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Abstract

The limitations of asymptotic wave theory and its geometrical manifestations are
newly formalized and scrutinized in Chapter Il. Necessary and sufficient conditions for
the existence of acoustic and seismic rays and beams in general inhomogeneous media
are expressed in terms of new physical parameters: the threshold frequency wg
associated with the P/S decoupling condition, the cut-off frequency w, associated with
the radiation-zone condition, the total curvature of the wavefront and the Fresnel-zone
radius. The analysis is facilitated with the introduction of a new ancillary functional -
the hypereikonal which is capable of representing ordinary as well as evanescent
waves. The hypereikonal is the natural extension of the eikonal theory. With the aid of
the above new parameters, simple conditions are obtained for the decoupled far field,
the decoupled near field, two point dynamic ray tracing, paraxial wave fields and
Gaussian beams.

Chapter Il deals with a canonical problem. The Green's function, in a constant
gradient medium, is presented, for an explosive point source, in frequency and time
domains. The analytical dynamic ray tracing (DRT) solution is re-derived with conditions
stated in Chapter Il. The Gaussian beam (GB) solution is investigated and new beam
parameters are defined. Comparisons between exact and approximate solutions are
made; for both methods, DRT and GB, conditions of validity are explicit and quantitative.
An accuracy criterion is defined in the time domain, and measures a global relative error.
The range of validity is expressed in the form of two inequalities for the dynamic ray
tracing method and of five inequalities for the Gaussian beam method. Results remain
accurate at ray turning points. For the type of medium considered, the breakdown of
the dynamic ray tracing method is smoother and better behaved than that of Gaussian
beams. As examples, a vertical seismic profiling configuration, and a shallow earthquake
are modeled, using Gaussian beams.

Chapter IV describes the paraxial ray method, and its uses in modeling seismic
waves. It is a flexible and fast method for computing asymptotic Green's functions. The
method is an extension of the standard ray method, and a degenerate case of Gaussian
beams. Accuracy is controllable, within ray and paraxial conditions. Comparison of
results with finite difference and discrete wavenumber are very satisfactory. Examples
for different heterogeneous media are shown.

A full-waveform inversion is then presented in Chapter V. A new approach, using
tensor algebra formalism, is presented. Combined data sets (eg. VSP and surface



reflection data) with prior information are simultaneously handled. The forward model is
generated by the paraxial ray method. The inversion is performed in the frequency
domain, for interface and layer parameters. Sensitivity analysis is studied for each
parameter. Data generated by finite difference is inverted and obtained estimates are
accurate. VSP field data is inverted to estimate local geologic structure.

Thesis Advisor: M. Nafi Toks6z
Title: Professor of Geophysics
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|. GENERAL INTRODUCTION

Symbolism, language, scientific formulae here are all synonymous.

- J. Bronowski

The notion of waves is one of the unifying concepts of modern physics. Their
physical manifestation can be of very different nature (elastic, electromagnetic,
quantum mechanic, gravitational), but their behavior remains describable mathematically,
in common terms. The basic properties of waves is that they carry energy from point to

point in a medium, and like moving matter, they have velocity and momentum.

Seismology deals with the generation and propagation of elastic waves in the
earth. The data are seismograms, which is a measure of the disturbance caused by the
wave during its passage through observers (seismographs) placed in contact with the
earth. Typically these are records of particle displacement, or particle velocity, or
particle acceleration, or pressure (in a fluid medium), as a function of time. The
recorded seismic wavefield depends generally on three main mechanisms: (1) the wave
generation (the source of energy), (2) the propagation through the complex media
(scattering, diffraction, attenuation etc.), and (3) the seismograph measurement bias
(quality of the coupling with the earth, partial information if it has less than three spatial
components of recording, transfer function, etc.). These seismic records are very
valuable if information regarding any of these three mechanisms is sought. Most
importantly, they provide means of probing the earth interior. The advent of computers
revolutionized seismology; data acquisition has improved enormously and sophisticated

data processing is now possible. It is the second great tool, after analytical
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Chapter |

mathematics, for theoretical developments.
Modeling

Madeling is a very useful approach in understanding seismic wave propagation in
heterogeneous media and consequently helping the interpretation of data. For example,
assume we have a specific\earth structure in which we place sources and receivers.
From the physical laws governing the behavior of seismic waves, one can determine,
analytically or numerically, "synthetic" seismograms of the earth model. Modeling
methods for complex media are numerous. There is no universal method that is
applicable to all media. Each method is best suited for a given model, depending on the
model's structure, source/receiver configuration, and the allocated computer time.

Further, each method has its own assumptions and validity conditions that must be fully

understood before its practical use.

Hermann and Wang (1985), compare synthetics seismograms of several methods
developed for plane-layered media, and list references of basic methods that deal with
this problem. These are generally full-wave methods, in the sense that the full effects
of the media are simulated and recorded. They are computationally expensive, and
cannot be simply extended to handle more complicated geometries. Another set of full-
wave methods, able to handle diffractions from sharp interfaces, concerns boundary
integral methods. The media is limited to homogeneous layers separated by arbitrarily
smooth interfaces, although extension for complex media can be made via asymptotic
wave methods (see below). The methods treat each interface separately and with the
continuity conditions at the interface, integral equations are set up for the wavefield.
References for these methods can be found in Kennett and Harding (1985). Methods
which consist in solving numerically the differential elastic wave equation in complex

media, are called direct numerical methods. They are full-wave methods, and are
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expensive computationally. Finite difference (Alford et al, 1974; Kelly et al, 1976;

Stephen, 1984) and finite elements (Marfurt, 1978) are the two main techniques.

The last set of methods is based on simple geometrical considerations. They are
variations of ray theory, and will be called more generally, asymptotic (high frequency)
wave methods. They are versatile, flexible and are generally used either directly in
modeling, or indirectly in other methods requiring approximate Green's functions in
heterogeneous media. These methods are not full-wave but are explicit, in the sense
that individual wave types can be propagated separately. This offers the possibility of
constructing progressively the full-wave character of the field. However if many wave
types are sought, variations of these methods (Keller and Perozzi, 1983) must be

considered.

Hybrid methods, combining advantages of compatible methods, are now under
progress. Modeling real earth structures which would handie (1) multiples, diffraction
and scattering effects, (2) critical region effects (caustics, shadow zones, etc.), and
(3) interface waves (surface, head, etc.) is not an impossible task. Asymptotic wave
methods are compatible with boundary integral methods, and can be an example of such

a hybrid method.

The aim of this thesis is to establish, in some quantitative manner, the range of
validity of asymptotic wave methods. Necessary conditions in obtaining Helmholtz wave
equations from the elastodymanic wave equation are explicit. A hypereikonal is
introduced that leads naturally to the ray solution for high frequencies. The focus is on
dynamic ray tracing, Gaussian beam methods and, particularly on an intermediate
method, called paraxial ray. We will not cover Maslov asymptotic theory {(Chapman and
Drummond, 1982), which can be obtained as a degenerate case of Gaussian Beams

(Madariaga, 1984; Klimes, 1984). The paraxial ray method is shown to be a fast,

-12 -
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flexible and robust method. It is the method that we choose for modeling.

Iwversion

The other fundamental task in seismology, is the extraction of medium or source
parameters from data. Given a data set, estimating the parameters, require some
assumptions on their prior values and constraints. Numerous approaches exist and, here
again, each method has its own limitations. The three basic sets of methods are direct
inversion, approximate direct inversion, and iterative inversion. They all yield, as end
product, an image of the subsurface, and are sometimes referred to in general as

inversion or imaging methods.

Direct inversion methods require the solution of an inverse operator such that
when applied to observed data, it reconstructs medium properties exactly. These
operators are difficult to obtain, particularly for more than one space dimension.
Approximations, such as the Born approximation, simplify the problem and enable a direct
solution to be found. A review of these methods with references can be found in
Esmersoy (1985). They generally assume the inhomogeneity to be included in a uniform
background medium for which the Green's function is known exactly. However,
extension to more complex background media can be done using asymptotic wave

methods that provides approximate Green's functions.

Iterative inversion requires, generally, a forward model that is repeatedly used to
generate synthetics. These synthetics are compared to data, and within a defined norm,
the task is to minimize the norm of the data-synthetic discrepancy vector for medium
parameters. Basic references on the subject are Beck and Arnold (1977), Luenberger
(1973) and Aki and Richards (1980). Travel-time inversion has been, so far, widely

used in seismology. But with the improvement in data acquisition systems, full-waveform

-13 -~



Chapter |

inversion can now be attempted, since more information about the medium or source
parameters is added. Examples of full-wave inversion for three dimensional (3D) medium
parameters are found in Thomson (1983); for source parameters in Nabelek (1983); and

for 1D medium parameters with vertical seismic profiling (VSP) in Stewart (1983).

The last chapter of this thesis deals with full-wave iterative inversion of combined
VSP, surface reflection, multi-offset VSP or crosshole data. Forward model synthetics
are generated by the paraxial ray method. The norm considered is the L, or "energy”
norm. The problem is presented within the framework of tensor algebra. The Gauss-
Newton method is re-derived in this context. The héterogeneous media contains
homogeneous layers separated by smooth interfaces. Sensitivity of the inversion to

medium parameters is studied. Inversion of field data is presented.

-14 -
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NOMENCLATURE OF CHAPTERS 1I-IV

amplitude function of local plane wave

parameter governing initial half-width of Gaussian beam
constant factor calibrating ray methods to an exact solution
point source radiation pattern including source strength
source strength, ratio ¢, to source radiation pattern
relative error of maximum amplitude of approximate signal
relative error of maximum amplitude time of approximate signal
relative error of travel time of approximate signal

relative power error of approximate signal on the entire trace
E on wavelet time window

¢4/ pd” 2, strength of point source (dimensionless)

general source radiation pattern including source strength
far field amplitude condition

Fresnel 1-condition

Fresnel 2-condition

P wave coupling vector

scalar Green's function

radial Green's function in (r,2)

vertical Green's function in (r,2)

high frequency condition

1™, vertical distance between a(0) and a=0

unit dyadic (tensor)

Jacobian of cartesian to ray coordinates
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Nomenclature

JS surficial Jacobian of cartesian to ray coordinates

Jjo ray parameter, takeoff angle, bi-spherical coordinate
j ray angle of incidence

K Gaussian wavefront curvature

Kp R, local ray curvature

K, aP/ Q=Ruj1 , total curvature of wavefront (or phase front)
K& o P/ @, local curvature of beam wavefront (compiex)
k w/ o, P wavenumber

i o/ wo, medium's characteristic length

L local half-width of Gaussian beam

mg source seismic moment

M receiver / observer location

Mo point source location

NHI non-horizontal incidence of ray condition

n cartesian coordinate perpendicular to the ray

P sinj / a, ray horizontal slowness, ray parameter

P EE, unit vector tangent to the ray

P a~' d@/ ds, functional in the eikonal

PRX paraxial ray condition

Q functional in the eikonal

T radial distance from vertical 2 axis

Ty (2o +h)cotj,, radial coordinate of turning point of ray
RCC regularity of ray-centered coordinate system condition
R local ray radius of curvature

K, local wavefront radius of curvature

s arclength along a specified ray
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Nomenclature

hypereikonal

time

generalized travel time

particle displacement vector in time or in frequency
Green's function along £ in (¢,2)

Green's function along z in (£,2)

P or S intrinsic velocity of medium

Fresnel volume

P wave vertical displacement in (r,2) coordinate system
W computed by the Gaussian beam method

¥ computed by the dynamic ray tracing method
vertical axis

R—h, depth of turning point of ray

compressional (P) wave velocity of the medium

P wave velocity at the source location

shear (S) wave velocity of the medium

o?/ 82

ray parameters

source-receiver distance in a homogeneous medium
cumulative error along the ray

P wave coupling scalar

wavelength

First Lame elastic parameter

Second Lame elastic parameter, shear modulus

7/ t4, bi-spherical coordinate, curvilinear coordinate along a ray

unit vector tangent to the ray
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Nomenclature

p density of the medium

Po density of the medium at the source location
P12 principal radii of wavefront curvature
g point source time function

g point source spectrum

T source - receiver travel time

¢ weight function for the Gaussian beam
#1 P wave potential

¥2 S wave potential

Y Helmholtz potential

YPer Parabolic potential

w angular frequency

t)o medium's threshold frequency

medium's cut-off frequency
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Il. RANGE OF VALIDITY OF RAY AND BEAM METHODS

Nature is not a gigantic formalizable system. In order to formalize it,
we have to make some assumptions which cul out some parts.
We then lose the tolal connectivily.

- J. Bronowski

1. INTRODUCTION

Asymptotic wave theory is subjected to a number of fundamental restrictions
which put severe limitations on its applicability, These restrictions involve three types
of physical parameters: frequency, distance and gradients of structural elements. The
conditions are formulated in the form of inequalities. If any of these inequalities is
violated, ray theory becomes (progressively or rapidly) invalid and we must resort to the
full-wave theory or pther valid approximations. The limitations of ray theory fall into
several categories, each arising in connection with a different type of asymptotic
approximation. Each category renders its own conditions for the validity of seismic ray

theory.

There exist today a few basic ray-methods which are interrelated. The oldest
is the eikonal method (e.g., Born and Wolf, 1964; Luneburg, 1964) upon which the entire
field of geometrical optics is based. It became a very useful tool in studies of seismic
wave propagation (e.g., Singh and Ben-Menahem, 1969, Cerveny et al., 1977; Aki and
Richards, 1980; Cerveny and Hron, 1980) Next came the WKBJ and the saddle-point

approximations at high frequencies (e.g., Bremmer, 19561) with some new development

-19 -
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and variants (e.g., Kravtsov, 1968, and Kravtsov and Feizulin, 1969, Chapman, 1978).
In recent years, the advent of computers allowed seismologists to look for fast and
efficient algorithms to calculate collimated wave fields in inhomogeneous media. The
paraxial wave approximation, especially in a ray-centered coordinate system was found
to offer some advantages (e.g., Landers and Claerbout, 1972; Corones, 1875; McDaniel,
1975; Palmer, 1976, 1979; DeSanto, 1977; McCoy, 1977; Bastiaans, 1978; Cerveny

et al., 1982; and Haus, 1983)

In addition, certain efforts were made to harness the Kirchhoff-Helmholtz integral
(e.g., Baker and Copson, 1939) to the evaluation of seismic fields (e.g. Kravtsov and
Feizulin, 1969; Scott and Helmberger, 1983; and Carter and Frazer, 1984) There is now
a growing need, both in earthquake seismology and in seismic exploration, for
computational methods that can render sufficiently accurate solutions to wave
propagation problems in three dimensions. In this chapter we shall examine the validity

of the various approximations involved in the asymptotic wave theory.

2. DECOUPLING CONDITION FOR GENERAL INHOMOGENEOUS MEDIA

The elastodynamic vector equation for isotropic media, in the absence of body

forces, can be put in the compact form

p—Z—ZZE = V[(A + 2u)Va U] — Vx (V% U) + 2VueVx (] x 0, (2.1)

where J is the unit dyadic, [/ denotes the particle displacement vector at point #(7)
and time ¢,p is the density, and X and u are the Lamé elastic parameters of the medium.

I x{7 is the vector product of the unit dyadic and the displacement vector and

-20 -



Chapter li

Ux(I x D) = ;—] xVx U —IV0 + %—(VU + UV)
Introducing the notation
pol =A+2u, pB%=p, (2.2)
and applying the vector identities
V(yg) =y Vo + ¢ Wy, (2.3)

VlpA) = pWA + (Vp) 4 ,

Vx(qB) = q Vx B + (Yq) x B,

we may recast Eq (2.1) in the form
2 7 - -» —» -
'?372[1 = (0?9 ) = V(g2 Vx D)+ 24l Ve D) - Yp& x(@2vx 0) (2.4

+252[Yﬁ§22—+ Y2 sux(rx D).

P

Taking the divergence of Eq. (2.4), applying to it the Fourier transform over t and

defining
N=02W[, (2.5)
A= U, (2.6)
Vol vg? \/
gaz'o%‘» gﬁ;——fz—’ gp=_pp—; ka=w/a' (2.7)

it is possible to transform Eqg. (2.4) into

VAN + g, UN + k2N = (2fg + §) « Vx4 — W, (2.8)

where
W= NVeg, —AeUx g, + VI2B4(gg+d )} : Vx (I 0) +2§,+1gg x4} . (29

The advantage of writing Eq (2.1) in the form (2.8) is obvious: It separates the terms of
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the equation into three distinct groups according to the order of the derivatives of the
constitutive parameters p and 8. At this point we discard the vector W which is
composed solely of second order terms in §, and Jg as compared with g *VN and
(2gg + gp) VX A. Further change of variable

b =p"/2N, B=p"2},

followed by neglection of terms of the order (§ p)z, leads us to the scalar wave equation

V2o +k2b = (25 + §,) « VX B + O(ed; ef; €f), (2.10)
where
Eq = g'a% &g = lgﬁgi; &y = gp%{ (211)

Similarly, by taking the curl of Eq(2.4), we obtain to first order in §,, § g and § P

V2A +(d,~Fg) +VA —gpxVxA +kfh =

_§2f 2) |
=[ 2 lz§p+ 2——;2]ngxVN+o(s§; £3; £2) (2.12)
(44
V2B —VBegs +kEB =
E.z_[ 4 o? ] 2. 2. .2
= -5 lZgﬁ+ 2 - z g'p]xVb + 0(ey; sp;sp). (2.13)
X

Note that since (2.1) does not have an explicit dependence on VA, as it does on Vu, the
gradient of the compressional velocity a does not enter explicitly into Egs. (2.4) -
(2.12). It is, however, implicit via Eq.(2.5) and the gradients of N and b in Egs. (2.8),
(2.10) and (2.12). For that reason we must require, as we indeed do in Eq. (2.14) and

(2.18), that g, < 1.

We shall adopt the following terminology:
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1. Smooth inhomageneous media: second order terms in the coupling vectors are
neglected but first terms are kept. The equations of motion are coupled [Eq. (2.10),

(2.13)].

2. Weak inhomogeneous media: first and second order terms in the coupling vectors

are dropped. The equations of motion are totally decoupled .

Egs. (2.10) and (2.13) are the first order elastodynamic equations for the
coupled shear and compressional wave motion in general inhomogeneous isotropic media.
The entities gp, g, and g'ﬂ are the P-SV coupling vectors. Landers and Claerbout
(1972) and Landers (1974) numerically integrated equations similar to our (2.10) and
(2.13) in two dimensions to recover the seismic wavefield. In the context of rag-

theory we assume a total decoupling of P-SV motion. A necessary condition is
Eq K1, g8g<<1, g K1, (2.14)

In media that obey (2.14), the material properties change slowly over distances of order
of a wavelength. The corresponding equations of motion in such media will then simplify

to
v2b +k2b =0, V25 +k}5 =0. (2.154a)
Thus, for weak inhomogeneous media, the functions
b =p'"/2:B% 0 and B =p'/28%vx U, (2.15b)

obey the respective scalar and vector Helmholtz equations. In earthquake and
exploration seismology, there are many instances where this approximation is sufficient.
If first order coupling terms of P and SV waves are retained, then one must solve Egs.
(2.10) and (2.12) simultaneously. In either case, the spectral displacement field

(7(M,w) is recovered by further integration and differentiation,
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anl(#) = v f—V—{’%—)’—ﬁ fx—U({— a®¢, (2.16)

where V? is the del operating on the 7 coordinates of the integrand. The decoupling

conditions (2.14) can also be written in the alternative form (A =wave

length, k£ = —2[—17— = wave number, and k =-§T for P waves and k = for S waves)

8

Ll

L
Vp

A« min[

]s 2 or kglg»1, (217)

1%
Vg |’ 2

2
v
or

EY&%}«L 1%‘;’—'«1, 1@;—5— <1, (2.18)

t

where [, is a characteristic length at a given location, and may vary from point to point

in the medium. Condition (2.18) refers to a local property of the elastic medium. It can

is radius of curvature at

be shown in a vertically or radially varying medium that l-'%

the lowest point of the ray (turning point).

The mode decoupling condition that we shall use is
W » wy W= -;—-max[IVal, |Vﬂ|,a-LT§L]. (2.19)

This condition defines a virtual threshold frequency which must be surpassed by the
wave frequency w. Note that the threshold frequency vy is tied to the characteristic
length I, via the relation {0y = o . We shall show later that (2.19) is physically more
meaningful than (2.18) in the sense that w, exists even when exact decoupling renders

(2.18) meaningless.

Note that in homogeneous media with material discontinuities, [, assumes the

geometrical meaning of radius of curvature of the discontinuity. If, for example, we
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_consider compressional wave propagation in a sphere of radius a, (2.17) will be

replaced by
koa >1, (2.20)

which means that the wavelength must be much smaller than the sphere's radius. Note
that this condition does not mean that, at the interface, P and S wave are not coupled
by boundary conditions, but that their propagation, away from the interface, remains

uncoupled (independent Helmholtz equations for P and S waves).

The inequalities (2.14), (2.17) and (2.18) are only necessary conditions for the
elastodynamic equations to yield approximate decoupling of P and SV waves. The

following note is appropriate in this connection: The smallness of ¢, g and £p does not

v8
B

seismic waves in the earth. On the contrary, these entities turn out to be essential in

imply that 12—0‘ and IY&’ cease to play a role in shaping the amplitudes of

| P

b

the seismic theory of Gaussian beams and dynamic ray tracing. Indeed, if we solve the
Helmholtz equations (such as Egs. (2.15a) in coordinate systems where the metric scale
factors depend on the velocities « and 8 (such as the ray-centered coordinate system
or the intrinsic coordinate system)), second-order derivatives of o and g reappear in the

Helmholtz equation.

In weakly inhomogeneous media we assume a decomposition of the displacement
field analogous to the decomposition in the case where the medium parameters depend

on a single coordinate (see for example Ben-Menahem and Singh, p.417, 1981)
U=p"V29y, +p~ /2 UxUx(89,) + u~ /2 Vx(8¢3) , (2.21)

where & is a (unit) vector subjected to certain restrictions, and the potentials v, obey

the respective Helmholtz equations (V2 + Iciz)'zp =0 1 =1, 2. The condition under which
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(2.21) holds is that of Eq. (2.19) in vector separable coordinate systems. Substitution
of Eq. (2.21) into Egs.(2.156) links the potential systems (b, B) and (¢4, ¥, ¥3). The

relations are b = —u? ¥, and B = —2Vx(8%,) + VX Vx (EY3).

Vertically nhomogeneaous Media

N

In the special case where the inhomogeneity of the elastic medium depends on
one cartesian coordinate z, the analysis becomes simpler and mathematical tools are

available to solve the equations of motion. Three important results can then be derived:

1. Exact decoupling of the P and SV wave motions is possible only in special cases
where the constitutive paramcters satisfy a pair of nonlinear ordinary differential
equations (Hook, 1961, 1962; Alverson et al., 1963; Lock, 1963). We shall deal with

an example of this category in chapter Ill.

2. Under less restrictive conditions (keeping first order terms in g, , £gs and sp) the

field can still be represented by an expression similar to (2.21)

- 1 1 ~
U= .7_1—V(‘f2 ¢1) - -j:—VXVX(ezj; ¢2) . (2.22)

Substituting this expression in Egs. (2.8) and (2.13) and keeping terms up to first order
derivatives in A, i, and p, a straightforward, though lengthy, analysis yields two coupled

equations for the potentials ¢, and ¢,

' Og4 &
Vo + O vk = —mz[VZ - 5;2—]% ' (2.23)
R 4 L2092 4o (2.24)
b2t 5 k392 =M21¢1 '

Here,

- 26 -



Chapter li

—H

) 2 o =gg_x+zg.¢] 2,26
M12 N+ 2% ], 21 [ ik ( )

uoop K

are scalar coupling factors, and primes indicate derivatives with respect to z. A

perturbation scheme for the solution of (2.23) and (2.24) is presented in Appendix A.

Lock (1963) derived an exact solution of the elastodynamic vector equation for
w(z) = w(0)e®; A(z) = A0)e*; p(z) =p(0)e?® . (2.26)
in this case §, =Jp =0, g, = a&, = const. and Eq. (2.4) reduces exactly to our Egs.

(2.23) to (2.28) with p'/p =a, 7Ny =ay", May =al2 —7), v =(A +2u)/ . Since
the velocities have fixed values, the rays are straight lines and the coupling is effected

through the constant density gradient alone.

From this point on we shall assume a total P/S decoupling. Hence, we do not
have to deal any more with the elastodynamic vector equation itself, but rather focus

our attention on approximate solutions of the scalar Helmholtz equation.

3. HYPEREIKONAL

Let us now examine the Helmholtz equation for general inhomogeneous media. A
convenient mathematical vehicle is afforded by a general orthogonal coordinate system
where the only constraint is that one of its coordinates is the wave travel time T. This

system will be denoted (T1,74,7,), with corresponding scale factors h, hy and h,. The
2
scalar Helmholtz equation Vzw + 9—;:// = 0 in this system is
v
hehy oy )l

) .
W
+ =5y = 0(3.1)
ha 67’2] v2

1 la
h_hih, |OT

hhy gy .0

hiho gy |, 2
hy 8y) 072

h, ot 8y,

T

We take ¥ to be of the form ¥ = A(T,7,,72;0) S(T;w). and substitute into (3.1). After
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some intermediate steps, (3.1) reduces to

a2s 2 V4o | 22 dS
hESdTZ Ap S dr

V2 VAo _
T+2 n e V1| =0, (3.2)

Assume that the terms involving first derivatives with respect to 7 are of

different order than the rest. This yields the two equations

— 4+ +v =0, 3.3
h2 sdT° Ao (3.3)
and
> VAq
Ver+ 2 V1T = 0. (3.4)
Ap

Consider the class of inhomogeneous media such that
2

w
VA + ;%—Ao =0, (3.5)

where . and ve/ h,f are either constants or a slowly varying functions of the

coordinates. In cases where both are constants, an exact solution of Eq. (3.3) is

St =e ¥ (1 a2 , (8.6)

The S functional in (3.6) is defined as the hypereikonal. Equation (3.4) is the

transport equation with an exact solution

h 1/2
T ] . (3.7)

Ao(Ta71’72;w) = f(71 ,’)’2;0) [h. h

1 k2

where f (7,,7,;w) is a function independent of 7. This solution assumes hy h, # 0. In
the case where v, and 7, are the two spherical angles, f can be interpreted as the
product of the radiation pattern of a source located at the origin of the spherical

coordinate system times the source strength. Thus, for example f(y4,72;w) =cq
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(constant) the source is a point explosion. Let J be the Jacobian of the transformation

from cartesian to the general orthogonal coordinate system (7,74,7,).

Nzy.2z) _
J = ——F-—D((z%;z)) = h.hih,. (3.7a)

Define the surficial Jacobian as /5 = J/h,_ = hqh,. Equation (3.7) then reads
h. |72
AO = f F . (3.7b)
JS is sometimes called the spreading function.

The solution of the Helmholtz equation can then be written in the compact form

h
1/2 T 2,,2Y1/2
T — (1 -—wc/u) ’ (3.8)

Y = Ag S =F(y1,750) e

-7
JS
For w, =0, or w >> w,, this solution reduces to the ray solution (see section 4) or the
WKBJ solution of the wave equation (see section 6), respectively. In media where (3.8)
holds, there exist a cut-off frequency w. below which wave propagation is not
possible. The medium cut-off frequency, defined as, w;, = v(Von/ AO)V 2, may be
complex. Media for which o, is complex will not be treated here and a special
investigation will follow in a sequel paper. The factor (1-w?2/ w?)!'/2 in equation (3.8)

indicates the presence of a second order effect of dispersion which is usually

neglected for seismic body waves at high frequencies.

The hypereikonal formulation for the Helmholtz equation can be extended in a
straightforward way to the vector elastodynamic wave equation (2.1). In Appendix B,
we show how this can be achieved for the special case of vertically inhomogeneous

media.
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Vertically mhomogeneous media

As an application we shall derive in closed form the resuits given above in the
case where the medium's properties are only allowed to vary along the z direction. A
convenient coordinate system is the intrinsic coordinate system (Yosiyama, 1940). In
a vertically inhomogeneous medium, we define a cartesian coordinate system centered
at O (figure 1). The cylindrical coordinates of a general point M are (r, 8, 2). Aseismic
source is placed on the z axis at M,(0,0,z5). We define new coordinates H(T,j,,9)
relative the origin M,, where ¥ is the azimuth angle of the cylindrical system. The
transformation-equations linking the coordinates (z,r) and (7,jo) are given by the

implicit integral relations

z F4
r = f(gz _pZ)—1/2 pdz ; = ng (92 _pZ)—1/2dz , (3.9)
ZO 20
where
g=— p = g(zg)sing (3.10)
'U(Z), 0 [oJ .

These are the standard travel time equation, 7, and horizontal slowness, p, in Herglotz-
Wiechert formulas (Aki and Richards, 1980); j, is the takeoff angle. It is understood
that p is held fixed (z independent) during the integrations. Thus, although j, is indeed

a coordinate, it acts as a fixed parameter during the intergration. v denotes either o or

B.

For any given velocity distribution v(z), Eq. (3.9) defines the relations
r =r(z,p) and 7 = 7(z,p). For any given values of z and r, these two relations define
the pair (7,j,) and vice versa. For a fixed value of p (i.e., jo), the 7 integral in (3.9)
defines a curve r = r(z) in the plane ¥ = const. and the T integral defines the travel

time along this curve from z, to 2.
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Figure 1. The intrinsic coordinate system
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The angle j between the vertical and the tangent at any point on this curve is obtained
readily by differentiating » with respect to 2 for fixed p. This is the ray angle of

incidence.

or

52| =P (g2 -p»"/2 =tanj . (3.11)

1Y

Solving for p and comparing with (3.10) we find

_ sinj _ Sinjo .
p = 2(2) = -————-—-vo s (3.12)

where vy = v(2y). Eq. (3.10) is the ray equation and Eq. (3.12) is Snell’s law. For a
fixed value of jg, the ray equation is given by a relation r = 7(z;j5) . With these

definitions, one can verify in a straightforward manner the following statements:

A. The line element of the new system is
2_p2 24,92 :
ds? = h2d7? + h3d¥% + hfodyg , (3.13)
where the explicit expressions for the scale factors are:

3
2 _ . 2\1/2 z -
h,=v(2); hy=7; hj, =p(L}Lcotjo fgz(gz -p? 2dz . (3.14)
z

0

Hence, the coordinate system  {T1,j4,%) is orthogonal.

B. The wavefront equation is obtained by eliminating p between the relations

z z
70 = [ g%(g? -p»)7™V/2dz and r = [ p(g% —-p?)7"/2dz. At any given time T =T,
zo zo

the wavefront is a surface of revolution generated by the plane curve (figure 2)

z = 2(r;24;70) . (3.15)
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Figure 2. Cross-section of wavefront at ¥ = const .

