe cloud mass flux. One of major assumptions used to derive
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(3.2) is that the fractional coverage area for clouds being very small. After further

considering only the cumulus heating, assuming the cloud field is composed only of

non-entraining deep clouds, and neglecting the re-evaporation of detrained liquid

water', Arakawa and Schubert (1974) showed that (3.2) can be further simplified as:

pcQ = MQMz . (3.3)

In this study, we will require that the cloud mass flux, the cumulus heating and the

static stability satisfy (3.3). In other words, we cannot specify all three fields

independently of one another.

Although for the time scale of squall lines, radiative cooling is not important,

we have to remember, however, that in the long term only radiative cooling can

balance the cumulus heating (Sarachik, 1985).

One might choose Mto be constant in the vertical 2 as a first step. At the cloud

top, in order for the heat flux to be continuous, Q has to vanish, from (3.3) this will

then lead to a vanishing local static stability. However, by means of a simple

cumulus parameterization scheme (Lindzen, 1981, 1988), we are able to determine

profiles of M. and Q which approach zero continuously; hence, such a severe

constraint will not be imposed on the static stability. Nevertheless, data from both

1 As implied by Yanai et al. (1973) and suggested by Sarachik (1985), the re-evaporation
might be important for trade cumulus clouds. However, in this study, the re-evaporation of
deep cumulus clouds will not be included.

2 Physically this means that only air parcels originating from the lowest layer which has
the highest moist enthalpy (h = s + Lq) get entrained, and they do not detrain in the depth
of the troposphere until the cloud top is reached.
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Thompson et al. (1979) and Oort (1983) showed that in the tropical upper

troposphere, the static stability is indeed relatively low; if expressed in terms of

(1/c,) (a az), it is ~ 1 to 2 OC/km.

As was just mentioned, a scheme first proposed by Lindzen (1981, 1988) will

be used to parameterize profiles of M, and Q. For the sake of illustration, we first

divide the whole atmosphere into a sum of individual layers, and the total effect on

the large scale variables can be expressed in terms of the sum of contributions of

clouds having their roots at different layers. Following Lindzen (1981, 1988), each

of these clouds has a very simple structure; it entrains only from its root layer (z,)

which is supposedly below the trade wind inversion, detrains only when it loses its

buoyancy at z,where h(z,) = s(z), and the mass converged for one of the entraining

layers, 8(pw), will give rise to a fraction of the contribution, 8(M,), to the total cloud

mass flux between z, and zd. This scheme is evidently much simpler than the one

suggested by Arakawa and Schubert (1974); but is found by Geleyn et al. (1982) to

have a better performance in the large-scale numerical forecast models.

b. Determination of basic states and other related profiles

On account of a clear modulation of convective activity and precipitation by

easterly waves, we will treat the convergent phase of easterly waves as the basic

state for squall lines. During the course of the calculation, all the prescribed basic

state profiles such as mean zonal flow and mean vertical velocity will be those

characteristic of the convergent phase of easterly waves.
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Sarachik (1985) and Lindzen and Nigam (1987) have pointed out the

importance of the relatively well mixed tropical trade cumulus layer. However,

conventional meteorological measurement procedures, like those used in the

Marshall Islands tests and GATE experiments, do not have vertical resolution high

enough to resolve this kind of the planetary boundary layer structure. As a result,

we deliberately replaced the profile of the static stability for the lowest 2 to 3 km by

the trade cumulus layer measurements obtained by Augstein et al. (1974) from the

Atlantic Tropical Experiment (ATEX). It is clear from (3.3) that little cumulus

heating should exist for the first 2 to 3 km of the atmosphere, as a consequence.

As pointed out by Houze (1982), there is in fact a difference between the

convective and mesoscale heating. The mesoscale component can be referred to as

that part of the tropical cloud system which contains the mesoscale anvil circulation

(cf. Fig. 1.1), while convective component consists of contributions from cumulus

elements ranging from deep cumulonimbi to shallow cumulus clouds. Since the

cumulus parameterization scheme used here has not really taken into account the

mesoscale anvil circulation, only the heating due to deep cumulus clouds has really

been parameterized.

From a practical point of view, we need to specify profiles of temperature,

mixing ratio, mean zonal flow and mean vertical velocity (which is itself not

directly observed but implied from the horizontal convergence field) before any

calculation is performed. The static stability is calculated from the temperature

profile. We then use the scheme described in the previous section together with the

mean vertical velocity profile to parameterize the cloud mass flux (M), and

cumulus heating (Q) (viz. (3.3)). Strictly speaking, profiles of Mo and Q thus
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obtained are only representative of the basic state (synoptic-scale); however, for

simplicity, we shall assume that in terms of mesoscale wave perturbations, both M.

and Q have the same distributions'.

c. Nature of wave perturbations

We focus on steady wave trains; instability is not considered. Moreover, wave

amplitudes are assumed to be small enough such that the dynamics is basically

linear. This assumption is valid at least for the synoptic-scale waves (Stevens,

1979); its validity concerning gravity waves can be verified after solving the

mesoscale wave fields.

Previous studies such as Davies (1979) and Xu and Clark (1984) have pointed

out the importance of the finite adjustment time of clouds to the low level

convergence for the wave-CISK calculation. In another related paper, Bolton

(1980) also showed that in order for instability to occur, cumulus heating and the

vertical velocity field cannot be in phase. Since a diagnostic rather than an

instability analysis is of interest at present, the possible time lag between the low

level convergence field and the cloud activity is not important. In other words, no

time lag between w and M. (and Q) is assumed to exist.

1 In principle, profiles of M, and Q for the mesoscale wave perturbation, within the context
of the cumulus parameterization scheme adopted here, are not known prior to solving the
perturbation vertical velocity field. Hence, one can start with initial guesses of M. and Q,
solve for w, reparameterize M and Q, etc., until M and Q are completely consistent with
w. However, such iteration process is not guaranteed to converge and is out of the scope
of this simple diagnostic study. Nonetheless, one is able to check a posteriori whether the
prescribed profiles of M and Q for the wave perturbation are far from being consistent
with w. It turns out that the consistency is roughly achieved, thus the specification of Mo
and Q profiles is justified.

Chapter 3: A Gravity Wave Model



Finally, it is also postulated that there is no vertical tilt of cumulus heating,

thus the vertical structure of cumulus heating is represented by a real function.

d. Critical levels

We shall assume that no critical level, where the phase speed of the wave

equals to the mean flow, is encountered. In the troposphere, observations show that

this criterion is usually met because squall lines normally propagate faster than the

mean flow (Barnes and Sieckman, 1984).

It is well known that the mean zonal flow in the lower tropical stratosphere

alternates between the easterly and westerly regimes with a period from 24 to 30

months and an amplitude of about 20 m/s. This phenomenon is known as the

quasi-biennial oscillation (Lindzen and Holton, 1968; Holton and Lindzen, 1972).

From the work of Booker and Bretherton (1967), the existence of a critical level will

result in almost total absorption of vertically propagating waves. Therefore, owing

to this filtering process in association with the mean zonal flow, only under

favorable conditions (namely the nonexistence of the critical level) can gravity

waves excited in the troposphere manage to escape into the middle atmosphere.

e. Integral constraint on cumulus heating

We require that the net cumulus heating (Q) due to the net precipitation (P)

satisfies the following integral constraint,

pcQdz =LvP, (3.4)
LP
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where z, and z, denote levels of the cloud base and cloud top, and Lis the latent heat

of condensation. Therefore, after obtaining profiles of M. and Q by the cumulus

parameterization scheme, their magnitudes are then normalized according to a

specified precipitation rate.

f. Distribution of precipitation rate

Both monochromatic and localized precipitation will be used in this study.

First, consider the case of monochromatic waves. Figure 3.1 shows the

distribution of precipitation as a function of easterly wave category' during phase IlI

of GATE (Thompson et al., 1979). It is clear that on the synoptic-scale the

distribution of rainfall is close to a single wave train superimposed on a constant

basic state whose precipitation magnitude is equal to that associated with the wave

perturbation amplitude. On the mesoscale, in a similar manner, we assume that a

monochromatic precipitation will be superimposed on a basic state (i.e. the

convergent phase of easterly waves) whose magnitude () is equal to that associated

with the wave perturbation (P). Owing to the fact that the "total" precipitation is

always positive, the requirement of no "negative" clouds will then no longer

introduce any harmonic distortion.

Figure 3.2 is used to illustrate our viewpoint just described. In that figure, two

scales of motions are presented. The first one is the synoptic-scale easterly wave, in

which case the ITCZ serves as its basic state. The second one is the mesoscale

gravity wave, with the convergent phase of the easterly wave serving as its basic

1 Refer to the legend of Figure 1.3 for the definition of easterly wave category.
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state. From Figure 3.2, it seems that the amplitude of the mesoscale perturbation

precipitation should be equal to 2.4 cm/day (the zonal variation of F will be ignored

due to the relatively short spatial scale of squall lines compared to that of the

convergent phase of easterly waves). However, the fact that the average precipita-

tion which is about 1.2 cm/day over the ITCZ where most of easterly waves are

observed is only a result of a long term average, in which case the appearance of the

ITCZ is "blurred" into a broader band. We think that at any particular moment, the

extent of the ITCZ should be narrower and a more intense rainfall rate should be

associated with it. Therefore, a monochromatic precipitation with amplitude equal

to 2.2.4 =4.8 cm/day will be assumed in this study.

Although the choice of the amplitude of the precipitation has been made

somewhat subjectively, we can nevertheless conduct a test to see whether it is

reasonable or not. Houze (1977) studied the structure and dynamics of the 4-5

September 1974 tropical squall line system. According to his definition, a "squall

line system" refers to the entire disturbance consisting of the line of cumulonimbus

clouds and the trailing anvil cloud region. The large-scale area encompassing the

system is typically 105 kmin2, and 4.6-1012 kg of total water fell during its lifetime

(0900 9/4/74 - 0800 9/5/74). After a simple calculation, the average precipitation

for such a system is incidentally also 4.8 cm/day. Hence, we feel that the choice of

4.8 cm/day is at least not too far from reality.

The slow and moderate speed cloud lines are a few hundred km long and

50-100 km wide (active convective region plus stratiform region), while the
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fast-moving ones have similar lengths but with widths extending up to 250 km. If

we were to approximate cloud lines with gravity waves, given the typical width of

100 km for squall lines, a wavelength equal to 200 km seems plausible.

The monochromatic wave is by no means a correct description of the

precipitation. In a typical squall line system, there is a convective region of intense,

cellular precipitation and a mesoscale region of lighter, horizontally uniform rain.

In the case studied by Houze (1977), 60% of precipitation falling over the

convective region and 40% over the mesoscale region. The mesoscale rain can be

generated in two ways: 1) water is first condensed in the convective region and

subsequently incorporated (mostly by advection) into mesoscale region, and/or 2)

water is simply generated by the mesoscale lifting itself. For simplicity, we shall

adopt the first case, hence all the latent heat should have been released in the much

localized convective region.

In the following calculation, whenever a localized precipitation is under

consideration, a Gaussian distribution P0-exp[-(x/x)2] will be used with x0=10 km

and P0=60 cm/day. The choices of x0 and P0 were inferred from the idealized

mesoscale cloud system by Leary and Houze (1980). It should be pointed out that

from the five GATE cases studied by Leary and Houze (1979), precipitation rates

ranging from 20 to 200 cm/day for the convective region were all observed; hence

Po=60 cm/day is like a geometric mean. Considering a hypothetical domain of

200 km (equal to the wavelength of the monochromatic wave), the Gaussian rainfall

chosen here corresponds to a mean precipitation of 5.3 cm/day which is not too

different from 4.8 cm/day for the monochromatic precipitation.
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g. Determination of phase speed of squall lines

During GATE, both fast- and slow-moving mesoscale convective cloud lines

were observed, and the term "squall line system" is referred to the fast-moving ones.

Barnes and Sieckman (1984) showed that fast-moving lines typically move east to

west at an average speed of 11 m/s. However, if we are concerned with the amount

of the radiation out of the cloud region, a range of phase speed should be taken into

account (see Appendix). It is thus assumed in our model that the phase speed of

squall lines or gravity waves is 10 - 13 m/s toward west. Given the phase speed at

this range and wavelength of 200 km, the Doppler-shifted period of the wave is

about 10 hr which is quite typical for the lifetime of squall line systems.

