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Abstract

The structure of the near-bottom velocity and density fields was

observed for 3 months with a fixed velocity/temperature measuring array

on the Hatteras Abyssal Plain. The velocity signal was examined for

structure coherent with the observed mixed layers. Velocity fluctuations

above 1 cph increase in energy near the bottom, expecially within bottom

mixed layers. The frequency and energy of these fluctuations is con-

sistent with the expected properties of boundary layer turbulence. The

turbulence, as measured by these velocity fluctuations, is modulated

on tidal and inertial time scales and extends intermittently throughout

the bottom mixed layer. The clockwise near inertial velocity fluctua-

tions, presumably due to internal waves, also show structure coherent

with the observed mixed layers. Their energy decreases near the top of

the mixed layer with little phase change. Within the mixed layer the

phase begins to lead, with the phase increasing downward. The near

inertial anticlockwise velocity fluctuations show far less coherence with

the mixed layer structure; higher frequency internal wave band velocity

fluctuations show very little coherence with the mixed layer structure.

The characteristic boundary layer velocity signal in both the high

frequency and near inertial bands commonly extends throughout the mixed

layer, often significantly above the estimated turbulent Ekman layer

height. These observations are inconsistent with a steady turbulent

Ekman layer model of the boundary layer.



The interaction of the internal wave field and the benthic boun-

dary layer above a flat bottom is investigated using a diagnostic model.

Assuming the internal waves to be large compared with the boundary

layer, the turbulent stresses acting on the waves and the work done by

the stresses on the waves can be computed. The data indicates obser-

vable energy transfer only for near inertial waves. The boundary layer

is estimated to absorb .004 - .025 ergs/cm2/s from the near inertial

internal wave field. This is far less than estimated by Leaman (1976)

and suggests that the benthic boundary layer on a flat bottom plays a

minor role in dissipating internal wave energy. This is also much less

than the total energy dissipation in the boundary layer, suggesting that

the boundary layer is primarily driven by low frequency motions. A

simple slab model with a linearized quadratic drag law qualitatively

explains the observed boundary layer near inertial clockwise velocity

structure and energy flux. Thesis Advisor: Laurence Armi.
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Chapter 1. Introduction

Observations close to the ocean bottom show a distinct region,

the benthic boundary layer, in which bottom generated shear turbulence

appears to be dynamically significant. Bowden (1978) reviews previous

work on this subject. Oceanographically, the benthic boundary layer

may be significant in damping oceanic motions, and mixing the oceanic

interior. Fluid dynamically, it is a useful example of a turbulent

boundary layer influenced by rotation and stratification, but without

significant heating or cooling. Over large regions of the ocean a

bottom mixed layer, vertically uniform in potential temperature, salinity

and light scattering (Armi and Millard, 1976; Caldwell, 1976; Weatherly

and Niiler, 1974) is present. This layer is believed to be mixed by the

boundary layer turbulence. In a recent study Armi and D'Asaro (1980)

describe the three dimensional density structure of the benthic boundary

layer over the Hatteras Abyssal Plain in the western North Atlantic.

The bottom mixed layer is found to extend 5-60 m above the abyssal plain

with typical heights of 20-30 m. The layer exhibits considerable

variability on time scales of days and longer, and horizontal space

scales of tens of kilometers and larger. Multiple mixed layers are

common. These are presumably caused by the intrusion of the bottom

mixed layer into the interior. Benthic fronts are also observed. The

observed density variations at a fixed point appear to be primarily due

to advection of horizontal density structure by the velocity field.

This thesis will analyze the velocity data taken during the same

experiment. Studies of the benthic boundary layer have often concen-



trated on the structure of the mean flow and turbulence in the bottom

part of the boundary layer. In this region the benthic boundary layer

appears similar to a two dimensional turbulent boundary layer and the

velocity profile can be used to estimate the bottom stress. (Wimbush

and Munk, 1970; Weatherly, 1972; Caldwell and Chriss, 1979). The

measurements described here are not sufficiently close to the bottom to

duplicate these calculations. They instead span the entire mixed layer,

extending into the interior, so that the velocity structures associated

with the mixed layer can be observed.