-83-



Chapter li

Since on this surface d = 0, we have from Eq. (3.13) and from the geometry of a line

i

dz 1V dr _ 1 dz
ar - tangs Ry = cosj dj, ~ sinj djy ’

element on a general surface of revolution

: [
ds? = h3dv? + h.jzodjg =r2dv¥? + l1 +

Therefore, on the wave front, up to a sign

(3.16)

The geometric interpretation of Eq. (3.16) is evident from figure 2. An alternative

interpretation of h.jo is obtained when we differentiate r in Eq. (3.9) with respect to j,

at fixed z and use Eq. (3.14)

or

370 (3.17)

hj, = cos J

z
C. The Gaussian curvature of a surface of revolution is defined as X = (p;0,)~"
where p, and p, are the wavefront principal radii of curvature (eg., Eisenhart,

1909). In our present case

3
I ] _ [ asing ™ (3.18)
Py = l J ,
d'rz
dzr1/2
1+ |32
B dr T
P2 =T d__Z_ B sinj !
dr
dz d’z
_ dr dr? _ sinj dsinj _ sinjcosj dj .
- |1 dz]zl_ r dr r dr ’ j=ir). (3.19)
' {ar |
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D. The divergence coefficient (e.g., Ben-Menahem and Singh, 1981) is given by

VpPo SiNjg [ 80

1/2
= i0T .
vp TCOSj fh']z] » where |u | X e*¥7 |uqg|, u being the

[
the expression X = l

particle displacement. In terms of the scale factors and with the aid of Egs. (3.7) and
(3.17), it is found that

172 1/2

vy A sing h
X:[p_o __9__0-’ Ag = ¢y ( Jovis2 | bt
P v Cy ) h”hjo

(3.19a)

The point source constant introduced earlier, cg, is here equal to cy (sinjy/ vo)V 2

where ¢, is the source strength. Using Eq. (3.12), we can’also write

00172 vg
x =2 —(p.h. )12 3.20
[p ] o (Pzhio) (8.20)
If we substitute for sinj in (3.16) from Snell's law (3.12), and evaluate the %
derivative at the wavefront, we obtain
cotj _ COtjo 1
= + = !
P1 hjo R (3.21)
L -1
where R = {s—;—:‘l% is the radius of curvature of the ray at the wavefront. In
homogeneous media p; = hjo. in weak inhomogeneous media we have approximately
tanj,
~ ., 3.22
P1 ™ Jang o (3.22)

The Jacobian of the transformation from cartesian to intrinsic coordinates is

J = D(z,y,2)/ D(1,jo,8) = h.rh.,!’hjo (38.17a). If we consider a homogeneous unit focal

sphere around the source, Eq. (3.14) will render for this sphere

(h)g =vg (hg)g =1, (hjo)o =sinj,. Denoting the Jacobian on the focal sphere,

Jo = vgsinjg, we find from (3.19a)
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Po Jo

3.23
o7 (3.23)

s Ag =0y —— =~

1/2 172
v |Jo
vg | J '

Note that in weak vertically inhomogeneous media, the fotal curvature (Eisenhart,

1909) of the wavefronts is

172 A4

o (3.24)

_ tanj
K, =(pypp) V2 » [;‘:}JO—]

We thus see that A, is a fundamental quantity that is linked to divergence coefficient,
the Jacobian and proportional to the total curvature of the wavefront. in cases where

(tanj / tanj,)'/2 is close to unity, 4, is close to the total wavefront curvature.

A class of media for which Eq. (3.2) holds is found in the following way: we put

1/2

1/2 T h;
| 2o} (3.25)

v 1
p P sinj

Vo

A0=C1

where D is a certain distance. It then follows that Eq. (3.5) assumes the new form

V24, 7
2 2

_ 1, otjavl 1 d%uy waDdy 2 (306
o UV TT\dz| Y2V 4e2| Doz dz . % (3.26)

2
. l_[dv]+1 d2v| voaDdy __,

1 I

In a homogeneous medium D V2 o= 0, v =v" =0 and w, =0 = 0wy In a medium

with a constant velocity gradient v =wv(0)(1 +7z), one proves that

v2 DV2 15 - %g—f—g—z = 0. Eq. (3.26) then yields the exact result
=1dv _ =
R 3’21-«/(0) = g - (3.27)

In a medium with a linear gradient v = v(0) (1 + 7,2 + 1,2%)

V24
Ao

l-] (3.28)

rak

v2

= - v2(O)nF - 471 + 0
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So, at least in the far field, the cut-off frequency is at

o, = L (n? - any)'2. (8.29)

[

v(0)

> (ny + 2z7,). This includes Eq. (3.27) as a special case wherever

However vy =

n, = 0.

\

The threshold frequency, w,, characterizes the heterogeneous medium. In order for
asymptotic wave methods to be applicable in such a medium, the wave angular
frequency ,w, must be greater than wy. This is the mode decoupling condition derived in
section 2, and expressed in (2.19). Another medium characteristic frequency is the
cutt-off frequency, w,, introduced in (3.8). The wave frequency must be greater than

. SO that second order effect of dispersion can be neglected.

We thus see that in media where the velocity profile can be represented by a
polynomial of degree one, wy = w,. In general, w, and wy depend upon the coordinates,
and their equality is not obvious. In the special case of the paraxial approximation (and

ray theory) their equality is postulated on the basis of dimensional analysis.

4. RAY-SERIES: EIKONAL AND TRANSPORT EQUATIONS

Geometrical optics is based on the first term of the asymptotic-series solution of

the Helmholtz equation

. P (M)
wM,w) = e“ﬂ(mngo (A:l’b_w)’r . 4.1)
The substitution of

WH,w) = Ag(H) ete™ (4.2)

into the Helmholtz wave equation [sometimes known as the ansatz of Sommerfeld and

FRunge (Cornbleet, 1973)] leads to
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V2+1—J—2-}W: T0—+f.)2[;}—2——(V7')2J+7,a>lV2‘r+2Ao YTty =0. (4.3)

If Ay is a sufficiently slowly varying function of the coordinates over a wavelength

scale, we have

w > w . (4.4)

This is defined as the high frequency condition. Then, equating real and imaginary
parts on both sides of Eq. (4.3) we obtain the weli-known eikonal and transport

equations respectively

1
(Vr)? = 'v—z; (4.5)
VA
V7 +2—2eV7=0. (4.6)
0

The characteristic equations of the eikonal (4.5) yield rays (). The solution of the
eikonal has the physical meaning of the travel time along a ray () connecting the source
My(sg) to a receiver at M(s), where s is the arclength along the ray measured from a

given fiducial point. It is given explicitly by the equation

m(s) = fu(s) " ds . 4.7)
%0

The transport equation (4.6) involves the travel time 7(s) and a function Ay(s) with the
physical meaning of an amplitude of a local plane wave along the ray coordinate s. Itis
the same as that derived in the previous section (3.4). The surface T(s) = const.
yields the wavefront (or phase front). The solution of the transport equation is given

explicitly in (3.7).

An equivalent approach in obtaining the eikonal is to equate to zero the coefficient of
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«? in (4.3). The transport equation is of lower order in frequency, since it is obtained by
equating to zero the coefficient of w. For high frequencies the remaining term in (4.3) is

assumed of order one (high frequency approximation).

Having defined the concept of a ray, the coordinate system introduced and used
in the previous section remains valid for characterizing rays. The coordinate system
(7,71,72) introduced in the beginning of section 3, will henceforth be called ray
coordinates. A special case is the intrinsic coordinate system (7,7,,9), which will be

used in the present context.

However, it is convenient to solve the eikonal equation in the ray-centered
coordinate system (s,g4,9,). The process of solving the eikonal equation in th.is
orthogonal system is known as dynamic ray lracing. s measures the arclength along
the ray () from an arbitrary reference point to the receiver position M(s) and g4,9, are
the cartesian coordinates in the plane perpendicular to (, with origin at (). Details of
this system and its regularity are described in Cerveny (1983%). The scale factors of

this coordinate system with respect to the cartesian reference frame are

hy=1+q, ~22

% . h =h, =1.
v g4

1
298, TN %

The partial derivatives are evaluated at g, =0.

Defining K, as the local wavefront (or phase front) curvature matrix (in the
vicinity of (), the eikonal equation in the ray centered coordinate system of () is written
in the form of an ordinary non-linear differential equation of the first order of the Ricatti
type for K,, which cannot be generally solved by analytical techniques. Letting
K, (s) =v(s) P(s) Q~'(s), the eikonal is expressed as a coupled first-order ordinary

linear differential system (Cerveny, 1983%)

-390 -



Chapter i

d@(s) _
—e = v(s) P(s), (4.8)
%—)— = —w(s)? V(s) Q(s),

v
9q;9q;

. Solving this system,
gt =gj =0

[
where v is the P or § wave velocity and V;; = l

with specified initial conditions (point source or line source), for the 2 x 2 matrices
P(s) and @(s) determines K, (s). K,(s) is symmetrical, and in 2-D media, it reduces to

the scalar X, (total wavefront curvature).

It is shown that in ray centered coordinates, for a given point s on (), the
transport equations for the P wave principal component 1% (along the tangent vector to
) ) and for S wave principal components ! (along ¢4 ) and a2 (along ¢, ) are
independent. The ray centered coordinates 'untwists" the ray of its torsion, at every
point s of (), to its initial value at M. The unit vectors that constitute this coordinate
system are sometimes called the polarization vectors. In a weak heterogeneous
medium, the analytical solution of the transport equation for a receiver M(s) is given by
1/2

v(s)
J5(s)

Ao(S) =Cp (4.9)

where c is a constant characterizing an explosion source. For other sources embedded
in a homogeneous focal sphere, c, must be replaced by f (74,72;w), as defined in
equation (3.7). This is nothing else than (3.7b) expressed on the ray (). For P waves,
Ag = |2?%| and v(s) =afs) , and for S waves A, = [2f'] , or A4y = |2P?]|, and
v(s) = B(s). J° is the surficial Jacobian of the transformation from cartesian to ray
coordinates (7,74,72). It is computed via J5(s) = det[ @(s)], and measures the cross
sectional area of an elementary ray tube surrounding (1 . JS is related to J with the
identity given above (3.7b). Here h_=vhg. On the ray we have h.=wv. The Jacobian

JS , in the dynamic ray tracing method, results from the product of two Jacobians
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J5 = pot Dzy,2) = po! Nz,y,z) D(1,91.92)
T D(Ty1572) T D(1g1,92) D(Ty72) ]

or in terms of scale factors

JS = h71h,72 :h,q1hq2 det[Q] = det[Q]. (4.9a)

@ can be viewed as the Jacobian matrix of the transformation from ray centered to ray

coordinates, and consequently det[ @] is the Jacobian of this transformation.

The displacement is recovered via (2.21). Recalling that A, and T are only
functions of s, and that in the case of P waves the displacement is along the ray 5, we

have

1w
Ag +

. d .
U =p"2yy= Co p~1/2 [_U_ Ao ]e""""ﬁ ’ (4.10)

Since the ray solution is the far field contribution of (7, (condition (5.9)) we have

for the ray solution
U = co (pu /52 iweldTH (4.11)

Expressed in terms of a divergence coefficient (3.23) we have

31/2
r =c 89.”0% . iu‘rA’ (4.12)
pv

where C = U5 /iw = ¢,/ (pg'/? v,). Parameters with subscript O denote their value at

the homogeneous unit focal sphere surrounding the source. For a point source JOS =sinj,

(see 3.23).

Cumailative Frror

So far we have not raised the question of the error produced by replacing the
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exact solution of the Helmholtz equation by the first term in the geometrical optics

approximation. Let then
[ e
Y=Y *+¢ =%[1+%J, (4.13)

ior(1 —w2/a?)V 2

where Yy = Age as derived in equation (3.8), ¥ = Aoei‘", and ¢ is the

correction term.

With the provision @ > w. we have from (4.13)

Py
1TUC &)2 -
L O e N (4.14)
(o} 2w

Therefore, in order to have small relative error we must have
w > wir. (4.15)

This condition is defined as the Fresnel 1-condition. It is re-derived, within the paraxial

approximation in section 7, for a homogeneous medium.
Note that

lim

[Aad

Li =0. (4.16)

This means that in the radiation zone of inhomogeneous media (i.e. when eq. (4.4) is
satisfied), the error due to ray theory tends to decrease with the increase of the

frequency.

We can view (4.14) as a cumulative error along the ray and condition (4.15)
ensures that this error stays small. This can be shown by substituting (4.13) into the
Helmholtz equation and using the transport equation (4.4). We find that ¢ obeys its own

Helmholtz equation with a forcing term
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V2 A
2, 4 W -0 417
Vee + 2t y” Yo - (4.17)
Direct integration of Eq. (4.17) renders
1 ‘ VZAO 3
£= 4_17—f WOG(H?O)d 7o (4.18)
where the Green's function G satisfies
o2
VG + 255G = —and(# —7y) . (4.19)

v

In order to estimate the integral in (4.18) we apply the mean value theorem over a
finite volume element which is assumed to be the Fresnel volume. As we shall see in
section 7, this volume is a paraboloid of revolution. The source-receiver distance will be

taken to be ¥ . The volume is then
Vp = 57§ OT, (4.20)

where ¥ is the average velocity along the ray, 'r§ = AwvT is the first Fresnel zone

radius at the observer.

Eq (4.18) then becomes

1
en an —A-o——'lﬁo G Vg . (4.21)
average

with Fresnel volume, Vj, given by (4.20).

However, the absolute value of G is approximately equal to the wavefront
curvature, R, which is of same order as (77)™" , and V2Ay/ Ag = L5, Substituting

these values into (4.21) we find that the relative error &/, is small, if (4.15) is

satisfied (within a factor -g—). The relative error can thus be seen as a cumulative error
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along the ray.

Even within the limits of the above restrictions, the ray-series will fail to
represent the solution of the Helmholtz equation at critical points where the Jacobian in
(4.9) vanishes. For a vertically heterogeneous medium, according to Eq. (3.20), this

failure can be avoided if (see figure 2)

_ T
hj, # 0 P2= g7 #0 (4.22)

-e
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5. NEAR AND FAR FIELDS

We shall first derive intuitive conditions for inhomogeneous media from
extrapolation of the homogeneous case. Then, we shall define formally the far field
condition directly from the eikonal and transport equations. In a homogeneous elastic
medium, the displacement field of seismic point source such as an explosion is given

explicitly by the expression (e.g. Ben-Menahem and Singh, 1981)

ik A
- —m a
U= 02 v e ) (5’1)
4mpo A
ik, A
- “Tn-O _ l e a é"
4mpa? A A A

where m is the source seismic moment, k, = w/ ais the compressional wavenumber, A

is the source-receiver distance and &, is a unit vector along A .

Ifk A1 or A> A or 7> wave period, the expression

; [ kAl
» , _Timoka e @ ]*A’ (5.2)

UN anis2m | B

represents the far-displacement field. Since k A = wA/ a = wT where T is the P-wave
travel-time along the ray, it is expected that the far field condition in inhomogeneous
media will read accordingly

T>tg, (6.3)
where T given by (4.7) is the travel-time along the ray with intrinsic velocity v(s) (v
denotes either a shear velocity § or a compressional velocity o) and f, is some
threshold time which is characteristic of the particular inhomogeneous medium under
consideration. This threshold-time must be related to the threshold frequency of Eq.

(2.19) through the relation
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Qoto N1, (5.4)

For wave propagation in decoupled inhomogeneous media, both (2.19) and (5.3) must

hold simultaneously. Therefore, combination of both conditions yield
wT > wolg ™ 1. (6.5)

Similarly, the near field of (6.1) can be defined as k,A < 1. The corresponding
analogy for an inhomogeneous medium, taking again into account the decoupling

condition, becomes

o T K wtg, (5.6)
or
WT << —9—]2 , (5.7)
Wo

For a given velocity distribution v(s), Ay(s) and 7(s) can be calculated by
solving the eikonal and transport equations. The solution in (4.7) is physically
meaningful only if both the unit slowness vector § =v V7(s) and the local plane wave
amplitude 4,(s) are slowly varying functions of the coordinates. These limitations can

be expressed in mathematical form as follows:

Let s be the local direction of propagation along a ray in a ray centered
coordinate system. Then if A is a wavelength, the local change of the wave amplitude

over a distance of one wavelength can be estimated from

dAq [ dAy/ ds ]
E—_+"'=A°(S)1+A—_+"' . (56.8)

Ao(s +A) = Ag(s) +A
Ao

A slow variation of Ay(s) means that
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- dAo
k Ag > IP'VAol = s |

This is defined as the far field condition. Similarly, a slow variation of § means that

(5.9)

A< |p/ VB |, or expressed along the ray

duv

w >
ds

s (6.10)

where 7 is the local unit slowness vector tangent to the ray (normal to the wavefront)
(figure 2). Since, up to here we have assumed that the decoupling condition (2.19) was
satisfied and |Vv| = |dv/ds|, we conclude that the condition (5.10) is always

included in (2.19).

In vertically inhomogeneous media, we have shown in (3.24) that A, is equal
approximately to the total curvature of the wavefront. Denoting the wavefront radius of

curvature by £,,, we may write condition (5.9) in a new form
kR, » |DsVR,| . (5.11)

In homogeneous media A;=1/A , where A is a coordinate along the ray. Then,

| BsVAy| = 1/ A% and we fall back on the familiar far field condition kA >> 1.

Thus, in addition to our former requirements, o > wy which secures the
decoupling of the vector elastodynamic equation (2.1), and small variations the
slowness vector, and & > o, which guaranties the high frequency approximation, Eq.

(5.9) secure small variations of the local plane wave amplitude.

The far field condition (5.9) can be re-derived extending the error analysis used
at the end of the previous section to vector waves. Restricting our analysis to

compressional waves only, we define the error Ep along the ray ,

&, = DVY —BVYq , (5.12)

-47 -



Chapter ll

where f is the unit vector tangent to the ray.

To estimate &y We again postulate

21172
QJC

iwr[1 -
Yo = Aoe “

' (5.13)
’ ‘w = Ao et ,
Carrying out the differentiation as indicated in (6.12) with the condition (4.4), and

recalling that ds = v d, we obtain

s ¢ LMol (5.14)
A, ds |5 '

£p ~

where ¢ is the error given in (4.14). In order for the error ¢, be small we must achieve
(4.4), (5.9) and (4.15). The Fresnel 1-condition (4.15), when multiplied on both sides by

to, yields

Pl > T, (5.15)

[~

This relation has a simple physical interpretation. The far field region cannot be too
large, since it might interfere with the high frequency condition, introducing errors in
phase. Therefore, given a frequency, a receiver cannot be arbitrarily far away from the
source and is constrained by the Fresnel 1-condition (upper bound on source-receiver

distance).

6. WKBJ APPROXIMATIONS

We have examined so far the ray-series method through which the scalar
Helmholtz equation was approximated. A second approach which also leads to ray
theory is based on the following three steps: Assume first that the velocity depends

only on z.
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(1) Apply a double integral transform to the wave equation, leaving an ordinary

differential equation in the z coordinate.
(2) Obtain WKBJ solutions to the said equation.

(3) Approximate the inversion integral for the horizontal slowness, p, by saddie point

methods.

We shall provide here a case of sufficient generality such that the limitations of
the method become apparent while its interrelations to the other two methods can be

recognized.

We apply the Fourier-Bessel transform to the equation

m2

2

VZ
L ve(z)

Y =-2cy 6(z —2q) b (6.1)
where the transform is defined as
G (p,z;0) = ]?#(M,w) Jolewpr) rdr ,
o
where M(r,z) and Jj is the Bessel function of the first kind and of order zero.

Since G is an even function in p (axial symmetry with respect to the z axis) the
solution is obtained from the inverse Fourier-Bessel transform (Chapman, 1978), and has

the integral representation
it = 2L 16 (p,2,200) HEY (wprpdp | (6.2)
where Hé” is the Hankel function of the first kind and order zero.

G then obeys the ordinary differential equation
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2
d ZG +0? q2 G=-2c¢y 8z —2¢), (6.3)

dz

where q2(z) =v2(z) -p2. p and g are the horizontal and vertical components of

slowness, respectively.

The solution of (6.3) is given in terms of the two independent solutions 17/1 2(z) of

the homogeneous equation of (6.3),

cq Y1 (20) Yo (25)
V1 (20 U2 (20) ~¥2' (20) ¥ (20)

G(z |2zg;p,w) = (6.4)

where z . =min(2,zy) , 2, =max(z,z5). We approximate G by the WKBJ method

(Bender and Orszag, 1978) and obtain

Gwxps © ?—:—1 [q(z) q(zo)]_V2 eiw @) (6.5)
with
)= [ 9 d¢. (6.5a)
)

The dependence of p in q is implicit, see (6.3).

Then, H(%’)(wpr) is approximated by its asymptotic (i.e. far field) representation:
H§V (wpr) » (2/ (ropr)'/2 explivpr —in/4) as wpr - <. Equation (6.2) takes

intermediate form

WM & [ Alz|zgip.0) e®T® dp (6.6)
with
e oD 1/2
. — i
A(z|zg;p,0) =i cqe [2 mr q(z) q(zo)] s (6.7)
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T(p) = (p) + pr . (6.8)
We then apply the stationary phase approximation to (6.6) and find that the final result
is

Y (M,0) & B et¥m, (6.9)

where

172
Pr

l'r qr 9or I T”(pr)l

B=C1

with p,. = sinj /v =sinjy/ ve, g, = €0Sj/ v, and g4, = €OSj4/ Vg, Where the angies j's

have been defined in section 3, and T is the ray travel time, equal to (3.9) or (4.7).

B is equal to Ag in (3.19a), since h; = P, cosj catjo | T"(p,)|. Thus WKBJ

solution yields results identical to those obtained from geometrical ray theory via the
eikonal and transport equations (see section 4). Note that if we use a double Fourier-
transform instead of the Fourier-Bessel transform, the integral in (6.6) becomes a

double integral over p,, and p, where the wavefront equation is

]
v3(z)

1/2
-p? -P§] dz. (6.10)

F4
T=pz+poy + J

2

o}

Here (p,,p,) are the components of the slowness vector in the (z,y) directions

respectively.

The stationary phase principle is equivalent to Fermat principle of stationary time
and the equation for the stationary-point is in fact Snell's Law in disguise. The value of
the integral at the stationary point yields the amplitude and the phase of the seismic

ray.

If the velocity v depends on all three cartesian coordinates, the present method
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fails. We may nevertheless obtain an approrimate integral representation for weak

inhomogeneous media similar to (6.6) if we write

YHw) & [ [ Alryy720) €97 8(yy,72)dy,d 72, (6.11)

where T = T(M,T,71,7,). This representation may have a number of different
interpretations depending on the approximation used. The simplest way is to think of
the integrand as a superposition of eikonal solutions with ray parameters

(7172) - ®(y4,72) is a weighting function.

The WKBJ approximation of (6.11) which yields the geometrical ray is (Titchmarsh,

1967),
2miA(v (D y$00) i wT({0) 50
WH,w) & taikioe; e SAREs )| (6.12)
Ry,
Here ¥{9,7%) are roots of 8T _ O,QL =0, and
71 87,
az 62 5 1/2
_ T T ocT _w 1/2
=w - ==K 6.13
N = S Al (©19

Caustics are given by the equation R, = 0. The geometrical ray connecting the

source to point M has a travel time given by T(M,7,7{®,7%) = .

The expression

#rer [ #r P |7
2 5.2 dy 0y
K=12_ 8y 673 1972 ) 2 , (6.14)
v 2 GTJZ 2 GTJZ
1+v8|—| +v° |5
[671 #2) | |y =207, =29

is the Gaussian curvature of the surface T = T(yq,7,) at 7, =7$°),72 =7§°) (e.g.
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Eisenhart, 1909). Clearly, (6.14) is a generalization of (3.19) for a surface which is not

necessarily a surface of revolution.

7. PARAXIAL APPROXIMATIONS

In the ray series approximation we have replaced the Helmholtz wave equation
by the eikonal and transport equations which give a fair account of the field everywhere
at high frequencies. A different approximation is obtained if we restrict a priori the
wavenumber such that the wave is forced to be collimated in the direction of a given
axis (or a space curve). The simplest way to derive this approximation is by means of

the following artifice: we may formally uncouple the Heimholtz equation
o2

(¥ + —2) v = O into two equations, governing energy flow in the positive and negative
v

directions respectively. Thus, waves propagating in the forward z direction satisfy

2+ =+ —
x> 6y2

. 0
i 2

This formal factorization can be justified rigorously and the radical can be given a

]¢=0 ’ k=w/v. (7.1)

precise interpretation as a pseudo differential operator (Bastiaans, 1979; Corones,

1975). If we expand the radical in Taylor series assuming

2 2
4,0 « k2, (7.2)
pz2  ay?

we shall have

5 Y1/2 2
kz+ﬁz_+L] m}c+—1—[—a-2—+—a———+ higher terms.

px2  oy? 2k (8z® oy?

Consequently (7.1) will yield the pararial wave equation
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2 &
(=

where the potential P*" is a solution of (7.3), and not necessarily of the Helmholtz

+ 2%5@; + 2k2] PP =0, (7.3)

wave equation.

Substituting in (7.3) the ansatz yP%" = ¢%Zy(z,y,2), one finds that u satisfies the

{,

This equation is sometimes called the parabolic (Schridinger type) wave equation.

equation

92 82

—_— ——

622 a,yZ

.8 _
+ qua—z}u = 0. (7.4)

Consider first, the wave propagation in homogeneous media: an exact solution of

Eq. (7.3) is given by the Fresnel diffraction integral (Haus, 1984)

u(zy,2) = [ [ug(zoyo) h(z 2oy yo,2) 4z dyo (7.5)

—c0

where uy(zo,¥o) = u(xy,yq, 0) and h is the impulse response function

—ik ;'k_z(zz +33)
e .
2nz

(7.6)

h(z,y,z) =

In the limit z » O, h goes to &(z) 6(y) and Eq. (7.5) reduces to an identity. Moreover,
as long as h(z,y,z) is close to a delta function we shall have
PP (z,y,2) N e®Zyy(z,y) which means that there will practically be little distortion of

the original signal.

In order for h(z,y,z) to behave like a delta function its phase must have a
strong variation over a scale-length, say Iy , in both z and y directions. Taking for
simplicity, z, =yo =0 , the z extent of the region over which u, does not vary

appreciably ( probably z-independent ), is
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f—la’- »> 1, (7.7)

or
z A « 2112, (7.8)
A being the wavelength.
The entity 2w lé/A defines a region (upper bound on distance z) in which the
cumulative distortion of the signal is small. Recalling that 7, = (Az)'/2 is the radius of

the first Fresnel zone (e.g., Savarensky, 19786), the condition (7.7) can be recast in

the more physically-significant form
ré « 2mig . (7.9)

This is defined as the Fresnel condition .

Thus, in the paraxial approximation, a ray can be visualized as a central thread
surrounded by a volume (known as the Fresnel volume ), made of the first Fresnel zone
at each point. If we enlarge the cross section of this volume at each point beyond
(2m1/2 ly , the field associated with a given ray is distorted and the simple ray
concept will cease to apply. The condition for the first Fresnel zone is obtained (at any
point near the axis) from the requirement that the phase of a colliimated signal relative

to its phase on the axis does not exceed 1 (no destructive interference).
Since the equi-phase surfaces of ¥P%7(z,y,z) are (Eq. (7.6) with z;, =y, =0)

5 = ke +252—(z2+y2) = const (7.10)

the above condition reads

(z,y,2) —£(0,0,2) = -z’%(xz ry?) <. 7.11)

Denoting z2+y2 =r&, the inequality in (7.11) defines the Fresnel paraboloid
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2

kr
—2—:- = with a cross section 75 = (A2 Y172 | Inequality (7.9) thus states that ray

methods are not applicable whenever the distance between the source and the
observer is beyond a certain threshold. We shall later extend this restriction to general

inhomogeneous media as well.

Note that the impuise response h(z,y,z) can be derived directly from the
Green's function solution ¢ = %—ei"A of the scalar wave equation V2y +k2y = —4ns(R)

if we restrict the motion to the vicinity of the z axis

_ 2 2
4 (2720)" +(y o) (7.12)
2z

A=(z2+(z —xo)2 +(y _,y0)2)1/2 Nz

o 'f = 2o +ly ol |
L 8z J

and

kA
A

e

z’]cz] —ﬂi{( 2 +( )2 i .
e | % z—2o)? +(y—y, L%E&ezkzh(x_xo,y_yo,z), (7.18)

N
|

A sufficient condition for the accuracy of Eq. (7.13) requires that the maximum
phase change contribution by the next higher order term in the binomial expansion of kA

to be much less than one radian. This condition will be met if the distance 2 satisfies
23 > fA-[(x —z4)? +(y —yo)?F . (7.14)

This requirement is, however, not a mnecessary one. For the Fresnel
approximation to remain valid, it is only required that the higher order terms of the
expansion not change the value of the superposition integral (7.5), and for this to be

true the maximum value of the added phase factors need not be much less than ane

radian. If the distance z is small enough to violate (7.14), the quantity 2£z_ will be so
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large that the primary contribution to the integral in Eq. (7.5) will arise from points near

z =2xy,Y = Yo Such that (7.14) is automatically satisfied.

The Fresnel 1-condition was defined in (4.15). In a homogeneous medium
containing a body of scale length [, condition (4.16) [with v, = a/ l, and z=aT as the
source-receiver distance]. yields (7.9). The Fresnel 1-condition was derived by
imposing the hypereikonal to be approximately equal to the eikonal. However, when
paraxial rays are considered, simple investigation of (7.6) suggest that another Fresnel
condition must take into account the wavefront curvature effect on the travel time

extrapolation. The argument of the exponent is written in 2-D heterogeneous media

ik n
> (7.15)

where n is the ray-receiver distance, and R, = k' is the wavefront radius of
curvature . By an approach similar to the homogeneous case we obtain the Fresnel &-
condition
R,A <« 2mid (7.16)
which yields (7.8) in the homogeneous limit. Therefore, we can conclude that in weak
heterogeneous medium the generalization of the Fresnel condition in homogeneous media,
is
max[Rw,tx'r]A < 2nig, (7.17)

A new definition of the first Fresnel zone radius could be postulated (see 7.9) in

heterogeneous media; it is
ré =Amax( R, ,ar).

The solution of the parabolic wave equation in ray centered coordinate (Cerveny,
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1983%) is

172 e[iw‘r+ 2£Kw n?]
JS

WP () = cq (7.18)

where
K, =vP/@, (7.19)

is the total wavefront curvature, s is the arc length parameter, v is the intrinsic wave
velocity on the ray and n is the normal distance off the ray. Functions P and @ are
those defined in (4.8). The paraxial condition (7.2) constrains the distance n. In

Appendix C we show that in a weak heterogeneous medium (7.2) can be expressed as
n K, <1, (7.20)

which will be called the parazrial condition.

in media where (7.18) is valid, the inequalities in (7.16) will hold with £, given by
(7.19) and variable v(s) . However, since ray-centered coordinates are subjected to
the restriction n « £ ( regularity of the system ), F = K 1 being the ray local radius

of curvature, the additional condition imposed on the paraxial approximation is

n Kp € 1. (7.21)

8. GAUSSIAN BEAMS

An important contribution to ray theory in weak inhomogeneous media was made
in recent years (Cerveny, 1982) by adapting the Gaussian beam concept to the
asymptotic solution of the elastodynamic wave equation in a ray-centered coordinate
system. Previously, Deschamps (1971) and Felsen (1976) have shown that a Gaussian

beam can be mathematically realized by allowing the source coordinates to be complex.
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The ensuing Green's function then leads naturally to the Gaussian beam concept.
Gaussian beams have been used to model fault zones (Cormier and Spudich, 1984), and
to model surface waves in smooth laterally varying media (Yomogida, 1984; Yomogida
and Aki, 1984). We shall give now a brief summary of this method and formulate its

validity conditions.

Gaussian beams represent high-frequency asymptotic solutions of the
elastodynamic equation (2.1). These solutions are concentrated close to rays of P and
S waves. The amplitude distribution of the principal component of the beam
displacement in a plane perpendicular to the central ray is bell-shaped (Gaussian) with
its maximum on the ray. The Gaussian beam solution can be viewed as an analytic
continuation of the ray solution described in section 4, by allowing the phase function to
be complex valued and the solution to be one way (in the direction of increasing s).
Equation (2.1) reduces to the parabolic equation (similar to eq. (7.4)) in the high

frequency approximation.

Rays {Q)} and travel times {7} serve as support for the beam computations,
except that rays are not required to hit the receiver. Ray centered coordinates are
used. For a given ray (0, the trial form of solution for the principal component vector of
displacement, in the frequency domain, of an individual (elementary) Gaussian beam at a
receiver M(s,q4,95) is

a7 KO ()¢

io[r(s) + 790

N 8.1
' P = a7 (s) e 1 8.1)

where (jT =(g4,92) Kf", is a 2 x 2 complex valued matrix, ¥, and -, are the ray
parameters of (). Solution (8.1) is of high-frequency type (zero order term of an

asymptotic series in inverse square-root powers of frequency).

For a given ray (0, the eikonal equation is of the same form as (4.8), but now P,
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Q and JS are complex valued (K® =v P@ 'and J5 = det Q) . Re {K%}=K,, controls
the geometric properties of the Gaussian beam local wavefront curvature, whereas
Imil(f",; governs the amplitude profile of the Gaussian beam in the plane perpendicular to
Q . In this fashion the Gaussian beam solution has no singularity since JS is complex
and never vanishes even at caustics. A useful quantity is the matrix of the half-width
of the Gaussian beam related to Im (&) in the following way

-1/2

L= -g-nmu(; , k=w/v . (8.2)

We specify two linearly independent sets of real initial conditions for P(sq) and @(sg) .
Generally we choose a point source (or line source) and a plane wave as independent
initial conditions. We then solve separately the two real eikonal equations and
reconstruct the complex solution by superimposing the two real solutions with
appropriate complex-valued constant. In three dimensional heterogeneous medium, six
real-valued parameters completely specify the beam. In two dimensions the number of

parameters reduces to two.