The range of the phase speed chosen here is suggested not only by

observations, but also by the wave-CISK theory (Lindzen, 1974). According to the

wave-CISK theory, in order for the gravity wave to maximize the low level

convergence that is supposed to take place within the trade cumulus layer, one

quarter of the gravity wave's vertical wavelength (L) should be approximately equal

to the depth of trade cumulus layer which is about 2~3 km. From the simple

dispersion relationship for gravity waves,

(2 
-

N
2

L) 
= (c _ j)29

and the mean zonal wind profiles used in this study, phase speeds are also found

roughly in the range of 10 - 13 m/s.
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3.2 Numerical Aspects

a. Formulation

Since the structure of squall lines is essentially two-dimensional, and the local

pendulum day is much longer than the time scale of squall lines, the gravity wave

model will be two-dimensional (x-z) and on a non-rotating frame. Each field is

decomposed as usual into a mean (overbarred quantity) plus a wave perturbation

(primed quantity). Log-pressure coordinates will be used (Holton, 1979). The

linearized governing equations in the cloud layer, zr (z., z), for the hydrostatic

gravity wave around a rather general basic state (only varies with height) with

cumulus friction being taken into account (viz. section 1.3) are:

au' -au' du 9a 'g d - u'
+w +w' + e' [-M(u'- uc') +Mc'( - ,)] + v (3.5a)

dt wz dz ax Po dz a 2  (3.5a)

au' aw'u W = 0, (3.6a)
ax a z

dT'
+ wT = Q', (3.7a)

dt

1 84' _ T', (3.7b)
R az

The equations above are the momentum equation, continuity equation, thermody-

namic or heat equation, and hydrostatic equation respectively, where

z =- ln (p/po),

p = pressure (mb),

po = 1000mb,
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w = vertical velocity in the log-pressure coordinates,

u = horizontal velocity,

T = temperature,

0 = geopotential height,

M,= cloud mass flux,

u, = horizontal momentum characteristic of clouds (=constant),

Q = cumulus heating,

v = eddy viscosity = 0.1 m2/sec (in the geometric coordinates),

F = (d/dz+R/c)T, and

a/dt = /lat + i(alax).

When cumulus friction is included in the model, one may think that since the

mean cloud activity (M,) comes from the low level convergence which is associated

with the mean vertical velocity (w-), it will be inconsistent to consider only one of

them as part of the basic state while ignoring the other one. This statement is in fact

not strictly true. Following Yanai et al. (1973) and Arakawa and Schubert (1974),

one can always partition the large scale variable into the cloud and the environmen-

tal (cloud free) contributions. For instance, the large scale vertical mass flux can be

written as:

pw = M +1

where M, and R denote contributions from the cloud and the cloud-free environment

respectively. Considering the mean part (i.e. average over the convergent phase of

easterly waves) of the equation above, as one can see, on account of the contribution

from the environment, the presence of M, does not really guarantee the existence of

W. If W is omitted from the basic state, what follows is that although no low level

convergence takes part in the convection, surface evaporation will in turn play an
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active role in supplying the moisture. Therefore, M, and W do not have to be

coexistent simultaneously. True, but nevertheless, as we have stated in section 2.2,

contribution from the surface evaporation is negligible compared to the precipitation

at least for scales smaller than easterly waves. As a consequence, in the following

calculation, if cumulus friction were to be taken into account, we will treat M, as

being attributed completely to low level V, contribution from the surface evapora-

tion will be ignored. This point proves to be important in the later discussion.

The inclusion of the eddy diffusion term in (3.5a) is for the sake of removing

an inherent singularity for the system (3.5a)-(3.7a). Without the eddy diffusion

term, the system (3.5a)-(3.7a) can be consolidated into a single third orderi ordinary

differential equation for one of the variables. However, according to the way that

cumulus parameterization works (see section 3.1.a), in the lowest 2 to 3 km of the

atmosphere, W is balanced by AM, exactly in (3.5a). What follows then is a

decrease of the order of the system and a singularity problem arises. If the

singularity only occurs at one point, we probably can get around with this with a

local analysis by expanding the solution in terms of a Frobenius series around the

singular point (Bender and Orszag, 1978); however, what is involved at present is a

region rather than a point. In order to have a smooth transition from the lower

region where AM, = V to the higher region, it is convenient to include an eddy

diffusion term of momentum so as to raise the order of the system from three to

four, the problem of singularity is then solved naturally. In the following calcula-

tions, the value of eddy viscosity v is chosen to be sufficiently small such that the

eddy diffusion will not contaminate the major physics within a squall line system.

1 The "order" here refers to the order of the highest derivative in z for the ordinary
differential equation.
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When w(z) becomes part of the basic state as well as -, the existence of 7 and

the y-dependence of -" are inevitably implied. Their associated effects can only be

checked a posteriori when a more complete model is under consideration, i.e., we

also have to consider the transverse wave momentum equation.

Assuming the forcing Q' = Q(z)exp[ik(x -ct)], all other fields will have similar

functional form such as u'= u(z)exp[ik(x -ct)] and w'=w(z)exp[ik(x -ct)]. The gov-

erning equations for wave perturbations can be written, with primes omitted, as:

-du du d d2u
-icou +w +W-=-ik +A- [Mc(u - u) + Mc(u- - )] + v- 1, (3.5)

dz dz dz dZ2

dw
iku + - w = 0, (3.6)

dz

+w = Q, (3.7)

where

A =(g /po) exp(z)

and

co= k(c-i) (3.8)

is the intrinsic frequency.

In the following, we shall use the term "viscous" to represent the gravity wave

system when cumulus friction is included (that is, (3.5)-(3.7)). The viscous results
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are to be compared with those due to a traditional simple gravity wave system,

hereafter referred to as "inviscid", without cumulus friction but forced by the

identical cumulus heating 1.

If we use (3.7) to eliminate w, (3.5) and (3.6) can be written as the following:

d2 u

dz2

1
+ -(AMCv c

A dM,
v dz

du
dz

1du i) d4
v dz Rr dz

AdM
v dz

A du
v dz

1 dMc
+ - A + iu

v dz

ik
V

1lduQ
v dz F

(3.9)

dz2 + LF d) d9z
dz Idz 1 dz

k )U
r u
m

SRrT[( 1D.

(3.9) and (3.10) can be combined into a more compact form using the matrix

notation, namely,

d2  d
dzz+X_ f+ f = Zu

(3.10)

(3.11)

1du io

v dz RT
ord 
wdz r

' ik

1 In other words, (3.5) is replace by:
du d2u

-iou + w =-ik +v
dz dz2 '

while (3.6) and (3.7) remain the same.
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I(A, -w)
V

0

v dz 
+

Y= A dz
kRr=o



A dM 1 (duQ _dM _ diiu
=v dz v dz z (U-U)-z

R[(d I
ic dz rQ1

b. Boundary conditions

1) Lower boundary condition

The ultimate lower boundary condition is that the vertical velocity on the

geometric coordinates vanishes at the ground. The linearized version of this

condition on the log-pressure coordinates is:

w = o0 at z=0, (3.12)
gHo

where H is the scale height associated with the temperature at the surface.

A surface mixed layer extending from ground to 600 m is assumed.

Surface drag in the form of linear damping will be taken into account. The

potential temperature and the horizontal velocity of the environment are well

mixed in the surface layer as indicated by, say, the observational study of

Augstein et al., (1974). Because there are no clouds, both cumulus heating and

cloud mass flux vanish in this layer. It follows that the perturbations of

geopotential and horizontal velocity are independent of height and are simply

equal to their respective values at the cloud base. Moreover, from the wave heat

equation, there is no temperature perturbation in the surface layer.
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We have to emphasize that as suggested by Sarachik (1985), in the tropical

atmosphere the mixing is present not only in the mixed layer but also in the trade

cumulus layer which caps the mixed layer and extends to about 2-3 km where

the trade wind inversion is. The mechanism of mixing for the two layers,

however, are different from each other. Due to the occurrence of the phase

change of water in the trade cumulus layer, not all the thermodynamic quantities

are as well-mixed as in the mixed layer. In fact, Augstein et al. (1974) did

observe a moisture profile which is almost independent of height in the trade

cumulus layer but the same thing is not true for the potential temperature.

Knowing the presence of mixing, the effects of surface drag in principle should

also be taken into account in the trade cumulus layer. However, as will be

explained later, the way the surface drag has its influence on the solution is

through the lower boundary condition -which is itself mainly a function of the

damping rate associated with surface drag and the depth of the layer. We shall

show that as long as the depth of the layer (in the log-pressure coordinates) is

much smaller than one, and the linear damping time scale is much longer than

the gravity wave time scale, the effective lower boundary condition is not

sensitive to the parameters just mentioned. Therefore, for simplicity, the drag

effects up to the trade inversion will not be considered in the following; since we

believe that the solution will not be affected by such an assumption.

The bulk aerodynamic formula for the surface drag is:

, = pCIv. (3.13),
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where CD is the surface drag coefficient of the ocean. The time rate of change of

u owing to the surface drag is

18 C, I uo I

paz' Az

where uO is the gustiness parameter and Az is the depth of mixed layer. Given

CD = 1.5-10 3,

uo = 8 m/s, and

Az = 600 m,

the linear damping rate in association with the surface drag is:

D C uO =2. 10s-1 1(3.14)
Az 14hr (3.14)

Therefore, in the mixed layer, the wave momentum equation becomes:

-iou, = -ik, - D u,, (3.15)

where the subscript "m" denotes the value characteristic of the mixed layer.

Moreover, from the continuity equation, we have:

dwm
iku, + d w -w, =0

Sw,m(z) = iku, + (w(0) - ikum)e'. (3.16)

With the aid of (3.12) and (3.15), (3.16) can be rewritten as:

w(z) -I - )e1' (3.17)

in the mixed layer, where

1 (0 + iD)
hm,= k2  (3.18)

g k

Chapter 3: A Gravity Wave Model 39



If one quantifies (3.17) at the top of the mixed layer (z;), the following equation

will be yielded:

Wm 1
at z =z (3.19)

m Cb

where

ghm
Cb= .h(1

Because the continuity of w and 4 across the interface between the mixed layer

and the cloud layer are required, as a result, we expect that (3.19) should hold at

the bottom of the cloud layer (z,) as well.

It proves appropriate at this point to study the sensitivity of results to the

choice of the depth of the surface mixed layer. For simplicity, simple gravity

waves without cumulus friction and eddy viscosity will be considered. Applying

the continuity equation at the top of the mixed layer with the help of (3.15) and

(3.19), the following equation which serves as the effective lower boundary

condition for w at the cloud base is obtained:

dw ik 2Cb
dz + iD = 0 at z=z..  (3.20)

Typically, z. - 0.1, D/i C 1 (the damping time scale associated with the surface

drag is much longer than the time scale for the gravity wave), and H, ~ 8000 m,

we can show that

(C - )2 ( + i. (3.21)
Cbo c (0+
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With the above equation, (3.20) can be further simplified to the following:

dwdz _ 0 at z = zc. (3.22)

As one can see that under such a condition only the depth of the surface mixed

layer will affect the form of the lower boundary condition. it can be further

demonstrated (see section 4.1.c.1)) that (3.22) is in fact not too different from the

case of simply letting w-0 at z=zoas the effective lower boundary condition

(owing to the fact that 1/z >>1). Therefore, as long as the depth of the surface

mixed layer is such that z,<1, we argue that our results will not be sensitive to its

actual value.

2) Upper boundary condition

Above the cloud layer, a radiating wave which carries energy upward with

constant vertical wavelength will be assumed, in mathematical terms, this

means:

d
' (  ) (i,, +0.5)( ) (3.23)
dz

where

,= - = constant. (3.24)
u, - c

The term 0.5 in (3.23) is cause by the density stratification, 1" and i, represent

values of the static stability and the mean zonal flow in the stratosphere. Thus

far, the zonal wavenumber (k) has been assumed to be positive without any loss

of generality, if k is negative, then a change of sign in (3.24) is necessary in

order for (3.23) to remain valid.
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With (3.23), the continuity equation in the stratosphere becomes

i
u = (iX, - 0.5)w, (3.25)

k

together with the momentum equation in the stratosphere,

-i ou = -ik, (3.26)

the following relationship which is similar to (3.19) can be derived,

w 1w = for z > z, (3.27)
C,

where

i 0.
, = (iX, - 0.5).

k
2

In a like manner, by arguing the continuity of w and 4, we require that (3.27)

still holds across the interface between the cloud layer and the stratosphere.

c. Method of solutions

This section is devoted to the description of the method of solution which

includes the numerical scheme and the implementation of the boundary conditions.

The numerical scheme of Lindzen and Kuo (1969) will be used with slight

modification since part of the forcing depends on the solutioni (Stevens et al.,

1977). We can write down (3.11) in the finite difference form:

A -+_f_ + CBf.+ I= , (3.28)

1 Namely, u. in (3.11), which is part of the forcing, is not known prior to the solving of the
equations. As a matter of fact, the reason that the forcing term in (3.11) having been
decomposed into the product of two matrices is to facilitate the later dealing of this
problem.
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where 1 1

1 1- _ I+
M2z 2Az'

Dx=Z

= (0 1).

Assume further that the solution has the form of

L = SL + 1 + &-_-, (3.29)

or equivalently

f_-l = ~_- _ _ + 1--. (3.30)

Eliminating f,., between (3.28) and (3.29), and comparing the resultant equation

with (3.30) yields the following recurrence relations:

an_ = -A -(B_,, + C-;',

R-_1= A-Ip,+Cn'1R). (3.31)

The numerical scheme can also be called the up-down sweep method since

only two "sweeps" over the domain are necessary to obtain the solution. Due to the

fact that u, is unknown a priori, it appears that we should start the first sweep from

the top. When the bottom is reached, by using the consistency condition, i.e.

u(z)=u,, u, will then be obtained.
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To begin with, how do we implement (3.27)? Let L denote the level where

the cloud top is. Our primary goal is to obtain a relationship between f and l -1,

which in turn will give us information about 0,_, and I_, then march downward

with (3.31) to obtain a's and A's for the rest of the levels.

Above the cloud top, the radiation condition is applied such that

L L+1 = L exp[(iX, + 0.5)Az]

(cf. (3.23)). Furthermore, from the momentum equation,

UL+l = (k/^)k)L+l.