The turbulent Ekman layer provides a useful starting point for the

analysis of the mixed layer velocity structure. The unstratified tur-

bulent boundary layer driven by a steady geostrophic flow in a rotating

coordinate system will here be called a turbulent Ekman layer. Its

structure has been investigated theoretically using asymptotic matching

(Csanady, 1967; Blakadar and Tennekes, 1968), laboratory simulations

(Caldwell et al., 1972; Howroyd and Slawson, 1975), and the analysis of

atmospheric and oceanic boundary layers under neutral conditions

(Lettau, 1950; McPhee and Smith, 1976). One result of these studies

is that the turbulent Ekman layer extends only to a height of roughly

6 f.4 u*/f where pu* 2 is the wall stress.. The turbulent stresses
EK ^

and velocity fluctuations diminish rapidly above this height (Caldwell

et al., 1972; McPhee and Smith, 1976). The benthic boundary layer is

certainly more complex than a turbulent Ekman layer. One of the main

aims of this thesis is determining the relevance of the turbulent Ekman

layer and related models to the benthic boundary layer.



This thesis divides into two sections by content. Chapters 3 - 6

describe the observed mixed layer velocity structures. High frequency

(chapter 4) and near inertial frequency (chapter 5) motions, which show

the strongest structure are emphasized. These results are discussed in

chapter 6. Chapters 7 - 10 analyze the near inertial motions using a

diagnostic model of the internal wave/boundary layer interaction which

allows the energy flux between the waves and the boundary layer to be

computed. This interaction is then modeled using a simple slab model

(chapter 9) and the results discussed (chapter 10).



Chapter 2. The experiment and the instruments

A 3-month time series, May 18, 1977 to August 18, 1977, of

velocity and temperature was measured by a bottom mooring (Figure 1) de-

ployed on the Hatteras Abyssal Plain near 280N, 700 30'W by the Moored

Array Project of the Woods Hole Oceanographic Institution (W.H.O.I.).

The Hatteras Abyssal Plain is extremely flat with a slope of only

2 x 10- 4 over hundreds of kilometers (Bush, 1976). The mooring

(W.H.O.I. 621) contained vector-averaging current meters (VACM) spaced

so as to span the bottom mixed layer. These sampled average velocity

and temperature every 7 1/2 minutes. A detailed description of the ex-

periment and the instrument calibration can be found in (Spencer,

D'Asaro and Armi, 1981).

The VACM instruments used in this experiment employ a Savonius

rotor and a vane to measure horizontal current (McCullough, 1975).

Bryden (1976) estimates an rms VACM direction bias of 20. The measured

currents, however, show consistent directional differences larger than

this. A more detailed analysis (Spencer, D'Asaro and Armi, 1981) reveals

that instruments 1 and 4 are consistently 70 clockwise of instruments 2

and 3 from early June up to July 19. During this period the mooring

rotation, as measured by the VACM compasses is minimal. On July 19 and

20 the mooring orientation twice changes abruptly. Instrument 2, for

example, undergoes a net rotation of approximately 1800 in less than

the sampling interval. The directional differences disappear after

July 20. This strongly suggests that the shears resulting from these
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Mooring diagram. All vector-averaging current meters (VACM) measure
vector mean current and temperature.



directional differences should be interpreted as instrumental errors of

unknown origin. The VACMs in this experiment are therefore considered

to have possible direction biases of up to 70 per pair, with this bias

likely to be variable in time. These biases dominate the low frequency

shears observed in this experiment, and make their scientific inter-

pretation difficult.

The measured VACM temperature variations have a precision of better

than a millidegree (± 10°30C). The absolute temperature is, however,

less accurately measured and has been calibrated in situ as described in

Armi and D'Asaro (1980) and Spencer, D'Asaro and Armi (1981). The cor-

relation between salinity and potential temperature in this region, as

determined by both historical measurements (MODE Group, 1978) and ex-

tensive CTD measurements during this experiment, is exact to within the

salinity measurement error. Thus temperature alone gives a measurement

of density at least as accurate as temperature and salinity together.