The transport equation is of the same form as in the dynamic ray tracing
formulation, and its solution is similar to (4.9). In terms of a divergence coefficient and
for the displacement we get (see 4.12)

IRVE
Po Vo I A (8.3)

7172
a4 =¢ s ’
(s) (71 '}'2) p(S) 2(s) Js(s) wp

where &(v,,7,) is the complex weight factor of each elementary beam, and p is the

unit tangent vector to the ray (.

The high frequency displacement at a point M is then reconstructed by super-

imposing Gaussian beam elementary solutions. For the the P wave displacement * we
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have, in the frequency domain,

P (M,w) = ff 072(M,0) dy,dy,, (8.4)

the integration being done over all rays passing through some neighborhood of ¥ .

If 5(w) is the spectrum of a point source, the P wave displacement in time
0P (M,t) is computed following

o0

o) = 1;Re J o) P (M w)eetd o). (8.5)

Integrating first with respect to the ray parameters , then performing the
frequency integration corresponds to the so-called spectral approach. If the frequency
integration is done first the method is called the wave packet approach. Since ray
parameters , 7;, are related to horizontal slowness, the wave packet method is

equivalent to the slownwess method (Chapman, 1978).

In the two dimensional case matrices P and @ are scalar complex functions as
well as K2, and L . The factor (y,,7,) of each beam is reduced to &(y;). Two real free
parameters are then at our disposal. The so-called initial beam parameter 5, and the
distance d of the minimum of the half-width function L(s) from the initial point M,. This
distance corresponds to the location at which the beam matches the wave field. We
define a complex parameter ¢ = d —15. This parameter weights the contribution of the
plane wave initial conditions with respect to the point source initial conditions. The

existence condition of the beam imposes B > O.

Equation (8.4) may be visualized as a superposition of WKBJ solutions (6.11)
(Popov, 1982). It is shown by Madariaga (1984) and Klimes (1984) that, for the
limiting case B-x, the Gaussian beam solution (8.4) tends to the WKBJ solution as given

by Chapman and Drummond (1983).
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The determination of the factor ®(y,) of each beam is done by matching the

asymptotic form of an exact known solution to the saddle point contribution of (8.4).

Gaussian beams are subjected to all the limitations imposed so far on ray theory

and three more:

(1) The coordinate system regularity condition (7.21)

nKp €1, (8.6)
(2) The paraxial condition (7.20)

nkK, <1, (8.7)
(3) The Fresnel condition for a beam (7.17)

max[ | kS| ,w'r)A < 2nig . (8.8)

The modulus of KSJ is taken since we expect that the beam width L(s) must be
constrained by this condition. Written as it is, we can have L <« lg, which is an
appropriate condition since we are only interested in high frequency Gaussian beams (no

diffraction).
9. CONCLUSION

The limitations of asymptotic wave theory in weak inhomogeneous media were
formulated in a systematic way. New physical parameters characterizing medium
properties have been defined. Conditions of validity were derived explicitly. They can
be summarized as follows:

(1) Mode decoupling condition w wg' > 1, where w, is the medium

threshold frequency.
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1

(2) High frequency (radiation zone) condition w w_' > 1, where w_ is

the medium cut-off frequency.
(8) Fresnel t1-condition w? e 2 s> @ T, T being the ray travel time.

(4) The far field condition k Ay > |DVA4,|, where A, is the local plane

wave amplitude.

In the paraxial approximation, especially for Gaussian beams, the validity

conditions are (1-4) and:

(56) Regularity condition m Kp « 1. where n is the ray receiver

distance, and Ky, is the ray curvature

(6) Paraxial condition n K, « 1, where K, is the total wavefront

curvature (real).

(7) Fresnel 2-condition A | K% |~" <« 2r &, where K?, is the total beam

wavefront curvature (complex), and I, the medium characteristic length.

Aithough condition (1) and (2) were assumed to be one and the same in the
present paper, we have kept them as separate conditions mainly because each of them
have a different physical interpretation. Additional exact solutions for other realistic
inhomogeneous media should be sought in order to enhance our understanding of wave,
ray and beam propagation in the Earth. There is also an urgent need to develop new

methods for the approximate analytical quadrature of the superposition beam integral.
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jO. APPENDIX A: Perturbation solution of (2.23) and (2.24)

A further change of variable ¢, = ¥; p‘1’2 i =1, 2, reduces Egs. (2.23) and

(2.24) into the simpler form

8%y 32
Ry, - -2 =g, i2 - Ly £y(2) = , A1
1 2 3t2 2 322 | 2 2 M2 (A.1)
2 1 aZYZ
VY - =8l £1(2) =72 . (A.2)
vZ ot

iIn the derivation of this equation we have again neglected a term

5 .
—l—p 2 ¥.[(p")? —2pp"] on the left hand side of each equation, in accord with our

previous scheme.

Egs. (A.1) and (A.2) represent a coupled system of wave equations for the
unknown potentials Y, and Y,. One may obtain a single equation of the fourth order for
Y, by simply substituting Y, from (A.2) into (A.1) and dropping terms of second order
in the derivatives of p, 4 and v,. This approach, however, complicates the solution
unnecessarily. Let us assume that ¢, and &, are small everywhere and that a

perturbation scheme of the first order is feasible such that
Y, =Y +5,Y]; Y,=Y3 +5,7) . (A.3)

Egs. (A.1) and (A.2) then yield

vaO__1_ =0, =1,2. A4
#PY 2
vy} - L = - L ve (A.5)
1}12 ot \ 0z
1 P13
Ry} - — =Y?, A6
2 1122 Btz 1 ( )
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where the Y; are calculable to order £?.

The corresponding displacements are obtained via a combined use of Egs. (2.22)

and (A.3) . For the compressional wave we have

'

[ ,
Uy, =p 172 |VY? +£,VY] +§,Y?[£7— 2L

]
A7
>\+2,u,]’ a7

and a similar equation for U,. Forg; <1, U,+0, in (A.5) reduces to Uin (2.21).

11. APPENDIX B: Hypereikonal of the elastodynamic equation

An exact solution of the vector elastodynamic equation for SH waves in general
vertically inhomogeneous media (Ben-Menahem and Singh, 1981) is U= Vx (&, ¢) where

® =7n"/2¢ obeys the equation

2 2
?o+ |9 -2l =0, (B.1)
v 'UZ
and
1 g2 1 {auf
2= S & _ |28 (8.2)
2p dz? Aup|dz

The corresponding solution of Eq. (B.1) for this case is

.. N1/2
[,wusm]o] iwr(l —w2/d? ~wi/u?)V/2
—_— e .

rh.jo

o~ (B.3)

Similar solutions exist for P and SV wave motion in weak vertically

inhomogeneous media in which decoupling is maintained. For P waves:

d 2
2 _ At 91_]_du,g1+)\+2p, d’ A+2u|dp , (B.4)
p dz 202 d2?2  4p® |dz
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For SV waves:

dg 2
w§=A+y 2 1 dA ) i dg p,a dp ’ (B.5)
p dz pdz 207 d2?  4p® |dz
g, = & |24 1dp)
27 N+ulpdz  pdz

12. APPENDIX C: Paraxial wave condition

We assume that the medium is locally homogeneous, and that its properties do
not differ between the central ray and the observer. In equation (7.18) the phase
factor can be viewed as a second order Taylor expansion of the travel time away from

the central ray

s,n) = 1(s,0) + 222— E’—”— (c.1)

v

Figure 3 leads to a geometrical value of 7(s,n)
6
7(s,n) = 7(s,0) + %— , (C.2)

where £, zKl;’. Thus 6R, =n2[gu/2. The expansion in (C.1) assumes

SR, K, <« 1, which is satisfied if

nkK, 1. (C.3)

In 2-D media, the paraxial condition (7.2) is written in the frequency-wavenumber space
as

2

k2 < k=2, (C.4)
v

where k, is the wavenumber component along the n direction (normal to the ray).
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Define kg the wavenumber component along the s direction (tangent to the ray), then
k2 =Ic,f +k52. The angle y between the two vectors k and Es links the paraxial
condition (C.4) to the geometry of the wavefront (figure 3). We have

k

n o _ n
k = R, +0R, (C.5)

siny =

The paraxial condition is then siny <« 1, and since we impose in the expansion (C.1)

that R, > 6R,, we fall back to (C.3). Therefore (C.3) justifies the travel time

expansion (C.1) and guarantees the paraxial condition (7.2).
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WAVEFRONT

CENTRAL RAY Q

~See
e
Tt ow -

Figure 3. Geometry of the Paraxial wave condition
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11l. A CANONICAL PROBLEM

Science is an attempt to represent the known world as a closed system
with a perfect formalism.

- J. Bronowski

1. INTRODUCTION

Asymptotic wave methods (AWM) are able to give an approximate answer to
many problems of seismic body wave propagations in generally heterogeneous media
(Cerveny et al, 1977; Aki and Richards, 1980; Ben-Menahem and Singh, 1981). They
are fast, robust and, usually reduce to simple geometrical considerations. Their
accuracy is based on asymptotic conditions that have been derived and described in
chapter Il. The results are considered reliable as long as the "asymptotic conditions are
satisfied''. However, when a condition "starts"” failing, it is difficult to know how bad or

how fast the breakdown occurs.

The most direct approach to test these conditions would be to compare AWM
with an exact solution (Green's function) in the type of media considered. For example,
the ray solution in a homogeneous medium can easily be derived from the Green's
function (chapter I1). However, the homogeneous medium is a degenerate case because
it has no characteristic length, frequency etc. Closed form Green's functions are very
difficult to obtain for media other than the homogeneous case. And when they are found
(Hook, 1961, 1962; Lock, 1963), they represent an exact solution of the elastodynamic

wave equation requiring specific conditions on the medium that often are not physical.
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The next approach is to compare AWM with wave methods obtained by numerical
procedures (finite difference, finite elements, reflectivity method etc.). But here again,
numerical conditions (medium discretization, source periodicity etc.) must be fulfilled in
order to get accurate results. Further, the comparison can be undertaken economically

only for small-sized medium (near-field methods).

The present chapter deals with a comparison of AWM using the first approach. A
second canonical problem (other than the homogeneous case) is considered. The
inhomogeneous medium is that of a constant gradient model where exact mode-
decoupling exists. Hook (1962) treated several problems ;:oncerning the separability of
the elastodynamic wave equation, and showed that Green's functions, for an impulsive
point source, can be obtained in this medium. The aim is to define clearly the range of
validity of AWM in this medium. Two asymptotic wave methods are described. The
dynamic ray tracing (DRT) method developed by Cerveny (1981), and its generalization
the Gaussian beam (GB) method are set up in this medium. The DRT solution obtained
analytically from the ray formulation is re-derived from the Green's function with the ray
conditions developed in chapter |l. Gaussian beam parameters are defined and
discussed. Beam conditions derived in chapter Il are shown to be necessary and
sufficient. Comparisons between DRT and GB are shown. As an application of the beam
method, a vertical seismic profiling (VSP) section with offset from an explosive source

at the surface and a surface seismic section from a shallow earthquake are presented.

2. CONSTANT GRADIENT MODEL

Considering the propagation of elastic waves in isotropic media with physical

parameters that depend on the cylindrical coordinate z alone (oriented downwards) and
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with constant Poisson ratio, the elastodynamic wave equation reduces to (Hook, 1962)

-

2 - 2
pgtg = YWuWeD) =V x(uV x 0) + 24 [0" - 8,90 + &, x(Vx D)1 + pF', (2.1)

o~

where y = (\+2u)/ u = o2 / 2 is constant, &, is the unit vector in the z direction,
and a prime denotes partial differentiation with respect to z. Fis a body force

distribution per unit mass.

Looking for a particular solution of equation (2.1) let us assume that it has the

form

A
Ja

A

U
fa

V(f2e1)— 7 Vx[f4 Vx(&; p2)] —V x(&; ¢3) (2.2)

and that the source is specified as an explosion at 7,(r =0,z =2,), with strength F,
(dimensionless quantity), where r denotes the radial distance of a point to the 2z axis.

We have

an Fy o
Pty = —%—°—‘-"-—v (72 86 7)) ace), (2.3a)
1
or equivalently
, 2F, o
F(r,z;t) = —-{?LV f2 6(:) 8(z —24) | 6(¢) . (2.3b)
1

Here f.'s are dimensionless functions of 2, and y;'s are potentials whose dependence
on the coordinates and on time are unrestricted. If the seismic moment is mg, then
mq = —41m py o Fy Xunit volume. Hook (1961) has shown that there exist a wide
class of elastic media for which the above representation is feasible. In these media the

potentials satisfy the coupled differential equations
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, & 2 2F,
Voi+t19q +hapr—a a;’ =7'182(V2—§t—2—)¢2— T° 8(r)6(z —zg)6(t), (2.4)
' 62502
Vo, + £ ¢2 + 3 ¢2 -g=2 32 T &P (2.5a)
] , 62
Vs + Eops' —p7 6:023 =0, (2.5b)

where V2 denotes the Laplacian operator, the ¢; are functionals of the constitutive
medium parameters and their derivatives, and &4, ¢, are coupling factors with similar
functional dependence. If f,=f, and f3=f, , then ¢, :p'/p, the prime denoting
partial differentiation with respect to z. The waves represented by ¢ are called SH

waves, and are not excited by the source (2.3).

In the present chapter we shall be interested in a medium where the
compressional and shear wave velocities are linear functions of the coordinate z (figure

1). For a parameter >0 and a, 2,25 >0

a(z) = «(0) (1 +n2),

B(z) = B0)(1+n2),

p(2) = p(0)(1+7n2)%, (2.6)
w(z) = w0) (1 +n2)et2,

Nz) = NO0) (1 +nz)e+2,

where a(0) = = _:Jzo and p(0) = (—1:%(;—0-)—5—.

1£(0), A(0), and 8(0) values follow from relationships between the elastic constants.
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i ~
/

r

|\ RAY
jo=const.

WAVEFRONT

Figure 1. Wavefront and rays in the canonical model

-73 -



Chapter lil

The source is located at (r=0,2z =2,) where the P velocity is oy and the density is pg.
For convenience of notation we set h = n". The surface z =0 is not a free surface.
The region z=>0 is the restriction of a medium whose properties still obeys squations
(2.6) for =h < z <O (figure 1). Therefore the solutions do not include waves other than

the direct wave (no surface waves, multiply reflected waves etc. ). Note that a(—Ah)=0.

In this medium ¢, =’/ 4 and £, = &3 = &; = &, = 0, and equation (2.4) reduces

to

, 82 27
Vo + 5:; ¢ —[a(0)(1+12)]7 a? == T° 8(r)sz —zg)é(t) . (2.7)

The prime denoting partial differentiation with respect to z. Here waves represented by
@2 in equation (2.6a) are the SV waves and are not excited by the source function
(2.3). The P wave source generates only P waves (perfect decoupling), and since no
boundaries are present, only P waves will propagate. The displacement vector in (2.2)

reduces to

1

0=
S

V(f2 1), (2.8)

Zo+h.
z+h '

where f,=f% and f,=

Define the Fourier transform of a time function ¢(t) as

p(w) = f olt) et dt,

—o0

and conversely, the inverse Fourier transform of a spectrum @(w) as
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P(w) e 29t do,

b=

.
#(t) = 2n

Transforming equation (2.7) into the frequency domain, the equation for the

Fourier-transformed potential p, becomes

— 2+a _ — 2F0
V27, + —ih P +k27,=— - 8(r)é(z —24), (2.9)

The explicit solution of equation (2.9) is expressed in terms of the bi-spherical

coordinate ¢ and the cylindrical coordinate z (Pekeris, 1946) and is found to be

o = F 2g+h (e +3)/2 eim(1—ucz/uz)’/2 2.10)
Pilw) = Fg , .
2z +h Rw
where
_ 2z +h _ -1 _ -1
to = «(2) =[n a(0)]™' =(2a) 7",

we = (1+a) wy,

R,, = (24+h) sinh¢,

T = £ty

Rays and wavefronts are exactly determined in terms of the bi-spherical
coordinate system (¢,75). The third bi-spherical coordinate denoting the angle of
rotation about the z -axis is not present because of the axial symmetry of the problem.

The travel-time along the ray from the source to the receiver is T = ¢ ;. The ray
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curvature at the receiver is expressed as k' = sinjo/ (zo+h). Rays are curves with
jo = constant, since in a medium with constant velocity gradient the ray curvature is
constant. These are arcs of circles with centers at (r, =(zy+h) cotjy,z=—h) and radii
R. Consequently, the coordinate of the ray turning point is (7;,2; =F-h). Wavefronts
are surfaces with ¢ = constant (constant travel time). These are spheres with centers
at (r=0,z=2.) and radii ,,. The coordinate £ can be viewed as a normalized arclength
(d¢ = ds/(z+h) ) or a normalized travel time (7/ t, ) along a specified ray with takeoff

angle jg.
Define
R1 :[rz +(Z—z0)2]1/2, and RZ =[,,.2 +(Z+Zo+2h)2]1/2 .
The relations between the two systems (£,j,) and (r,2) are given by the equations

(Zo+h)sinj0
~ coth¢ —cosjg ’

2g +h
sinh¢(cothé — cosjg) ’

z2+h =

R
= 2tanh™'| ——|,
¢ an [R

2

= it 2r(zg + h)
Jo = Sl R1 RZ
_ Ry R,
T 2(z +h)’
Ry R,
or

The geometrical meaning of Ry, R, and K is shown in figure 2.
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Figure 2. Geometrical representation of quantities in the canonical model
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Ruj‘ = K, is defined in part | as the total curvature of the wavefront. Here,
since only this definition is used, we shall refer to it as the wavefront curvature. The
two medium's characteristic frequencies w, and w_ are the same as those defined in
chapter Il. The definition, in chapter Il, of the threshold frequency is

wo = ;—max |Va|,|Vﬁ|,cx—l—Vp£L = g-a(o) max(1,7"/2,a) .

Anticipating that the density variations are small (a<1), we obtain wy = a(0) n/ 2. The
cut-off frequency is defined, in chapter Il equation (3.5), as w, = a IVZAO/ Aoivz,
where A, is the amplitude function of the local plane wave, appearing in the transport
equation. w, is shown to be equal in Chapter Il equation (3.27), to wy in a constant
gradient medium where the density is constant (a =0) which is directly verified in this

context. The medium characteristic length {5 =a/ wy, is equal to 2(z +h).

The inverse Fourier transform of equation (2.10) yields (Abramowitz and Stegun,

1972)

zo+h
z+h

, (2.11)
Ry

p(t) = Fo

where

2
golt) = 8(t-7) —(—q%l-l

G1(&) H{t-7),
G = J,(Q/¢,

with¢ = — %‘— (t2—r2)1/2,

-78 -



Chapter lii

Here 6 and H are, respectively, the Dirac delta and Heaviside unit-step generalized

functions and J, is the Bessel function of the first kind and of order one.

The second term in go(f) is attributed to the presence of dispersion in
inhomogeneous media. The dispersive properties of this medium are controlled by the

cut-off frequency .

The displacement vector is obtained directly from equation (2.8) by applying the
gradient operator to ¢,(t) or to @;(w). Following Hook (1962), expressing this vector in

terms of the mixed, non-orthogonal, coordinate system, yields

9

B2 z (fz 901) s (2.12)

where h, = 2 +h is the scale factor for the coordinate ¢.

In the frequency domain

U(w) = Tl) E + T(0) £, (2.13)
where
3 _ 2o +h (72 Goty (1-02/ 0PV 22/ R, iur(l w2125 14
u€(&)) = FO e - )
z +h R, (zo+h) ’
and
+3)/2 .
T(w) = —F |2 N (245 1=/ e
20T N0z 4k 2 7 R, (zg+h) S
In the time domain
U(t) = u)E + u,(t) 2, (2.16)
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where
(a+3)/2
_ zgt+h g1(t) + 2z, go(t)/ Ry,
wdt) = ~Fo |75 R, (zg+h) ’ (@17)
and
(@a+3)/2
_ zgth a+5 golt)
w(t) = —Fo | 5% (=) R, (zo+h) ’ (2.18)
and where
z, = (zg+h) cosh¢, (2.19)
8go(t) , 2
g.(t) = tg g;t = to6'(t—T) — to S‘—I—%'—)——[%cS(t—T)—GZ(() H(t -1 |,
_ a+1 i
GZ(O = G1(<‘) + 2¢ T Jz(('),

where §'(t) denotes the derivative of §(t), and J, is the Bessel function of the first

kind and of order two.

Note the strong resemblance of (2.14) with the frequency domain solution of the

Green's function in a homogeneous medium (see 11.5.1).

The components of the vector particle displacement of the P wave in an
orthonormal coordinate system (r,z) is of interest. Therefore, if Uis expressed in the
non-orthogonal coordinate system (£,z), the vertical component in the orthonormal

coordinate system (r,z) is the covariant component of U along the z axis

G, = Uef =upgye + uy s (2.20)

z

and the radial component is the covariant component of U along the r axis
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G = Us? =ugg,, (2.21)
where
— %es = 1 0z
926 = £°% = 0R B
and
= E.A = —1—6—7‘
Ire z+h OF

From the relations between z, r and { it follows that

cosh{ cosjg — sinh¢

9z¢ = {coshf — sinh¢ cosjg) ’ (2.2?)
re = le' (2.23)

Note that if j = cos™'(%£) is the angle of incidence of the ray, cosj =g,¢ and sinj =g, .
At the ray turning point we have K=z +h, leading to g, E=0’ therefore the only vertical

contribution in (2.20) comes from u,.

If o(t) specifies the point source time function, then the P wave component of

the particle displacement W(M,t) at a point M(r,z) is given by

W) = G,(Mt) * o(t), (2.24)

where * denotes a convolution operation. We have a similar equation for the radial

component replacing G, by G,.

We shall compute the synthetic seismogram resuiting from (2.24), and compare it to that

calculated by asymptotic wave theory.
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3. THEORETICAL SEISMOGRAMS BY THE DYNAMIC RAY TRACING METHOD

In this section the eikonal and transport equation will be solved analytically for
the medium described in section 2. Then, we will show that, with the ray conditions
developed in chapter I, the Green's function derived in section 2 reduces to the ray

solution.

We shall refer to the in-plane as the plane spanned by the ray trajectory, and
the out-of-plane the piane perpendicular to it. The in-plane dynamic ray tracing system,
in the constant velocity gradient medium described in section 2, for P waves and for a

point source, can be written as (see 11.4.8)

dP(s)
ds

=0, (3.1)

dQ(s)

prramali a(s) P(s) .

The out-of-plane dynamic ray tracing system in this type of medium is exactly of
the same form as (3.1) replacing @ by Q-L and P by P-L The initial conditions of this

system for a point source are:

P(sg) = PH(sy)/ sinjg =ag? , (3.2)

Qso) = @-(so) =0 .
Solving this system, yields:

P(s) = P-L(s)/sinjo =ogt, (3.3)
Q(s) = @H(s)/sinjg = ag" [ als) ds .
%0

-1

The functions @ and P have the dimensions of length and time ™', respectively.
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If this integral is evaluated, the P wave ray displacement in the frequency domain
is given by (11.4.12)

)17
Po %05

U =¢C
(w) o JS

iweldTE, (3.4)

where C is a constant depending on source initial conditions, E is the unit vector
tangent along the ray, and T the travel time. The source neighborhood is assumed to be
homogeneous at least up to the unit sphere surrounding the source. We have (11.3.23)
J5 =sinj,, and (JS/JI5HV/2 =(Q QL/sinjo)V2 = . For the medium properties

described in section 2, (3.4) yields

(a+1)/2 )
o zg+h iw eteT o
= 3.5
U'(w) = C =R 0 (3.5)
Rewriting the equation for @ in terms of the angle of incidence of the ray, j, yields
) . ds
Q) = a5 f afs) F73 dj , (3.6)

Jo

ds/ dj is the radius of curvature of the ray. In vertically heterogeneous media the ray

parameter p = sinj/ a is constant along a ray. Thus

. dj dz dj
do = cos —]—=——J-,
7 ds p
yielding
d _ , dx
as P 4z

Since a(z) = a(0)(1+n2) we have
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ds _ z°+h
dj ~ sinjg ’

which is constant. It is easily verified that ds/ dj is indeed equal to K given in section

2. Snell's law reads sinj/ ag = sinj/ o, and applying it to equation (3.6) renders

Q(s) = R (cosjo —cosj) =

sinjg sinjg (3.7

It is equivalent to specify the function @ as a function of s or of £, since both are
curvilinear coordinates along a specified ray. The radial distance 7(£) contains the only

dependence on £.
Since sinj, = (zg+h)/ R and Rr = (2 +h)R,,, equation (3.5) becomes

(a+3)/2 |
W

. _ Zo+h eic.rr -
UT(CO) = C _2+_h Rw f (3.8)
in the time domain,
(a+3)/2
_ 2oth 5 —-71) 4
o) = -C — —-R—w-—g. (3.9)

As the main focus is on the vertical component of the P wave, the orthogonal

projection of vector 0" on 2 yields "+ = U” cosj where cosj =% . From Snell's

T
law we get sinj = ——, leading to
Ry

L T 2 1/2
cosj = |1 — (_R:) : (3.10)

It is easily verified that cosj =g, which is given in equation (2.22).

If the point source time function is o(t), and for an isotropic source radiation
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pattern, the P wave vertical displacement #”(M,t) at a point M(r,z) is computed via

+h a+3)/2 N
wr(M,t) = —C %o ]( gt =7) o (3.11)

—_— R osj.

z+h

The radial component of displacement is obtained simply by replacing cosj in (3.11) by

sinj.

The ray curvature is in general equal to

1 da
Kp = - — —,
R o on
where n is along the direction normal to the ray, oriented ﬁ=d§/ d ¢ This direction is

identical to the j, direction introduced in section 2. Recalling that the scale factor for

the j, coordinate is hj0 = (zy+h )(coth¢—cosjy) ™", it can be verified that K = k.
Further note that, in general, the curvature of the wavefront K,,=a P/ @ is here equal

to a0y @)~ and is indeed equal to R

The exact solution {Green's function) for the displacement field in the constant
gradient model described in section 2 ( equations (2.14) and (2.16) ) reduces to (3.8)
using the ray conditions (see Il). These are the following: (1) mode decoupling condition
w/ wy > 1; (2) high frequency (radiation zone) condition v/ w, > 1; (3) Fresnel 1-
condition «? w72 » wr; (4) far field condition k Ay > |dAg/ds|; where

Ao = cg (as J5)'/ 2 (see 11.4.9) or explicitly

172
Ao =C0 0‘0 ] N

T Ry

where ¢ is an integration constant (see 11.4.9).
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In this special medium we have perfect P/S decoupling, and condition (1) is linked
to condition (2) by w, = (1+a)w,. Therefore violating (1) will not, in this case, yieid
mode coupling but will violate (2), thus rendering non-oscillatory waves. Condition (2)
approximates (1-w2/ w?)'/2 by 1. Taylor-expanding the argument in the exponent of
(2.14), with condition (2), we obtain (3). This is the Fresnel 1-condition that we have
derived in chapter Il. It is necessary since condition (2) must also approximate
iwr(1-w2/ «?)"/2 by iwT. Expressing condition (4) in the coordinate system (£,2), and
recalling that dAy/ ds = (2 +h)™ dAy/ d¢, yields

ZC

ity > z (3.12)
where ty = (2+h)/ .
This condition implies that we neglect the terms z_/ K, in (2.14) (near field term) with
respect to wt, (far field term). Equation (3.12) can be written in terms of wy = (2ty)7",
and since the right hand side of (3.12) is always greater or equal to 1, this condition
includes ray conditions (1) and (2) (provided a <<1). Therefore, failure of condition (2)
(or (1)) would necessarily fail condition (4). This can be explained by the fact that in
equation (2.14) and (2.15), as w gets closer to wy, first the near field terms cannot be
neglected compared to the far field term. Consequently, the approximation of the phase
term by w7 in the exponent gradually breaks down. Therefore increasing the velocity
gradient (w,) leads to a far field breakdown followed by a phase distortion, due to
medium's dispersion properties. In the time domain, this phase distortion effect is

caused by the approximation of g,(t) by 6(t —).

At a ray turning point cosj = 0. The vertical displacement (3.11) vanishes. But
the exact solution gives a non-zero contribution (in 2.20). This does not mean that the

ray result is inaccurate in this zone. It is easily shown that, if the far field and the high
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frequency conditions are satisfied, the magnitude and direction of the exact vector
displacement is correctly represented by DRT. We shall verify this statement

numerically, in section 7.

The decoupling condition (1) can be thought as requiring the ray radius of
curvature to be much greater than the wavelength, the high frequency condition (2) as
imposing the displacement field for P waves to be along the ray, and the far field
condition (4) can be seen as requiring the wavefront curvature change along the ray
times the wavelength to be much smaller that the wavefront curvature. The Fresnel 1-
condition requires that the far field region must not exceed a certain uppér limit
governed by the high frequency condition (2). This imposes a limit on how far the
observer should be. In the present medium, conditions (1) and (2) are equivalent (since
we =(1+a)wg). Whether or not the threshold frequency is of same order as the cut-off
frequency in a general medium, requiring therefore only one medium characteristic
frequency, is still unknown. However we have postulated in chapter Il that these two

values are equal in the context of ray and paraxial ray (or beam) methods.

Comparison of the asymptotic solution of the Green's function with the ray

solution determines the value of the constant C introduced in (3.4)

020+h- ao

This relation links 7, to c, and ¢ defined in Chapter Il (4.11-12): ¢, = Fy pg” 2.

The Fresnel 2-condition B, A < 2m 12, was not necessary in deriving the ray

solution from the Green's function. We shall test this condition in section 7.
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4. THEORETICAL SEISMOGRAMS BY THE GAUSSIAN BEAM METHOD

The Gaussian beam formulation will be set-up for the medium of section 2.
Various beam parameters and initial conditions are defined. Beam conditions of validity
are presented. The elementary Gaussian beam solution, for a point source in a two-

dimensional medium, can be written in the form (see 11.8.1 and 11.8.3)

1/2

. S
7o(Mw) = b Po %o J5 i eiel T+ n2P/2Q] £ (4.1)
) S Jg °?
p ot 0
where j, is the ray parameter (takeoff angle) characterizing the central ray, 7 is the

travel time along the ray, gjo is the unit vector tangent to the central ray, n is the

distance from the receiver to the central ray. J§ = sinj,, and the complex Jacobian JS

is equal to @ QL and

P(s) = Z (Py(s) + & Py(s)) (4.2)
Q(s) = Z(@y(s) +& @y(s)),

PL(s) = PA(s),

@L(s) = @),

where subscripts 1 and 2 in (4.2) denote two linearly independent sets of real initial
conditions and solutions of the complex eikonal, Z is a complex constant and
¢ =d —1i B (both values are dimensionless). The two beam parameters d and 5 are
those introduced in chapter II, and will be specified later in this section. Note that B >0

(existence condition of beam). In this case

1/2
@ Q(So) ] et/ 4
2mog ’

- 88 -



Chapter Ill

is the weight factor for a point source, determined by matching the steepest descent
contribution of (4.13) to the Green's function of a point source in a homogeneous

medium.

P,, @5, P-I- and QJ- are the point source solutions of the dynamic ray tracing
system with same initial conditions and solutions as in section 3. P, and @, are the

plane wave solutions of the dynamic ray tracing with initial conditions:

P1(So) =0, (4.3)

Q1(So) =29th,

referred to as the plane wave initial condition (constant spreading and zero wavefront

curvature). The solution of this system is

P1(5) =0, (4.4)

Q1(s) = Zo+h. .