We thus have

UL +1 = EL, (3.32)

where

e = (k/o) exp[(iX, + 0.5)Az].

Substituting (3.27) and (3.32) into the finite difference form of (3.5) at level L

yields

uL= -2 A A+iA J+ e (AM --w)E+ - zik +
Lv- 1 ( v d z 2 v c v C d z

1AZ2 dME 1 [Az2  dME duiiV
A u A(u -( i-u ) + MC (3.33)

( v dz ( v dz dz

where

=1 (AM, -7).
2v

Applying (3.29) at level L-1 gives

IL- 1 L-L[+i+L-1-u-c

1 Or more specifically, we want to be able to express u and # at level L-1 in terms of linear
combinations of 4 ,, uL and u,.
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or this can be rewritten as

4I (" . (i 34)( 
1)

L,6u:l=-1) f- a 4)L)+3 [3)1kl1) (3.34)

Comparing (3.33) with (3.34), the following is obtained:

_&21 ( dMHa = - 2- A - + i

iv dz 6

1 Az 1 _ Az 1 du
S=- -ee (AMo-w)+- ik+ . ,

2v v C, dz

1 AZ dMC

- v dz

02 = - A d(u - u ) + M J . (3.35)
v v dz dz

The finite difference form of the continuity equation (3.6) at level L is

1
ikuL +2z (wL+1- wt-1)-w =0. (3.36)

The next question concerns with how to relate w's in (3.36) to u and 0 at levels L

and L-1. From (3.27) we have,

1 1
w +1= CL+1 = exp[(i,, + 0.5)Az]OL (3.37)

as well as

1
S= L. (3.38)

Ctc
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In addition, the heat equation (3.7) applied at level L-1 yields

WL-1 R2 -r (4,- -4 _- (3.39)

Our task then becomes an attempt to relate O,2 to u and 4 at levels L and L-1. This

can be accomplished by a somewhat tedious way. The procedure is described in the

following. Given that

fL-2= L-f-1+ ~-U-, (3.40.a)

a -2= -A-' z- 1 + C- _ ), (3.40.b)

-2 _z- ( + -a- -), (3.40.c)

we first express a_2 and &_2 in terms of ~, 1 and &_, knowing that half of the last

two matrices are still unknown. As a second step, from (3.40.a) one has

L-2 = aL-22,1UL - + aL -2 L - + PL -22,.1U + L -2,2'

where c a represents the (i,j)th element of the matrix a at level L. With the

information given in (3.33), we are then able to write down the above equation in

another form:

-2= EuL +E2 L+E L-+E 4uc +Es (3.41)

where E, E2, E3, E4, and E, are functions of cy a, , and p which are defined in

(3.34). With (3.37), (3.38), (3.39) and (3.41), (3.36) becomes

OL-1 = -[(ik2Az +FEx)/(FE3)]uL - {[G/C,-F(1 -E)]/(FE 3)}4L

- (E4/E3)uc + (QL,-IL/F,-I - FEs)/(FE3), (3.42.a)

where

1 i£
F - G = exp[(ik, + 0.5)Az] - 2Az.

FL-iR2Az

From (3.34) we have

L- 1 = a3UL + a44L + 33U + 04 . (3.42.b)
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Given the following:

_-= 3 A B.-= B C-= CJ ,- D-- 3 D4 (3.43)

then, after equating (3.42.a) with (3.42.b), we have

a = {R4Az 2 FL-Ik( --aI(AB, +A4B 3)-(A 3C +A4C3)} (A3B2 + A4B4)- ,

a4 = [-iR2AzrL,_,(C,)-G - 1 - c(A 3B + A4B3) - (A3C2 + A4C4)] (AB 2 + A4B4)- ,

3 = {-(A3BI +A4B3)j 1 + A3D +A4D3} (A3B2 
+ A4B4)-

4 = {iR2Az QL-.l - (A3B, +A4B3) 2+APD2 +A4D4} (A3B2+A4B4)-1 . (3.44)

Our goal of specifying ,_, and L , is achieved by (3.44) together with (3.35).

Finally, all a's and D's in the lower layers will be obtained with the help of (3.31).

Regarding the implementation of the lower boundary condition, first let "0"

denote the level where the cloud base is, and "1" and "-1" one level above and

below the cloud base respectively. Prior to any formal calculation, the following

expressions are worth mentioning:

uc = u0, (3.45)

k k

Ux c+iD +iDO°  (3.46)

1
wO = - 0. (3.47)

Cb,

(3.45) is by definition (refer to section 3.1.a), (3.46) is due to the fact that 4 is not a

function of height in the surface mixed layer and is continuous across the cloud

base, and (3.47) is simply another form of (3.19). The finite difference form of
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(3.5) applied at the cloud base with the information contained in (3.45) to (3.47) is:

-2+-i
v

+ iD [1

+ Az (AM, - )
2v

+ (AM, -w)2v

AZ2A dMe du
- A (U -U c)+M e .

v dz dz

Also, the continuity equation applied at the cloud base gives:

gh Ho) -J

2Az

Cb
= 0. (3.49)

At this point, we have encountered the same problem as before concerning how to

relate w to u and 4 at levels 0 and 1.

Th achieve this, first write down the heat equation at level 1:

Iw , R ,2Az
In addition, we have the following:

=(lU2)=/ 1(CC 1 U- (1 01 aj2 u

= 42 = o(u 1- PIUo - 2)+ a(4 ( - auo- ,4)
where we have let

0 134)
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(3.48)

(3.50)

(3.51)

--' 1 du
- V (ik + . 0

(al ")



Note that the definitions above are not to be confused with those in (3.34).

Substitute (3.51) into (3.50), then substitute the resultant equation into (3.49) yields

+ e1- 1-i o + 4
g HCb R2z F2Az R RF12Az

(O + 404)  
(3.52)

R rl2Az ()

As a consequence, (3.48), (3.52) together with

fo =  tofl + DL. (3.53)

form a system of four equations and four unknowns (uo, 0,, ul and0 1). After solving

u and 0 at levels 0 and 1, the numerical integration will be formally complete

following another up-sweep using (3.29).

Given the seemingly complex approach of carrying out the boundary

conditions, it is consistent at least in the following senses:

1) Both boundary conditions are converted to finite difference forms with second

order accuracy which is consistent with the equations themselves.

2) w and 4 are required to be continuous across both the upper and lower

interfaces.

3) When implementing the boundary conditions, momentum and continuity

equations are always used first, then the heat equation.

Nevertheless, one may still wonder about the accuracy of the way the

boundary conditions were carried out. A good method of verifying this is to

consider a simple gravity wave case without cumulus friction. In this case, the eddy
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viscosity term is no longer necessary and the whole problem, i.e. (3.11), can be

reformulated into a second order ordinary differential equation while still being

subject to the same boundary conditions (3.19) and (3.27). For this simple case, the

boundary conditions are implemented very easily. Results thus obtained are to be

compared with the ones from the full version of the model but with cumulus friction

being turned off. It is found that, as long as the eddy viscosity stays much smaller

than the other terms in the momentum equation, results obtained from two versions

of the model are almost identical. As a consequence, we are quite confident about

the accuracy of the numerical scheme just described.

3.3 Data

We shall mainly use data obtained from two experiments conducted over the

tropical oceans, namely, that of GATE (the eastern Atlantic, e.g. Thompson et al. 1979)

and of the Marshall Islands tests (the western Pacific, e.g. Reed and Recker, 1971). As

explained previously, fields characteristic of the convergent phase of easterly waves

will be used as the basic states for squall lines. Figure 3.3 shows vertical distributions

of mean zonal flow (ii) and mean vertical velocity (-) observed during GATE. The

corresponding profiles of the static stability parameter and dry and moist static energy

are displayed in Figure 3.4. The counterparts of Figures 3.3 and 3.4 for Marshall

Islands tests are shown in Figures 3.5 and 3.6 respectively. In order to resolve the trade

cumulus layer whose depth is around the order of 2 to 3 km, we have deliberately

replaced the static stability parameter field in that region with the one observed by

Augstein et al. (1974) from ATEX (Atlantic Tradewind Experiment). Figure 3.7

displays profiles of the cloud mass flux and cumulus heating for GATE using the
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parameterization scheme described in section 3.1.a. A normalization corresponding to

a precipitation rate of 4.8 cm/day (viz. (3.4)) has been made. Figure 3.8 is similar to

Figure 3.7 except that it is for Marshall Islands tests. In order to make the parameteri-

zation scheme completely consistent, the cloud top (z) is determined as the height

where the surface air parcel loses its buoyancy, namely

C,T(O) + Lq(O) = CT(z,) + g z,, (3.54)

with "0" representing the ground. Finally, phase speeds of -10, -11, -12, and -13 m/s

are used in the calculation.
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Chapter 4: Results and Discussions

4.1 Monochromatic Precipitation

As already noted, the wavelength of the monochromatic gravity wave is chosen to

be 200 km, and the mean (T) and the amplitude of the perturbation (P precipitation are

both taken to be 4.8 cm/day.

a. Description of solutions

1) In the cloud layer

Results of two typical viscous cases are shown in Figure 4.1 (Marshall

Islands profiles, with c = -10 m/s) and Figure 4.3 (GATE profiles, with c

= -11 m/s). Their respective inviscid counterparts are shown in Figures 4.2 and

4.4. Fields shown include the vertical distributions of both the amplitude and the

phase of T, u and w i (frames (a), (b) and (c)), and all possible components of the

momentum flux (frames(d)), averaged over one wavelength, associated with a

squall line system. When presenting w, in addition to the usual amplitude and

the phase, we have also drawn the direct response of w to cumulus heating

which is equal to Q from (3.7). It is obvious that the response of w is

dominated by the direct response to cumulus heating.

1 It should be kept in mind that the final solution is the real part of the product of the
vertical structure and exp(ikx).
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From frames (d) in both Figures 4.1 and 4.3, most of the mean momentum

flux in the troposphere is accounted for by cloud transports' which include the

following two components:

-M,(u - - (M,) (u' - u'). (4.1)

Gravity wave transport only has a very minor effect. Furthermore, between the

two components in (4.1), it is the mean cloud activity, -(ui-i,), which is the

dominant mean momentum transport contributor.

In the wave momentum equation, the perturbation convergence of the

momentum flux by clouds 2 is found to be small compared to the inertial term

(-iOu) which is to be balanced chiefly by the pressure gradient force (-ik).

Therefore, cumulus friction is not important physically to the gravity wave itself.

If we calculate the magnitude of each term in the wave momentum

equation (3.5), we see that the dominant terms are -i&u, -ik4, -. (duldz) and

AM, -(duldz); but since the last two terms roughly cancel each other out, the

effect of cumulus friction is almost eliminated. If we had included M, but not w,

the role of cumulus friction might have been misrepresented.

Although it cannot be denied that for individual cases, minor differences

do exist between viscous and inviscid runs (compare Figure 4.1 with 4.2, and

Figure 4.3 with 4.4), especially in the T and u fields, those differences do not

1 According to (2.1), after decomposing each field into a mean (overbarred quantity) and a
perturbation (primed quantity), momentum transport due to clouds should be equal to:

-M (- - M ) -MC( - ) -M'( -U ) -M'(u'- u'C).

However, after averaging, only the first and the last terms remain.

2 Namely, from (3.5), it is the vertical derivative of
M,(u'- u'C) +Mc'-u - ,).
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exhibit a consistent pattern. A comparison of the composite of all viscous cases

with that of all inviscid cases shows little difference. Table 4.1 summarizes the

average and range (or variation) of the typical amplitude for each field in the

interior of troposphere for all cases that have been investigated. Since w is

mainly determined by the thermal forcing which is always normalized according

to a fixed precipitation rate, it displays little variation. As one can see, there is

almost no difference between viscous and inviscid cases; however, the presence

of cumulus friction seems to be able to reduce the variation among different

cases.

Although the perturbation rainfall has an amplitude which is as large as the

mean, linearization is found to be a good approximation still. This can be

verified, for instance, by the fact that the term -i&u is much larger than the term

uaulax.

2) Near the cloud top and/or above the cloud layer

The first thing to notice from Figures 4.1-4.4 is that above 12 km where

the cloud top is, all fields exhibit a simple structure with the amplitude

increasing with height and the phase varying linearly with height. This is simply

an indication of the imposed upper radiation boundary condition.

Because clouds vanish above the cloud layer, momentum can now only be

transported by gravity waves. Our numerical solutions show that the wave

momentum flux actually does not vary with height above the cloud top. This is
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consistent with the theorem by Eliassen and Palm (1960) stating that in the

absence of forcing, damping and critical levels, the momentum flux is non-diver-

gent.

In the upper troposphere and the stratosphere where the thermal forcing

ceases, the leakage of the wave becomes a very delicate and sensitive matter

(this will be explained in more details in Appendix). There is substantial

variation between the cases. Table 4.2 is similar to Table 4.1 except that

statistics in the lower stratosphere (-15 km) are presented. Larger variations

between the case are evident.

The quantity (puw),, in Table 4.2, which is obtained by multiplying the

average of the momentum flux at the cloud top due to gravity waves over one

wavelength (pu'w') by the intermittency factor (f), represents the momentum

flux, out of the cloud top, associated with tropical squall lines on a global basis.

This intermittency factor arises because gravity waves are episodic both in time

and space. The intermittency factor is estimated as:

Pf-A, Lx Poe
f = r r (4.2)

FL, A, P

where A. is the length of the latitude circle, P, the global mean precipitation, P

the nonzero mean precipitation associated with a monochromatic gravity wave

and r the fraction of P., accounted for by squall lines. So (P,,A,)/I(PL )

represents the number of lines needed to account for the global precipitation

while LJA, is the fractional coverage of the latitude circle by a single squall line.

Given P.,, = 0.6 cm/day for the tropical region as a whole, T = 4.8 cm/day, and r

= 0.5, f = 0.0625.
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Since there is a large variation in the static stability parameter across the

cloud top, while w and 0 are required to be continuous, we expect, from the heat

equation, that there should also be a large variation in T across the interface

between the cloud layer and the cloud-free layer. This can be seen from frames

(a) of Figures 4.1-4.4.

The lapse rate of perturbation temperature (IdT/dzl) immediately below the

cloud top for both viscous and inviscid cases has an average of 0.24 OC/km and a

range of 0.04 to 0.6 OC/km. Moreover, in that region where cumulus heating

vanishes and the radiation condition holds, IdT/dzI is found to be approximately

equal to the product of the characteristic local vertical wavenumber X, which is

defined as (RrF)/(C- c) in the log-pressure coordinates, and ITI.

Lindzen (1981) pointed out that when the total temperature lapse rate

becomes convectively unstable, wave breaking and turbulence are expected.

However, IdT/dzl of 0.24 OC/km below the cloud top is still far from the breaking

criterion, even though the local static stability parameter (dT/dz+g/c,, in the

geometric coordinates) is low, say, 1 OC/km. In fact, if we further focus on

individual cases, none satisfies the breaking condition. Therefore, at least for the

precipitation rate chosen here, monochromatic waves do not seem to break at the

cloud top. As will be seen later, the same conclusion is not true when a

localized precipitation is assumed.
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b. Comparison with previous related studies

Within the context of our model, two components of momentum flux can be

distinguished, the one due to gravity waves pu-'-W, and the other one caused by

cumulus clouds which is given by (4.1). From model results, we have shown that

cloud transport is the major momentum flux contributor within a squall line system

whose maximum total momentum flux (averaged over one wavelength) is about

0.4 Pa (see Figure 4.3.(d)). Because of the dominance of the term -M,(iW-W) in

(4.1), and the fact that -U profiles for both GATE and Marshall Islands tests generally

have easterly shear with height (i.e., (u -u) < o), the total mean momentum flux

within a squall line in our model is consistently positive. Here, a positive value of

the momentum flux implies that upward motions always transport horizontal

momentum in a direction against the movement of a squall line; since, as mentioned

earlier, observations suggest that fast-moving convective lines normally travel

toward the west.

In their study using aircraft observations, LeMone et al. (1984) found out that

for quasi-two-dimensional convective lines, upward motions do indeed systematic-

ally carry the front-to-rear momentum, where "front" is defined as the direction

toward which the line is moving. The maximum mean momentum flux values for

cases investigated by them vary from 0.2 to 2 Pa. The value of 0.4 Pa (the total

mean momentum flux due to clouds and waves) obtained in our calculation falls

within this range; although tends toward the smaller side. However, it has to be

stressed that the averaging methods used are different between our study and

LeMone et al. (1984). In our case, it is the average over one wavelength (200 km),

while in LeMone et al. (1984), the mean momentum flux values were obtained after
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normalizing to 100 km flight legs. Moreover, monochromaticity is by no means a

correct depiction of the precipitation. If one considers a localized distribution,

which will be treated later, and does the averaging over an accordingly smaller area,

the value of the mean momentum flux associated with a squall line can be easily

increased, and a better agreement with observations obtained.

As suggested in LeMone (1983) and LeMone et al. (1984), the momentum

flux is concentrated in the leading 25 km of the convective line where the

convective activity is most intense and is primarily associated with updraft cores'.

LeMone et al. (1984) derived a simple expression for estimating the mean

momentum flux:

pu pfwuc, (4.3)

where f, is the fractional coverage of updraft cores, w, the median core vertical

velocity and uis the core horizontal velocity relative to the surface. Interestingly

enough, (4.3) is in some sense similar to (2.1), after assuming that pfw,- M,. It is

evident that the implication from aircraft measurements also confirms our finding

about the important role played by cumulus convection concerning the mean

momentum transport.

c. Sensitivity tests

1) Lower boundary condition

For simplicity, inviscid cases will be considered here. We have shown in

1 The updraft cores here are required to have a vertical motion > 1 m/s for at least 500 m,
and according to GATE observations, they typically occupy 5% of a total flight leg
penetrating a convective line (Zipser and LeMone, 1980).
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the previous chapter that the appropriate lower boundary condition which is to

be applied at the cloud base for this simple case is (viz. (3.20)):

dw -C--o 1 = 0 at z = zc, (4.4)
dz co+iD

where D is the constant linear damping rate associated with the surface drag (see

(3.14)), k the zonal wave number, 60 the intrinsic frequency, and Cbdefined in

(3.19) is the ratio between 4 and w at the cloud base. It has also been shown that

with scales characteristic of gravity waves, (4.4) can by further approximated as

(viz. (3.22)):

dw/dz - (llzc)w = 0 at z = zc. (4.5)

Results using this particular lower boundary condition were used to compare

against the ones using

dw/dz - (1/(2z))w = 0. (4.6)

The difference in solutions is found to be negligible. This is because as long as

zr< 1, both (4.5) and (4.6) are not too different from simply letting w--0 at z.

Physically, using (4.6) in place of (4.5) means doubling the depth of the surface

mixed layer. The insensitivity of solutions to different forms of the lower

boundary condition indicates that the choice of the depth of the surface mixed

layer only has a negligible effect.

2) Upper boundary condition

The upper boundary condition used here is the radiation condition. The

way this condition is implemented is to assume a simple environment above the

heating region so that the gravity wave has a constant vertical wave number

X=(Rr)~U/(-c) (in the log-pressure coordinates). Tests are conducted to see the
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degree of sensitivity of solutions outside the forcing region to choices of i and

F. Because constant h is all that matters, we choose to use different values of F

only. In the following calculation, F = 80 OC (~ 12 OC/km in the geometric

coordinates) is used for the control runs, and cases using F = 30 OC (~

4.5 OC/km) will serve as a test. In addition, both GATE and Marshall Islands

profiles and phase speeds of -11 and -12 m/s will be considered. Magnitude of

w (cm/sec) at 16 km (already above the cloud top) is chosen for the purpose of

comparison. Table 4.3 shows results of inviscid cases, those for viscous cases

are displayed in Table 4.4. As one may see, smaller value of F consistently

yields larger response outside the cloud layer.

This can be explained by a simple two-layer model (Eliassen and Palm,

1960) with a wave maker at the lower boundary, and each layer having a

constant index of refraction (X). The solution for w in the lower layer may be

written as

w,= A1 exp(i kz) + B1 exp(-iXz), (4.7)

where A, is the amplitude factor of the incident wave, and B, is the amplitude

factor of the reflected wave. In the upper layer which is semi-infinite, radiation

condition is applied so the solution is:

w2 =A2 exp(iXgz). (4.8)

Transmission coefficient (t) is defined as IAz/Alz2. By requiring both w and w, to

be continuous at the interface enables us to write

t 1 2 (4.9)
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In the troposphere (layer 1), F and I c - - I have average values of 22 OC and

5 m/s respectively, so X, = 16 OC. In the stratosphere (layer 2), I c - I= 3 m/s,

hence for F = 80 'C, X,= 51 OC, and t 0.68; while for r = 30 OC, X,= 31 OC

and t = 0.48. We see that using F = 80 OC leads to about 40% increase of the

transmission coefficient compared to the case with F = 30 "C. 40% increase of

the transmission coefficient in turn implies roughly 20% increase of wave

amplitudes. On the other hand, results (using varying basic state profiles) shown

in Tables 4.3 and 4.4 indicate an average of 30% increase of wave amplitudes,

which we think is quite consistent with our previous simple estimate.

Because by changing F in the stratosphere to almost one third of its

original value only introduces about 30% of the change in the response; as a

result, as long as F and - stays within their reasonable ranges, solutions in the

stratosphere will not be too sensitive to their respective values.

3) Profiles of Q and Mc

Two sets of profiles were used in this study. In order to test the sensitivity

of results to the distributions of M. and Q, several cases are run with either M. or

Q "switched" to the profile of the other region while leaving everything else

unchanged.

We found that in the troposphere, the switching of M. has only a small

effect on the solution. We think this is an indirect proof to show that cumulus

friction is not important for gravity waves; since if it were not the case, any

change in M, should translate its influence onto the solution. On the other hand,

switching Q produced larger changes in T and u. This is due to the fact that as
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long as the vertical scale of Q is broader than that of the gravity wave, solution

of w is dominated by the direct response to Q (see Appendix), from the wave

heat equation, the rate of temperature change (and temperature consequently) is

the small residual between those two larger terms which nearly cancel each other

out (hence the sensitivity of T to Q). u is approximately proportional to dw/dz,

its sensitivity to Q's distribution is also expected (since a vertical derivative of w

is involved).

Near the cloud top and in the stratosphere, response of smaller amplitude

generally occurs when M of GATE is used. This is probably owing to the fact

that for the GATE profile, dMjdz is larger (compare Figure 3.7 with 3.8) near

the cloud top; therefore exerting more friction on the solution than the other

profile does. Note that, however, one can not in a similar fashion claim that the

viscous case should have smaller response at the cloud top than the inviscid

case. Consider the horizontal wave momentum equation (viz. (3.5)):

-du du d d2u
-icou + w  +w -ikt +A - M(u - uc) +M,(u- uc)] +v - .(4.10)

dz dz dz dz

It is obvious that the term behaving physically like Rayleigh friction, (dMIdz)u, is

not the only extra term associated with cumulus friction, there also exist other

terms such as M,(du/dz) which may affect the solution as well. Under this

circumstance, a prediction concerning the magnitude of responses near the cloud

top based only on the presence or absence of a "Rayleigh friction term" is likely

to be incorrect.
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4) Zonal wavelength

We again consider the inviscid hydrostatic gravity wave as an illustrating

example. The vertical structure equation of w, which is

d2w dw RF (u,,+u ) RQ (4.11)

dz dz (c u)2 (cu) (C _)2

does not depend on the zonal wavelength (L). Moreover, both the lower (see

(4.5)) and the upper' boundary conditions do not depend on L either. Therefore,

the vertical structure of w should be independent of L,. From the heat equation

(3.7), the time rate of temperature change is also independent of L.

However, amplitudes of u and T are proportional to L, and this can be

shown from the continuity equation (3.6),

i dw
u~-- u oL,.  (4.12)

k dz

It follows that the momentum flux averaged over one wavelength is also

proportional to L on account of the dependence of u on L. Since from (4.2) the

intermittency factor for the monochromatic wave is only a function of P. and P,

(puw),,, should also be proportional to L,.

The above statements, which are based on the inviscid gravity wave, are

still found approximately correct for the viscous case, when weakly L -depen-

dence will be introduced into the vertical structure equation (viz. (3.11)).

1 The radiation upper boundary condition depends only on the values of the static stability
and Ic-ul.
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4.2 Gaussian Precipitation

Assume the precipitation to have the following localized Gaussian distribution:

P = Po exp[-(x/xo)1. (4.13)

The approach here is still to consider the problem linear, Fourier decompose the

precipitation, consider the response to individual harmonics, and through the resynthe-

sis to obtain the final result. There are two ways of doing the decomposition, namely,

Fourier transform and Fourier series methods. The first method reckons the precipita-

tion as a single bump in an infinite domain, a continuous spectrum of harmonics will be

obtained in the Fourier space. However, in the following calculation, the second

approach will be adopted because it is relatively easier and more economical to be

carried out. For the Fourier series method, a hypothetical domain (M) which is much

larger than xOis imposed, a discrete, infinite spectrum of harmonics are obtained;

however, for practical reason, the series is truncated. How many terms to keep before

the truncation depends on the ratio between M and x0.

A note of warning is in order if the method of Fourier series is to be used, because

for some fields, results using M->oo do not necessarily converge to those obtained from

the Fourier transform method. To begin with, since the forcing still dominates the

response of w in the interior of the troposphere, it should be anticipated that the

horizontal structure of w is also very close to a Gaussian distribution. From the mass

continuity equation, the horizontal structure of u is close to an Error function which is

the integral of a Gaussian distribution. If properly normalized, an Error function will

assume values of +1 and -1 respectively when +-o and -o, are approached. However,

one of the basic assumptions of Fourier series is the implied periodicity of the field

over M. Therefore, u, and T in a similar way, obtained from the Fourier series method
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will be distorted and should not be taken seriously for regions away from the center of

the precipitation. Fortunately, w does not suffer from the same problem, it is always

very concentrated about the center of the precipitation. When the momentum flux,

which is a quantity of considerable interest here, is calculated, it will not be affected by

the distortion in the u field.

a. Description of solutions

1) In the cloud layer

As previously described, we will use (4.13) with Po = 60 cm/day and x0 =

10 km to define the precipitation distribution.