Madariaga (1984) proposed a modified plane wave initial condition, satisfying

the WKBJ solution, which we correct for dimension

(zo+h) sin?jy [ g4 ] _ sin?j,

P{l(so) = - s =s . 3
=So Q&g CO8J5

af cosjy
Q{l(so) = 25 +h.
Here j, is the takeoff angle of the ray measured from the z-axis. The solution of this
system is

sinjq

——2 (4.6)
ag €0Sjg

Pi(s) = -

QM(s) = zo+h—tanjo 7 .
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The solution (4.6) can generaly be constructed by a linear superposition of the two
solutions (P;,Q,) and (P,,@,). The plane wave caustic occurs at 7 =(zy+h) cotjg
(Q{l =0). This is the radial distance of the ray turning point. Indeed, this distance is
identical to 7, given in section 2. In the neighborhood of the ray turning point, @~7 @,,
the beam propagation is mainly due to the point source contribution. But the initial
conditions (4.5) are set up for quasi-plane waves. These conditions are therefore
invalid at the ray turning point. Note that the solution (4.6) is singular at j, = /2
(horizontal takeoff angle). Rays that are near-horizontal should not be taken into
account. This condition can be expressed, using Snell's law in the canonical model, as

sinjg = (2¢+h)/ R < 1 or equivalently
Zo+h. (<4 R, (4'7)

The (complex) wavefront curvature of the beam follows from the natural

generalization of the ray concept

21

Ez— ’ (4.8)

with
K, = Re(Kfu) being the local wavefront curvature, and
L = [ 2k~ Im(k®) 1'/2 the beam half width.

Cerveny et al (1982), suggest the following beam parameter B, for a beam-

receiver pair [jo,M(s,n)],

—_—+ dl . (4.9

In a homogeneous medium, this value yields a minimum value of the beam half-width L(s)
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at the receiver M(s,n), for ray j,. For the computations d = O is used, which means
that the distance at which the matching between the waves emanating from the source
and the superposition of Gaussian beams is done at the source location. If d#0 the

matching is done on a sphere of radius d xunit length, with center at the source.

If N receivers are present (Mz,v‘,=1,N), we define three values of the beam

parameter in addition to By (7,)

Bn = Dy D00 (4.10)
By = maxy Builio) » (4.11)
B‘: = IE%);( Bw(jg)’ (4.12)

where {j,} is the set of rays satisfying (4.18) for the receiver };.

The first value for B is constant throughout the computations {(constant for all rays and
receivers), the second value is constant for each ray but changes from ray to ray and
the third is constant on each receiver but varies from receiver to receiver. Some
justification will be brought in section 7 on the choice of these values. Use of the initial
conditions (4.5) imposes a large value of the parameter B (quasi-plane waves) in order
for the solution to be a complex perturbation of the WKBJ method (Madariaga, 1984).
The initial beam parameter must usually be much larger than that obtained using 5,

(4.10).

Thus, the P wave vertical displacement is

W1 = [ T°(Hw) cosj djo. (4.13)
D
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The integration is being done over all rays passing through some neighborhood D of M.

This neighborhood is determined by conditions of validity of the beam (4.18) and (4.19).

If (w) is the spectrum of a point source time function ¢(¢), the P wave vertical

displacement in time W°(#,t) is computed following

oo

WUt = = Ref [ o) (M) et do . (a.14)

]

We shall be using the wave-packet approach in computing (4.14). We shall
therefore first evaluate the Fourier transform (4.14), then integrate with respect to

takeoff angles, jo (4.13). The numerical integration of (4.13) is done by the rectangle

formula

WO(ME) ~ ) UMM,t) Ao, (4.15)

k

where U, = U° cosj.

The results with initial conditions (4.3) will be compared to that using (4.5).
Sensitivity on the results due to ray sampling Aj, and summation limits will be
investigated. For comparison purposes, we shall numerically integrate (4.13) by the

trapezoidal formula

Ny
WL N Y [ U + UL 1 = (4.16)
k

and by Simpson's rule

N
WO M) ~ NLUE2(H 0 +AUS UL+ URHD] SB) ==, (417)
k

where S(k) = [1 +(-1)¥]/2.
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‘As in section 3, the radlal component of displacement is obtained by replacing the term

cosj by sinj. The Gaussian beam conditions of validity described in chapter Il are:

(1) Ray conditions used in section 3, since Gaussian beams are high-frequency
asymptotic solutions of the elastodynamic wave equation and that ray serve as support

for the beams.

(2) Regularity of the ray centered coordinate system

nKp < 1. (4.18)

(3) The paraxial condition (rays considered not far from geometric ray)

nkK, <1. (4.19)

(4) The Fresnel 2-condition (beams within the first Fresnel's zone radius)

AIK,‘;F:A

2 -1/2
K2 + (m)z] « 2nlg, (4.20)

where A is the wavelength, [, is the characteristic length of the medium, L(s) the half-

width of the beam, ]gu(s) the wavefront curvature, and n the ray-receiver distance.

Since no analytic, closed form, expression of the GB solution exist at the present
time, we can only check these conditions numerically. The validity of GB at the ray

turning point will also be investigated.
5. ACCURACY CRITERIA
We will compare synthetic seismograms computed using asymptotic wave theory

(equations (3.11) and (4.14)) with the exact synthetics from the canonical problem

(equation (2.24)). Four numerical parameters are defined to test the differences
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between the two traces.

Let W(M,t) be the compressional vertical displacement computed from
asymptotic wave theory (W=w or .Wb). A tilde denotes the value computed using

the approximate method. For a given receiver ¥ define £ as

JIwae) - WP at

E(M) = 100
[ wA(HLt) dt

(6.1)

E is the power ratio (in percent) of the signals' difference to the exact signal. It is an
L, norm of good-fit. The value £ is independent of the source signal considered, and
measures a relative global error. The time interval in the integration includes the whole
waveform. Practically, we will put an upper limit on £, say E’M‘“, above which we will

consider the resuilts of the approximate method to be invalid.

Let
e, (M) = 100 [ T—(-@Tﬁw;ﬂ)-] (5.2)
e () = 100 [ W], (5.3)
epn () = 100 [ ﬁ%@ﬂ] (5.4)

where T, A, and T are respectively the wave travel time, the signal maximum amplitude
and the time of the maximum signal amplitude at the receiver M. These three good-fit
parameters are local time error measurements and are complementary. They are useful
when the error £ becomes large and additional information is required to determine

locally the lack of accuracy. e. measures the relative error in travel time. e, is

sensitive to amplitude errors whereas €ph represents, in some sense, the relative error
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in phase of the signal.

6. MODEL PARAMETERS AND NUMERICAL DETAILS

The source function used is the Gabor wavelet

—~[w, (¢-t,)/ TR
o(t) = e g i cos[og (t-ti) +9], (e.1)
where Wg is the center angular frequency of the signal (a)g =27 fg), t; is the initial

time shift realizing the causality of the signal, I" controls the half-width of the signal's

envelope in time, and ¥ is the initial phase.

The Fourier transform in equation (4.14) is computed using an IMSL discrete Fourier
transform routine. Equation (2.24) is computed using a standard convolution in time

program.

The reference model (Model 0) is the following:

a = 0

h = 10km

24 = Okm
«(0) = 3km/sec
Po = 3g/om®
fgq = 10 Az

r = b

Y = O radians
t; = 0.2sec

The reference model assumes the density to be constant throughout the model
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( @ =0). The models that will be considered in this study are :

FAR FIELD BREAKDOWN for DYNAMIC RAY TRACING
Model 1 Model O with receivers at the surface z =0, and

r1=0.1 km to 7,=0.4 km (Ar=0.1 km)

74=0.4 km to r45=2.6 km (Ar=0.2 km)

HIGH FREQUENCY BREAKDOWN for DYNAMIC RAY TRACING
Model 2 Model O with one receiver at (r =100 km,z =0)

with a(0)=10-170 km / sec (Aa=40 km / sec)

with a(0)=170-1450 km./ sec (Ax=160 km./ sec)

PARAXIAL / FAR FIELD BREAKDOWN for GAUSSIAN BEAMS

Model 3  Model O with receivers at the surface z =0, and
7,=0.4 km to r9=3.6 km (Ar=0.4 km)

FRESNEL / HIGH FREQUENCY BREAKDOWN for GAUSSIAN BEAMS
Model 4 Model O with one receiver at {(r =100 km,z =0), a(0)=50 km / sec
with fg=1 0, 40, 100 Hz

VERTICAL SEISMIC PROFILING SIMULATION with GAUSSIAN BEAMS
Model 5 Model O with a frequency of 40 Hz , and £,=0.05 sec,
recelvers at 7=2 km, and z,=0.1 km to z,5=1.56 km (Az=0.1 km)

TURNING POINT INVESTIGATION
Model 6  Model 5 with receivers at z,=0.156 km to 2,,=0.24 km (A2 =0.01 km)

EARTHQUAKE SIMULATION with GAUSSIAN BEAMS
Model 7  Model O with a frequency of 5 Az , and £, =0.4 sec

source at z;=7 km and receivers at 2=0,
r,=10 km to r,,=20 km (spacing 1 km)

The ray tracing program RAY81, written by I. Psencik (1983), was modified to
compute Gaussian beam synthetics in two dimensional heterogeneous media. In the
calculation we are not required to have boundaries close to the receiver line, since the
medium properties are known even above 2z =0. This precaution is taken to avoid any
additional approximation. The interpolation of the ray contribution to the receiver, not
inherent in the method, would possibly deteriorate results. The approximate analytic

Fourier transform of the Gabor wavelet (Cerveny, 1983%) is not used for similar reasons.
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7. RESULTS AND DISCUSSION

Each asymptotic condition will be written in the form of a breakdown parameter
that must be much greater than one. The upper limit on the global error EMez is chosen
to be at about 20%. This subjective value has been chosen by estimating in numerous
synthetics the error above which the approximate results become unsatisfactory. Below
5%, the results are considered very accurate. The frequency used in the breakdown
parameters is f = fg or w=wg this is because the spectra of the signal is well centered
around this frequency. It has been verified that the global error £ depends siowly on
the source time function considered. A Kelly source (Kelly et al, 1976) was used and
yielded same error trend and about the same errors (within 10%) as with the Gabor
wavelet. The seismograms plotted are the vertical component of displacement in the

(r,z) coordinate system. The radial component will be introduced when necessary.

Dynamic Ray Tracing

We shall first study the range of validity of DRT. The first condition to be tested

is the far field condition (3.12) k Ay>>|dAy/ ds |, which is expressed as

FFC = o weg > 1. (7.1)

2z

Figure 3 shows the synthetics calculated with the exact analytical solution (left) and
the synthetics computed with the DRT solution (right) from Model 1 parameters. The
error analysis is presented in Table 1. For FFC = 8, the DRT results are reliable. Below

this value, the near field term not taken into account in the DRT becomes predominant.
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r(km) EXACT | DRT
C.1
C.2 >< ,\;
0.5 AN

C.4 N\
0.6 A~
0.8 An

Figure 3. (left) exact synthetics of Model 1 (far field breakdown), and (right) DRT syn-
thetics of Model 1.
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TABLE 1 - FAR FIELD BREAKDOWN
Model 1 - DYNAMIC RAY TRACING - HFC = 419
r(km) | 7(sec) | e (%) | e, (%) | e (%) | E(%) | FFC
0.1 0.03 0 -6 57 78 2
0.2 0.07 0 -2 33 47 4
0.3 0.10 o) -2 22 28 6
0.4 0.13 0 -2 16 18 8
0.6 0.20 0 0 7 9 13
0.8 0.27 0 0 5 5 17
1.0 | 0.33 0 0 3 3 21
1.2 | 0.40 0 0 3 2 25
1.4 0.47 0 0 2 2 29
1.6 0.53 0 0 1 1 33
1.8 0.60 0 0 1 1 37
2.0 0.67 0 s) 0 1 41
2.2 0.73 0 0 0 1 45
2.4 0.80 0 0 1 1 49
2.6 0.86 0 0 1 0 53

TABLE 2 - HIGH FREQUENCY BREAKDOWN
Model 2 - DYNAMIC RAY TRACING - (7,z) = (100 km,0)
aglkm /sec) | 1(sec) [ e (%) [ e, (%) | e (%) | E(%) | HFC
10 4.625 0 0 1 0 126
50 0.925 0 4 3 1 25
90 0.5614 0 5 6 5 14
130 0.356 0 -1 9 9 10
170 0.272 0 7 12 14 7
330 0.140 0 -3 28 39 a4
490 0.094 0 -3 41 58 3
650 0.071 0 11 51 71 2
810 0.057 0 11 58 79 1.6
970 0.048 0 12 64 85 1.3
1130 0.041 0 10 69 88 1.1
1290 0.036 0 10 72 o1 1.0
14560 0.032 0 11 75 92 0.9

Table 1. Far field breakdown of Model 1 with DRT; Table 2. High frequency breakdown
of Model 1 with DRT.
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The global error is due first, to an error in amplitude (e4), and second to an error in
phase (eph). Note that the travel time calculation is accurate everywhere. The

breakdown is seen clearly in the synthetics and is represented quantitatively in Table 1.

The following condition is the high frequency condition

HFC = wwl' » 1. (7.2)

Model 2 synthetics are displayed in figure 4 for three values of HFC(7,3 and 0.9), and
the error analysis in Table 2. The minimum value of the key parameter HF(C is about 7.
For HFC< 7, the high frequency breakdown occurs in a similar fashion as the far field
breakdown, as expected and discussed in section 3. We have chosen a receiver
position such that ¢ ~ 4.6, thus z./ R, ~ 1. Then (7.1) yields FFC ~ 0.5 wwg". But
expressing here (7.2) in terms of wy=w_ , Yields HFC ~ 2 FFC. For an HF(C of about
FFC, the errors are of same order as the far field breakdown errors. The velocity
gradient values are quite unrealistic but this is because we have chosen to keep the
frequency constant and vary the cut-off frequency w,. Keeping the velocity gradient in
a realistic range and varying the frequency would yield identical results, the important
parameter here being HFC. Therefore, we can conclude that the high frequency
breakdown in this type of medium is similar to the far field breakdown. The phase
distorsion effect due to the dispersive characteristics of the medium is not predominant

here.
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The Fresnel 1-condition will be defined as
FRN1 = HFC? (w)™' » 1.

We have chosen a model O with h=1km, a(0)=6km/sec, and receivers up to
4000km. The minimum FRN1 calculated was about 3.5. This condition is difficult to
test independently of the others, and because of numerical limits, we have not been
able presently to get below FRN1~3.5. The error at this point was still negiligible. In
Table 2, values of FREN1 are shown. The breakdown is due to the high frequency
condition violation. Therefore the Fresnel 1-condition is not independently tested in
Model 2, and cannot serve as a criteria. The Fresnel 2-condition (see chapter |) is not a
necessary condition. In the limit of numerical calculations this condition was violated by

3 orders of magnitude without introducing noticeable error.
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HFC EXACT
VAVAS
7 DRT
‘A%
Q 1 sec.
3

A\
0.9 J
— N/

[} - R . . N N N N |

Figure 4. Three pairs of synthetics of Model 2 (high frequency breakdown). In a pair:
top trace is exact and bottom trace is from DRT.
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Gaussian Beams

In the beam error analysis it is important to define another global error £ ¥. The
definition is similar to (5.1) but the integration is done on a time window containing the
wavelet alone. The reason being that with the superposition of beams, error due to
truncation of (4.13) or of the sampling interval will increase F without necessarily
increasing £ W Further, it is possible to determine how much of the global error is due
this "noise’. The local error e on the travel time cannot be computed since we
superpose different signals that contribute to the final signal without direct calculation
of the GB travel time. We shall impose the ray-centered coordinate system regularity

condition (4.18)

RCC = (n Kp)™' > 1, (7.3)
and the paraxial condition (4.19)
PRX = (n )77 » 1. (7.4)

The lower limit of RCC (not attained) has be chosen to be 5, and that of PRX, 4. These
two values numerically constrain the conditions appropriately. The beam parameter

d = Re(e) will be set equal to O throughout the computations.

The first group of tests are on beam parameter definitions, the numerical
integration of (4.10), and the initial conditions of the complex dynamic ray tracing
system. These tests will be done in a far field breakdown context. Models 3 and 4 will
be implemented here. The beam parameters that are considered for presentation are
given by egns. (4.9-11). Other beam parameters have been tested (constant value,
average value, minimum value, etc. instead of maximum value of egns. (4.10-11)) but

were unreliable. Either they were not automatic (for example constant) and therefore
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needed to be redefined if the medium or receivers were modified or else yielded to high
an error. The exact seismograms of Model 3 are shown in figure 6a (top left). The ray
diagram used in the beam computations is displayed in figure 6a (bottom). Initial
conditions (4.3) are used. The fan of equidistant ray takeoff angles is [-45°,50°],
oriented top right to bottom left. 20 rays are sufficient to yield satisfactory results
with the beam parameter B, (4.12). Figure 5a (top right) shows the synthetics of Model
3 for the 5; parameter and Table 3 the error analysis. Other beam width parameters are
investigated in Appendix D. Results show that the most stable parameter is the one
used here. The global error is due to the far field breakdown . A detailed examination of
the breakdown between 7=0.4 km and r=0.8 km showed that the critical (lower
bound) FFC is at about 13. Thus, the far field condition requires FFC=13. Details on
superposition of beams, ray density, summation limits and results with initial conditions

(4.3) are presented in Appendix E.
The last test is on the Fresnel condition (4.20)

1/2
Boye (A p

” of 12 > 1, (7.5)

FRN2 = 2m 12 f | (

and the high frequency condition (7.2). Model 4 is implemented where four frequencies
are being considered 10;40;100 and 200 Hz. The fan of rays is [77°,81°]. 20 total
rays are used with conditions (4.3). The error analysis is in Table 4 . Note that the
minimum critical FRN2 is at about three. Therefore for FRN2 = 3, we are guaranteed

that the Fresnel condition is satisfied.

-104 -



Chapter lli

£ (kM) EXACT GB

0 - receiver
: line
Z
10 e —————
0 & 10 kM

Figure 5a. (top left) exact synthetics of Model 3 (far field breakdown), (top right) GB
synthetics of Model 3, and (bottom) ray diagram for GB of Model 3.
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The minimum FREN2 in Model 3 is 402 and that of Model 3x, 226. In beam methods, the
Fresnel condition might alter the results even if the high frequency condition is
satisfied. For this reason the high frequency condition in the beam method is not
sufficient. Note that we are still in the far field region since FFC R 0.6HFC for this
recelver. We have seen from the DRT range of validity that the high frequency
breakdown is similar to the %ar field breakdown. Since both methods are asymptotic, we
shall assume this result to be true for GB too, as long as the Fresnel condition is

satisfied. Thus the condition for the high frequency condition is HFC = 18.

The standard ray method (DRT) has the advantage of breaking down more
smoothly than the Gaussian beam method. Further, it requires less conditions for its
applicability. Figure 5b clearly shows this difference for the far field condition and the
high frequency condition breakdowns. The Gaussian beam computations here require an
extension of the actual medium necessary for the extrapolation (distance ray-receiver,
Q and P corrections , etc.) of the wave field. Approximate techniques are possible when
the medium cannot be extrapolated naturally (Cerveny, 1983%). The possible
advantage of GB in the present case is mainly computational. If the DRT solution were
to be computed by solving numerically the DRT system (as the GB solution), the
computer time would be greater than with GB, due to iterations for finding the source-

receiver ray.
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TABLE 3 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS

B; - 20 rays
r(km) | 7(sec) | ey, (%) | e (%) | E(%) | E"(%) | FFC
0.4 0.13 10 -15 39 39 8
0.8 0.27 10 -16 9 9 17
1.2 0.40 0 -6 1 1 25 |
1.6 0.53 0 -4 2 2 33
2.0 0.67 0 -4 1 1 a1
2.4 0.80 0 -1 1 1 | 49
2.8 0.93 0 -2 1 1 | 57
3.2 1.06 0 -2 1 1 65
3.6 | 1.19 0 -2 1 1 72

TABLE 4 - FRESNEL / HIGH FREQUENCY BREAKDOWN
Model 4 - GAUSSIAN BEAMS
(r,2)=(100 km,,0) - B; - 20 rays

7 Hz | epn(%) | e (&) | ECA) | ET(#) | HFC | FRNZ |
10 3 53 | 42 | 42 | 25 | 05
40 1 20 | 16 | 16 | 101 | 2

100 0 3 6 6 | 251 | 5
200 0 6 2 2 | 608 | 11

Table 3. Far field breakdown of Model 3 with GB; Table 4. Fresnel / High frequency
breakdown of Model 4 with GB.
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FAR FIELD CONDITION BREAKDOWN

T
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40

E (%)

20 |

FFC

HIGH FREQUENCY CONDITION BREAKDOWN

T
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40

E (%)

20

0 §0 100
HFC

Figure 5b. (top) far field condition breakdown for DRT and GB, and (bottom) high fre-
quency condition breakdown for DRT and GB.
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Two examples

We shall simulate a typical vertical seismic profile with an offset source at the
surface. The receivers are positioned in a vertical borehole. The Gaussian beam method
is used with 20 rays and a fan [-10°,560°]. Model § represents this case, Table 5
shows the error analysis , figure 6 (top left) the exact analytical synthetics and figure
6 (top right) the Gaussian beam synthetics. Since for the choice of beam (4.14) there is
no difference between £ and £, we shall omit the latter in the following tables. The
ray diagram is shown in figure 6 (bottom). The receiver array crosses a ray turning point
location (around receiver 2) where the vertical component vanishes in the approximate
methods. DRT error is about 90 % at this point, whereas GB is about 307 %. The results
are reliable and very accurate outside this zone. The synthetics plotted are not scaled
in depth. The scale is conserved between a given approximate trace and the

corresponding exact trace.

We wish to determine precisely if the ray turning point is a singular region for
DRT or GB. It is important at this point to consider the radial component of displacement,
since the vertical component vanishes for the approximate methods. If the radial
displacement is accurate and much greater than the exact vertical displacement at the
ray turning point, we can conclude that the ray method under consideration is accurate
around and at the ray turning point. Model 6 is implemented. For GB, the same rays as in
Model 5 are used. Errors for DRT are shown in Table 6, and those of GB in Table 7. The
maximum vertical amplitude, in a normalized scale, of the exact solution is shown under
Ex.Max.Vert. The maximum vertical amplitude of the approximate solution can be derived

from that of the exact solution via (5.3). They are roughly of same order.
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TABLE § - VERTICAL SEISMIC PROFILING
Model 6§ - GAUSSIAN BEAMS
B, - 20 rays

z(km) | T(msec) | e, (%) | e, (%) | E(%)
0.1 663 2 -6 1
0.2 662 0 27 307
0.3 663 -2 6 1
0.4 666 -2 3 0o
0.5 669 0 1 o
0.6 675 -2 2 0
0.7 682 0 1 0
0.8 690 -1 1 0
0.9 699 0 1 0
1.0 709 0 0’ 0
1.1 721 -1 1 0
1.2 733 o 1 0
1.3 746 0 -1 0
1.4 761 0 -2 0
1.5 7756 0 -3 0

TABLE 6 - TURNING POINT in VSP
Model 6 -~ DYNAMIC RAY TRACING
z2(km) [ e ; (%) | e (%) | E(%) | Rad E(%) | ExMax.Vert | Max.Rad

0.156 0 3 1 0 3 114
0.16 0 4 2 0 2 114
0.17 0 5 4 0 2 114
0.18 0 10 9 0 1 114
0.19 1 25 34 0 0.6 114
0.20 1 71 90 0 0.4 113
0.21 -1 16 20 0 0.8 113
0.22 -1 8 7 0 1 113
0.23 -1 5 3 0 2 113
0.24 -1 4 2 0 2 113

Table 5. Vertical seismic profiling of Model 5 with GB; Table 6. Turning point in Model 6
with DRT.
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Figure 6. (top left) exact synthetics of Model § (vertical seismic profiling), (top right)
GB synthetics of Model 5, and (bottom) ray diagram for GB of Model 5.
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Maximum radial amplitude of approximate solutions, normalized to the same scale, is
under the column Max.Rad. The error on the radial component is represented by Rad F.
The results are close to perfect for the radial component of displacement for both, DRT
and GB. Further, the maximum amplitude in the radial direction is at least fifty times the
maximum amplitude in the vertical direction, around the ray turning point. Therefore DRT
and GB are accurate at ray turning points since the magnitude and direction of the

displacement are the same, within our criteria, as those given by the exact soclution.

The iast example simulates an earthquake, where the source is at a depth of 7
km. Model 7 represent this configuration. 20 rays are used in the Gaussian beam
method, with a fan of [-80°,20°] Figure 7 (top) displays the Gaussian beam
synthetics, figure 7 (bottom) the ray diagram, and Table 8 the error analysis. Results

are close to perfect everywhere.

As a summary, we have the following conditions that have to be met in order for

the ray and beam methods to be reliable and accurate (i.e. £ < 20%):

Dynamic Ray Tracing:

-1

dA
° > 8,

ds i

FFC = kAq

HFC = v ' = 7.

Gaussian Beams with conditions (4.3) and 5;:

FFC = 13,

HFC = 13,
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(n KR)_1 > 5,

RCC

PRX = (n K,)7' > 4,

il

FEN2 = 2m& A7V |KS| = 8.

The decoupling condition in the canonical model (wwg™ > 1) is automatically
satisfied with the high frequency condition, since the two characteristic frequencies
are related. In the case of structures which are more complex than a medium with
constant velocity gradient, the above conditions remain valid and applicable as long as
wo and w, exist and are real. The Fresnel 1-condition must further be investigated; so
far for FRN1 = HFC?(w 1)~' > 3.5, we have not detected any error. The sensitivity
of GB to the parameter d is presently studied. More complicated types of media where
an exact solution can be found are being investigated. Exact solutions (Cagniard's
problem) in media with an interface should be compared quantitatively to check the
accuracy of head waves obtained using GB with large B (Nowack and Aki, 1984). A
more representative source function might be considered such as that used by

Madariaga and Papadimitriou (1984), close to being a numerical delta function.
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TABLE 7 - TURNING POINT in VSP
Model 6 - GAUSSIAN BEAMS
B; - 20 rays
z(km) | e, (%) | e,(%) | E(%) [ Rad E(%) | Ex.Max.Vert | Max.Rad
0.16 1 -8 4 0 3 114
0.16 1 -10 7 0o 2 114
0.17 1 -12 13 0 2 114
0.18 1 -27 42 0 1 114
0.19 1 -27 121 0 0.6 114
0.20 0 26 307 0 0.4 113
0.21 -1 46 61 0 0.8 113
0.22 -1 28 21 0 1 113
0.23 -1 19 10 0 2 113
0.24 -1 | 15 6 0 2 113

TABLE 8 - EARTHQUAKE SIMULATION
Model 7 - GAUSSIAN BEAMS
B; - 20 rays

T(km) | T(sec) | e, (%) | e (%) | E(%) | E"(%) |
10 3.02 0 1 0 0
11 3.21 2 -2 0 0
12 3.40 2 -1 0 0
13 3.60 2 2 0 0
14 3.79 0 1 0 0
15 3.99 0 -2 0 0
16 4.18 0 -1 0 0
17 4.38 ) 0 0 0
18 4.57 0 -2 1 1
19 4.76 0 0 0 0
20 4.95 2 -1 0 0

Table 7. Turning point in Model 6 with GB; Table 8. Earthquake simulation in Model 7 with
GB.
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Figure 7. (top) GB synthetics of Model 7 (earthquake simulation), and (bottom) ray di-

agram for GB of Model
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8. CONCLUSION

Range of validity of two asymptotic wave methods, the dynamic ray tracing
method and the Gaussian beam method, have been established. The medium considered
is that of a constant gradient model where the Green's function is known analytically in

time and frequency domains.

Two conditions must be met in the dynamic ray tracing method: (1) far field, and
(2) high frequency conditions. The Gaussian beam method requires three additional
conditions: (3) regularity of the ray centered coordinate system, (4) paraxial rays, and
(5) rays within the first Fresnel radius conditions. Quantitative values are shown for
each condition, and examples exhibit clear breakdowns. The two methods are accurate

at ray turning points.

Two examples show the application of the Gaussian beam method to different
types of seismic problems. For the canonical medium considered, the Gaussian beam
method is less accurate than dynamic ray tracing, particularly when a breakdown
occurs. The validity conditions are applicable for complex structures as long as the two

medium's characteristic frequencies wy and w, exist and are real.
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9. APPENDIX D: Details on beam width parameters

Other beam width parameters are investigated with Model 3 (far field
breakdown). Error analysis with the beam parameter 5, (4.10) is shown in Table D1.
The calculated constant value equals B, = 4. Results with parameters By (4.9) and

Bjo (4.11) are shown in Table D2 and D3, respectively. Although all four beam

parameters (4.9-11) yield about the same results at r>1.2 km, the most smooth
breakdown (compared to DRT) is achieved with the beam parameter B; (4.12). Our basic
assumption being that the beam method should not behave that differently from DRT in
regions where DRT is regular. A possible explanation is t.hat, for this choice, the beams
are adapted to the receiver location keeping the maximum allowable (constant) value of
the beam parameter on each receiver, and are renormalized from receiver to receiver.
Note that for this choice we can have a very wide spread of receivers. The beam

parameter (4.12) B, is the beam of choice.
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TABLE D1 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS - 5, - 20 rays

r(km) | T(sec) | ey, (%) | e, (%) | E(%&) | E"(%) | FFC
0.4 0.13 10 -352 088 988 8
0.8 0.27 10 3 58 57 17
1.2 0.40 0 0 2 2 25
1.6 0.53 0 -4 1 1 33
2.0 0.67 0 -3 0 0 41
2.4 0.80 ] -2 0 0 49
2.8 0.93 0 -2 1 1 57
3.2 1.06 0 -2 1 1 65
3.6 1.19 0 -2 1 1] 72

TABLE D2 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS - gy - 20 rays

r(km) | 7(sec) | e, (%) | e (%) | E(%) | BT (%) | FFC
0.4 0.13 10 -8 42 42 8
0.8 0.27 g 14 30 30 | 17
1.2 0.40 6 -4 10 10 | 25
1.6 0.53 5 -13 12 12 | 33
2.0 0.67 4 -14 6 6 | 41
2.4 0.80 4 -11 3 3 | a9
2.8 0.93 3 -9 2 2 57
3.2 1.06 3 -7 2 2 | 65
3.6 1.19 0 -10 2 | 2 | 72

TABLE D3 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS - Bjo - 20 rays

r(km) | 1(sec) | e, (%) | e,(%) | E(%) | E"(%) | FFC |
0.4 0.13 08 -342 | 1163 | 11863 8
0.8 0.27 10 -34 63 62 17
1.2 0.40 0 -14 3 3 25
1.6 0.53 0 -14 3 3 33
2.0 0.67 5 -11 2 2 41
2.4 0.80 4 -9 1 1 49
2.8 0.93 3 -8 2 2 &7
3.2 1.06 0 -7 2 2 65
3.6 1.19 0 -10 2 2 72

Table D1, Table D2 and Table D3: Testing of other beam parameters in GB.

-118 -



Chapter lli

10. APPENDIX E: Beam integration and initial conditions analysis

The method of integrating (4.13) yields different results depending on the
method. The following Model 3x is considered: Model O with receivers at the surface
2=0, and 7,=10 km to r5=14 km (spacing 1 km). This model has no breakdowns and
yield very good results with 20 rays and a fan of [1°,66°], where the exact synthetics
are shown in figure 8 (top left), and the ray diagram in figure 8 (bottom). The error
analysis is shown in Table E1. The synthetics are very accurate and are identical to
those in figure 8 (top left) (£=0). In order to test the method of integration we decided
to shoot only eight rays with the same fan. There is no distinguishable differences
between the rectangular, (4.15) Table E2, and trapezoidal rule, (4.16) yielding same
errors as the rectangular rule. However, results become less accurate with Simpson's
rule, (4.17) Table E3. As a consequence, there is no need presently to use more
advanced methods of integration (other than the rectangular rule 4.15) to get reliable
and accurate results. The fan of rays is required to cover conditions (7.3) and (7.4) so
that they become active. This can be easily implemented by checking how many of the
rays contribute to the final seismogram. At each receiver, the number of rays
contributing to the seismogram should be less than the total number of rays. Increasing
the number of rays (i.e. ray density) improves the accuracy. Of the 20 rays, about 16
contribute to an individual seismogram, yielding a very good accuracy. Even with 8 total
rays, (about 6 rays per receiver) the results remain satisfactory (i.e. £ < EMaz), The
number of rays that will contribute exactly for each seismogram is not known a priori.
That is why the total number of rays is not required to be even when Simpson's

integration rule is used.
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Figure 8. (top left) exact synthetics of Model 3x, (top right) GB synthetics of Model 3x
with conditions (4.5), and (bottom) ray diagram for GB of Model 3x.
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If the initial conditions (4.5) are used instead of (4.3), there are additional
conditions for the applicability of GB. The Non horizontal incidence condition (4.7) is

written in the form
NHI = R (zo+h)™" » 1.