Two typical viscous cases were chosen to be displayed in Figure 4.5

(Marshall Islands profiles, with c = -13 m/s) and Figure 4.7 (GATE profiles,

with c = -11 m/s). There respective inviscid counterparts are shown in Figures

4.6 and 4.8. Unlike the monochromatic case, full solutions as opposed to only

the vertical structures are shown in an x-z plane. In addition to the fields of T, u

and w, (frames (a), (b) and (c)), we have also included the streamline pattern

relative to the squall line (frames (d)).

We notice that results using the localized precipitation have magnitudes

noticeably larger, especially in the stratosphere, than those of the monochromat-

ic case; although, over either one wavelength of the monochromatic precipitation
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or the hypothetical domain of the localized precipitation, roughly the same

horizontally integrated precipitation is realized. This is because that there exists

a larger local variance for the present case.

One is not surprised that, because w more or less reflects the heat source

directly, its horizontal distribution follows closely to that of the precipitation.

For u and T, there seems always a dipole structure in the horizontal which is

roughly antisymmetric about the center of the precipitation. This is reminiscent

of the Error function described earlier. Again, associated with this is a note of

warning that, because of the distortion resulting from trying to satisfy the

periodic boundary condition, we should not take results for u and T too seriously

away from the center of the precipitation.

The streamline patterns relative to the squall line shown in frames (d) of

Figures 4.5-4.8 bear a rough resemblance to that for the idealized case shown in

Figure 1.1 (thin dashed lines); although a better agreement will have been

obtained if the value of P0 were increased.

Table 4.5 shows the composite of the result in the interior of the

troposphere for all cases investigated. As before, for each field we have

presented its average amplitude and the associated range. Owing to the fact that

in the cloud layer w is mainly determined by the forcing, variation in w among

different cases has been omitted. From the statistics shown in Table 4.5, it is

evident that the inclusion of cumulus friction again does not introduce any

significant or consistent change to the solution. Nevertheless, is is also found

that within a squall line system, most (typically 80%) of the mean momentum
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transport in the troposphere can be explained by the cloud transport which was

defined in (4.1). The most prominent mean flux contributor is, as before,

attributable to the mean cloud activity (-TM,(R--,)).

Given such a concentrated precipitation, validity of linearization is under

doubt and has to be checked a posteriori. This is done by comparing the

amplitudes of (alat +i u-ax)u and uu/ax after obtaining the linear solution. It is

found out that as a rule the first term is still larger than the other (although not as

significantly as in the monochromatic case).

2) Near the cloud top andlor above the cloud layer

A more regular structured and more closely spaced contours compared to

the ones in the cloud layer are observed above the cloud layer from frames (a)

and (b) of Figures 4.5-4.8. This is an indication of the radiation boundary

condition and an obviously more stable environment in the stratosphere which

tends to make the vertical scale of waves shorter.

Table 4.6 summarizes the the same information, as in Table 4.5, except

that it is now for the lower stratosphere (-15 km). Because of the sensitive

nature of the leakage, larger variations among different cases were observed in

the above-cloud region. We will, however, soon show that accounting for wave

breaking near the cloud top will reduce the variations.

1 It should be emphasized that the statistics shown in Table 4.6 are all unmodified. In
other words, results, being obtained directly from the gravity wave calculation, have not
been subject to any modifications due to other possible physical processes such as wave
breaking.
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When calculating the global effect of the momentum flux leakage

associated with these waves into the stratosphere, we must again take into

account the intermittency factor (f). To be more specific, (puw),, in Table 4.6

is obtained by taking the average of puw over the hypothetical domain (M) and

multiplying by f to obtain the final result. The intermittency factor for the

Gaussian precipitation is defined as (cf. (4.2)):

PaA, M
f = r (4.14)

PoNF As

where A is the length of the latitude circle, Paw is the global mean precipitation,

PO and xO are defined in (4.13), and r is the fraction of P,,, accounted for by squall

lines. Therefore, (Pw,,A)/(PA60xot) represents the number of lines needed to

account for P.,, while (M/A,) denotes the fractional coverage of the latitude

circle by a single squall line. Given r = 0.5, P.,.= 0.6 cm/day, P,= 60 cm/day, x,

= 10 km, and M = 200 km, f = 0.0564.

Because of the presence of a large variation of the static stability across the

cloud top, temperature (T) also has a large variation across that interface.

Therefore, statistics of T shown in Table 4.6 are not representative of those

immediately below the cloud top. Below the cloud top, the average magnitude

of T is 1 OC and the associated range is 0.6 - 1.8 OC. Again, we will soon come

back to the implications of this and the possible modification of the result shown

in Table 4.6.
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3) Wave breaking below the cloud top

In order to simplify the discussion, geometric coordinates will be used in

the following.

Following Lindzen (1981), when the total (mean plus perturbation)

temperature lapse rate becomes convectively unstable, namely,

dT dT gdT> +9_T _ F, (4.15)
dz dz c,

one expects the breaking of waves and the onset of turbulence. Wave breaking

effectively limits any further growth of wave amplitudes (Lindzen, 1981, 1988).

Associated with wave breaking is the wave momentum convergence or diver-

gence and the mean flow acceleration. It should be emphasized that in order for

waves to break, (4.15) does not have to be satisfied everywhere in the domain;

however, the influence of the associated stress and the mean flow acceleration

will conceivably be spread to a much broader area and not to be limited to

regions where (4.15) is satisfied.

As mentioned previously, the localized precipitation results in larger

temperature perturbations. In addition, the low mean static stability is normally

observed in the tropical upper troposphere. These lead inevitably to wave

breaking in some local areas.

In regions near and below the cloud top where the thermal forcing vanishes

and the radiation boundary condition holds, we can estimate the vertical

derivative of T as the product of T itself and the characteristic local vertical

wave number X=NI Ic -t I, where N= (g/T)r and F is defined in (4.15). There-
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fore, (4.15) can be rewritten as:

N TN2  T
XTI12 - IT I - IT2 Ic-u IN. (4.16)

Ic-ul g g

In the tropical upper troposphere, N is = 5 -103 s-' ( F= 1 OC/km ), and an

easterly jet with magnitude around 8 m/s is frequently observed; hence, a

reasonable range of I c - - I for squall lines is from 2 to 5 m/s. Using (4.16), one

sees that the upper bound of ITI for breaking to occur is between 0.2 and 0.6 OC

with a typical value of 0.4 OC. Most values of T below the cloud top (0.6 ~

1.8 OC) obtained from our model results are beyond this limit, implying that

wave breaking will have occurred before waves propagated into the stratosphere.

It has to be stressed that the above estimate concerning the upper bound of ITI

depends very much on the value of I c -1 I, and obviously, the smaller the value

of I c -- I is, the easier for waves to break.

Although the total field satisfies the condition for wave breaking, individu-

al Fourier components do not. Recall that for the single wave case, wave

amplitudes were not large enough to break near the cloud top as well. Schoeberl

(1985) also discussed the importance of wave superposition when studying the

wave breaking phenomenon.

If gravity waves forced by the localized precipitation do break in the upper

troposphere, one can further estimate the accompanying acceleration on the

mean flow. Near the cloud top where cumulus heating ceases, if the breakdown

of gravity waves is temporarily ignored, according to the Eliassen-Palm

theorem, the momentum flux density is non-divergent. From Table 4.6, we,

therefore, argue that the average of (puw)., below the cloud top is also ~
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10-3 Pa. The dissipation associated with wave breaking is assumed to limit any

further growth of wave amplitudes, i.e.

d
- W =0. (4.17)
dz

In regions where wave breaking occurs, the mean flow acceleration to a first

approximation can then be expressed as:

Id 1
--- puw -w, (4.18)

pdz H

H being the scale height. As a result, it is estimated that the zonally averaged

acceleration associated with breaking gravity waves below the cloud top is

~ 0.05 m/s/day. As far as the local acceleration due to a single squall line is

concerned (namely, not taking into account the intermittency), it can be as large

as 1 m/s/day. It should again be stressed that this acceleration in the upper

troposphere is under a great deal of variation attributed to the delicate nature of

the leakage of wave activity outside the forcing region.

Knowing that gravity waves resulting from the localized precipitation do

break below the cloud top before they propagate into the stratosphere forces us

to reconsider the results shown in Table 4.6. In particular, even though, due to

the delicate nature of the the response outside the forcing region (because of

interference, see Appendix), it is difficult to predict exactly how much energy

can escape out of the cloud layer, however, invoking the breaking mechanism

reduces the degree of variation since breaking limits the possible amplitudes.

As previously mentioned, one of the basic assumptions in Lindzen (1981,

1988) shows that once the breaking condition is satisfied, turbulence and the
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accompanying wave dissipation will act in such a way as to limit any further

growth of wave amplitudes'. According to our previous estimate, 0.4 OC is

probably the typical upper bound of ITI limited by wave breaking. Compared to

the average ITI of 1 OC, which was obtained directly from numerical results for

regions below the cloud top, only about 40% of the original wave being able to

get through the breaking region is implied. Because the momentum flux is a

quadratic quantity, it follows that 16% out of -10 - 10- Pa for (puw),,, (see

Table 4.6) will be actually realized in the stratosphere. As a consequence, we

estimate that -1.6 - 104 Pa is a reasonable climatological measure of the stress

observed in the stratosphere on a global scale caused by thermally forced gravity

waves (or squall lines) originating from the troposphere. Interestingly enough,

this is not too different from the value of (puw),, which is -1.3 - 10 Pa (see

Table 4.2), for the monochromatic precipitation without the presence of wave

breaking near the cloud top. In view of this, we are going to assume in this study

that immediately above the cloud top, the appropriate amplitude for the vertical

velocity perturbation (w) can be described as about 1.0 cm/sec (see Table 4.2)

with a horizontal scale of 200 km. Given the amplitude and the scale, one can

further calculate the possible secondary breaking level and the associated mean

flow acceleration using the linear parameterization scheme of Lindzen (1981)

for the monochromatic wave.

Our results also show that although breaking may have occurred below the

cloud top, once waves escape into regions immediately above the cloud layer

1 Strictly speaking, Lindzen (1988) points out due to the supersaturation of the vertically
propagating internal gravity wave, the cessation of wave growth with height is gradual
rather than instant.
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with a typical Iwl of 1.0 cm/sec and a wavelength of 200 km, the breaking

condition is no longer satisfied. Lindzen (1985) pointed out that an increase of

I c -i7 may sometimes be able to locally counteract the effect of the density

stratification in such a way as to make the breaking gravity wave cease breaking.

In this study, however, the main reason for gravity waves to stop breaking as

they leave the troposphere is probably attributed to the sudden increase of static

stability in the lower stratosphere.

The mean zonal flow in the tropical lower stratosphere is subject to the

influence of the quasi-biennial oscillation (QBO), and only under favorable

condition, namely, in the absence of critical level, can gravity waves propagate

higher up into the middle atmosphere. Some characteristic stratospheric mean

zonal wind profiles are shown in Figure 4.9, corresponding to different phases of

QBO. These - profiles have been used to study where the gravity wave leaving

the troposphere breaks for the second time. Among cases' investigated, the

secondary breaking levels for the gravity wave range from 20 to 35 km or so,

some of them are due to the density stratification (e.g. profile A of Figure 4.9),

and some are simply due to the proximity to a critical level (e.g. profile B of

Figure 4.9). The associated zonally averaged mean flow acceleration ranges

from 0.1 to 0.8 m/s/day. For instance, given a gravity wave leaving the cloud

top with Iwl = 1 cm/s, wavelength = 200 km, and c=-11 m/s; for profile A of

Figure 4.9, the gravity wave breaks around 36 km with the associated accelera-

tion on the mean flow of 0.8 m/s/day toward the west; for profile D, wave

breaking occurs at 22 km with the acceleration of 0.2 m/s/day; and for profile E,

1 Again, we have considered a range of phase speeds (10 to 13 m/s).
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wave breaking takes place at 32 km with the acceleration of 0.3 m/s/day. Again,

these secondary breaking statistics depend very much on the distribution of

mean zonal flow.

b. Sensitivity tests

The choices of parameters Po, x, and M are not unique, not mentioning even

the functional form of the distribution of the precipitation itself. Hence, there is a

need as to understand the possible variation of results associated with different

choices of parameters.

First of all, since the momentum flux is proportional to P02, and the

intermittency factor f is proportional to 1/P0, (puw)o,, is proportional to P0 (given

the rest of the parameters unchanged).

An hypothetical domain of finite width ( M ) has been introduced in order to

facilitate the calculation. Our results, (puw),oin particular, should not be depen-

dent on the choice of M as long as it is much larger than the scale of the

precipitation. According to the discussion earlier, it is expected that while the

numerical solution of w is reasonably accurate, the same is not true for u and T

away from the center of the precipitation. In order to understand whether (puw)..

is really affected by the value of M, we have considered viscous cases with M = 200

and 400 km. When M=200 km, only the first 10 harmonics are kept, when

M=400 km, the series is truncated after the first 30 harmonics. In addition, both

GATE and Marshall Islands profiles and c= -11 m/s are used in the calculation. It is
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discovered that different values of M do not cause any difference in w; the same is

also true for u and T not too far from the center of the precipitation. Table 4.7

shows that (puw),,, to a first approximation, is unaffected by the value of M.