Since results become singular as the takeoff angle reaches the horizontal (see
4.6), the corresponding rays distort the seismograms considerably. Receivers close to
the source, but still within the far field limit, r.:annot be considered. Further, a higher ray
density is required to obtain an accuracy similar to that with initial conditions (4.3). We
shall use the constant value of the beam parameter of B = 44100, with 100 rays.
These two initial conditions are compared for Model 3, with same fan of rays, and the
error analysis displayed in Table E4. This table should be compared to Table 3. With
Model 3x, the synthetics with conditions (4.5) are shown in figure 8 (top right) and the
error analysis is displayed in Table ES and are to be compared to that of Table E1. The
results with the new conditions are "noisier'' due to the contributions of near-horizontal
rays . This is seen in the synthetics and quantified by the differences between F and
EY in the tables. For the furthest receiver in Model 3 the parameter NHI is equal to
1.016, and in Model 3x, NH/ = 1.2. Therefore for NH/ greater than say 1.2, use of the
initial conditions (4.5) in GB would yield reliable results provided the ray density is high

enough.
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TABLE E1
Model 3x - GAUSSIAN BEAMS - f; - 20 rays

7o) | 7(sec) | e, (%) | (%) | (%) | E"(%) | FFC
10 3.21 0 0 0 0 156
11 3.50 0 o) 0 0 164
12 3.79 0 0 0 0 170
13 4,07 o] 3 0 0 176
14 4.35 | 0 3 0O 0 181

TABLE E2

Model 3x - GAUSSIAN BEAMS - F; - 8 rays

7(km) | T(s6C) | x5 (%) | e4(%) | ECR) | ET(%) | FFC
10 3.21 0 -10 1 1 156
11 3.50 -1 10 6 6 164
12 3.79 0 8 3 3 170
13 4.07 1 -23 10 10 176
14 4.35 0 -14 13 13 181

Table E1. Model 3x with GB and B, with 20 rays; Table E2. Model 3x with GB and &
with 8 rays.
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TABLE E3 - Model 3x - GAUSSIAN BEAMS
B, - 8 rays - Simpson's rule

r(km) | T(sec) | ey, (%) | e, (%) | E(%) | E"(%) | FFC
10 3.21 ) -22 8 8 156
11 3.50 -1 -20 16 16 164
12 3.79 1 -24 12 12 170
13 4.07 1 -34 14 14 176
14 4,35 0 -6 256 256 181

TABLE E4 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS
B=44100 - 100 rays - In.Cond. (4.5)

r(km) | m(sec) | e, (%) | e (%) | E(%) | ET(%) | FFC
0.4 0.13 13 -1274 XXX xXXX 8
0.8 0.27 3 =257 | 1029 | 1028 17
1.2 0.40 1 -87 362 345 25
1.6 0.53 2 -56 245 230 33
2.0 0.67 1 -38 117 87 41
2.4 0.80 1 -28 92 54 49
2.8 0.93 1 -30 79 48 57
3.2 1.06 1 -31 79 51 65
3.6 1.19 -2 -29 71 | 53 72

TABLE E5 - Model 3x - GAUSSIAN BEAMS
B=44100 - 100 rays - In.Cond. (4.5)

r(km) | (sec) | ey, (%) | e (%) | E(%) | E P(%) | FFC
10 3.21 0 3 4 3 166
11 3.50 o 3 3 2 164
12 3.79 0 2 2 0 170
13 4.07 0 1 3 0 176
14 4.35 0 2 2 0 181

Table E3. Model 3x with Simpson's integration rule in GB; Table E4. Far field breakdown
of Model 3 with GB and initial conditions (4.5); Table E5. Model 3x with GB and initial
conditions (4.5) with large initial beam width parameter.
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IV. MODELING WITH THE PARAXIAL RAY METHOD

There is no permanence to scientific concepts because they are only
our interpretations of natural phenomena.

- J. Bronowski

1. INTRODUCTION

Central rays introduced in the preceding chapters individually sample the medium.
All extrapolations and computations of the high frequency wavefield are performed in
this local frame, that is, in the ray centered coordinate system. One may express these
operations in a global reference frame in order to represent all the operations in the
same coordinate system (Cerveny, 1983), but this procedure does not introduce

additional information about the medium.

The displacement field calculated in standard ray method (twd-point ray tracing)
corresponds to a boundary value problem, where the central ray connects the sourcé to
the receiver (see 11.4.12). Such a ray is called geometric. An iterative shooting scheme
is implemented to solve this problem. Examples of this method are shown for surface
seismics in Cerveny, Moloktov and Psencik (1977), and in vertical seismic profiling in

Mellen (1984).

The Gaussian beam method generally requires more than eight beams in order to
reconstruct the high frequency wavefield (see 11.8.4). The beam support is a central
ray and the beams superposed are required to sample the medium in the vicinity of the

receiver. It is viewed as an initial value problem, where rays do not necessarily cross
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receiver locations.

Original formulation of the parabolic-paraxial wave theory was done in 1946 by
Leontovich and Fock. A brief historical survey of the method with numerous references
and applications to many areas in physics can be found in Tappert (1977). A formal
derivation and extension of the theory for scalar Helmholtz equation is presented in
Fishman and McCoy (1984). Several authors considered the application of the theory
to elastic waves (Landers and Claerbout, 1972; McCoy, 1977; Hudson,1980; Corones
et al., 1982). Wales and McCoy (1983), compared the results of some of these

different approaches, in a weak-scattering context.

Within our context, the paraxial-parabolic ray method is an intermediate method
situated between the standard ray method and the Gaussian beam method. It is
described briefly in section 11.7. It assumes that the central ray(s) is (are) within the
neighborhood of the receiver. Considering a virtual ray passing through the receiver
(geometric ray) with wavenumber vector K , and for a central ray in the vicinity of the
receiver with wavenumber vector I?:'s, the central ray is paraxial if the angle between K

and Es, x, is sufficiently small so that siny ~ y (i.e. y < 1). If this is satisfied then

|k~ ks ]

The parabolic approximation assumes a privileged direction of propagation, which in
our case is the ray direction (along s). This approximation neglects the 8/ 8s2 term in
the Helmholtz wave equation. The dispersion relation of the Helmholtz wave equation in a
homogeneous medium which is represented by a circle, is now approximated by a
parabola (Claerbout, 1976). The vertex of the parabola is the unique point of contact

with the circle, and is tangent to it. Its axis is parallel to Es. This approximation leads

to |I<-:'| A ll?:s | (see Appendix 11.C).
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A ray that is paraxial satisfies therefore the parabolic approximation and vice-
versa. The denominations paraxial and parabolic describe the same type of
approximations but in different spaces; the former determines the receiver
neighborhood in the spatial domain (nK, < 1), and the latter imposes an upper bound of
the wavenumber vector orthogonal to IZS ( |I€:’n| < IE |) in the frequency-wavenumber
space (see 11.C.4). We shall, henceforth, choose the term parazial ray approzimation
to describe the restriction of the energy flux to IZS directions that fall within a narrow

angle of the k axis.

The paraxial ray method can be derived by extension of the standard ray method,
or as a limiting case of Gaussian beams. The Taylor expansion of the travel time away
from the central ray, followed by a scaling and rotating (similarity operation) of the ray
vector amplitude yield the paraxial ray. In the Gaussian beam formulation, setting the
complex parameter ¢ (l11.4.2) equal to zero, the superposition integral (11.8.4 or 111.4.10)
reduces to an average of paraxial rays. This limit requires that the weight factor ¢ be

equal to 1/ N, where N is the total number of rays contributing in the integral.

The advantage of the paraxial ray method over the standard ray method is mainly
computational. The method does not require two point ray tracing. The method is robust
and flexible in the sense that receivers can be placed anywhere in the medium. Resuits
can be as accurate as required, with computation time as tradeoff. One paraxial ray can
be used to extrapolate the field at many receivers, reducing then the total number of
rays. This number is, generally, less than the total number of receivers. The advantage
over the Gaussian beam method is that only one ray is sufficient to extrapolate the high
frequency wavefield to the observer, whereas Gaussian beams require & minimum
number (on the order of eight), requiring then a greater medium coverage around the

receiver. Even though Gaussian beams are restricted to the paraxial region and
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therefore uses the paraxial approximation, the two concepts are of different nature.
The disadvantage over Gaussian beams is that it is less robust and cannot handle
caustics, shadow zones, head waves or other interface waves. We shall present in the
following section the development of the paraxial ray method in a straightforward and

systematic manner.

2. THEORY

The theoretical steps that are performed in the paraxial ray method are presented.
We will mainly be concerned with two dimensional medium heterogeneities. Derivations
will implicitly assume that medium properties do not change in one space direction, say in
the y direction. Equations for three dimensional heterogeneous media can be found in

Cerveny (1983) and Cerveny, Klimes and Psencik (1984).

In "forward'' modeling, it is natural to assume that we are given a subsurface model.
A global reference frame (£, £) is defined and shown in figure 1. The following inputs
are specified: (0) The model domain of definition, in which we define (1) velocities
al(z,z) and B(z,z), (2) densities p(z,z), (3) quality factors @(z,z) (for near-elastic
media i.e. §>>1, Aki and Richards (1880); Toksoz and Johnston (1981); Ben Menahem
and Singh (1981); White (1983)), and (4) interfaces z; = 2z;(z), 1=1,/ separating /—1
layers each having a minimum thickness of hJ-, j=1,7-1. Layer parameters and

interfaces are at least of class (2, that is twice continuously differentiable.

The source location My(zq,2o) and its radiation pattern f(y,,7,;w) are given (see
11.3.7). For simplicity we shall consider only one receiver located at M(xr,z,). Muitiple

source/receiver configurations follow by simple extension of this presentation.
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Figure 1. Global reference frame definition in model.
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Applicability conditions of ray theory derived in chapter |l are assumed to be
satisfied. In the case of layers and interfaces, the characteristic length I, (11.2.17)
must include the interface radius of curvature and layer minimum thickness. The
curvature of interface 2, at point z is given by (Eisenhart, 1909; Vygodski, 1975)

2
d<z;

= (2.1)

b

]—3/2

K(z) = |1 + (P

and the interface radius of curvature is equal to 1/ K{ The definition of the threshold
frequency introduced in (11.2.19) can be extended accordingly. The mode decoupling

condition now reads

1
w > Wy Wy =5 )
0 07 2 i=155=1,1- P

v, Q
max . ||Val, |98l, oLVl ok 21 (22
]

Firstly, we specify a type of wave (or of ray) that we wish to propagate in the
model. For example, a P wave source propagating direct P waves up to the z, interface,
then, a reflected S wave from that interface, remaining a transmitted S wave all the
way through the model. Such a characterization of a ray (1 is called the ray code of Q.

Rays are traced in the medium by solving the characteristics of the eikonal equation

(11.4.5). Definingg =Vrand# = OM'(z,z), these characteristics take the form

2 = —v(nw), (2.3)
_ -2 47
P=u dr’

where v is either o or 8. This system is called the ray tracing system. The system is

solved by specifying initial conditions of (1 (initial-value problem) consisting of T=T1,
# =7, = OM'y and § = B, satisfying the eikonal 55 = uv~2(#). Defining the arclength

s as the distance along (2 from ¥, to #', we have
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Hl
s =[ds , (2.4)
0

with ds = (dz2? + dz2)'/2. The travel time at M is readily obtained recalling that

ds =v dT, and is given by (11.4.7). The arclength at the source is set equal to s,

(generally equal to zero): We can therefore write My(sgy), and M'(s). Across an
interface z,, the ray tracing is stopped. Local phase matching conditions are applied,
requiring new initial conditions for the reflected/transmitted ray, depending on the ray
code, before resuming computations. Explicit equations are presented in Cerveny,
Molotkov and Psencik (1977). The phase manifestation of the travel time is given by

S(1) = exp(iwT).

Secondly, we solve the eikonal equation in the ray centered coordinate system of
0 (11.4.8) known as the dynamic ray tracing system. The two parameters that are
derived from it are the local wavefront curvature K, along () and the surficial Jacobian

JS (1..4.9a). Here again, in the presence of interfaces, KX, and J° must be correctly

transformed (Cerveny, 1983). The transport equation (11.3.7) yields then at M'(s) the
complex amplitude of the displacement (see 11.4.11) in the frequency domain. For a

near-elastic medium, and for an explosive point source, it is given by

iw Co s ds

o ds
G(s) v(s) PNz o 2sfoo(s)u(s)

Uo(s,&)) =

+ +) S(sA
IIL R(D) p(sp)v(sy) J°(sp 2.5)

p(sy ) visy ) IS(sp)

where the K, is the appropriate reflection/transmission coefficient at interface z; at
the point D. s; denotes the arclength at the point D on the side of the incident wave,

and s b" on the side of the reflected/transmitted wave.
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In acoustic media, expression (2.5) is slightly modified since it is pressure that is

observable (or the potential of U, see 11.4.9)

1
/2 ds

v(s) _w Yy
eXPI72 fo ) (s)

J5(s)

Ao(S,G)) = f(71’72;w)

1/2
v(sy) JS(sf

I
Il R*(D) , (2.6)

v(sg) Jo(sp)

with v =a, and the appropriate acoustic reflection/transmission coefficient R{”. Here,
v2 = (p k)™, where g is the medium adiabatic compressibility (Morse and Ingard, 1968).
Considering a line source that will be used in chapter V, the source radiation pattern f,

is derived equating (2.6) with the asymptotic expression of the Green's function for an

acoustic line source in a homogeneous medium (i.e. —4_1 HEY (wA/ vg)). We have

f=—-(8mw)1/2gin/4 (2.7)

Denoting 7 the unit vector along (tangent to) the ray (, and A the perpendicular to 5,

the displacement vector at #'(s) for P waves is

(M) = Ug(M'\w) ™M) 5, (2.8)

for S waves, p is replaced by 7. In acoustic media the equivalent representation is

given by (11.4.2).

Thirdly, the distance from ray ( to receiver J{ must be computed. This is
achieved by searching for the point #'(s) on the ray such that the product of the ray
slope at M'(s) times the slope of the straight line joining the receiver to the ray at

M'(s), is equal to -1. If at this point }{'(s) on ray ) the components are (z, z'), then

the distance ray-receiver is
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]1/2 ’ (2.9)

n o= [z -2 + (5 -2
The receiver at M can be located in terms of the ray centered coordinate system of (),
i.e. M(s,n), as long as this system remains regular, that is n Kp « 1 (I1.7.21). The
assumption of smoothly varying medium is now necessary, since the wavefront is
supposed to be about the same at M than at ¥ '. The paraxial angle is then computed
following (see figure 2.)

x = tan"' (n K,)) . (2.10)

The next condition for the applicability of the paraxial ray method is the paraxial
condition (11.7.20), requiring |x] <« 1. An additional condition, that is implicit in the

method, which is the paraxial version of condition (11.8.9) is that
n KLlg. (2.11)

This is a necessary condition. {f receiver M is in the the region of medium where the
characteristic length is [, the paraxial ray that will be used in determining the field at
M, must carry the information about [,. At this point we have rejected rays that do not

satisfy the applicability conditions of ray and paraxial ray methods. Let us assume that

ray () satisfies all the conditions for the extrapolation of the field from QO at M' to

receiver M.

Fourthly, we perform the paraxial corrections. The kinematic (or acoustic)

paraxial correction for the travel time at M (see fig. 2 and Appendix 11.C)
, oF,
M) = (M) + —U’” , (2.12)
or in terms of the ray centered coordinates

s,n) = 7s,0) + nz%. (2.13)
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WAVEFRONT

CENTRAL RAY Q P wave

M'(s,0) S wave

Figure 2. Paraxial ray geometry.
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Then, the dynamic paraxial correction is performed for the amplitude at /.

- > 1w
O(Mw) = qPeUM e v ,

(2.12)

where g =(1 + 6R,/ (J5)'/2)~" for a point source, and ¢ = (1 + R,/ J5)™"/2 for
a line source. The P operation is a rotation of (oriented) angle x, of center T, from M/ '

to M (figure 2). Denoting [ ] the matrix of P, we have

cosy siny

[P1 = | Zsin’y COSX). (2.13)

The amplitude transformation in (2.12) is recognized to be a similarity of scale g , angle
of rotation y and center 7. The high frequency Green's function at M is then, for P

waves,

(M) +

'n.zfqu
2

U(M,w) = q UO(M',w) exp{iw ] Pep, (2.14)

-~

for S waves, P is replaced by 7. The angle x is very small compared to one, since the

paraxial condition is assumed satisfied. Further, in the far field and for a paraxial ray,
we may approximate the scale factor g by one (i.e. 6R, < (/5)'/2 for a point source,
and 0R, < JS for a line source). Within this approximation the following values are then

considered in (2.14)
g~ ; (P~ {1 >1<] (2.15)
X
Lastly, if the source spectrum is equal to G(w), the seismogram at receiver X,
4 (M,t), is obtained by muitiplying the high-frequency Green's function by the source

spectrum, and by inverse Fourier transforming the response,

a(M,t) = FT1 {(*J(M,m).a(w)}, (2.16)

where the convention of Fourier transform is the same as that defined in Chapter I,
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:_section 2.

3. EXAMPLES

Source time function is the Gabor wavelet described in Chapter Il equation (6.1).
Source parameters are fo =60 Hz, '=4 and f; =0.08 sec. The paraxial ray
computation of (2.14) and (2.16) is done using a modified version of the Gaussian beam
code (see Chapter lll, section 6). The data generator and testing of the method is
performed using a finite difference program written by Esmersoy (1985). It is a
constant density acoustic code with absorbing boundaries, where synthetics are
computed for a line source. The formulation is heterogeneous with an explicit scheme.
We always satisfy the grid dispersion relation, Ad = oyn/ (5f max)s &nd the stability
condition, At < Ad/(21/2 Omax)>» Where Ad is the grid spacing; At the time sampling
interval; f . the highest frequency present in the source; and where o, and am,, are

the minimum and maximum velocities in the medium, respectively.
Model 1:

The model is a VSP in a two layer acoustic medium (@ -==), with a tilted interface
(figure 3). There are no free surface effects, and the 2D line source is at an offset
distance of 0.75 km. The borehole is S-shaped with 20 receivers. The interface tilt is
about ® ~ 22° (see Appendix G.1). The upper medium velocity is a; = 3.5 km / sec and
the lower medium velocity is a, = 4.5 km / sec. Pressure synthetics using the paraxial
ray method are shown in figure 4. A maximum of ten rays per ray code is enough to
construct the wavefield. The corresponding finite-difference synthetics are shown in

figure 5. figure 6 displays the difference (residuals) Paraxial - Finite Difference.
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Figure 3. Geometry of Model 1.
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MODEL 1 - TILTED BOREHOLE
PARAXIAL VSP - ACOUSTIC
TIME (SEC)
- 0.20 0

0.00 0.10 .30 0.40

=

W D@ 4 O N e W NN

o
Y

—
—
)

(€

)

LN N

-—
=

wn

—
=]

—
~

—
@

—
w

~N
(=]

0.00 0.10 0.30 0.40

0.20
GAIN =1.00 TIME (SEC)
VSCALE=0. TN91E-1

Figure 4. Pressure synthetics of Model 1 (paraxial rays).
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MBDEL 1 - TILTED BOREHOLE
FINITE DIFF. VSP - RCOUSTIC
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Figure 5. Pressure synthetics of Model 1 with the finite difference method.
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MODEL 1 - TILTED BOREHOLE
PARAXIAL - FINITE OIFF.
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Figure 6. Residual (Paraxial - Finite difference) synthetics of Model 1.
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The small differences are attributed to (1) grid dispersion, due to the finite spatial
sampling of the medium; this is due, particularly to the propagation in the low-velocity
layer; and (2) a small instability resulting from the finite time sampling which is affected
by the high velocity layer. This example shows that paraxial ray amplitudes and travel

times correctly reproduce the wavefield.

\

Model &:

This model is the elastic version of Model 1, with same geometry (figure 3). The
source is now an explosion. The factor iw in (2.5) is not included because no
comparison with an exact method is done. The upper layer parameters are:
ay; =3.5km/sec, §; =2km/sec, and py =2.7 g/ cm3. The lower layer parameters
are: o, = 4.5 km/sec, 8, = 2.6 km/ sec, and p, = 3.0 g/ cm?. Here too, a maximum
of ten rays per ray code is enough to construct the wavefield. Four ray codes are
considered: (1) The direct P, (2) P to S converted transmitted, (3) P to P primary
reflected, and (4) P to S primary converted reflected. Arrivals in the figures are labeled
according to this numbering. figure 7 shows the vertical displacement synthetics, and
figure 8, the horizontal displacement synthetics. The reflected wavefield comes from
the other side of the borehole, with respect to the source, and is correctly taken into
account by the method. A two-point ray tracing program would require at least six times

more rays, considering that each receiver is found after 3 rays.
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Model 2

PARAXIAL RAY METHOD - ELASTIC
VSP - VERTICAL COMPONENT
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Figure 7. Vertical component of displacement of Model 2 (paraxial rays).
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Model 2

PARAXIAL RAY METHBO - ELASTIC
VSP - HORIZONTAL COMPONENT
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Figure 8. Horizontal component of displacement of Model 2 (paraxial rays).
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Model 3:

We compare the paraxial ray method with the discrete wavenumber method
(Bouchon and Aki, 1977). The model represents a simplified section of a borehole in
Michigan, referred to as model 3. The 11 layer elastic media is subjected to a vertical
point force located on the surface, with a source offset of 0.075 km (figure 9). There
are 11 receivers. The discrete wavenumber synthetics are computed by Prange
(1985). We have used 8 ray codes, with direct P, and primary P reflected rays from
interfaces 5 through 11. The source parameters are fo =60Hz, ['=4,and {; = 0. The
medium threshold frequency, v, (2.2) is on the order of 120 Hz x radians, whereas the
angular frequency is about 314 Hz x radians. The mean wavelength, A, is on the order
of 100 meters. Within a constant amplitude factor, there is a fairly good agreement
between the paraxial synthetics (figure 10) the discrete wavenumber synthetics
(figure 11). Here again, even in the presence of thin layers (hg ~ 20 meters ),

asymptotic results are still representative of the the wavefield.
Model 4:

This last example is a four layer elastic model, containing a reef (figure 12). We
combine VSP and surface reflection data. The explosion point source is located on the
surface at 525 meters offset, with same source parameters as in Model 1. There is a
total of 60 receivers: 40 receivers are placed in the VSP geometry, with initial receiver
at depth 150 meters and last receiver at 930 meters (spacing 20 meters). The
remaining receivers are on the surface, with 50 meters spacing. Receiver 21 is on
interface 4 (the reef), whereas receivers 13 and 14 are separated by interface 3

(dipping interface).
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Model 3
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Model 3

RAFAEL MODEL
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Figure 10. Vertical component of displacement of Model 3 (paraxial rays).
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Model 3
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Figure 11. Vertical component of displacement of Model 3 with the discrete wavenumber
method.
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Layer parameters are the following: densities in g/ cm?®,
(o =2.5,p, =2.6, p3 =2.7,py =2.8),
velocities in km./ sec,

(ay = 3.3, ay = 3.5, a3 = 4, ay = 4.5).

Shear velocities are 8, = a;/3'/2. 10 ray codes were used, with a maximum of 30
rays per ray code. Figure 13 shows the vertical component of displacement, and figure
14, the horizontal component of displacement. The numbering in the figures corresponds
to the following arrivals: (1) direct P wave, (2) P to S conversion at interface 2, (3) P
to S conversion at interface 3, (4) P to S conversion at interface 4, (5) P to P primary
reflection at interface 2, (6) P to S primary converted reflection at interface 2, (7) P to
P primary reflection at interface 3, (8) P to S primary converted reflection at interface
3, (9) P to P primary reflection at interface 4, and finally, (10) P to S primary converted

reflection at interface 4.

On surface receivers, arrivals (1), (5) and (6) interfere with each other. The
receiver array is not large enough to allow separation of these waves. Arrival (8) is
very poorly distinguished on surface data, and is better seen on the VSP. The reef
distorts arrival (1) in layer 4 which should have been straight if there were no reef. The
ray tracing of arrivals (1) and (9) are displayed in figures 16 and 16, respectively.
Note on figure 15, the direct rays that were stopped because of post-critical angle of
incidence. The wavefront right below interface 2, is extrapolated to neighboring
receivers without difficulty with the paraxial ray method. Whereas, in two point ray

tracing, near critical rays, many iterations are required to achieve the same goal.
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Figure 12. Geometry of Model 4.
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MODEL 4 - PARAXIAL - ELASTIC
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Figure 13. Vertical component of displacement of Model 4 (paraxial rays).
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Figure 14. Horizontal component of displacement of Model 4 (paraxial rays).
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RN N7

Figure 16. Ray diagram of P to P reflection at interface 4, for Model 4.
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4. CONCLUSION

The paraxial ray method is an economical way of computing fast asymptotic
Green's function in heterogeneous media. The paraxial corrections are (1) kinematic:
approximation of the phase at the receiver, given the phase at the central ray, (2)

dynamic: similarity transformation with scale close to unity and angle of rotation equal to

X-

Comparison with acoustic finite difference and elastic discrete wavenumber
methods, is very satisfactory. Examples show the flexibility and robustness of the

method.

in problems such as imaging and inversion of heterogeneous media, where large
numbers of Green's function computations are required, the paraxial ray method offers

an attractive way of achieving this task.
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V. FULL WAVEFORM INVERSION

Chagque science, chaque étude, a son jargon inintelligible,
qui semble n ‘etre inventé que pour en défendre les approches.

- Voltaire

1. INTRODUCTION

The present chapter deals with a full wave inversion for interface and layer
parameters. The goal is to use combined sets of VSP and surface reflection data, multi
offset VSP's, or cross borehole data, to estimate subsurface parameters. The paraxial
ray method presented in Chapter IV generates the forward model. Amplitude information
constrains the inversion uniquely by (1) post critical reflection phase effects, (2)
density information, (3) medium density and attenuation factor and (4) the effect of the

displacement component.

The inversion is done in the frequency domain since the paraxial results are
computed in this space. Further, the data dimension is reduced. necessary, compafed
to time domain full - wave inversion, while maintaining all signal information. Finally, the

assumption of uncorrelated samples is justified in this domain.

The heterogeneous media contain homogeneous layers separated by smooth
interfaces. Interfaces are parametrized by simple functions. Prior information includes
initial layer parameter estimates, along with their errors in measurement, the type of
interfaces that are present (dipping interface, reef type, anticline, fault etc.), and a
fixed point on each interface, given for example by a VSP experiment, or any other

borehole logging information. This is a realistic consideration, since layer parameters
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and interface locations are well determined in the borehole. Other types of prior
information can be included such as data from other geophysical sets, or empirical

relations between layer parameters.

The non-linear least-norm formulation is presented in the context of tensor algebra.
A simple analogy exists between the data covariance operator and the metrical tensor
of the basis under which the data is expressed. The inversion is finally reduced to a
minimization of a a residual energy, which is the sum of squares of nonlinear functions
for parameter estimates. This is then solved using a special case of the Gauss-Newton

method known as Levenberg-Marquardt.

We first examine the sensitivity of the residual energy to parameters. Examples of
inversion with finite difference data are presented. Finally, an example with field VSP

data collected in Michigan, is inverted for velocities and interface dip angles.

2. GENERAL DERIVATION OF THE NON-LINEAR LEAST-NORM FORMULATION

The observables of a given geophysical system (measurements, data, synthetics
etc. ) can be represented by real vector functions, elements of a vector space which
should be specified precisely. It is a real Euclidian space. Its properties are that (Ditis
a discrete real linear vector space, (2) N-dimensional and, (3) in which a scalar product
has been defined resulting in a Euclidian (L,) norm. Following the same notations as Aki
and Richards (1980), we shall call this space the N-dimensional data space and denote
it by U. We shall assume that U is a subspace of E, where E is the discrete linear space

described in Appendix F.

Given a set of measurements described by a data vector d in U, the non-linear

least-norm inverse problem, consists in the following three steps:
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(1) Determine precisely the parameters we wish to extract from the data d. These
parameters are in the form of a vector 77, defined as the parameter vector. Denote V
the space spanned by the ri's with dimension . This is the parameter space, a
subspace of E. However a necessary assumption is that V is a convex set. This means
that for any two vectors 7i,, 7, in V, and for a scalar A within [0,1], the vector
Ay + (1-A\)mh, is an element of V. Generally, the two spaces U and V are different in
nature since in the first case the vectors are formed by data points (eg. amplitude,
phase at given time or frequency etc.) and in the second case the vectors contain
parameters (eg. velocities, attenuations, interface parameters etc.). However, in some
instances (section 3), the data space may contain elements that are present in V

space.

(2) Formulate a model in the form of algebraic, differential or integral equations
(generally non-linear) with its associated initial and boundary conditions. Let this model
be represented by a functional f that operates on a vector m of V space and
transforms it into a vector f () of U space. This vector is defined as the synthetics.
It is the model prediction of a data set. At this point, we should identify the parameters
that are best suited for the model. There are some models for which it is not possible to
uniquely estimate all the parameters from measurements. However, certain functions of
the parameters can be estimated. Beck and Arnoid (1 977) derive a parameter
identifiability criterion. A posteriori parameter resolution and variances (section 4)
contain information on how good and reliable the parameters are estimated, given the

data set and the model.

The discrepancy vector  between the data and the synthetics is a functional

defined for any mi in V,
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) = d - F(m). (2.1)

This vector is sometimes called the additive error in measurements or the residual

vector; in other terms it represents what is not modeled by f ().

Given a basis in U, with its corresponding metrical tensor W, the total energy of the

discrepancy 2 is defined as half the Euclidian norm s (2,8) (see Appendix F.17)

E() = —2ellie?, (2.2)

1
2
or in matrix form

E(m) = [T [#1[£]. (2.3)

N

It is sometimes referred to as the residual energy of the data-synthetics system. The
real and symmetric metrical tensor # acts as a weighting factor for each component
£isi. The data is expressed in the basis of #. The physical meaning of # will be
introduced later in this section. A sufficient condition that will be required later is that

the functional £ be of class C?, that is twice continuously differentiable.

(3) Finally, assuming that E(+%) is a convex function and that an ri* existsin V,

such that

E(m») = ,n’“,-‘,','v E(m), (2.4)

the last step is to find an estimate of 7A*, say M, so that 7 = ri*. The function £
represents the equation of a hypersurface in V>R space (R denotes the set of real
numbers). The convexity of £ requires that the set of points in V& above the surface

described by F'is convex.
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If (2.4) is achieved we then have, for any 7 in V, (/i) < £(m). The model f
with parameter vector 7 is said to "best fit" the data d within the vector error £(7#.) or
with an energy discrepancy of E£(71). This optimization can be interpreted geometrically
as searching the deepest or lowest point on the hypersurface of £'in V>R space. £(#)

is the non-linear least-norm (in L, sense) of &(m).

For our purposes, the minimization (2.4) can be interpreted as maximizing a
Gaussian probability density function for the data vectors (Van Trees, 1968; Tarantola
and Valette, 1982), which is a special case of the maximum likelihood method. This

assumes that vectors in U have a likelihood function of tr{e form

Ld|m) = Cexp|— =[d —fm)IT v [d - F()]|, (2.5)

|-

with observations d, expected value f(74), and covariance matrix V. d is a random
sample of size N, and C is a normalization constant factor. This is the probability that
event d be realized, given 7, thus f (1) and V. The maximum likelihood method
searches for an 7* that maximizes L(d|7%*). The minimization seeks to estimate the
parameters 74 present in the expected value f . Taking the absolute value of the

natural logarithm of L(d|7%) converts the maximization of L(d |#4) into the minimization
1 d Ty-1r1d - F e . .
of E[ - f (7)1 V71 [d — f(#M)]. Identifying this representation of the problem

with the present formulation (2.1-4) leads to the equality between the matrix [l’i’]‘1
and the prior covariance matrix V. The covariance matrix determines the type of basis
under which the data is expressed. The minimization handles the prior information as
weighting factors for individual data components. More accurate observations are
weighted more heavily. Equation (2.5) is then written as L(&:m) = Cexp(—E(1)),

where d is an implicit variable in F.
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If the covariance matrix is diagonal (uncorrelated events), the base vectors are
orthogonal. The matrix [W] is diagonal with components reduced to scale factors. Each
data component is totally unrelated to, or independent of, another component since the
residual energy remains unchanged when cross-term components are added. The
energy for each component ¢t is weighted according to the scale factor #;. If the
covariance matrix is equal to a scalar constant w times the identity matrix (white noise
if the problem is set in the frequency domain), the base vectors are orthonormal. There
is equal prior information about the data variance and consequently there is no
privileged weighting (%, = w). In terms of tensor algebra, curiously enough, there is
loss of variance: covariant and contravariant components are reduced to usual
cartesian components. The minimization is considered as unconstrained by a priori
information. The next section will cover in more in detail how a priori information and

constraints are handled.