4.3 Comparison with Mountain Waves

Using conventional large-scale meteorological observations, Newton (1971)

calculated the torques produced by topography upon the atmosphere due to pressure

differences between the eastern and the western sides of mountain ranges. The average

yearly mountain torque from 200N to 200 S is found to be of 0.5 "Hadley" units, which,

after being converted to stress, is equivalent to 3.5.103 Pa. As previously noted that in

the upper troposphere the zonally averaged stress caused by thermally forced gravity

waves2 before the breakdown is about 103 Pa. In addition, in our model the zonally

averaged mean flow acceleration associated with breaking gravity waves in the upper

troposphere, 0.05 m/s/day, tends to be small as well. Therefore, we conclude that in the

tropical upper troposphere, thermally forced gravity waves are probably not as

dynamically important as mountain waves; although, the momentum flux due to the

former is of the same order of magnitude as that due to the latter.

Similarly, the number of -1.6 - 104 Pa, which is the estimated value of the

momentum flux being carried into the middle atmosphere on a global scale, probably

does not mean very much by itself unless some kind of comparison is made. Lindzen

(1984) has considered hydrostatic mountain waves where topography is characterized

1 One "Hadley" unit is defined as 1018 kg m2 sec-2 per 50 latitude belt which can be
converted to stress in Pa by dividing by 141 cos2 4, 0 being the latitude.

2 Recall that near the cloud top, stress due to clouds is negligible.
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by a single harmonic with an amplitude of 20 m/s and a wavelength around 1600 km.

After further assuming that the Brunt-Viisill frequency = 2tn/300 sec and the surface

mean wind ~ 10 m/s, from equation (19) of Lindzen (1984), one can estimate the same

quantity, (puw),,, due to mountain waves. It is found that for mountain waves the

value of (puw).,,at the tropopause is ~ 2.0.104 Pa. This is almost equal to we

obtained from thermally forced gravity waves.

McFarlane (1987) examined the influence of large-scale momentum sinks due to

the breaking of orographically excited gravity waves on the Northern Hemisphere

wintertime circulation in the troposphere and the lower stratosphere using the Canadian

Climate Center general circulation model (GCM). His results suggested that in the

tropical troposphere and lower stratosphere, the zonally averaged westerly wind

acceleration due to the orographic wave drag should be smaller than 0.5 m/s/day.

Palmer et al. (1986) have also independently conducted an analysis somewhat similar

to McFarlane (1987) using the British Meteorological Office general circulation and

numerical weather prediction (GCM/NWP) models. His results indicated that in the

tropical lower stratosphere, the acceleration on the mean flow resulting from the

breaking of orographic gravity waves is smaller than 0.2 m/s/day. Using various mean

zonal flow profiles, we have obtained values of the acceleration on the mean flow due

to thermally excited gravity waves ranging from 0.1 to 0.8 m/s/day. This suggests that

in the tropical lower stratosphere squalls may be a comparably important source

compared to the topography.

Chapter 4: Results and Discussions



Chapter 5: Summary and Conclusions

Fast-moving cloud lines, or squall lines, in the tropics are treated as a gravity wave

phenomenon generated by the latent heat release associated with the deep cumulus

convection. Presented in this study is a simple diagnostic linear gravity wave model forced

by a zonally propagating heat source with prescribed vertical distribution. Within such a

system, attention has been paid especially to the momentum transport which takes place in

both the troposphere and the stratosphere. In the troposphere in particular, this model,

unlike the conventional aircraft measurements, enables us to isolate momentum transport

contribution due to clouds from that due to gravity waves.

The physical process of cumulus friction (Schneider and Lindzen, 1976) is included

in the wave momentum equation. The profile of cloud mass flux is obtained from the

cumulus parameterization scheme of Lindzen (1981, 1988).

Due to both the modulation of convective activity by easterly waves and to the scale

separation between squall lines and easterly waves, in our gravity wave model, we have

assumed that the convergent phase of easterly waves to serve as the basic state for squall

lines. Both the monochromatic and the localized distributions of precipitation are

considered. With regard to the monochromatic precipitation, we have assumed that the

amplitude of the perturbation precipitation and the mean precipitation both being equal to

4.8 cm/day. For the localized precipitation, a Gaussian distribution P0.exp[-(x/x)2] with Po

= 60 cm/day and xo = 10 km is used. It is found out a posteriori that for both distributions

of the rainfall, linearity is basically a good approximation.

The following similar results from both the monochromatic and the localized

precipitation are found:
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1) In the troposphere, most of the mean momentum transport is accounted for by the

mean cloud activity (-M(ii-i~)), the gravity wave transport (pu'w') is found to be negligible.

2) Model results of the combined mean momentum fluxes in the troposphere by

clouds and gravity waves are consistent, in both sign and magnitude, with the total mean

momentum flux observed from the aircraft measurements for fast-moving cloud lines

(LeMone, et al., 1984). In addition, the implication from those aircraft measurements

indicating that most momentum flux in the cloud layer is achieved by the mean cloud

activity is also confirmed in our analysis.

3) Partly due to the relatively short time scale associated with gravity waves

(compared to that associated with cumulus friction), cumulus friction is not an important

term in the wave momentum equation. This is verified by the almost identical results with

and without cumulus friction. Through a more detailed examination, it is discovered that

the unimportance of cumulus friction is also partly attributed to the fact that in the cloud

layer the vertical advection of horizontal momentum by the mean cloud activity and that

by the mean vertical velocity largely cancel each other out.

For the parameters chosen here, the perturbation temperature lapse rate for the case

of the monochromatic precipitation has an average of 0.24 OC/km below the cloud base.

This is far smaller than the local static stability parameters (dT/dz+g/cp) which is

-1 OC/km. Hence, gravity waves generated by the monochromatic precipitation do not

break below the cloud base. For the localized precipitation, however, perturbations of

larger amplitudes occur especially below the cloud top and in the stratosphere. For all

cases investigated, it is noticed that the breakdown of gravity waves, i.e. the perturbation

temperature lapse rate being greater than 1 oC/km, always takes place somewhere below

the cloud top. As a result, gravity waves forced by the localized precipitation are subject
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to breaking before they can escape to the stratosphere. However, similar to Schoeberl

(1985), it is the synthesized wave field which satisfies the breaking condition, not the

individual Fourier components. It is estimated that the mean flow acceleration associated

with wave breaking below the cloud top has a zonal average of 0.05 nm/s/day after

considering the so-called intermittency factor for squall lines.

In the Appendix, we show that the momentum flux above the forcing region is very

sensitive to small changes in the distribution of heating. However, assuming that the

presence of wave breaking effectively limits the possible wave amplitudes (Lindzen, 1981

1988), the degree of variation of the leakage is greatly reduced. Interestingly enough, we

found that at least for the parameters chosen in this study, both the localized precipitation

(with wave breaking below the cloud top) and the monochromatic precipitation (without

wave breaking below the cloud top) give rise to similar estimates for the possible gravity

wave momentum flux escaping from the troposphere on a global scale. Assuming

monochromatic waves, it is straightforward to calculate the secondary breaking level and

the accompanying mean flow acceleration due to the vertically propagating gravity wave.

Compared to the mountain torques observations and other GCM/NWP studies, it is

found out that thermally forced gravity waves have dynamic importance comparable to

that of the topographic gravity waves; this seems to be particularly true for the lower

stratosphere.

Therefore, despite the crudeness of the present model and the obvious uncertainty in

various parameters, our results suggest strongly that the fluxes of momentum associated

with squalls are likely to be important within the tropical stratosphere.
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Appendix

Relation of Wave Leakage to the Distribution of Forcing

A.1 Formulation and solution of the problem

In this appendix, we examine in details how interference prevents significant

leakage when forcing depth exceeds the vertical scale of gravity waves. Two previous

related studies are by Green (1965) and Lindzen (1966).

Consider a thermally forced two-dimensional hydrostatic gravity wave in a static

Boussinesq atmosphere with constant temperature stratification. The shape of the

thermal forcing applied on the heat equation will be a simple sinusoidal profile in order

to simplify the analytic solution. Log-pressure coordinates (z=-log(p/p0)) will be used.

The u-momentum, mass continuity and thermodynamic equations are:

au ao au aw 1 a D0t-+ +--= 0  +wF=Q,
at ax ) ax az R tz ' =

respectively, where F=(d/dz+R/c,)T is the constant static stability parameter, and Q is

the heat source whose profile will be assumed to be sinusoidal. After assuming

wavelike behavior in both time and the horizontal direction (-exp[ik(x - ct)]), the vertical

structure equation for w can be easily derived. The radiation condition is applied above

the forcing region, and the lower boundary condition will be assumed to have a fairly

general form. In mathematical form, the equation and the associated boundary
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conditions are:

d2w
S+2aw =F, z z = z, (A.1)
dz

dw
+aw = 0, z =z (A.2)

dz

dw
ihw = 0, z = z, (A.3)

dz

where

X: vertical wavenumber = (RF/c2) 2 = constant,

c : phase speed (relative to a constant ambient flow),

a : some constant depending on the kind of the lower boundary condition,

and F has the following form:

F = -2. sin (z - za) for (zc 5) z. 5 z 5 zb (5 z,) (A.4)

and vanishes elsewhere, where A = z, - z.. Strictly speaking, if Q = A-sin[n(z-z.)/A],

where A is some arbitrary amplitude constant, F should be equal to (X2/r)Q. However,

since F is a constant as well, thus both A and F are dropped completely in (A.4).

Our approach will be to construct the Green's function G(z;6) which satisfies the

following:

d2G + 2G = 8(z;!), z z < z, (A.5)
dz 2

dG-+aG =0, z =z' (A.6)
dz
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dGdG- iG = O, = z (A.7)
dz

together with the matching conditions at z = 4:

G = G (A.8)

dG dG
; (- - = 1, (A .9)

dz dz

such that the solution to (A.1)-(A.3) will be

w = G(x;4)F(4)d4 (A.10)

where 8 is the Dirac delta function.

For z > 4 (region I),

G= Ale iU ,  (A.11)

and for z < 4 (region II),

G,,= A2e' +B2
e  . (A.12)

Apply two matching conditions (A.8) and (A.9), following equations are obtained:

Ale' = A2e +B2e- ' , (A.13)

and

iAe i - i42 e "4 + iXB2e-'4 = 1. (A.14)

(A.13), (A.14) together with (A.6) yield

A i [-ik + a i'4e-i2A _ eiA 2 - e+a e

i -ik +a 4e -4
2X ik+a
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B 2 = e' .

Therefore, the solution for w from (A.10) is:

w = G(z; )F(4)d4

= GTIFd+ G

= GFdY

=b GFd4a.

,1Fd4 for z. z za<zb

for z < z 5 z,

for zb z z

After some manipulations, (A.16), (A.17) and (A.18) become

w sin (z-z,)
X2Q(~) 2 A a

+ (e +
2i A2 -

e iex i(a- e e - e [e i +zb)e- + e ,
a + iX

2ix 2 _ 2

for za < z 5 zb (A.19)

eae }A

for z, < z 5 za (A.20)

w e +e ia a- e - e + e
2i 2_ 2  a+i

-itii - A

for z b z z, (A.21)
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respectively. It is obvious from (A.21) that because the radiation condition has been

applied, amplitude of w above zb will not change with height. The two terms on the

right of (A.19) represent contributions from the particular and homogeneous solutions

respectively. Solution at zb, which is an indicator of the wave activity outside the

source region, can be obtained from either (A.19) or (A.21), and is

w(zb,)=- e +e e ix (A.22)
w 2i _() 2 + i

Equations (A.19), (A.20) and (A.21) have been derived using a rather general

lower boundary condition (A.2). If one decides to consider a rigid bottom such that the

lower boundary condition is w-0O, (A.19)-(A.21) can be proved to be still valid after

letting the parameter "a" approach to c. In fact, when "a" becomes very large, (A.2)

can be simply approximated as w-0. Another possibility is that if energy is to be

radiated away from the lower boundary (and in a direction away from the source region

of course), the proper solution will then be given by (A.19)-(A.21) after replacing "a"

with i.

A.2 Discussion

Consider cases when

2 >> (n/A)2. (A.23)

Physically, this means that the vertical scale of the forcing is much broader than the

vertical scale that a free gravity wave would have. In the tropics, F is - 20 OC which

corresponds to a Brunt-Visald frequency of 2in/10min, and the scale of the heating A is

typically 1.5 corresponding to a heat source extending over the depth of the

troposphere. It can then be shown that as long as the phase speed is much smaller than
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36 m/s, (A.23) will be valid. For tropical squall lines, c<36 m/s is easily satisfied.

Furthermore, it is evident that if (A.23) holds, in the interior of the forcing region, the

first term on the right of (A.19) will dominate over the second term, and (A.19) can be

approximated as

7t
w sin(z - z). (A.24)

(A.24) is simply the solution to (A.1) without considering the curvature term, or from

another point of view, it indicates the balance between the adiabatic ascent and the

diabatic heating in the heat equation'. Therefore, as long as the scale of the forcing is

broad compared to that of the wave, one anticipates that in the interior of the forcing

region, to a first approximation, the solution for w follows closely to the distribution of

the forcing.