The introduction of the metric tensor # enables the minimization problem to handle
more general exponential families than the normal distribution (2.5). The metric tensor
{and the corresponding data covariance matrix) is required to be conétant and diagonal.

Equation (2.2) with (2.1) can be written explicitly as

1 @ >

E() = —(faled + — foltef + = delied . (2.6)

N
N =

Requiring that the distribution has an expected value equal to f , and setting
B = fo, §(F) = ;—f-W-f, and g(d) = -;—J-W-d' enables the likelihood function
(2.5) to be written in the more general form

L)) = Cexp [p(F)d —q(F) - ()] 2.7)

The expected value of the distribution is then calculated via the scalar result of

Charnes, Frome and Yu, (1976), which we generalize for the vector case,
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V<ci > =(Vp)™' «V§ = f, the differentiation being with respect to f, and <> denotes
the expected value. We have used identities (F.19-20). Similarly, the diagonal metric

tensor is defined formally as
w=vg, (2.8)

the differentiation being with respect to f . This is the vector expression of eq.2.3 in
Charnes, Frome and Yu, (1976). The theorem is:
If d is a random sample of size N satisfying (2.7) with <d>= f , then a maximum
likelihood estimate of i, say m, will satisfy the equation VE(7%) = 0, provided

m belongs to V space.

For a likelihood function of general exponential family of type (2.7), and its
appropriate metric tensor (2.8) and expected value f , the linearized stochastic
inverse, to be presented in section 4 of this chapter, would yield estimates that are

identical to those obtained using the maximum likelihood principle.

Parseval-Plancherel theorem (Bass, 1977; Roddier, 1978) states that the energy
of a system is conserved when transformed into the Fourier space. Therefore, for any
two conjugate variables (f,w) with w being the dual variable of £, and for a Np-point

(Np=N) Discrete Fourier Transform (DFT) (Oppenheim and Schafer, 1975),

& 2 1 & 2

1

where the bar denotes the Fourier transform of the function considered. For example, if
the data vectors depend on time, we can therefore study the minimization process (2.4)

in the time or equivalently in the frequency domain, whichever is suitable.
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This property is a particular case of the more general property that all unitary
operators, such as the DFT, are isometric (i.e. conserve the norm). An operator A is
unitary if A7 = A~', where the superscript T denotes the transposed of 4, and the
complex conjugate transposed if A is complex. Thus if A operates on a vector g (i.e.

Ae#) the normis
s(AsZ, A) = s(38). (2.10)

This property, in signal processing, is sometimes referred to as information
preserving. Such a transformation has a beneficial effect when observations (signals)
are considered as random processes, for which noise is characterized by the covariance
matrix, generally non-diagonal. The time for which the autocorrelation function begins to
decrease significantly is an approximate measure of the time interval, At, for which two
events are uncorrelated. In terms of power spectral density (Fourier transform of the
autocorrelation function), if the highest signal frequency is f .., the required time
interval, At, in order to achieve decorrelation, must be greater than f - However,
time samples of properly sampled signals (i.e. At <(2f r,,‘.,,()'1) are correlated.
Performing a unitary transformation to the signal redistributes the variance associated
with the transformed signal samples, into almost uncorrelated samples (Yechiam and
Pearl, 1979), thus performing a quasi-diagonalization of the covariance matrix. Other
than being simpler in computation, since cross terms of the covariance matrix are
neglected compared to the diagonal terms, this enables the transformed coefficients of

the signal to be processed.

3. A PRIORI INFORMATION - CONSTRAINTS

The previous section introduced how prior information on the errors in the data are

handled. If some prior information is known about the parameters, such as for instance a
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measurement set, their maximum error, upper or lower bounds etc., or results from other
types of measurements (gravity data etc.), the present formulation handles these
additional information as submodels fq and subdata Jq belonging to subspace
Uq,q=1,[(. These subspaces are supplementary in U. Since each subspace is
characterized by its metrical tensor whose matrix is the inverse of the prior cavariance
matrix of the a priori data, the statistical inference of this assumption is that that
uncertainties in U, are uncorrelated with uncertainties in U, for p #g. This is generally
a plausible assumption (Aki and Richards, 1980; Tarantola and Valette, 1882). The
method could handie the case where the spaces are not disjoint. Introduction of
tensors whose components are tensors, would achieve this goal, but this problem is out

of the scope of this study.

The presence of prior information adds more robustness and help reduce the
variance of the parameters. In probability theory, the way of including prior information
utilizes the maximum a posteriori method (Beck and Arnold, 1977). It is a special case
of Bayesian estimation (Jackson and Matsu'ura, 1985). The method is based on

Bayes's theorem, and estimated value of the parameters are called Bayesian estimates.

The residual energy will take into account separately each type of prior information
or constraints. For example, this energy will be required to increase wherever a type of
constraint is violated, forcing the optimization to search for the minima in a domain where
the constraints produce the least residual energy. It is therefore imperative that this
information be specified precisely since it is able to force the optimization to seek an

induced minima that could be far from the unconstrained minimum.

Given a parameter vector 7. in V space, the model f generates synthetics f ()
in U space. In order to incorporate in the optimization process the possibility that some

or all the parameters are constrained in some manner by a priori information it is
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sufficient to vector decompose uniquely f (7:) into K different subspaces of U, K being
the total number of different types of information and constraints. The model f can be
viewed as a linear superposition of K submodels fq. The data d is decomposed the
same way as f (74). The partial residual vector is then g = &q - fq. The subspaces

Uq , ¢ =1, K, are supplementary i.e. their direct sum forms U. This can be written as

K
gm) = (431 gq (), (3.1)
q:
where .'e'q(ﬁw.) belongs to Uq, and
K
U= q@1 Y, . (3.2)

where @ is the direct sum of linear spaces. Each subspace Uq is specified by its
metrical tensor Wq, whose matrix is the inverse of the a priori covariance matrix Vq"1.
The corresponding total covariance matrix is then composed of K block-diagonal
submatrices. From the supplementarity and linearity of each subspace Uq, the total

residual energy will then be the sum of the partial residual energy, that is

E(h) = §1 E (), (3.3)
q:

é'q o W, -S:'q.

nj=

where Eq =

As an illustration, we shall be considering two types of parameter constraints
(K=3): (1) A prior information on the parameters requiring an observation vector (prior
mean) and a covariance matrix of the parameters with the assumption of independent
parameters and normal probability density for the parameter errors. This type of
constraint induces minimum weight in the residual energy when the parameters are at

their observation value (point wise constraint), and a norm type of increase away from
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it. (2) A penalty constraint requiring physical or mathematical bounds on the
parameters. This constraint attributes zero weight in the residual energy for all the
parameters that are within the finite domain of definition (finite domain constraint) and
an increasing weight as they get further away from that region. Other types of point

wise or finite domain constraints could be added such as in barrier methods (see
Luenberger, 1973). The model f 4 generating f 1(m) will be the unconstrained model
producing synthetic seismograms (amplitude and phase at time or frequency samples).
The models f 2 and f 3 generate the a priori parameter synthetics f o(mt) and the

penalty synthetics f a(mt), respectively. Considering a parameter 7 in V space, the

submodels fq, the synthetics f ¢ () and the data Jq can now be explicitly defined.
Seismagram model (Model 1)

Given seismogram data d,, f, corresponds to the forward model that generates
the synthetic seismograms f 4(7) that is compared to 31. The forward model here is

implemented using the paraxial ray method. The subspace in which the seismograms

belong is U,, with dimension ~,. The matrix of the metric tensor ﬁq is equal to the

inverse of the covariance matrix Vi, which is an input.
Parameter prior information model (Model 2)

The data d’z for this model is set equal to the given a priori parameter observation
(z_i'z = rlg). The matrix of the metric tensor ﬁ’z is equal to the inverse of the covariance
matrix V5 1 , which is an input. The synthetics are the parameter themselves, i.e.

f » = 7. The subspace involved is U, with dimension N,=#.

Penalty model (Model 3)
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The data d; for this model is equal to zero (d3 = 0). Consider a number of
functional constraints on the parameters defining a finite domain C in V space. The
function fa is such that

fatm) =0 forall 7 in C, (3.4)

#0 forall i notin C.
in the case where C is defined by a number of inequality constraints:
C = {inV:c(M) <0, i=1, N3}, (3.5)

a useful penalty function is
a

Fi(m) = [ max[0; ¢, (1i)] z ; i=1, N, (3.6)

where a an even positive integer (with typical values of 2 or 4). The subspace spanned

by f 3 is Uz with dimension N;. The matrix of the metric tensor W3 is taken to be

diagonal.

The total residual energy (2.2) with (3.3) can be written as

E =1 (te ety + 80 Hyet, + 8 Wy gy), (3.7)

n|=

or, in terms of components
g =L S oy [af - riem)[ad - r{en)+
2 =y 1745 1

1 (W2)y; [mg - mi] [mg) - mj} + ;_:Vé (W) [fg(ﬁ)lz @8

with N1 +N2 +N3 = N.
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This equation shows the effects of constraints in the optimization. The residual
energy is weighted according to "how far" the estimated parameters are from their a
priori values, in addition to the variance weighting. The different contributions in the
residual energy at the right hand side of (3.8) are explicit. The first term corresponds
to the seismogram model, the second term to the parameter prior information model and
the third to the penalty model. Geometrically, the constraints increase the convexity of
the hypersurface of F in V>R space by raising the energy wherever the constraints are
active (i.e. violated). This forces the search for the minimum residual energy within the

domain defined by the a-priori information.

If other measurements or a priori information were to be implemented in the
minimization, they would be associated with models generating synthetics. Their partial
residual energy would then be added to (3.7), with the corresponding weights

expressed by their metrical tensor.

4. THE LINEARIZED STOCHASTIC INVERSE

The non-linear problem (2.4) described in the preceding section is generally solved
by iteration. A typical method of attacking the problem, known as Newton's method (or
variations of it), reduces the non-linear system to a sequence of linear least-squares
problems. For the sake of simplicity and clarity we shall first review the method in 1-
Dimensional V space (m is a scalar), then generalize the results for vector
representation in A-Dimensional V space. Two equivalent approaches are possible:
Either we linearize the total energy FE, then decompose the result into individual
contributions, or else decompose the energy via (3.3), then linearize each contribution
separately. We shall follow the first derivation, comparing the final resuit with that in

Tarantola and Valette (1982).
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One-dimensional problem

Figure 1 shows a typical example of a convex function £(m). There exists a point

m* such that £(m?*) is minimum or equivalently such that

E'(m*) = 0, (4.1)
where the prime denotes the derivative with respect to m.

Following Dennis and Moré (1977), Newton's method can be derived by assuming

that a given m, is an approximation to m*, and that in a neighborhood of m,, say at

point m,, ,;, the linearization of £'(m, ) is a good approximation to E'(my,,,). We can

write
Ek+1' A Ekl + Ek” (mk+1 —mk), (4.2)

where E, = E(my). This reduces the non-linear problem (4.1) by solving iteratively for
k the linear system £, ," = O, or equivalently
-E,' = E,'' Amy, (4.3)

with Amk = My — My,

Assume %'’ # O and that for more generality its inverse is computed approximately.

Given an initial a-priori guess my to m*, Newton's method updates the approximation

following

My, = -5V E', (4.4)

where ARy, =y 4 —m,, k being an integer representing the iteration number. The

hat represents an approximate estimation of the real value since (') is computed

approximately, i.e A7, N Am,,.
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i
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m

Figure 1. Geometrical representation of a nonlinear 1D minimization.
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The algorithm is as follows:

a) enter d, model f and m,, and exit conditions E‘XC’
b) compute £, £ ' and £, "’

c) compute A7 following (4.4): my, .4 = my, + AT
d) test EXC, if true STOP: k iterations, M. = my .,

e) update k » k+1 gotostepb

where 7 is an estimate of m*. The exit conditions are on m, and/or F, and are for
example an upper bound on the relative difference between two consecutive iterates of
m, and/or of E. Another convergence criterion could the minimum number of digits for

which two consecutive iterates of m agree.

Multi-dimensional problem

The vector generalization of (4.4) is straightforward. The scalar m,, is replaced by

the M-Dimensional vector 7#,. £.' and E.'' are replaced by the vector VE and the
dyadic VVE, respectively. We shall omit, except when needed, the subscript £ denoting
the iteration number, since, by analogy to the 1-D case, the updating occurs only wh‘en
all the operations at fixed k& are terminated (part e of the algorithm). Recalling that the
base vectors are independent of 74 and are fixed for a given a priori covariance matrix
(fixed ff’), all derivatives with respect to 74 will therefore not affect the basis and its
metrical tensor #. If W is dependent on 7, then each iteration would update the a
priori covariance matrix, which is a generalization of the present method. This would lead
to the computation of Christoffel symbols (last term in F.18), which is straightforward
but out of the scope of this study. The data vector d is assumed independent of

too. Since ¥ is symmetric we will use the relation Wl = (F.9).
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Define the two dyadics
GT = —vg=vf and H = WE, (4.5)
where the superscript 7 denotes the transposed dyadic, the differentials being

evaluated at ni;,. The components of the GT dyadic are (see F.18),

(6N = v, fi = _aﬁ'_' (4.6)

am?
Therefore, G/ = V; f*.

Since £ = -12—3 i+ 2 (2.2), use of (F.19) yields

—VE = GTefeg, (4.7)

and
H = -WGToled) = GTalpel - vGTelez, (4.8)
The components of the triadic V@T are

veHE = v (TP = _OrF (4.9)

om' omJ

Set F = - VéT, the vectorized equation of Newton's algorithm follows from (4.4)
defining Am =7y, 4 — 7, k being the iteration number, and assuming that H is

invertible

(4.10)

s
+
=
=
[ )
oo
Qs
~
[ ]
R
*
o

o= (6T

where F, G and # are evaluated at .

The NxM matrix [é] is defined as the sensitivity matrix. It is the matrix of partial
first-derivatives of the error components with respect to the parameters. It is

sometimes called the Jacobian matrix. The Mx} matrix [ /] is defined as the Hessian

-170 -



Chapter V

The MxHMxN matrix [ F7] involves second partial derivatives of residuals with respect to
parameters. The algorithm is identical to that developed for the 1-Dimensional case.
The convergence and rate of convergence of the method have been studied

extensively (Acton, 1970; Karmanov, 1977; Dennis and More, 1977).

The Gauss-Newton methods use the approximation A ~ GTofie G Convergence
conditions are given in Nazareth (1980). The approximation is justified asymptotically if
for example the residual energy is small or if its surface is close to a paraboloid (i.e.
quasi-linear residual vector). In Appendix H, we give a one-dimensional example of this
approximation, which introduces the concept. Using the Gauss-Newton assumption,

equation (4.10) reduces to
M = (GTalel) o GTo ez, (4.11)
which is the familiar weighted least-squares solution of the linear problem
g = =G« AR, (4.12)
with a priori information contained in #. The energy minimization of & weighted by i,
yields then, Ar7i.
The linearized stochastic inverse operator, at ster; k, is defined as
L = (GTelel)GT W, (4.13)
which is represented by a MxN matrix [[',']. It transforms the vector # in U space into a

vector A in V space.

As an example, we shall calculate explicitly (4.11) when different models are
involved. The two models considered are (1) the seismogram model, Model 1, and (2)
the parameter prior information model, Model 2, described in the previous section. The

residual vector is then (3.1) 2 = &, @ #,. We therefore have from (4.5) G=G,® 52.
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Similarly, we may write symbolically W= W1 @ ﬁ’z. From the supplementarity of the two
spaces U, and U, (see 3.2), the dot product of these quantities (¢; , G; , #;) will only

pick quantities who have same subscript. Equation (4.11) then reads
A = (G1 'W1 ‘G1 + Gz 'Wz'Gz) . (G1 ‘W1‘§1 + Gz ‘W2°32) . . )

Since &, = d, — f1, 8 =y — 1L, we have from (4.7) é,T =Vf and &, = ég =71 [#.]
is the inverse of the data covariance matrix, and [WZ] is the inverse of the parameter

covariance matrix. Equation (4.13) takes then the final form
ari = (ETalgally + W)™ e (Eelre(dy = F1) + g -], (818)

for which the matrix representation is identical to equation (25) in Tarantola and

Valette (1982).

Henceforth, we shall include prior information before the linearization, as shown in
(3.8). In general we would minimize the sum of N + N7 + 2N; — N nonlinear functions
(least norm) in M variables (or parameters) by a a special case of the maximum
likelihood method, referred to as the Levenberg-Marquardt method. If all the a priori
covariance matrices are diagonal, the functions are squared (least squares) and their
total number reduce to N. The Levenberg-Marquardt method introduces an additional
term in the inverse operator (4.13) of the form 2 D, where D is a (0,2) diagonal dyadic

whose components are equal to
Dy = (GT e o)y , (4.16)

and Dij =0 for i#j. 72 a positive scalar called the Levenberg-Marquardt parameter,

that is updated at every iteration. This particular choice of D has the effect of making
each iteration invariant under scale changes in the parameters. A good review of this

method is found in Beck and Arnold (1977), Aki and Richards (1980), and in Lines and
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Treitel (1984).

The inverse operator in (4.13) is then recast as

g o

F = (Glelel + D)Vl (4.17)
The search direction and iteration are therefore computed from
AR = [e# (a.18)

The method is bounded by the Gauss-Newton method (for y=0), and by the
Steepest-descent method (for ¥ > 1). This addition results in reducing the size and
changing the direction of the step at each iteration. ;l'he use of implicitly scaled
variables limits the step size | A7 | in (4.18), in any direction where the residual energy
changes rapidly. Depending on the strategy, iterations may start alike the steepest
descent method with final iterations close to the Gauss-Newton method. In this case,
the parameter 72 is chosen adaptively and decreases as the well-behaved minimum is
approached. If the neighborhood of the minimum is poorly-conditioned, this parameter
remains finite. Among its advantages, it maintains nonsingularity of the inverse operator
and improves the search for the minimum (Beck and Arnold, 1977; Nazareth, 1980; Lines

and Treitel, 1984). It also tends to reduce oscillations or instabilities.

At the end of iterations, we can estimate how good the linearized inversion

performed, given its assumptions. The a priori covariance of the data [ﬂq 17 in y,

induces noise in the parameter space V, i.e. in the resulting vector i in V, that is

characterized by the final covariance matrix of the parameter noise V,,. The a priori

parameter covariance matrix being [Wz]'1, we have (Sandell and Shapiro, 1976)

Ve = [[ETR G + D1+ L8] (4.19)

in which we have added the Levenberg-Marquardt term. Investigation of (4.14) allows
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an extension of (4.19) in the case where K multi-models are considered,
r —1
Vi = [ SCAA A1 + 210 | (4.19a)
q'_"

The generalization of (4.19a) follows from (F.24), where we express the metric

tensor in V space, # ., from that in U space, #. From (F.24), (4.5) and the

m?

supplementarity of the Uq spaces, we have
- AT & — T
W, = & -W-é+72ﬁ-§1éq-ﬁq-é‘q+72ﬁ, (4.20)
with [ #,,]17" = ¥,, in (4.19a).

In fact, adding prior information to the parameters (model 2), renders the inverse
operator non-singular since the matrix [Wz] is positive definite. Prior information effects
are similar to the addition of the Levenberg-Marquardt term. Thus, in this case, the
Levenberg-Marquardt term can be eliminated from the operator; its presence being

unnecessary because the inverse operator is regular.

Additional effects due to presence of noise in the non-linear problem such as bias
in the stochastic inverse ( 'noisy"” operator ) are assumed to be small compared with fhe

parameter noise (Box, 1971).

The MxM parameter resolution matrix and the NxN data resolution matrix are

defined by
R = —[L+Gy] and S = —[Gy+L1. (4.21)

These two matrices are derived following (4.12) and (4.18) (Hohmann, 1879)
(A ]
(]

R [am], (4.22)

s 2], (4.23)
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We shall require a measure of the resolution which is the trace of the matrix (Aki
and Richards, 1980), i.e.

tr(R) = g Ry . (4.24)

\

For example if | is the M x} identity matrix then tr(l) = M.

The closer the parameter resolution matrix is to the MxM identity matrix, the
smaller the V, space, i.e. the source of non-uniqueness in determining the parameters
from the data (GW, = 0). We can measure this similarity using (4.24), that is compare
tr(R) to M. However, if the nonlinear inversion converged in k iterations, the parameter
resolution matrix contains information on how good the parameters improved from the
k —1 iteration. In some instances, we may have a near-singular inverse operator in the
neighborhood of the minimum, which would require a v¥? # 0. It is shown (Aki and
Richards, 1980) that the effect of 72 reduces the parameter noise but sacrifices the

parameter resolution.

The data resolution matrix shows how good, at the end of the iterations, the data
is reproduced by the model. Since, in the linearization, the difference data-synthetics
(residuals) is performed at each iteration, the data resolution contains global information
on the nonlinear inversion. The more the data resolution matrix resembles the NXN
identity matrix, the smaller the U, space, i.e. the source of discrepancy between data
and synthetics. This can be estimated comparing tr(S) to N. A scalar criteria is the
residual energy reduction (RER) at each iteration, considering the initial residual energy
as reference. Specifically, if Ey = &(nlg) e e #(mo) / 2 is the initial residual energy,
then the residual energy reduction, at a given iteration, is expressed in percent and is

equal to RER = 100 (1 — £/ Ey). This is commonly called the data variance reduction.
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Figure 2 shows the flow chart inverse procedure in its complete form. It is a simple

extension of that derived for the 1-Dimensional case.

6. DATA, PARAMETER AND MODEL DESCRIPTION

The original data consist of a set of Ng seismograms denoted
{s;(n);n =1, Np; L =1, Ng |, where Np is the total number of time samples in a
seismogram. If Np K-component geophones are simultaneously implemented in the
inversion then Ng = KxNp (K=2 or 3 generally). Assume the medium to be constituted
of near-elastic homogeneous structures separated by smooth interfaces. We will invert
for medium parameters, that is, layer velocities, densities and quality factors, and
interface parameters. The seismogram model is computed via the paraxial ray method,

generating synthetics that will be compared to the data.

The minimization (2.4) is invariant under a Fourier transform (see 2.9). The
inversion is done in the frequency domain, and for Ny discrete frequencies situated in
the neighborhood of the central frequency of the source wavelet. The justification for
treating the problem in the frequency domain rather than in the time domain is due to 1)
the modeling results are already in the frequency domain; (2) the full-wave character of
the inversion that would require in the time domain Np points, whereas in the frequency
domain the total number is Ny <« Np, which reduces significantly the computation time.
This procedure filters automatically noise with spectrum outside the source's spectrum;
(3) Fourier transform of random time samples vyields frequency samples that are
practically uncorrelated to each other, which goes in favor of the assumption of diagonal

covariance matrix for the data samples (end of section 2).
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Figure 2. Flow chart of the multidimensional iterative least square inversion.
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Define the DFT of s;(n) as §(j), =1, Np

such that
N
§(@G) = Z]::sl(n) exp i(gﬁ-)nj , (6.1)
i= Np
and for Inverse DFT
N
) = % 50 exp -1 (Zm 4. (5.2)
Np {3 Np

For a time sampling of Atf, if the time interval of interest lies within [£ . ; £ma,], we
have Np =Int{(t .y —tmn)/ At} +1, and sample n in s;(n) corresponds to time
ton + (n=1)At; The function Int(z) is the integer value of z. The frequency sampling
is then Af = 1/(Np At), the frequency interval [0; (Np — 1)Af ], and sample j in § ()
corresponds to frequency (j—1)Af. If the source highest frequency is f .., it is

assumed that we have achieved 2 At f .. <1 (Nyquist condition).

If the source frequency spectrum is centered around f,, the Np frequency
samples are chosen so that they sample adequately the source spectrum and the
interval [f4; f,] covers appropriately the spectrum support. This corresponds to a
decimation in frequency of the spectrum. Reversing time and frequency domains, if the
source time pulse width is £, the equivalent Nyquist condition imposes an upper bound
on df, and is equal to 2 df t{, < 1. The frequency sampling interval df, must satisfy
this condition. Given f, and f, from the source spectrum, we set j; =Int(f/Af)+1,
Ja =Int(fo/ Af)H1, and dj =Int(df /Af)+1. The samples are
Je =31 +(k=1)dj , k=1, Np, with Np = Int{(j, —j, + 1)/ dji+1. The last frequency

sample is jy_ =17, + 1, or at frequency j, Af, which is at least and at most
JNF J2 J2 2

2 +Af.
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~ We now have reduced the original data set {s;(n);n=1, Np; L=1, Ngj, to
§5,(j1+(j=1)dj); j= 1, Ngs L= 1, Ng}, with Np < Np. Decomposing §;(j) into a real and
imaginary part yields

§() =af +1ibd], (6.3)

where aj = Re{5;(5)} and b/ = Im{5;(j)}. The data vector d, introduced previously can
now be explicitly defined in terms of its components. Recall that d = 31 @ 3269 &'3,
with d, = i, being an input and d, = 0. Consider the two basis, the first in U; space,
with dimension N, = 2xNyXNg, and the second in U, space, with dimension N, = M. U,

space is of dimension N;.
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We now proceed to the description of the parameters that are to be extracted
from the data. Let us define a general cartesian reference frame (z,y,z) for the
medium as having the z axis oriented downwards and (&, é‘y, €,) forming a right handed
system. Figure 1 of chapter IV describes this frame. The reference 2 =0 is at the earth

surface. Let the medium have [ interfaces {z,(x), i=1, /|, where each interface, 1, is

N

described analytically with [ parameters (p.?,j:‘l, [i)’ by the equation

2z, =z, (z,y, p;, pZ. .. . pf’;). An interface parameter pj corresponds to the j-th
parameter of interface i. Interfaces must be defined for all (z,y) in the medium, and
two interfaces are not allowed to cross each other. The functions z; must be of class
C2 (Cerveny and Hron, 1980). Each function z; will be approximated in the program by
a cubic spline interpolation scheme which is of class €2 (De Boor, 1980). Depending on
the variations of z;, a sufficient number of points will be required in the interpolation to
reproduce reliably z;. Two types of interface are described in Appendix G. A one-

parameter tilted flat interface (figure 3a), and a five-parameter reef-type interface

(figure 3b). The total number of interface parameters is then My = i’ I;. Rules for

i=

interfaces and layers are the same as those presented for 2D media in Psencik (1983).

There are /—1 homogeneous layers. Each layer i is characterized by (1) the
compressional velocity a,, (2) the shear velocity 8;, (3) the density p;, and (4) the
quality factor &; (for near-elastic solids, i.e. @ > 1). The total number of layer
parameters is M; = 4(/-1). The parameter vector ri introduced previously is explicitly

defined in terms of its components.
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Figure 3a. Geometry and parameter of an analytical flat tilted interface.
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Figure 3b. Geometry and parameters of an analytical reef type interface.
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Considering a basis in V space, {4;} with dimension M = Mp+M;, we have

m = f m' §;, with

i=

/
m! = Py
m2 = Pj
Q @
m) = P11
Q,+1
m = p3
M @
i m T = prB
(] = Hp+1
m =
M+l
m T =
Mr+3
m" T = M
Hp+d
m T = Q1
" Mp+M,-3
m 7L = ay
L
Mo+ M, -2
m- L = Bu
L
Myt My, -1
m T =
Mo+ M
m T L = QML

The scaling under which the parameters is represented is of primary importance in

the inversion. For example, one may express velocities,u, in terms of slownesses, v,
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or angles &, in terms of their tangent tan®, or also taking a logarithmic typé of
parametrization (Madden and Aki, 1980). The appropriate re-scaling (linear or non-
linear) would reduce the number of iterations, and increase the efficiency of the
algorithm. The sensitivity analysis would indicate if this the parameter re-scaling is a
requirement. The covariance matrix (4.19a) would indicate if the parameters are

independent of each other, for the model considered.

Model 1 implements the paraxial ray method producing synthetics. For a given
parameter vector 7i, this model generates f 4(m, w) that is in the exact same form as
&1 (0 = 27f ). The paraxial results are already in the frequency domain (Chapter V).
The asymptotic Green's function (1V.2.14), U(M,w), derived previously is multiplied in
the frequency domain by the source spectrum G(w). The source spectrum must be the
same as the one in the data 31. The displacement vector is then decomposed into
components, that must be of same type as to that in the original data. For example, if
the data is pressure measurements, the model will generate pressure synthetics.
Returning to the same notation as in (5.3), where receiver at M is represented by

L, =1, Ng, and the frequency w replaced by j=j, + (k —1)dj,k =1, Np, we write
() = 6 + ibf, (5.4)

where &Z =Re{U(l,7) 5(5)} and 67 = Im{U(L,7) a(5)3, with U(l,7) being the component
of U(M,w). The vector f 1 Is then constructed similarly to [i',, replacing the a's and b's
in 51, by @'s and b's , respectively. The components of 31 are those of d from the 1-

st component to the 2xXNyxNg-th.

Model 2 implements the parameter prior information model that simply reproduces

the parameter values (f, =m%). The storage of f, is identical to that in d. The
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. N+ .
parameter component m?,i=1, ,isstoredat f '~ =m?.

Model 3 implements the penalty model with synthetics (3.6). The storage of f 3 is

N ; N, +M+i
below that of f,. Element f%,i=1, Nj is stored at f

= f3.

The vector f is then constructed in a similar way as J, so that corresponding

components are of same type.

Before the inversion, we assume that the a priori cqvariance matrix of Model 1 is
equal to a constant times the unit matrix, and that the a priori covariance matrix of

Model 2 is diagonal (independent parameters), i.e.

W1 =W, y , (5-5)

and
(Wz)ij =0 for ’L#] .

Model 3, also, has a diagonal a priori covariance matrix. We then use as input a

normalized residual energy from (3.8)

N
Newy - ECGR)  _ 1 (i _ g
gony = B = 25, [af f:(m)]z N
g (W ( ; B Wa (L, R
* L mi - mi] + L [y (5.6)

This converts the minimization of £ into a minimization of a normalized EN, which is the
residual energy, E, "per unit" a priori variance (of Model 1). Set g% = wy ' to be the

variance of Model 1.

At the end of the iterations we have an estimated parameter vector . a? is

estimated from from the residual sum of squares, assuming that the errors are additive,
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uncorrelated, and normal and have zero mean and constant variance. This yields (Beck

and Arnold, 1977)

2 _ ENGR)
7T W &0

where G is an estimate of ¢, and (N—M)>0 is the degrees of freedom associated to the

sum of squares.

The a posteriori parameter covariance matrix follows then from (4.19-20)

1

v, = |G B2 DV (5.8)

m

where # and D" are the normalized # and ﬁ, i.e. each divided by w, = o~2. Denoting
* the optimal parameter vector (not known generally), and 7 the estimated parameter
vector, the expression for the estimated standard deviation (or errors) in the

parameters, at the end of the inversion, is
m*ta At ox (V)5 172 (5.9)

Cross terms in V,, measure the correlation between different parameters. The
correlation coefficient between two distinct parameters, m® and m/, is calculated via
the equation

(Vindij
(Vi i3

172 - (5.10)

Due to the large dimensions of the data resolution matrix (4.21) (more than 600 x 600),
we prefer to plot the computed seismograms from the estimated parameters, and

compare that to the original data set.