When (A.23) holds, (A.22) shows that the wave activity outside the forcing

region will be very small due to the presence of the interference. As a matter of fact,

we have to take this opportunity to point out that the interference is a very delicate and

sensitive process. To illustrate this point in more details, consider the simple case when

w=O is the lower boundary condition, and focus on the solution at z, (viz. (A.22)). The

controlling factor of (A.22) can be written as

E (%,A) = (Xlt/A)/[ 2 - (t/A) 2]. (A.25)

As long as (A.23) holds, E decreases monotonically with increasing value of X (or

decreasing value of the gravity wave vertical scale). In other words, the broader scale

the forcing has, the less the leakage will be. However, E is not the only factor which

1 Strictly speaking, this means that wF = sin(it(z-z,)/A). Since F is a constant, and is
therefore omitted from the discussion.
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determines the result. For instance, there is another term exp(iXzb)+exp(iXz,) on the right

of (A.22), and this term vanishes under the following condition:

X(zb - z) = (2 n + 1)t n = 0, + 1, + 2,... (A .26)

Physically, this means that a perfect cancellation of wave activity outside the forcing

region. As a result, the monotonic dependence of the leakage on the gravity wave

vertical scale ((A.25)) is distorted by the presence of the other terms.

Let's now consider the case when the heat source is defined as

Q = sin (rc(z-2km)/10km) for z E (2, 12 km), and vanishes otherwise,, Figure A. 1

shows the magnitudes of w at the top of the domain (60 km in the present case) for

different gravity wave vertical scales 2 (L., in km) relative to the case when

L/10 km = 0.1, in which case the magnitude of w at 60 km is set arbitrarily to one. It is

obvious that, for increasing value of L]10 km, while still keeping (A.23) valid, larger

leakage is not necessarily yielded. As a consequence, if a typical magnitude of the

wave activity outside the forcing region were required, in view of the oscillations

shown in Figure A.1, choosing a single value of c (or a single vertical scale of the

gravity wave accordingly) instead of a range will be sometimes misleading.

The presence of oscillations can in fact be shown to be partly due to the no-slip

lower boundary condition w-0. Figure A.2 shows the same experiment but with the

radiation condition imposed at the lower boundary. Most oscillations are gone! Owing

to the fact that the lower boundary condition in the analysis of squall lines is indeed

1 Distribution of the heat source will all be expressed in the geometric coordinates for the
sake of ease of discussion.

2 From (A.1), if expressed in the log-pressure coordinates, L, is simply 1/%.
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close to w=O; therefore, it is concluded that a range of phase speeds has to be

considered in order to have a reasonable representation of the leakage in the

stratosphere.

A sinusoidal heating profile is by no means the only choice, another choice will

be a Gaussian profile exp[-((z-z,)/A)2] which was used by Lindzen (1966). He showed

that as long as (A.23) holds and the major part of the forcing does not intersect with the

boundaries, the wave activity outside the source region will be very small as well. As a

matter of fact, assuming the response in the source region is -~O(1), for the sinusoidal

heating profile, responses away from the forcing region are -O(LjA) (viz. (A.22)),

while for the Gaussian heating profile, they can be shown to be ~O(exp[-(A/L)2/4]). It

is evident that for the latter case, the leakage detected outside the source region will be

even smaller. Nevertheless, the oscillatory phenomenon in leakage as LJA varies still

exists. In a similar fashion, the oscillation is almost completely removed by imposing

the radiation lower boundary condition. Figure A.3, which is similar to Figure A. 1,

shows the result with a heat source Q = exp(-((z-7km)/4km)2). Note that both the

definition and range of the abscissa are somewhat different from Figure A.1. Figure

A.4 shows the case when the radiation lower boundary condition is applied. Another

more dramatic example with heat source Q = exp(-((z-30km)/10km) 2) is presented in

Figures A.5 (no-slip lower boundary condition) and A.6 (radiation lower boundary

condition). Ignoring different scales of the ordinate (or under a proper normalization in

other words), results from both Figures A.4 and A.6 show the identical functional

dependence on LJA. Moreover, a closer look of those two figures indicates that the

maximum leakage always occurs at LJA = 1/2, this is consistent with what has been

predicted by Lindzen (1966).
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We have also conducted similar experiments using real heating profiles such as

those presented in Figures 3.7 and 3.8, and even with vertically varying zonal winds. It

is found out that as long as the effective lower boundary condition is closes to w=O, the

same oscillatory phenomenon always occurs; although it might not be as severe as the

sinusoidal or the Gaussian cases. In any event, in order to have smaller radiation out of

the source region, following rules of thumb still hold:

1. Broader scale of the source compared to the scale of waves.

2. Heating is as symmetric as possible.

Finally, it has already been stated that in the interior of the forcing region, w is

dominated by the direct response to the forcing as long as the scale of the forcing is

reasonably broad. Another way of looking at this is by observing the ratio between the

two terms, which represent the particular and homogeneous solutions, on the right of

(A.19),

Wh/Wp - O (hX/A). (A.27)

It is obvious that the above ratio is much smaller than unity when (A.23) is satisfied.

However, the same conclusion is not equally true for the other fields such as horizontal

velocity (u) and temperature (T). Take u for example. From the continuity equation,

u c dw/dz. (A.28)

Then from (A.19) and (A.28), the analogue to (A.27) for u is:

uh/UP ~ O0(1). (A.29)

Same result for T can also be derived. As a consequence, although for the broad

forcing, w is dominated by the direct response to the forcing; but for the other fields

such as u and T, equally important contributions from both the particular and

homogeneous parts of the solution are expected.
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Figure and Table Legends

Figure 1.1: Schematic cross section through a squall line system. Streamlines show

flow relative to the squall line. Dashed streamlines show updraft circulation, thin

solid streamlines show convective-scale downdraft circulation associated with the

mature squall line element, and wide arrows show mesoscale downdraft below the

base of the anvil cloud. Dark shading shows strong radar echo in the melting

band and in the heavy precipitation zone of the mature squall line element. Light

shading shows weaker radar echoes. Scalloped line indicates visible cloud

boundaries. (After Houze, 1977).

Figure 1.2: Frequency distribution of the location of the leading edge of squall line

clusters vs. easterly wave phase category for 46 squall episodes at the beginning

(solid line) and termination (dashed line) of each squall episode during GATE.

(After Payne and McGarry, 1977)

According to Reed et al. (1977), easterly waves were divided into eight east-west

categories on the basis of the location of wave features at the reference latitude

(110N over the continent and 120N over the ocean). At the reference latitude,

category 4 is defined as the 700-mb trough, category 8 as the 700-mb ridge and

categories 2 and 6 as the maximum northerly and southerly wind components,

respectively. The intermediate regions of the waves were designated by cate-

gories 1, 3, 5, and 7.

Figure 1.3: Squall line coordinate system. It is right-handed, with U normal to the

convective line, positive in the direction of line movement. Wind speeds are

relative to the earth. The schematic radar echoes are based on the Day 257 case

study of Zipser et al. (1981). (After LeMone et al., 1984)

Figure 3.1: Distribution of the precipitation as a function of the easterly wave category

during phase III of GATE. (After Thompson et al., 1979). See legend of Figure

1.2 for the definition of the wave category.
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Figure 3.2: Relationship between the mesoscale monochromatic precipitation and the

convergent phase of easterly waves.

Figure 3.3: Vertical distributions of (a) Mean zonal flow (in m/sec), and (b) Mean

vertical p-velocity (in 1( mb/sec) for the convergent phase of easterly waves

observed during GATE. (After Thompson et al., 1979).

Figure 3.4: Vertical distributions of (a) Static stability parameter (dT/dz+g/cp, in

'C/km), and (b) Dry static energy (solid, s=c,+gz, in kJ/kg) and moist static

energy (dashed, h=s+Lq, in kJ/kg) for the convergent phase of easterly waves

observed during GATE. (After Thompson et al., 1979 and Augstein et al., 1974).

Figure 3.5: Same as Figure 3.3 but for the Marshall Islands tests. (After Reed and

Recker, 1971).

Figure 3.6: Same as Figure 3.4 but for the Marshall Islands tests. (After Reed and

Recker, 1971).

Figure 3.7: Vertical distributions of (a) cloud mass flux (in mb/sec), and (b) cumulus

heating (in oC/day) obtained from the cumulus parameterization scheme de-

scribed in text for GATE. Magnitudes if (a) and (b) are normalized according to

precipitation rate = 4.8 cm/day.

Figure 3.8: Same as Figure 3.7 but for the Marshall Islands tests.
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Figure 4.1: Results using the monochromatic precipitation for Marshall Islands

profiles, with phase speed = -10 m/s, wavelength = 200 km, and mean and

perturbation precipitation = 4.8 cm/day. Cumulus friction and W are included.

(a) Amplitude (solid, scale shown at the bottom) and phase (short dashed, scale

shown at the top) for the vertical structure of T (in OC).

(b) Same as (a), but for u (in m/s).

(c) Same as (a), but for w (in cm/sec), plus the direct response of w (long dashed)

to cumulus heating (see text).

(d) Different components of momentum fluxes (in Pa) averaged over one

wavelength (200 km), including that due to gravity waves (p-u'V, solid), perturba-

tion cloud transport (-M(u'-u,), short dashed), mean cloud transport (-M( -- ,),

long dashed) and the sum of all three components (medium dashed).

Figure 4.2: Same as Figure 4.1, but without cumulus friction and -W. Thus in (d) only a

solid line is drawn.

Figure 4.3: Same as Figure 4.1, except that GATE profiles are used with phase speed =

-11 m/s.

Figure 4.4: Same as Figure 4.3, but without cumulus friction and W. Thus in (d) only a

solid line is drawn.

Figure 4.5: Results using the Gaussian precipitation for Marshall Islands profiles, with

phase speed = -13 m/s, hypothetical domain = 200 km, P0 
= 60 cm/day and x =

10 km. Cumulus friction and W are included.

(a) Full solution of T (in oC) on an x-z plane. The contour interval is 0.5 oC.

Figure 4.5(b): Same as Figure 4.5(a), but for u (in m/s). The contour interval is 1 m/s.

Figure 4.5(c): Same as Figure 4.5(a), but for w (in cm/sec). The contour interval is

20 cm/s.
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Figure 4.5(d): Streamline pattern relative to the the squall line.

Figure 4.6(a): Same as Figure 4.5(a), but without cumulus friction and W. The contour

interval is 0.5 OC.

Figure 4.6(b): Same as Figure 4.6(a), but for u (in m/s). The contour interval is 1 m/s.

Figure 4.6(c): Same as Figure 4.6(a), but for w (in cm/sec). The contour interval is

20 cm/s.

Figure 4.6(d): Streamline pattern relative to the the squall line.

Figure 4.7(a): Same as Figure 4.5(a), except that GATE profiles are used with phase

speed = -11 m/s. The contour interval is 1.0 OC.

Figure 4.7(b): Same as Figure 4.7(a), but for u (in m/s). The contour interval is 3 m/s.

Figure 4.7(c): Same as Figure 4.7(a), but for w (in cm/sec). The contour interval is

20 cm/s.

Figure 4.7(d): Streamline pattern relative to the the squall line.

Figure 4.8(a): Same as Figure 4.7(a), but without cumulus friction and W. The contour

interval is 0.5 "C.

Figure 4.8(b): Same as Figure 4.7(a), but for u (in m/s). The contour interval is 1 m/s.

Figure 4.8(c): Same as Figure 4.7(a), but for w (in cm/sec). The contour interval is

20 cm/s.
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Figure 4.8(d): Streamline pattern relative to the the squall line.

Figure 4.9: Mean zonal wind profiles (with annual cycle removed) representing

different phases of the quasi-biennial oscillation used for calculate the second

breaking levels of the gravity wave generated by cumulus convection. (After

Wallace, 1973).

Figure A.1: Responses (w) at the top of the domain for different vertical scales (L) of

the gravity wave. The domain of calculation is (0, 60 km). The thermal forcing

is = sin (in(z-2km)/10km) for z e (2, 12 km), and vanishes otherwise. The

abscissa shows the ratio of L/10 km. The ordinate shows responses relative to

the case when L/10 km = 0.1 where the amplitude of the response is set

arbitrarily to one. Radiation boundary condition is applied at the top, and no-slip

boundary condition is applied at the bottom. Note that the wavelength of the

gravity wave is defined as 27L,.

Figure A.2: Same as Figure A.1, except that radiation condition is also applied at the

bottom.

Figure A.3: Same as Figure A.1, except that the thermal forcing is

= exp (-((z-7km)/4km)2), and the abscissa shows the ratio of L/4 km.

Figure A.4: Same as Figure A.3, except that radiation condition is applied at the

bottom.

Figure A.5: Same as Figure A.3, except that the thermal forcing is

= exp (-((z-30km)/10km) 2), and the abscissa shows the ratio of LJ10 km

Figure A.6: Same as Figure A.5, except that radiation condition is applied at the

bottom.
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Table 4.1 Composites of results (both viscous and inviscid) in the interior of the

troposphere for the monochromatic precipitation with P = P' = 4.8 cm/day and

wavelength = 200 km.

Table 4.2 Same as Table 4.1 but for the lower stratosphere. See text for the definition

of (puw).,,.

Table 4.3 w (cm/sec, enclosed by double-solid lines) at 16 km using different values of

F (static stability, in oC) in the stratosphere, no cumulus friction is considered.

Phase speeds of -11 and -12 m/s and profiles for both GATE and Marshall are

considered here.

Table 4.4 Same as Table 4.3, but with cumulus friction.

Table 4.5 Composites of results (both viscous and inviscid) in the interior of the

troposphere for the localized precipitation with P0 
= 60 cm/day, x0 = 10 km, and

the hypothetical domain = 200 km.

Table 4.6 Same as Table 4.5 but for the lower stratosphere. Note that the statistics

shown here have not taken into account the possible wave breaking below the

cloud top. See text for the definition of (puw), .

Table 4.7 (puw),,, (in 104Pa) for different values of the hypothetical domain (M).

Two values of M (200 and 400 km), two profiles (GATE and Marshall Islands),

together with c = -11 m/s are used for the calculations. Cumulus friction is

included.
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S100 KM

ELEMENT CLOUD BOUNDARY

S/ .-- RADAR ECHO BOUNDARY
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ELEMENT

I 1 STABLE
r ZTLAYER

- . ......

GUST SQUALL ANVIL REGION
FRONT LINE

Figure 1.1: Schematic cross section through a squall line system. Streamlines show
flow relative to the squall line. Dashed streamlines show updraft circulation, thin
solid streamlines show convective-scale downdraft circulation associated with the
mature squall line element, and wide arrows show mesoscale downdraft below the
base of the anvil cloud. Dark shading shows strong radar echo in the melting
band and in the heavy precipitation zone of the mature squall line element. Light
shading shows weaker radar echoes. Scalloped line indicates visible cloud
boundaries. (After Houze, 1977).
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0

Cr
L 2-

6 7 8 I 2 3 4 5 6

CATEGORY

Figure 1.2: Frequency distribution of the location of the leading edge of squall line
clusters vs. easterly wave phase category for 46 squall episodes at the beginning
(solid line) and termination (dashed line) of each squall episode during GATE.
(After Payne and McGarry, 1977)
According to Reed et al. (1977), easterly waves were divided into eight east-west
categories on the basis of the location of wave features at the reference latitude
(11°N over the continent and 120N over the ocean). At the reference latitude,
category 4 is defined as the 700-mb trough, category 8 as the 700-mb ridge and
categories 2 and 6 as the maximum northerly and southerly wind components,
respectively. The intermediate regions of the waves were designated by cate-
gories 1, 3, 5, and 7.
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Stratiform
Rain

Line Motion

Convective
Rain

Figure 1.3: Squall line coordinate system. It is right-handed, with U normal to the
convective line, positive in the direction of line movement. Wind speeds are
relative to the earth. The schematic radar echoes are based on the Day 257 case
study of Zipser et al. (1981). (After LeMone et al., 1984)
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Figure 3.1: Distribution of the precipitation as a function of the easterly wave category
during phase III of GATE. (After Thompson et al., 1979). See legend of Figure
1.2 for the definition of the wave category.
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Figure 3.2: Relationship between the mesoscale monochromatic precipitation and the
convergent phase of easterly waves.
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-10. -5. 0. 5.

MEAN ZONAL FLNW (M/SEC)

0. 50. 100. 150. 200

MEAN -OMEGA (1.E-5 MB/SEC)

Figure 3.3: Vertical distributions of (a) Mean zonal flow (in m/sec), and (b) Mean
vertical p-velocity (in 10 mb/sec) for the convergent phase of easterly waves
observed during GATE. (After Thompson et al., 1979).
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0. 1. 2. 3. 4. 5. 6.

STATIC STABILITY (C/KM)

4.

2. -

0.
280. 300. 320. 340. 360

DRY AND MOIST STATIC ENERGY (KJ/KG

Figure 3.4: Vertical distributions of (a) Static stability parameter (dT/dz+g/c, in
°C/km), and (b) Dry static energy (solid, s=cp+gz, in kJ/kg) and moist static
energy (dashed, h=s+Lq, in kJ/kg) for the convergent phase of easterly waves
observed during GATE. (After Thompson et al., 1979 and Augstein et al., 1974).
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MEAN ZONAL FLOW (M/SEC)

Figure 3.5: Same as
Recker, 1971).
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Figure 3.3 but for the Marshall Islands tests. (After Reed and

110



0. 1. 2. 3. 4. 5. 6.

STATIC STABILITY (C/KM)

16.

14.

12.

I-
Lo
2-C,U.I=

I I I I I

(a) -

I I I I I

300. 320. 340. 360

Figure 3.6: Same as Figure 3.4 but for the Marshall Islands tests. (After Reed and
Recker, 1971).

111

DRY AND MBIST STATIC ENERGY (KJ/KO

O0.
280.



0. 5. 10. 15. 20. 25. 30.

CLOUD MASS FLUX (MB/HR)

0. 5. 10. 15. 20. 25. 30.

CUMULUS HEATING (DEG/DAY)

Figure 3.7: Vertical distributions of (a) cloud mass flux (in mb/sec), and (b) cumulus
heating (in OC/day) obtained from the cumulus parameterization scheme de-
scribed in text for GATE. Magnitudes if (a) and (b) are normalized according to
precipitation rate = 4.8 cm/day.

112



5. 10. 15. 20. 25. 30.

CLOUD MASS FLUX (MB/HR)

14.

12.

0. 5. 10. 15. 20. 25. 30.

CUMULUS HEATING (DEG/DAY)

Figure 3.8: Same as Figure 3.7 but for the Marshall Islands tests.
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0.0 0.5 1.0 1.5 2.0 2.5

T(K). RP (SLID)/PISE (DRSHED)

-180. -90. 0. 90.

-180. -90.

0. 1. 2. 3. 4. 5.

UI/SEC). 1 (SI)ID)/PHSEF HED)

-180. -90. 0. 90.180.

0. 5. 10. 15. 20. 25.

S(CM/SEC) . AMP(SO.ID)/PHASE(DASHED)

0.

-0.4 -0.2 0.0 0.2 0.4

MSENTUM FLUXES ( KG/ (MSS)

Figure 4.1: Results using the monochromatic precipitation for Marshall Islands
profiles, with phase speed = -10 m/s, wavelength = 200 km, and mean and
perturbation precipitation = 4.8 cm/day. Cumulus friction and w are included.
(a) Amplitude (solid, scale shown at the bottom) and phase (short dashed, scale
shown at the top) for the vertical structure of T (in OC).
(b) Same as (a), but for u (in m/s).
(c) Same as (a), but for w (in cm/sec), plus the direct response of w (long dashed)
to cumulus heating (see text).
(d) Different components of momentum fluxes (in Pa) averaged over one
wavelength (200 km), including that due to gravity waves (pu'w, solid), perturba-
tion cloud transport (-MW(u'-u'), short dashed), mean cloud transport (-M(-u,c),
long dashed) and the sum of all three components (medium dashed).
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Figure 4.2: Same as Figure 4.1, but without cumulus friction and w. Thus in (d) only a
solid line is drawn.
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Figure 4.3: Same as Figure 4.1, except
-11 m/s.
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Figure 4.4: Same as Figure 4.3, but without cumulus
solid line is drawn.
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-50. 0. 50.

X (KM)

Figure 4.5: Results using the Gaussian precipitation for Marshall Islands profiles, with
phase speed = -13 m/s, hypothetical domain = 200 km, P0 = 60 cm/day and xo =
10 km. Cumulus friction and i are included.
(a) Full solution of T (in 'C) on an x-z plane. The contour interval is 0.5 oC.

0. L'-

-100. -50. 0. 50. 100.

X ([KM)

Figure 4.5(b): Same as Figure 4.5(a), but for u (in m/s). The contour interval is 1 m/s.
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Figure 4.5(c): Same as Figure 4.5(a), but for w (in cm/sec). The contour interval is
20 cm/s.
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Figure 4.6(a): Same as Figure 4.5(a), but without cumulus friction and w. The contour
interval is 0.5 'C.

U.
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Figure 4.6(b): Same as Figure 4.6(a), but for u (in m/s). The contour interval is 1 m/s.
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Figure 4.6(c):
20 cm/s.

15.

12.

Same as Figure 4.6(a), but for w (in cm/sec). The contour interval is

X ~KM)

Figure 4.6(d): Streamline pattern relative to the the squall line.
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Figure 4.7(a): Same as Figure 4.5(a), except that GATE profiles are used with phase
speed = -11 m/s. The contour interval is 1.0 oC.

00.
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Figure 4.7(b): Same as Figure 4.7(a), but for u (in m/s). The contour interval is 3 m/s.
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Figure 4.7(c): Same as Figure 4.7(a), but for w (in cm/sec). The contour interval is
20 cm/s.
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Figure 4.7(d): Streamline pattern relative to the the squall line.
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0 . ----- o-u ---

-100. -50.

Figure 4.8(a): Same as Figure 4.7(a), but
interval is 0.5 'C.

0. 50. 100.
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without cumulus friction and w. The contour

0. L-

-100. -50. 0. 50. 100.

X (KM)

Figure 4.8(b): Same as Figure 4.7(a), but for u (in m/s). The contour interval is 1 ms.
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Figure 4.8(c): Same as Figure 4.7(a), but for w (in cm/sec). The contour interval is
20 cm/s.
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Figure 4.8(d): Streamline pattern relative to the the squall line.
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Figure 4.9: Mean zonal wind profiles (with annual cycle removed) representing
different phases of the quasi-biennial oscillation used for calculate the second
breaking levels of the gravity wave generated by cumulus convection. (After
Wallace, 1973).
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Table 4.1 Composites of results (both viscous and inviscid) in the interior of the
troposphere for the monochromatic precipitation with P = P' = 4.8 cm/day and
wavelength = 200 km.

Table 4.2 Same as Table 4.1 but for the lower stratosphere. See text for the definition of
(puw).
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Average Range

Viscous Inviscid Viscous Inviscid

u (m/s) 1.22 1.21 0.8 to 2.0 0.7 to 3.0

w (cm/s) 9.00 9.00 omitted omitted

T (oC) 0.40 0.41 0.2 to 0.8 0.2 to 1.0

Average Range

Viscous Inviscid Viscous Inviscid

u (m/s) 1.38 1.38 0.2 to 2.9 0.3 to 3.1

w (cm/s) 0.96 0.99 0.1 to 1.5 0.1 to 2.6

T (OC) 0.77 0.73 0.2 to 2.2 0.1 to 1.8

(puw),,((104 Pa) -1.25 -1.40 -0.01 to -4.4 -0.006 to -6.9



Table 4.3 w (cm/sec, enclosed by double-solid lines) at 16 km using different values of F
(static stability, in oC) in the stratosphere, no cumulus friction is considered. Phase
speeds of -11 and -12 nm/s and profiles for both GATE and Marshall are considered
here.

Table 4.4 Same as Table 4.3, but with cumulus friction.
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Region phase speed F=80 F=30

GATE -11 1.30 1.80

-12 0.18 0.25

Marshall -11 0.38 0.54

Islands -12 0.84 1.01

Region phase speed F=80 F=30

GATE -11 1.78 2.68

-12 0.83 1.12

Marshall -11 0.68 0.89

Islands -12 0.71 0.83



Table 4.5 Composites of results (both viscous and inviscid) in the interior of the
troposphere for the localized precipitation with P, = 60 cm/day, xo = 10 km, and the
hypothetical domain = 200 km.

Table 4.6 Same as Table 4.5 but for the lower stratosphere. Note that the statistics
shown here have not taken into account the possible wave breaking below the cloud
top. See text for the definition of (puw),.
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Average Range

Viscous Inviscid Viscous Inviscid

u (m/s) 4.22 4.08 2. to 10. 1. to 6.

w (cm/s) 108 109 omitted omitted

T (OC) 1.07 1.15 0.3 to 2. 0.3 to 2.

Average Range

Viscous Inviscid Viscous Inviscid

u (m/s) 7.04 6.81 2 to 12 0.3 to 18

w (cm/s) 9.72 10.1 3 to 19 0.5 to 35

T (oC) 3.71 3.51 1 to 7 0.2 to 8

(puw),,,(10( Pa) -9.5 -10.2 -1.2 to -22.6 -0.22 to -59



Table 4.7 (puw) (in 104Pa) for different values of the hypothetical domain (M). Two
values of (200 and 400 km), two profiles (GATE and Marshall Islands), together
with c = -11 m/s are used for the calculations. Cumulus friction is included.
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M=200 M=400

GATE -21. -24.

Marshall Islands -3.0 -3.1
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Figure A. 1: Responses (w) at the top of the domain for different vertical scales (L) of
the gravity wave. The domain of calculation is (0, 60 km). The thermal forcing
is = sin (ic(z-2km)/10km) for z E (2, 12 km), and vanishes otherwise. The
abscissa shows the ratio of L,/10 km. The ordinate shows responses relative to
the case when L/10 km = 0.1 where the amplitude of the response is set
arbitrarily to one. Radiation boundary condition is applied at the top, and no-slip
boundary condition is applied at the bottom. Note that the wavelength of the
gravity wave is defined as 21rL,.
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Figure A.2: Same as Figure A.1, except that radiation condition is also applied at the
bottom.
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Figure A.3: Same as Figure A.1, except that the thermal forcing is
= exp (-((z-7km)/4km)2), and the abscissa shows the ratio of L./4 km.
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Figure A.4: Same as Figure A.3, except that radiation condition is applied at the
bottom.
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Figure A.5: Same as Figure A.3, except that the thermal forcing is
= exp (-((z-3Okm)/10km)2), and the abscissa shows the ratio of LJ/10O km
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Figure A.6: Same as Figure A.5, except that radiation condition is applied at the
bottom.

136