Noise can be added to test the robustness of the inversion. We have a uniform

(-a,a) random distribution noise e(n), characterized by its maximum amplitude a. The
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noise is controlled by choosing a reference trace sgp(n), n=1, Np, and computing the
integrated power signal to noise ratio. This is achieved by taking the DFT of both
sgp(n) and e(n) yielding §5p(j) and &(3) ,j=1,Np. We then compute

N
_21 |5sp(iq + (G —1)dj)|?
SNR = &

~y , (5.11)
3 1@, + (G -1d5)|?
j=t

which is the power signal to noise ratio. The value 10 log;, (SNFR) is the power signal to
noise ratio expressed in decibels (dB). We apply a bandpass filter to the noise, with
low cut-off frequency sample j,, and high cut-off frequency sample j,. This noise is

added to traces s;(n), =1, Ng.
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V.6. EXAMPLES

The source time function is the Gabor wavelet described in Chapter lli, equation
(6.1). Computation of (4.18) is done using the program LMDIF, which is a MINPACK-1
(1980) Fortran subroutine that minimizes the sum of the squares of N nonlinear
functions in M wvariables. The Jacobian matrix, [é], is calculated by a forward-
difference approximation. LMDIF is a version of the Levenberg-Marquardt algorithm
where the Gauss-Newton method is used as long as the inverse operator (4.13) is non-
singular. When this is not the case it computes a Levenberg-Marquardt parameter 72

and uses (4.17) as inverse operator.
Model A:

The model consists of two acoustic layers and a dipping interface. Source
parameters are: f, =60 Hz, ['=4, t, = 0.03 sec. Figure 4a displays the time signal,
and figure 4b its amplitude spectrum. The line source and the receivers are shown in
figure 6. There is a total of Ng = 38 receivers, and Ny = 9 frequency samples from 10
Hz to 110 Hz. The number of residuals is N = 689 (where N, = 3 residuals are due to
Model 2, and N3 =2 to Model 3). Three parameters are defined and constitute the
parameter vector with components [rﬁ.]T =(®, oy, ). ® is interface 2 dip angle (see
G.1) with units in radians , a4 is the upper medium velocity, and «; is the lower medium
velocity, with units in km/sec. The optimal parameter vector is chosen to be to:
[m*]T =(0.197, 3.5, 4.5). The optimal interface dip angle is about 11°. The fixed

point on the interface has coordinates (xf =0.05km, zp = 0.51 km.).

The sensitivity analysis consists in studying the variations of the residual enhergy
around an a priori optimal point. Given the model f and a parameter vector, 7i*, we set

d = f (#4*), and plot £ given in (2.2), varying 7. The sensitivity of the model for
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specific parameters can then be investigated. A 3D plot of £ =(a, ; ap) is shown in
figure 6a, constructed with 21x21 points. The sampling interval in each direction is
Ax = 0.06km./ sec. The tilt angle & is optimal. A contour plot of the same section is
displayed in figure 6b. The trough in the upper layer velocity direction shows that this
velocity is much better constrained than that in the lower medium. The global minima is
clearly seen in the contour plot. The presence of local minima will be discussed later in

this section.

A 3D plot of E = (% ; a,), with 21x21 points and A® & 0.3°, Aa, = 0.06km / sec,
is shown if figure 7a. Figure 7b is its contour plot. The upper layer velocity a4 is
optimal. The sought resolution on dip angle is a few degrees, and on velocities on the
order of 100 m/ sec. On this basis, we can compare the sensitivity of the residual
energy for these different parameters. The lower medium velocity is better constrained

than the interface dip angle. A nice minimum can be seen.

-190 -



Chapter V

(a)
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Figure 4. Source signal used in Model A: (a) in time; (b) amplitude spectrum.
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Figure 6. Model A sensitivity as a function of layer velocities: £ = (a4 ; ay), (a) 3D
plot, (b) contour plot.
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Figure 7. Model A sensitivity as a function of interface siope and lower layer velocity:
E =(%; ay), (a) 3D plot, (b) contour plot.
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Figure 8a is the 3D plot of £ =(®; ay), with 21x21 points, and A¢ ~0.3°,
Aoy = 0.06km/sec. The lower layer velocity o, is optimal. The contour piot is
displayed in figure 8b. The angle is poorly constrained, compared to the upper medium
velocity. The large trough has a global minimum, but the two parameters have such
contrasted effects on £ that the minimum is poorly resolved in the angle direction.
Figure 9a is the 1D plot of £ = () and figure 9b the plot of £ = (a4). The first figure
corresponds to the line passing in the trough of figure 8a, and the second figure is the
line perpendicular to the trough. Both clearly shows the minimum along these two

directions. Note the relative difference in residual energy between both curves.

Prior information about the parameters would constrain the minimization, and would

remove some non-uniqueness in parameter determination. Setting the prior information

to $% =0.21 (about 12°) with error (#,);7/2 =0.0175, and «y = 3.4 with error

(WZ)Z-ZVZ, with weight in (5.6) w,=0.1, yield a 3D sensitivity plot of £ = (& ; a;), which
is plotted in figure 10a. The sampling is the same as in figure 7a, and the lower layer
velocity o, is optimal. Figure 10b shows the contour piot. Compared to figures 8a and
8b, there is a clear improvement in the determination of a global minimum. The residual
energy has increased significantly away from the parameters a priori values. The global
minimum is in between the prior values and the optimal values. Since the angle variance
is small, the minimum in this direction is closer to 12° than the optimal value at 11.3°.
Thus prior values must be specified precisely and weighted accordingly, since they
force the optimization to search for the minimum in regions that are close to the a priori

values.
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(b) isocontour = 250

4 o
— eyt 14 .2

Figure 8. Model A sensitivity as a function of interface slope and upper layer velocity:
E =(%; a4), (a) 3D plot, (b) contour plot.
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Figure 10. Prior information in Model A parameters; sensitivity as a function of interface
slope and upper layer velocity: £ = (% ; ay), (a) 3D plot, (b) contour plot.
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Hodel A’

The model is the same as above, with a greater receiver density. Sensitivity
analysis with 62 receivers is studied, with 1116 residuals. The 3D plot of £ = (% ; a;)
is sampled as figure 8a, and is shown in figure 11a, with its contour plot in figure 11b.
Compared to figure 8a and 8b, the residual energy increased, without removing local
minimas. The wavelength in the upper layer is about 60 meters. In model A, the VSP
sampling was 50 meters and the surface sampling, 100 meters. Presently, the VSP
sampling is 35 meters and the surface sampling, 50 meters. Increasing the receiver
density has the beneficial effect of enhancing the global minimum , but this does not
improve the uniqueness of the giobal minimum. Figures 12 are the equivalent display of
figures 9, for Model A'. The energy curvature is increased reducing therefore the

parameter variance.
Model A '

The model is the same as Model A, except that a wider band source is used.
Source parameters are f, =120 Hz, ['=38 and £, =0.01 sec. Figure 13a shows the
time signal, and 13b its amplitude spectrum. There are 12 frequency samples going frém
50 to 300 Hz. Plots of E =(&; a,) with same sampling as figures 8, are shown in
figures 14. The lower layer velocity a, is optimal. To compare the sensitivity of Model
A to that of Model A ', we have corrected the source energy of the latter model so that
both models have same source energy. The source energy is dependent on the
frequency samples used in the inversion. It is what the inversion ‘'sees' as source,
through the source spectrum sampling, that is of primary importance. Figures 156 are 1D

plots of £ = (%), and £ = («,), respectively. They should be compared to figures 9.
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Figure 11. Model A' sensitivity as a function of interface slope and upper layer velocity:
E =(%; a4), (a) 3D plot, (b) contour plot.
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Figure 13. Wide band source signal used in Model A": (a) in time; (b) amplitude spec-
trum.
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Figure 14. Model A'' sensitivity as a function of interface slope and upper layer velocity:
E =(®; «,), (a) 3D plot, (b) contour plot.
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function of upper layer velocity (b) £ = (a4).

- 204 -



Chapter V

The parameter variance has diminished, but on the velocity axis, the region of
global minimum has decreased. These effects are mainly due to the source structure and
to the full waveform character of the inversion. Specifically, the presence in the source
of "'sinusocidal’’ shapes, is the reason of muitiple local minina/maxima in residual energy.
The velocity sensitivity quantifies changes in £ for velocity variations away the optimal
value. The primary effect ;.)f such a perturbation is a time shift of the wavelet. At a
given receiver, a velocity increase is accompanied by a decrease in travel time that
shifts the wavelet, with respect to the optimal wavelet, toward earlier times. Due to the
fact that the source has zero crossings, the residual energy (of the two traces) is not
monotonically increasing as we depart from the optimal trace. Rather, it has a shape that
is very similar to that shown in figures 9b, 12b and 15b. The more the sinusoidal-like
source is '"'compressed” (e.g. higher frequency content) the more the sensitivity curve
has its local minima/maxima concentrated near the global minimum. This would require
good initial estimates for velocities. However, the non-uniqueness could be reduced by
transforming the data set, before inversion, to signals that are non-sinusoidal like. An
example could be to replace data traces by amplitudes of the analytic signal of the
traces (trace envelope). This would reduce the non-uniqueness, but would increase,
unfortunately, the parameter variance. ldeally, we would start the inversion with the
processed traces, for a given initial parameter guess. Then, we re-invert this time the
original traces, with as initial parameters the results of the first inversion. Hopefully, we
would get closer to the minimum with the first inversion, without requiring very good
initial guesses. Then, improve the estimates with the second inversion, and reduce the

parameter variance.
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Inversion of Model A

The data d results from the finite difference synthetics of Model A (figure 16a).
The initial parameter vector is chosen to be [ﬁo]T =(0, 3.3, 4.1), with no constraints
on the priori values (i.e. (#,);; =0 in (.5.6)). Paraxial synthetics for the a priori values,
generated by the forward model, are displayed in figure 16b. Results from the inversion
are displayed in Table 1. Parameter updates along with their corresponding residual
energy reduction (RER) is presented at each iteration. The Levenberg-Marquardt
parameter introduced in (4.17) is referred to as GAMMA**2. At the end of the inversion
the following results are directly available: (1) estimated parameters along with their
estimated standard deviation (5.9); (2) the parameter covariance matrix (5.8), and the

corresponding correlation coefficients (5.10).

We shall refer to observed error, the error on the estimated parameter relative to
the optimal parameter that is, here, given (i.e. 1Mt/ m* ). Estimated parameters are
very close to optimal, [7]7 =(0.192, 3.561, 4.52). The least resolved parameter is the
interface dip angle, estimated within observed errors of 3%. Values of estimated
parameter standard deviations (see Table 1) must be interpreted as representing
parameters errors relative to others. Absolute values between observed and estimated
errors can be off by one order of magnitude. But, relatively, they follow same trend. The
only noise present is numerical, since the data generated by finite difference method is
inverted with the paraxial ray method. The covariance matrix has a fair diagonal trend,
that is quantified by the correlation coefficients. Estimated parameters are so close to
optimal that there is no distinguishable difference between synthetics in figure 16a

and those generated by the model, with estimated parameters.

Adding noise to the finite difference data, with a SNF = 5 dB, results in synthetics

that are shown in figure 17. The reference data trace is sgp(n) = s,(n). Inversion of
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this set yields results that are listed in Table 2. Estimated parameters are still very
good, [7]7 =(0.194, 3.51, 4.52). Note that the estimated data variance ,62, is about
52 times that of the previous inversion (Table 1). Absolute values between observed

and estimated errors are closer than when no noise is added.
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MOOEL A INITIAL SYNTHETICS
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Figure 16b. Model A synthetic data, generated by the paraxial ray method.
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INITIAL PARAMETER VECTOR: m@(l -> M)
a. 3.300989 4.10808
GAMMA®*2 = g. E = 26.59917 RER (X)= a.

---=> ITERATION # 1, (CALL# 5): UPDATED PARAM. VECTOR: m(1l -> M)

g.9989S 3.32729 4.98391

GAMMA**2 = g. E = 25.834497 RER (X)= 2.88
-=-==> ITERATION # 2, (CALL#® 9): UPDATED PARAM. VECTOR: m(1l -> M)

#.91343 3.3798% 4.91638

GAMMA**2 = a. E = 21.94456 RER (X)= 17.59
-=--=> ITERATION ¢ 3, (CALL# 13): UPDATED PARAM. VECTOR: m(l ~> M)

9.92534 3.43668 3.89636

GAMMA**2 = g. E = 11.85363 RER (X)= 55.44
-=-==> ITERATION # 4, (CALL® 17): UPDATED PARAM. VECTOR: m(l -> M)

2.93884 3.49967 3.79257

GAMMA**2 = a. E = 5.61612 RER (X)= 79.89
---=> ITERATION # 5, (CALLe# 21): UPDATED PARAM. VECTOR: m(1 -> M)

7.94887 3.51334 3.785489

GAMMA®*2 = a. E = 5.58426 RER (X)= 79.31
-=-==> ITERATION @& 6, (CALL® 25): UPDATED PARAM. VECTOR: m(1 -> M)

2.97753 3.51676 3.88297

GAMMA**2 = 8. E = 5.45341 RER (X)= 79.58
-=--=> ITERATION ¢ 7, (CALL# 29): UPDATED PARAM. VECTOR: m(1 -> M)

#.99257 3.51622 3.83497

GAMMA=*2 = a. E = 5.39399  RER (X)= 79.72
-~==> ITERATION # 8, (CALL® 33): UPDATED PARAM. VECTOR: mi{l -> M)

g.1958% 3.51654 3.88752
GAMMA**2 =» . E = 5.32988 RER (X)= 79.96

==<=> ITERATION # 9, (CALL#® 37): UPDATED PARAM. VECTOR: m(l -> M)
g.11617 3.51734 3.99449

GAMMA**2 = q. E = 5.24571 RER (X)= 8¥.28
===<> ITERATION # 18, (CALL# 41): UPDATED PARAM. VECTOR: m(1 => M)

#.12812 3.51711 3.95587

GAMMA®=2 = 8. E = 5.95466 RER (X)= 81.99
~===> ITERATION # 11, (CALL# 45): UPDATED PARAM. VECTOR: m(1 -> M)

g.135908 3.51636 4.91935

GAMMA**2 = . E = 4.65999 RER (X)= 82.49
-~==> ITERATION # 12, (CALL#® 49): UPDATED PARAM. VECTOR: m(l1 =-> M)

g.14687 3.51876 4.19988

GAMMA**2 = 7. E = 3.79964 RER (X)= 858.72
~=-~=-> ITERATION # 13, (CALL# 53): UPDATED PARAM. VECTOR: m(1 -> M)

#.15731 3.51458 4.235789

GAMMA**2 = g. E = 2.29887 RER (X)= 91.36
--=-=> ITERATION @ 14, (CALL® 57): UPDATED PARAM. VECTOR: m(l =-> M)

g.16418 3.51209 4.37266

GAMMA**2 = g. E = 1.01945 RER (X)= 36.17
-===> ITERATION @ 1S5, (CALL# 61): UPDATED PARAM. VECTOR: m(l -> M)

2.17987 3.51913 4.44828

GAMMA**2 = a. E = g.67968 RER (X)= 97.48
--==> ITERATION # 16, (CALL# 65): UPDATED PARAM. VECTOR: m(l => M)

#.179989 3.58917 4.47747

GAMMA**2 = g. E = g.39147 RER (X)s= 98.53
-===> ITERATION # 17, (CALL#® 69): UPDATED PARAM. VECTOR: m(l =-> M)

9.18828 3.59847 4.59384

GAMMA**2 = g. E= #.19897 RER (X)= 99.89
~-==> ITERATION # 18, (CALL® 73): UPDATED PARAM. VECTOR: m(i =-> M)

#.19238 3.58838 4.51752

GAMMA®**2 = a. E = g.374964 RER (X)= 99.73
----> ITERATION # 19, (CALL#® 77): UPDATED PARAM. VECTOR: m(l => M)

#.19262 3.5984 4.51808

GAMMA**2 = a. E = g.974868 RER (X)= 99.73

Table 1. information on inversion of Model A: Initial and updated parameters.
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TOTAL NUMBER OF PARAMETERS: M= 3

TOTAL NUMBER OF RESIDUALS: N = 689

LMDIF INVERSION EXIT CONDITION: INFO = 2

TOTAL NUMBER OF FORWARD MODELS CALLS = 79

TOTAL NUMBER OF ITERATIONS: k = 29

FINAL LEVENBERG-MARQUARDT P: GAMMA®**2 = 8. e+48
FINAL RESIDUAL ENERGY: E = 9.87964
ESTIMATED DATA VARIANCE: SIGMA®**2 = #.19298e-93
FINAL RESID. ENERGY REDUCTION: RER(X) = 99.73

MODEL 1 SCALAR WEIGHT: wl = 4.09088

ESTIMATED PARAMETER VECTOR: m{(l -> M)
#.19235 3.59838 4.51782

PARAMETER STD.DEV. VECTOR: sqrtivm{l -> M)1]
9.08823 7.990082S 9.29179

PARAM. COVARIANCE:Vm
1 2 3

1 #.5198798e-97 #.169978e-07 £.674127e-87
2 9.169878e-87 g.621151e-97 -0#.184516e-086
3 8.674127e-97 -94.184516e-96 #.322192e-05

PARAMETER CORRELATION COEFFICIENTS
r{ 1, 2)= #.388 r{ 1, 3)= #.166 r{ 2, 3)=-9.412

Table 1. Information on inversion of Model A: Final parameters, error information.
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MODEL A - VSP & SURFACE DORTA
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Figure 17. Figure 16a, (Model A) with added noise, SNR=5 dB.
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INITIAL PARAMETER VECTOR: m#(1 ->
9. 3.39008 4.19808
GAMMA®*2 = g. E =

-===> ITERATION @ 1, (CALL#® S):
8.81934 3.32899 4.99178
GAMMA®*2 = . € =

-=-==> ITERATION & 2, (CALL# 39):
g.92124 3.37328 4.93989
GAMMA®*2 = 8. E =

-===> ITERATION ¢ 3, (CALL#® 13):
#.8299%8 3.44158 3.92214
GAMMA®*2 = g. E =

-===> ITERATION & 4, (CALL® 17):
g.85164 3.508266 3.83479
GAMMA**2 = g. E =

-===> ITERATION ¢ 5, (CALL# 21):
g.87743 3.51476 3.8495S
GAMMA®*2 = 9. E =

--=-=> ITERATION # 6, (CALL# 25):
9.89849 3.581592 3.88429
GAMMA®*2 = g. E =

-==-=> ITERATION # 7, (CALL# 29):
#g.11528 3.51741 3.92627
GAMMA®**2 = a. E =

-=-=-=> ITERATION # 8, (CALL# 33):
#.12288 3.51724 3.974488
GAMMA®=*2 = . E =

--=-=> ITERATION # 9, (CALL# 37):
9.13882 3.51658 4.94132
GAMMA®*2 = . E =

-==<=> ITERATION @ 18, (CALL#® 41):
#.15178 3.51648 4.13633
GAMMA®*2 = a. -

-===> ITERATION # 11, (CALL# 45):
#.15667 3.51457 4.25633
GAMMA®**2 = a. E =

--==> ITERATION # 12, (CALL#® 49):
9.16345 3.51289 4.37882
GAMMA®**2 = 7. E =

-===> ITERATION # 13, (CALL# 53):
#.17859 3.51126 4.44588
GAMMA**2 = a. E =

---<> ITERATION # 14, (CALL® 57):
#.18101 3.59999 4.47926
GAMMA®**2 = a. E =

--==> ITERATION # 15, (CALL# 61):
g.19138 3.59886 4.51268
GAMMA**2 = g. E =

--=-=> ITERATION # 16, (CALL# 65):
3.19347 3.59886 4.52124
GAMMA®**2 = g. E =

~-<=> ITERATION & 17, (CALL# 69):
9.19491 3.59998 4.522909
GAMMA=*2 = g. E =

~===> ITERATION # 18, (CALL® 73):
g.19384 3.599496 4.52136
GAMMA**2 = a. E =

-==<> ITERATION # 19, (CALL# 77):
2.19378 3.59991 4.52988
GAMMA**2 = g. E =

M)

39.96476

UPDATED

29.9738%
UPDATED

25.59978
UPDATED

14.78338
UPDATED

8.98285
UPDATED

8.81271
UPDATED

8.64515
UPDATED

8.54188
UPDATED

8.35738
UPDATED

7.91324
UPDATED

7.84318
UPDATED

5.74775
UPDATED

4.75159
UPDATED

4.41426
UPDATED

3.96186
UPDATED

3.67183
UPDATED

3.66126
UPDATED

3.65789
UPDATED

3.65653
UPDATED

3.65738

RER (X)=

VECTOR:

(X)=
VECTOR:

(X)=
VECTORs

(X)=
VECTOR:

(X)=
VECTOR:

(X)=
VECTOR:

(X)=
VECTORs

PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

(X)=
VECTOR:s

(X)=
VECTOR:

(X)=
VECTOR:

(X)=
VECTOR s

(X)=
VECTOR:

(X)=
VECTOR:

(X)=
VECTOR:

(X)=
VECTOR ¢

(X)=
VECTOR:

(X)=
VECTOR:

{X)s=
VECTOR:

RER (X)=
PARAM. VECTOR:

RER (X)=

m(l =>

3.29
m{l =>

17.38
m{l =>

52.26
mi{l ->

79.99
mil =>

71.54
mil ~->

72.98
m{(l ->

72.41
m{l =>

73.91
mil =>

74.44
m(l =>

77.28
a{i ->

81.44
mil =>

84.66
m(l ->

85.74
m{l =>

87.21
m{i =>

88.14
m(l =>

8g.18
m{l =>

88.19
m(l ->

88.19
mil =>

88.19

M)

M)

M)

M)

M)

")

M)

M)

M)

M)

"

M)

M)

M)

M)

M)

M)

M)

M)

Table 2. Information on inversion of Modei A with 5 dB SNR: Initial and updated parame-

ters.
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TOTAL NUMBER OF PARAMETERS: M= 3

TOTAL NUMBER OF RESIDUALS: N = 689

LMODIF INVERSION EXIT CONDITION: [INFO = 2

TOTAL NUMBER OF FORWARD MODELS CALLS = 77

TOTAL NUMBER OF ITERATIONS: k = 29

FINAL LEVENBERG-MARQUALDT P: GAMMA**2 = g. e+89
FINAL RESIDUAL ENERGY: E = 3.65653
ESTIMATED DATA VARIANCE: SIGMA®**2 = #.53392e-82
FINAL RESID. ENERGY REDUCTION: RER(X) = 88.19

MODEL 1 SCALAR WEIGHT: wl = 4.090888

ESTIMATED PARAMETER VECTOR: m{(l =-> M)

#.19384

3.599486 4.52136

PARAMETER STD.DEV. VECTOR: sqrtivam(l -> M)}

PARAM. COVARIANCE:Vm
1

1
2
3

#.89162

2.989179 #.91294

2 3

2.262732e-95 #.863323e-86 9.34815%-085
9.863323e-496 9.318958e-95 -9.958286e-95
#.34815%e-95 -8.958286e-985 #8.1674098e-83

PARAMETER CORRELATION COEFFICIENTS
2)= §.298 r( 1, 3)= #.162 r{ 2, 3)=-§.415

r( 1,

Table 2. Information on inversion of Model A with 6 dB SNR: Final parameters, error infor-

mation.
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frwersi.on of Model B

This is the acoustic version of Model 4 in chapter IV, figure 12. There is a total of
Ng =60 receivers, and source and frequency samples are same as Model A. The first
interface gives rise to head waves that are not modeled by the paraxial method.
Arrivals that are in this range are muted out for surface receivers. First arrivals and
primary reflected waves from the second interface are removed, along with head waves.
The finite difference data is shown in figure 18. In the inversion, we will assume that
parameters of the first layer along with the second interface are known quite
accurately. Nine parameters are defined and constitute the parameter vector, with
components
(17 =(@,S,B,b,L,h,0, 03, 0g)
$ is interface 3 dip angle (see G.1) with units in radians , (S,B,b,L,h) are the reef
parameters of interface 4 (see G.2), with units in km. «,, az and a4 are velocities of

layers 2, 3 and 4, respectively, with units in km./ sec.

The optimal parameter vector is chosen to be:
[ﬁ’)."]T =(-0.122,0.05,0.7,0.2,0.35,0.1,3.5,4,4.5).
The optimal interface dip angle is about —7°. The fixed point on the interface has
coordinates (z; =0.06km, z, =0.4 km). Initial parameter vector is
[n’l,o]T =(-0.2,0.04,0.77,0.22,0.32,0.11,3.4,4.2, 4.3),
with corresponding generated synthetics displayed in figure 19. Only 3 ray codes are
taken in the forward model, with a maximum of 30 rays per ray code: (1) the direct
wave, (2) the primary reflected wave from interface 3 and (3) the primary reflected

wave from interface 4.

The inversion yields the following estimates

[#]7 =(-0.13,0.04,0.77,0.07 ,0.34,0.09, 3.5, 4.0, 4.49).
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\{elocities have been very well estimated. The experiment does not constrain
sufficiently the size of the reef, in particular its large base, 5, and its small base b,
which is why their estimate are poor. This is seen in the ray diagram in figure 16 of
chapter IV. One could possibly constrain these parameters by a priori information. The
wavelength being on the order of 70 meters, we are requiring a resolution on S and A
that is a fraction of the wavelength. Inversion details are presented in Table 3 and

synthetics of estimated parameters are shown in figure 20.
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MODEL B - VSP & SURFARCE DATA
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Figure 18. Model B synthetic data, generated by finite difference.
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MODEL B - INITIAL SYNTHETICS
PARAXIAL - ACQUSTIC
TIMgggECJ

0.00 0.30

1 - Y

2 A\

3 -

. .

]

: Py

[ ] -\ .

] - [

10

n

12 -

13

1] |

18 ~

18 _—

17

18

19 -

2 a Ma

n -

2 -

23 P

2 -

s —a

] .

ki

8

2

0

" D

2

i1 -

»n

"

38

7

8

3 4

[[]

L} ¥

(1] A

(1] A

w ~

(1] A

(1] A

v -~

L] A,

1] A

0 W

L1 -

u '.

s A

SN A

S8 N

1) A

§? A

39 ‘,‘

” "

80 v —

0.00 0.08 0.15 g.22 0.30

TIME (SEC)

$thesd: FBoee -
Figure 19. Paraxial synthetics with initial parameters of Model B.

-218 -

I opPIS-dSA

<2 0pI8-3IVIUHNS —9 =



INITIAL PARAME

-9.20009
3.40008

GAMMA**2Z =

--==> ITERATION
-9.18997
3.42949
GAMMA**2 =
--=-=> ITERATION
-9.19898
3.45847
GAMMA**2 =
--==> [TERATION
-9.17289
3.45785

GAMMA**2 =
~===> ITERATION
-9.17644
3.46617
GAMMA**2 =
---=> ITERATION
~3.16744
3.48518
GAMMA**2 =
--=-> ITERATION
-9.16544
3.49271
GAMMA**2 =
-==<> ITERATION
-9.18737
3.49657
GAMMA**2 =
-=-==> ITERATION
-9.15482
3.49668
GAMMA®**2 =
--=-=-> ITERATION
-9.14587
3.49547
GAMMA**2 a
====> ITERATION
-9.14313
3.49826
GAMMA**2 =
~===-<> ITERATION
~-9.13644
3.49608
GAMMA**2 =
=~==> ITERATION
~-9.13432
3.49639
GAMMA**2 =
-===> ITERATION
-9.13877
3.49629
GAMMA**2 =
====> ITERATION
-9.130879
3.49647
GAMMA**2 =

Chapter V

TER VECTOR: méll
9.94088 g.77808
4.200989 4.30088
g. E =
L 1, (CALL# 11):
g.94537 9.76998
4.19856 4.37177
a. E =
* 2, (CALL# 21):
9.83838 9.76872
4.12335 4.42998
9. E =
L 3, (CALL# 31):
2.83761 #.76698
4.11989 4.44552
g. E =
. 4, (CALL#® 41):
2.93794 #.7695S
4.85791 4.46057
9. E =
4 5, (CALL# 51):
9.93846 2.76984
4.93488 4.46185
9. E =
4 6, (CALL# 61):
9.83865 #.77108
4.88786 4.46815
. E =
. 7, (CALL# 71):
9.93899 2.77435
4.9808552 4.471289
8. E »
’ 8, (CALL# 81):
9.83894 B.77441
3.99499 4.47664
g. E =
. 9, (CALL# 91):
9.93819 8.77445
3.99398 4.48241
g. E =
# 108, (CALL#121):
9.93897 9.77437
3.98878 4.48675
9. E =
# 11, (CALL#111):
9.83937 g.77298
3.99698 4.48493
8. E =
# 12, (CALL#121):
#.93928 8.77874
3.99828 4.48526
a. E =
# 13, (CALL#131):
#.9838852 8.77817
4.98337 4.48779
9. E =
# 14, (CALL#141):
#.83823 8.77918
3.99979 4.488687
a. E =

-> M)

g.22989

S¢.94435

UPDATED
9.87257

29.29837
UPDATED
#.91392

17.90876
UPDATED
#.91846

14.81712
UPDATED
#.91271

19.99367
UPDATED
9.82495

8.095435
UPDATED
9.23398

7.530879
UPDATED
f.944918

6.51919
UPDATED
9.85896

2.45324
UPDATED
g.04844

2.87989
UPDATED
9.85475

1.88817
UPDATED
2.95881

1.78892
UPDATED
9.86855

1.56761
UPDATED
#.96739

1.42116
UPDATED
#.87321

1.45488

g.32088 g.11089

RER (X)= g.

VECTOR: m(1 -=>
8.89369

41.46
->

PARAM.
#.31528

RER (X)=
PARAM. VECTOR: m(1l
#.37168 #.28872

RER (X)= 64.21
PARAM. VECTOR: m{l1 =>
#.35851 q.89197

RER (X)= 78.39
PARAM. VECTOR: m{(1 ->
8.35417 $.99261

RER (X)= 78.93
PARAM. VECTOR: m{l ->
9.35209 9.09239

RER (X)= 83.91
PARAM. VECTOR: m(1 ->
g.34868 9.99379

RER (X)= 84.95
PARAM. VECTOR: m(l =>
g.35019 8.09366

RER (X)= . 86.97
PARAM. VECTOR: m{l ->
2.34316 8.8927%

RER (X)= 95.08
PARAM. VECTOR: mi(l =->
9.34355 9.89309

RER (X)= 95.84
PARAM. VECTOR: m(l ->
9.338689 9.99895

RER (X)= 96.23
PARAM. VECTOR: m(1 ->
£.33528 g.89899

RER (X)= 96.44
PARAM. VECTOR: m{l ->
#.33592 9.992148

RER (X)= 96.87
PARAM. VECTOR: m{l =>
#.33962 #.9916!1

RER (X)= 97.16
PARAM. VECTOR: m(1l =->
#.33648 #.99999

RER (X)= 97.89

Table 3. Information on inversion of Model B: Initial and updated parameters.
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TOTAL

NUMBER OF

Chapter V

PARAMETERS ¢

M=
TOTAL NUMBER OF RESIDUALS: N =
LMDIF INVERSION EXIT CONDITION: [INFO =
TOTAL NUMBER OF FORWARD MODELS CALLS =
TOTAL NUMBER OF ITERATIONS: k =
FINAL LEVENBERG-MARQUARDT P: GAMMA**2 =
DATA ENERGY: E(DATA) =
FINAL RESIDUAL ENERGY: E =
ESTIMATFD DATA VARIANCE: SIGMA**2 =
FINAL RESID. ENERGY REDUCTION: RER(X) =
MOOEL 1 SCALAR WEIGHT: wl =
ESTIMATED PARAMETER VECTOR: m(l =-> M)
-9.13877 #.83852 2.77817 8.96739
3.49629 4.99337 4.48779
PARAMETER STD.OEV. VECTOR: sqrtlvmil -> M))
§.909084 7.50801 3.99148 7.a3948 §.908804 g.90083
§.9908% d.a00) 9.99048
PARAM. COVARIANCE:Vm
; 2 3 4 L]
7.12968%¢-98 9.6858810-13 -7.67d930e-18 -9.956364e-11 -7.666403e-12
§.1117040-89
#.685881e-13 9.420055e-18 -#.732763e-12 -9.4920820-12 §.347293e-12
-8.616762e-11
-3.670038e~18 -9.732763e-12 d 197974e-9S -7.183667e-090 -0.187292¢-16
-§.901868e-18
-9.9563640~11 -9.492892e-12 -9.183667e-30 7.294411e-96 -§.578758e-11!
-3.1222840-18
-0.666483e-12 §.347293e-12 -7 197292e-13 -0 578758e-11 §.137865¢-00
F.147193e-09
§.216593e-11 §.498195e~12 -8.238159%e-19 -9.920398e-11 -9.55180%e-11
-9.113551e-99
§.1586660-1F -0.376987e-12 @ 1°5515e-14 #.24189%6e-11 9.758572e~11
-9.1162620-498
3.781214e-11 §.164663e-12 -8 177475e-13 -9.7537360-:! §.5828830-11
-3 72612%e-49
§.1117840-99 -7 6167620-11 -0 8210868e-19 ~-0.122204e~18 7.147193e-09
3.233793e-96
PARAMETER CORRELATION COEFFICIENTS
Ft1, 2)e B.880 U L, e-F FFL FC 1. 4.o-9 FAL (1. 5)e-F IHF r¢ 1, &)= §.802
rC L, 8V S.902 rl L, Ve F. 306 r( 2. 3i=-@ 30T £t 2, 4)=-F UF rt 2, S)e T. AN
Fl 2, 7Ya-@. 081 F( 2. 8)s ¥ J@F F( 2, Fi%-F 382 r( 3, 4)=-F §F3 L 3, S)e-0.908
rl 3, 7)s §.998 r( 3, Q)0-F 390 (3. 9190-3 JEF rl 4, S.e-9 FFF (4, $)=-T.901
rl 4, 8le-F. 398 r( 4, 9)2-8 388 r( S. 6:2-3 39S r¢ S, 71e @ G r( 5, B)= T.IF]
r{ 6, 7)e-8.301 f( 6., B)o-9 38F r( 6. 9.=-9 388 r( 7, B,2-3.849 L 7. 3)=-F.927

9
1996
2
146
15
#.530875e+81
52.98539
1.42116
g.13874e-82
97.16
2.808989
#.33962 g.99161
‘ 7
8.216893e-11  §.158666e-18
8.49818%¢-12 -8.376487¢-12
-8.23815%-18  #.37581Se-18
-3.9203%8e-11 §.2418%6e-11
-9.551889e-11  #.758872e-11
g 77954Se-99 -0.238383e-11
-9.238353e-11 F.77633%5¢-98
-¢ 649258e-12 -8.897225e-18
-3.113551e-89 -9.116262¢-88
rtoL, 7)) 3008
rl 2, 6)e §.983
rl 3, 6)=-9.881
4. 7)) 0. 988
LS. 9)e 9.087
rl 8, e-F.S14

Table 3. Information on inversion of Model B: Final parameters, error information.
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MODEL B - FINAL SYNTHETICS
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Figure 20. Paraxial synthetics after inversion, with figure 18 data.
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Mwersion of Field data

We shall present here a simple application of the described inversion for field data.
An experimental group shoot for reservoir delineation was conducted by the Compagnie
Génerale de Géophysique, with the scientific assistance of the Massachusetts Institute
of Technology, during the fall of 1983. The site is in Manistee Co., Michigan. The
experiment objective was to image a Niagaran reef, with data from vertical seismic
profiling collected in St. Burch well, surface reflection, and logging tools. Site geology,
field operations and results of the experiment are presented elsewhere. Dynamic ray
tracing modeling was very helpful in planning and designing the experiment (Mellen,
1984). The set of experiments included several P and S wave offset VSP's with
vibrators, a full waveform sonic recorded with Elf-Aquitaine's EVA system, a whole set of

well logs, and 3D-CMP surface reflection survey.

An interpreted cross section of the region, prior to the experiment, is shown if
figure 21. Part of the VSP data collected with a P wave source offset of 358 feet
(109 meters), is shown in figure 22. Traces have been calibrated in amplitude with

monitor phones situated close to the source.

Our aim, here, is to invert data within the reef area, for interface dip angles, and P
velocities. This would estimate how far from the borehole the reef is, and possibly,
determine how good the fit of a local part of the reef with flat interfaces is. Velocities
will be constrained by a priori information resuiting from full-waveform sonic estimates,
and from a 1D-VSP full-waveform inversion (Stewart, 1983) done by Blackway (1985).
The VSP inversions yield estimates of quality factors that are on the order of 60-1 00
for P waves, and separates up and down going waves. Interface locations on the

borehole are precisely determined from combined sets of well logs.
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_ The depth interval that is of interest lies between 4410 feet (1344 meters) and
4890 feet (1490 meters). The receiver depth interval is 30 feet (9.144 meters). The
time sampling interval is of 2 msec, and the time window is from 0.3 sec to 0.45 sec.
The box in figure 22 corresponds to- the set of data that will be inverted, which is
expanded in figure 23. The sixth trace is somewhat "ringy’’; we shall therefore not take
it into account. The total number of traces is 16. The downgoing wave at depth 1490
meters, is given by the 1D-VSP inversion. This is the source wavelet with time function
displayed in figure 24a, and its corresponding spectrum in figure 24b. The chcsen

frequency range is from 10 to 100 Hz, with 5 Hz sampling interval.

The elastic model considered has 4 layers, with 3 flat interfaces (omitting
boundary interfaces). Starting from the top, fixed depths of each interface, on the
borehole wall, are 4570 feet (1393 m) for the first, 4700 feet (1433 m) for the
second, and 4755 feet (1449 m) for the third. Within the range of observation, with a
quality factor for P waves on the order of 80, for a 50 Hz signal and a velocity on the
order of 6 km / sec, there is a maximum of 5% error between the elastic amplitude and
the near-elastic amplitude. The upper layer parameters are that of the layer at the first
receiver. The model calibration to the data is achieved by matching both, travel time
and maximum amplitude of the down going wave (Fig. 24) on the first trace. This
approximation is justified by the fact that we are far away from the source (about
1350 meters), and that the observation range is small (less that 150 meters). Ten ray
codes are considered to reconstruct the full waveform; direct P, primary P reflections,
primary P to S reflected converted waves, and direct P to S conversion at each

interface.
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Figure 24. Source signal used in the inversion: (a) in time; (b) amplitude spectrum.
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The parameters are the following, []7 =(&,,9;,&;, 05,03, a4). Initial
values on velocities and densities are determined via full-wave sonic logging, 1D-VSP
inversion, and the gravimetry survey (figures 25a and 25b). Values are shown in Table
4. In the inversion, at each iteration, S wave velocities will vary such that the P to S

velocity ratio remains constant (i.e. constant Poisson ratio at each layer).

The standard deviation on velocities is taken to be about 10% of their values. This
imposes constraints on velocity determination. Densities will remain constant. Initial
values for interface dip angles are given by the full-wave sonic interpretation of the

section (Paternoster, 1985). The initial angles will all be at —15°.

Results of the inversion are shown in Table 4, with final seismograms in figure 26.
The synthetics are satisfactory, considering the assumptions we have made, and the
fact that we are fitting a flat interface to a local region of the reef that might not be
flat. Some differences arise in the middle part of the section, which is thought to be
due to local interface or medium changes, that are not handled by the model. The final
local reconstruction of the model is presented in figure 27. Estimated parameters are
the following,
(71! =(-6°, -15° , —9° ,6.822, 4.696 , 7.1505 ),
and all final parameters are presented in Table 4, along with estimated variances. The
middle interface, is not well constrained by the data. Inversion with different initial
values, yielded differences of &, that are on the order of 5 to 10 degrees. The
seismograms for the same final model but with horizontal interfaces is shown in figure
28. These can be overlaid to figures 23 and 26. The slight differences indicate the

need for the model to have non-zero dip interfaces.
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Figure 25a. Iso spacing section of Eva data of a portion of St. Burch well.
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Figure 25b. Bulk density, caliper and sonic logs of a portion of St. Burch well.
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The VSP inversion gives an apparent dip of a 3D interface, in the 2D plane spanned by
the source and receivers. It is always smaller or equal than the true dip. These
interface dip angles are consistent in absolute value with estimated vaiues from full-
wave sonic which predicts a |$,| on the order of 156° with a resolution of = 10°. A
similar approach done by Larrere (1985), estimates | $;| to be positive but less than
10°. Each of these methods give dip information of a fitted flat interface, for which the
extent away from the borehole is very different. The full-waveform depth of
investigation is on the order of a few meters, and the VSP range of investigation is on
the order of 100 meters. This last value was determined geometrically, from the ray
diagram. Considering these differences, the fit is satisfactory. However, a larger source

offset would constrain better the problem, and should improve results.
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INTTIAL PARAMETERS FOR INVERSION OF FIELD DATA

LAYER # || a(km/ sec) | B(km/ sec) | o(g/ecm)
t 4.602 2.540 223
E
2 6553 | 3.567 279
3 4542 2.651 2.29
|
4 7.041 : 3.810 2.86

INTERFACE DIP ANGLES ¢

[nterface 2 -15°
[nterface 3 -13°
Interface 4 -15°

INITIAL PARAMETER VECTOR: m@{(l -> M)
-g.26189 -9.26189 -9.261889 6.55399 4.54299 7.84188
GAMMA®**2 = g. £ = 43.14316 RER (X)= g.

-==<=> ITERATION # 1, (CALL® 8): UPDATED PARAM. VECTOR: m(l -> M)
-9.12832 -9.26769 -9.13472 6.74642 4.68212 7.18716

GAMMA**2 = g. E = 35.5979% RER (X)= 17.49
-<==> ITERATION ¢ 2. (CALL® 1S): UPDATED PARAM, VECTOR: m(1 -> M)
-9.97883 -9.31981 -9.15929 6.82438 4.66789 7.16184
GAMMA**2 = g. € = 36.38793 RER {(X)= 15.84
====> ITERATIQON ¢ 3, (CALL® 25): UPDATED PARAM. VECTOR: m(l -> M)
-@.11944 -9.27471 -9.13858 6.88247 4.69€89 7.14857
GAMMA**2 « 1.04721 E = 35.53677 RER (X)= 17.63
-=-==> ITERATION » 4, (CALL# 33): UPDATED PARAM. VECTOR: m(l -> M)
-3.19502 -3.27492 -9.14759 6.81238 4.69834 7.14246
GAMMA**2 = 1.71183 E = 35.41612 RER (X)= 17.91
-===> ITERATION ¢ S, (CALL# 44): UPDATED PARAM. VECTOR: mi(l -> M)

-9.1@555 -0.27228 -9.15874 6.81837 4.69819 7.14938
GAMMA**2 = 4.5453¢@ E = 35.4190981 RER (X)= 17.92

-===> ITERATION ¢ 6, (CALL® 47): UPDATED PARAM. VECTOR: m(l => M)
-§.10425 -9.27879 -9.15924 6.82997 4.69689 7.150828
GAMMA**2 =« 14.92362 E = 35.49081 RER (X)= 17.95

--==> ITERATION # 7, (CALL# S4): UPDATED PARAM. VECTOR: m(1 -> M)
-9.19326 -9.27950 -0.15883 6.829789 4.6964S 7.15848
GAMMA**2 = 47 .66368 E = 35.38346 RER (X)= 17.99
-===> ITERATION @ 8, (CALL# 61): UPDATED PARAM., VECTOR: m(1 -> M)
-@.19391 -9.27048 -9.14938 6.82173 4.69638 7.15896
© GAMMA*=2 o 26.44896 E = 35.37545 RER (X)s= 18.99
--==> ITERATION » 9, (CALL# 68): UPODATED PARAM. VECTOR: m(l -> M)
-9.18339 -9.27391 -9.14967 6.82353 4.69542 7.152186
GAMMA**2 = 29.432989 E = 35.39267 RER (X)= 17.96

Table 4. Information on inversion of St. Burch well field data: Initial and updated parame-
ters.
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TOTAL NUMBER OF PARAMETERS:

TOTAL NUMBER OF RESIDUALS

LMDIF INVERSION EXIT CONDITICN: INFO
TOTAL NUMBER OF FORWARD MODELS CALLS

TOTAL NUMBER OF ITERATIONS:

k
FINAL LEVENBERG-MARQUAROT P: GAMMAw**2

DATA ENERGY:
FINAL RESIDUAL ENERGY:
ESTIMATED DATA VARIANCE:

FINAL RESID. ENERGY REDUCTION: RER(X)

MODEL 1 SCALAR WEIGHT:

Chapter V

ESTIMATED PARAMETER VECTOR: m(l -> M

-9.19387 -8.27038

PARAMETER STD.DEV. VECTOR: sqrtivm(l

0.00064 2.98974

PARAM. COVARIANCE:Vm
i 2

| B.4189497e-96 -4.383936e-99
-#.1838360-99 §.54588%-96
-7.158997¢-49 -9.341858e-14
7.153528e-89 4.837188e-99
9.286618e-89  4.482249e-49

a e W N

-3.4814840-19 -0.466357e-19

PARAMETER CORRELATION COEFFICIENTS

el 1, 2)e-@.881 rC 1, 3)e-F.99) r{
rl 2, 4)e 3,389 r( 2, 5)= 3.3089 r!l
L 4, S)=s-9.891 r( 4, 6)=-0.999 r(

Table 4. Information on inversion of St. Burch well field data: Error information.

L.
2.
S.

4)= §.908 r( 1,
6)=-9.308 ri 3,
6)=-9.389
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S)s §.900 r( 1, 6)e-04.008
S)e-g.908

4)=-3. 301

r(

3,

M= 6
: N = 426
= 1
= 78
= 19
= 9.39675e+93
E'DATA) = 299.94994
E = 35.37372
SIGMA**2 = #4.84223e-41
= 18.91
wl = g.19948
)
-9.14949 6.8218% 4.69631 7.15198
=> M)}
9.99066 2.992%7 9.49296 g.88457
k} 4 S 6
-9.358897e-39 #.153528e-99 9.2866180-09 -0.4814840~19
-§.9418%58e-19 3.93718Fe-99 .482249%-09 -0.466357e-18
F.4322420-86 -F.11156%e-98 -9.932%590e~09 -5.13977Se-99
-9.11166%e-89 #.660490e-95 -5.60326%9e-88 -§.1391238e-98
-9.9325908e-99 -9.68326%e-48 §.074001e-08% -6.135807e-98
-9.189775e-89 -9.391238e-68 -5.138887e-08 §.2891%1e-94

et 2, =-F.308
rl 3, 6)=-3.998
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FINAL PARAMETERS AFTER INVERSION

LAYER # || a(km/sec) | Bkm/sec) | o(g/cm3)
1 4602 2.540 222
2 6.822 3.734 279
3 | 4698 = 2741 229
i t
4 7151 |, 3870 2,86
! ‘

INTERFACE DIP ANGLES $

[nterface 2 —6°
Interface 3’ -15°
Interface 4 -g°

Table 4. Information on inversion of St. Burch well field data: Final parameters.
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FINAL SYNTHETICS -
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Figure 26. Paraxial synthetics after inversion, compare to figure 23.
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Figure 27. Local reconstruction of reef model in region boxed in figure 21.
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HORIZONTAL INTERFACES - ST. BURCH
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V.7. CONCLUSION

The non-linear least squares prablem is presented in the context of tensor algebra.
The residual energy is defined as one half the norm of the residual vector. The basis
under which the data vectors are represented has its metrical tensor matrix equal to
the inverse of the data covariance matrix. Linear operations on the residual energy (eg.
high order derivatives) are straightforward. The Gauss-Newton method is rederived in

this context.

Given a set of seismic data, resulting from combined seismic experiments with
different types of prior information, the required estimates are layer and interface
parameters. Full - wave inversion in the frequency domain is developed. The forward

model uses the paraxial ray method.

Sensitivity analysis is investigated. Results show that velocity is a parameter with
small variance but high non-uniqueness in its determination, whereas interface
parameters, such as dipping angle, is more unique but has a large variance. The source
shape has an important effect on residuals. Wavelet processing might be necessary if

prior information is poor.

Finite difference data sets are inverted for interface parameters and layer
velocities. For a given set of initial parameter estimates and prior information, examples
show that parameters are estimated accurately for simple models. In complex media,
the strategy could consists in inverting the data and use the velocity estimates, that
are determined quite accurately, as initial velocity values for a second inversion. Initial
interface parameters are the same as those in the first inversion. A simple example of
field data inversion for structure and velocity information is presented. Results are

compatible with that determined by full-wave sonic logging.
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V.8. APPENDIX F: Definition and Review of Tensor analysis

A brief review on tensor analysis is presented. The scope is limited to an
introduction of tensor formalism used in sections V.2, V.3 and V.4. Definitions are from
Bass (1977), and Chambadal (1969). Basic properties and transformation laws can be
found in Simmonds (1982), Morse and Feshbach (1953), Weyl (1952) and Ben-

Menahem and Singh (1881).

Let E be a J dimensional discrete linear space on a commutative field X (commonly
the set of real numbers R), and E* the dual of E, that is, the linear space of linear forms
in K over E. E* is of dimension J and (E*)* =E. If p and g are two natural integers, the

tensor of type (p,g) and order (p +g) is an element of the linear space
TPI(E) = TP(E) ® TYUE*), (F.1)

where T(E) denotes the tensor algebra of E over K, and ® is the tensor product of the
two spaces TP(E) and T9(E*). The tensor is a (p +q) linear form over EP xE* 7, and
is p times contravariant and g times covariant. If p,q,r and s are four natural
integers, the tensor product (or direct product) X of two tensors Z, in TP9(E), and ¥,

in T7'S(E), is defined as the function

which is a bilinear form of TF9(E) xT7S(E) in TP-9(E) ®T "S(E). The resulting tensor

X is of type (p +7, g +s) and order (p +q +r +s).

In the system of tensors, vectors are tensors of order 1, and scalars are tensors
of order 0. Contravariant vectors (in E) are denoted with subscripts i.e. ¢, ¢y, - -,

whose components are denoted with superscripts, i.e. x‘, xz, iy z7/. Covariant vectors
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1 22

(in E*) are denoted with superscripts, i.e. 7', 7%, - -, whose components are denoted

with subscripts vy, ¥z, . Y-

Let (d1, dz, ey d"]) be a basis of E*. If 7 is a second order covariant tensor, it can

be represented by
Z = igi:h Z; d'®d’ . (F.3)
in other words, the ZiJ' are the components of 7 in the basis §z‘ii®dj {. A tensor can be
identified as a linear operator, operating on vectors. In this sense, a second order
tensor is called a dyadic, a third order tensor a triadic, etc. Elements of a dyadic such
as 7 in (F.3) are called dyads and are equal to Zi d*®d’. The components Z; of A
can be represented by a matrix denoted [2], linking, therefore, tensor algebra with
linear operator algebra and matrix algebra. Sometimes, when no confusion arises, the

matrix [Z] of a dyadic is simply denoted Z.

Henceforth, we define in E a scalar product (bilinear form) resulting in a Euclidian
norm (quadratic form). If (&4, &5, ..., &) is a basis of E, the metrical structure underlying

Euclidian space assign to every two vectors of E
5 PN > Joo.
£ = 218 e; ; ¢ = 21 ¢ e, (F.4)
1=

a number independent of the basis considered (an invariant) and which is their scalar

product

sGH=FDy= % W68 ; Wy =08, . (F.5)

=1

The Euclidian (L,) norm is defined by
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- i o
s(E) = )} m; & (F.6)

=1
For two natural integers p and g different from zero, the contraction of a tensor Z
of type (p,q) and order (p +g) in TP9(E) is a function C, ; over TP-19-1(E) such that

if

Z=1Z1®"-®11p®171®--'0'q,
then

X = Co(?) = sliy, 94, ® - Q1@ ® - 997 (F.7)

The contracted tensor X is of type (p -1, ¢—1) and order (p +q —2). In terms of tensor

components, this operation can be represented by

j1’-j2"“’jq - i ijjzs ...,‘jq_q;k.

iy ety 2 i ts ...,zp_1,k (F.8)

Some of the properties of tensors are presented. The generalization to more

complex tensors is similar to that developed.

1) A dyadic @ is said to be symmetric if @T = @, where @T is the transposed tensor of
§. For a (0,2) type dyadic, the matrix representation is [é]T = [é], and the component

relation
jS = Q‘&J (F.Q)

2) The direct product of two contravariant vectors given by (F.4), is a (2,0) dyadic Z

constructed following

©® -» - J . .
Z = £ER®¢= 21.5‘@ g ®¢; . (F.9a)
W=

The matrix representation is [ 2] = [£] [¢]7, and the component relation Z¥ = ¢¢7.

3) Two tensors Z and @ are said to be inverse if
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ZeQ = @2 =1, (F.10)

where | is the unit tensor. We will use the notation 7 -1 to denote the inverse of Z. In
terms of components, if for example 7 is of type (2,0), and § of type (0,2) the

component relation is
J
3 Zy, @™ = 6™, (F.11)

where 4" is the Kronecker delta: 6 =1ifi=m and §]* =0 if i#m. In particular, the
basis {€,} in E, has its the reciprocal basis {27} in E*, such that € gl = 67. The scalar

product (F.5) can be simply written if

N J oo N J .
f=28e 5 (=249 (F.12)
1= j=

Then,

- -+ J .
s(6)) = ), &, (F.13)
1=

. — 7 — &7
since W =¢; «&’ =¢].

4) The following relation holds (4® & «d = {® (¢+12).
For example a dyadic Z of type (1,1) can be right-multiplied (dot product) with a vector

i in E to form a vector % in E by contraction

g

W=Zed = é’iZ}uj, (F.14)

Tj =1

The matrix representation is [W] = [Z1[2], and the component relation is
R
wt = 2 Z:ul,
i=1

A dyadic 7 of type (0,2) when left-multiplied by 'g’ yields a vector 7 in E*
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- - J . -
U =¢(e = 2181 ZLJ gl (F.15)
ig=

The matrix representation is [7]7 = [‘g’][é"], and the component relation is

'LUJ = ié‘él ZU .

A dyadic Z of type (1,1) when right-multiplied by a dyadic O of type (1,1) yields a

dyadic X of same type

o & L4 J J . .
X =%20= 21L21zg QJ’F] &'®é, . (F.16)
ik=1l=

The matrix representation is [X] =[Z « §] = [Z][&], and the component relation
Joo.
%=
.=1
i

The dyadic ff) « Zis not equal to X.

The scalar product product (F.5) is, then, a scalar contraction of the tensor of type
(2,2) with components W, ¢'¢™. The second order tensor # with components W, is
called the fundamental (covariant) metrical tensor. # and its inverse # ' are real and
1

symmetric. A vector 1, expressed in E with #, has its associated vector i

expressed in E* with f‘;"1, via the relation 2" = # « i4, and conversely i, = el

Given W, use of Wf = 6{‘ and relation (F.15) enables the scalar product (F.5) to be

written in an equivalent form
s = L e¢, (F.A7)

for which the Euclidian norm s(£,§) Is used in equation (V.2.2). The matrix
representation is s = [E]T [W] [E], and the component relation is given by (F.5). Note

that since # is symmetric g- /R Z‘ = Z- e Z
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5) The gradient of a vector f in E with respect to a vector 77 in E is a dyadic of type
1,1

6é’j

— . (F.18)
om?

N J 9 . J .
Vf = —— f7 2'®2; + 7 g'®
4 l;,jzﬂ m? f J i,JZ;ff

P ‘
The gradient operator can be viewed as V = ) &' V;, with V; = 8/ dm?.

i=
We shall use the following tensor indentities derived from the preceding relations.

A, B are dyadics and £ and ¢ are vectors.

VA BeD=VA B+ (VB D AT +vE. BT AT, (F.19)

VEe A =VEe el + (VADE+vE AT 2. (F.20)

In general, for a vector E, and two arbitrary tensors A and B, the operation A « E sBis

ambiguous since
(AedeB # Ae(§+B). (F.21)

Therefore, if such an operation arises, we shall always put between parenthesis which

dot product is computed first (see F.19 and F.20).

Since tensor elements are ordered (eg. F.3), we shall code this order following the

alphabetical order of the tensor indices. For example a tensor with component G has
its corresponding dyad Gg é* ® 2., whereas the tensor with component Gt has its

corresponding dyad equal to G* &,, ® ™.

6) A change of coordinates from a f7-system of dimension } to a m*-system of same

dimension, is defined by a transformation of the form
fi=fimk) ; k=1,HM. (F.22)

Suppose that the components of a second order (0,2) tensor # are known in the b Ja
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system, then the corresponding components in the mk -system, are (Simmonds, 1982)

~ afd ark

Wy = Py Wik Pl (F.23)
or in tensor form,

W=V e e (VAT (F.24)

where the tilde denotes the tensor in the m* -system, the differentiation being with

respect to 7.

We shall assume that equation (F.24) remains valid when going from a subspace U in E
with a f7-system of dimension N to a subspace V in E with a m*-system of dimension

M, the transformation being of same form as (F.22).

V.9. APPENDIX G: Two examples of analytical interfaces

Each interface is approximated by a cubic spline interpolation scheme. The
approximation is tested by super-imposing the exact interface with the approximate.
The number of points required in the interpoiation is chosen so that the fit is good and
reliable. This requires the exact interface to be at least of class C°: The interpolation is
well behaved, provided the number of points is large enough, for elementary functions

that are continuous. Two interface types are considered.

1) The simplest parametrization of an interface is a flat tilted interface. For

interface i, the form of the function is
z, =(z —xf) tan(®) + zf . (G.1)

Inputs are a fixed point on the interface (xf » 25 ), determined by a priori information (eg.

from a zero offset VSP). Other inputs could be a minimum and a maximum allowable

- 245 -



Chapter V

depths, z,,, and 2,,,. These depths can be used to construct for example "smooth”
pinchouts, wedges or faults. If z; = z,,, then we set z; = (1—¢)zna,. Similarly, if

2; < 2, We would have z; = (1+£)zp,. Typical values of ¢ are on the order of 0.001.

The parameter, ®, is the angle of the interface with respect to the z axis. The
origin of angles is the z-axis (i.e. $=0 corresponds to a horizontal flat interface). An
angle is positive if the rotation of the interface with respect to the y axis is toward the

z axis (clockwise rotation). Figure 3a shows an example of such an interface.

2) The second type of interface models a reef.~lt is a continuous function
constructed by matching five functions at their end points. Inputs are again a fixed

point (xf,zf) at the interface, but off the reef. Five parameters describe the

interface:

(1) S = z translation with respect to zg of the reef base
(2) B = z length of large base of the reef

(3) b = z length of small base of the reef

(4) L = z length of reef transition region close to zs

(6) h = reef elevation with respect to 2, .

Set
S =z, -z
B=z4 -1z,
b=zx3—z;
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L=x2—z1.

Then, for interface i, the function z; is constructed following (Figure 3b)

Z§I1 zi-zf
h Tz

zy <z <Iy zi=zf-51—cos[1r 7 1
Z'Zsz Sx3 Zi=2f'h- (G.2)

< | [ -2
Z3<xT <Z4 z, =2; - — |1 —cos[m

t f 2 | x4'—23

.’5224 Z_L—Zf

Mathematical constraints are that | B| > |L|+|b| and L#0, and in addition, if S <O,
then | B| > —S. These constraints are imposed under the penalty model described in

section V.3, with equations similar to (3.5-6).

Combination of two reef interfaces leads to more complicated geometry. For
example, two reef interfaces with same parameters an inputs but opposite elevation, A,
could model an inclusion. Or setting b larger than the model size would simulate a normal

fault.

More realistic or complex analytical functions can be defined if necessary. For
example combination of these two interfaces would yield a tilted reef, or a reef with
different slopes on each side etc. A library of typical interface types should be

available in order to adapt the inversion to general interfaces.

Coordinates of the fixed point on the interface could be introduced as constrained
parameters. This would allow more flexibility and generality of the inversion, increasing

however computation time.
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V.10. APPENDIX H: Simple example on the Gauss-Newton approximation

We shall consider here the case where ¢ is a scalar function of a scalar parameter

m.. The same notation than the multi-dimensional problem will be taken, to conserve

symbolically the more general case.

3
Assume that d -3 a,m", is a good approximation of the function &(m), in the

n

range of interest, that Is, not too far from the minimum, at m*. The a, are real

coefficients. We could extend the summation to higher orders if this approximation is

not sufficient without invalidating what follows. Therefore,

e =d - a, m" .
Eo"

From (2.2) we have £ = ¢ ¢/ 2, with #=1. Then from (4.5)

3
G=GT=-vVe=) na, m*".

n=1

Thus, (4.7) yields

and from (4.8) and (4.9)

3
vGT =Y (n-1)n o, m™2,
2

H=E"=wE = ¢TG - vGT¢.

The Gauss-Newton approximation assumes £ GG, or, equivalently that

|GT G| » |vGT ¢| .

In terms of series this condition yields

e ,

|

3 3
(n-1) n-2ld - nmm
y n n a, m ][ ngoa m ]

n=

with explicit left hand term
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a? +4aq.a,m +(4a? +6a,a3)m? + 12a,a3m® + 9afm*, (H.8)
and right hand term
|(2a, + 6azm)(d —ay +am + a,m? +azm?)| . (H.9)
In order for (H.6) to be verified one the two following must hold:

(1) the residual must be small, that is (d -3 a,, m™) -0; or

(2) the residual ¢ is close to a linear function of the parameter m; that is ay~d, and a,
and a; are much smaller than a,; this would imply that the function describing the

residual energy £ is close to a parabola.

Since E'' is the slope of E', this approximation could either underestimate or
overestimate the slope of E', depending on the sign of the last term in (H.5), which

would slow up the convergence for the zero finding of E' (see Figure 1). Typically,
within some regularity conditions, the rate of convergence of Newton's method is
quadratic (i.e. |my 4 —m*| proportional to |m, -m* |2), whereas the Gauss-Newton

method has linear convergence (i.e. |my, ,.,—m*| proportional to | my;, —m*|).
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VI. GENERAL CONCLUSION

... no proposition that we put, no aziomatic system, no formal language,
is ever final.

- J. Bronowski

1. SUMMARY OF RESULTS

Physical parameters characterizing heterogeneous media have been defined.
Conditions of validity of three asymptotic wave methods, (1) dynamic ray tracing, (é)
Gaussian beams, and (3) paraxial ray method, were explicitly introduced and derived.
Dynamic ray tracing must satisfy four conditions, and Gaussian beams three additional
ones. The paraxial ray method is a hybrid method situated between standard ray and
Gaussian beams. Amplitudes and phases of these methods are reliable, and can be used
with confidence in regions where the validity conditions are satisfied. Green's function
for an explosive point source in a medium with constant velocity gradient is then
investigated. Validity conditions are tested numerically in this medium. Rate of
breakdowns have been established. Dynamic ray tracing is more accurate than
Gaussian beams. Both methods remain valid at ray turning points. The paraxial ray is a
fast method for computing asymptotic Green's functions. Modeling examples show the

robustness and flexibility of the method.

A full waveform nonlinear least squares inversion is then introduced. The forward
model is generated by the paraxial ray method. The inversion is set up in the frequency
domain, and handles prior information and constraints on parameters. Estimated

parameters are layer and interface parameters (delineation). Combined VSP and surface
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yeﬂection data, multi-offset VSP or multi-component data, etc., can be simultaneousl-y
taken into account. Examples of inversion of VSP and surface reflection data,
generated by finite difference method are presented. As an example of application,
inversion of VSP field data from Michigan is performed, and medium estimates agree with

other independent measures.

2. SUGGESTIONS FOR FURTHER RESEARCH

Numerical (wave and asymptotic wave) methods of solving wave propagation
problems in heterogeneous media are being developed at a fast rate. Analytical solution
for Green's functions in simple heterogeneous media are very scarce. Green's function
in a medium with negative velocity gradient, or a layer over velocity gradient (presence
of caustics), or a velocity gradient over layer (shadow zone), is within our reach, and
should be investigated. This would allow a more extensive testing procedure of
asymptotic wave methods in critical regions. Numerical wave methods would also benefit
from these solutions. Green's function for a point force in medium containing a spherical
inclusion would extend the testing range. This solution enables one to have direct
control on interface curvature, and its interaction with waves. Quantitative estimation
of the Gaussian beam generated head waves should be attempted with either exact
solutions (Cagniard-de Hoop methods) or a calibrated and tested numerical wave method
(for example the finite difference method used in this study). If head waves are
correctly taken into account, one could consider hybrid method, where paraxial
synthetics are super-imposed to GB-head-waves synthetics. Shear waves is the next
step in the analysis, after acoustic (or SH) problems are solved. In more complicated
media, validity conditions of asymptotic wave methods can be tested with numerical

wave methods. Paraxial ray method can be used in imaging methods with variable

- 251 -



Chapter VI

medium background, where a large number of approximate Green's function computations

is required.

On the inversion with the paraxial ray method, it is possible to obtain analytic
Jacobian matrix for homogeneous layers with smooth interfaces. Density and quality
factors estimation is the next step in generalizing the inversion. More analytical
interfaces must be available (anticline, overthrust). Addition of coherent noise in time
would test further the inversion. Eventually, if the number of parameters is to high, we
can attempt to solve sequentially, or by parts the general problem. The development of
this inversion would help in the design of a seismic experiment. Given a localized region
and its prior information, one would investigate some optimal ways of illuminating this
region with waves, and of recording the information. This would improve the resolution

and characterization of the region under consideration.
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