Potential temperature differences will thus be interpreted as potential

density differences throughout this paper using the formula gAp/p = .lA6

(Armi and D'Asaro, 1980).



Chapter 3. Spectral analysis

Figure 2 shows the horizontal kinetic energy spectra from all 7

instruments. These spectra are similar to those from other measurements

in this area showing peaks at the inertial and tidal frequencies with

a red spectrum at higher frequencies. The normalized energy at .2 cph,

3 cm2/s 2/cph 2 , is within the range found by Wunsch (1976) for western

North Atlantic measurements. The spectral slope at .2 cph, approxi-

mately -3, is steeper than the typical slope of -1.7 found by Wunsch

(1976). Figure 3 shows the horizontal kinetic energy spectrum from the

55 m instrument, here divided into clockwise and anticlockwise com-

ponents (Calman, 1978). The clockwise energy is larger than the anti-

clockwise energy between the inertial and Vaisala frequency, as is

typical of previous measurements (Fu, 1980).

Several features of the mean velocity spectra in figure 2 show

distinct changes across the array. The near bottom instruments measure

significantly more horizontal kinetic energy at frequencies above 1 cph.

In chapter 4 this will be attributed to bottom generated turbulent

velocity fluctuations. The near bottom instruments also measure sig-

nificantly less horizontal kinetic energy near the inertial frequency.

In chapter 8 this is attributed to turbulent stresses within the mixed

layer. In both cases the energy level varies monotonically with distance

from the bottom. Except at these frequencies the mean spectra from

various instruments do not significantly differ.
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Figure 2

Horizontal kinetic energy spectra from all seven instruments. Labels
refer to instrument numbers (refer to figure 1). Each spectrum is the
average of 38 Hanned, overlapped pieces; higher frequencies are band
averaged. The 95% confidence limits and the inertial (f), M tidal
and approximate Vaisala (N) frequencies are shown. The frequency re-
sponse of the digital filters used to compute the near inertial and high
pass velocity signals are shown.
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Figure 3

Clockwise (solid) and anticlockwise (dotted) kinetic energy spectra for
55 m instrument. Each spectrum is the average of 13 Hanned overlapped
pieces with higher frequencies band averaged. The 95% confidence limits
and the inertial (f), M2  tidal, and approximate Vaisala (N) fre-
quencies are shown.



Figure 4 shows the east/east and north/north cross spectra between

instruments 3(55 m) and 7(15 m). Instrument 7 is in a bottom mixed

layer for 60 per cent of the record, while 3 never is. The coherence

for both components is high at tidal and inertial frequencies and drops

to below the 95 per cent significance level above the local VaisHla

frequency. The only significantly non-zero phases in figure 4 occur

at inertial and tidal frequencies. At the inertial frequency the

boundary layer leads the interior by about 250. Similar results were

found by Hayes (1980) and Kundu (1976). Chapter 7 shows that these

phases are much larger than would be expected for internal waves alone

and must therefore be attributed to boundary layer effects.

Significantly, the vertical temperature coherences (not shown) in

this experiment are below the 95 per cent significance level at most

frequencies, for separations greater than 30 m. This is in marked

contrast to measurements in the oceanic interior, where the temperature

coherences are much higher than velocity coherences (Briscoe, 1975).

This is clearly due to the strong temperature signals, associated with

the bottom mixed layer, which are not present in the interior.

Each mean spectrum shown in figures 2 and 3 is the average of

measurements from a particular instrument at a fixed height above the

bottom. The mixed layer, however, varies greatly in height, so that any

particular near bottom instrument is sometimes within the mixed layer

and sometimes above it. Averaging over measurements at a fixed height

obscures any structure associated with the mixed layer. An alternative



180

L4 90

-90

-180

1.0
15m
55 m

.5
95

0.4

FREQUENCY , CYCLES/HR

Figure 4

Cross spectra between east (heavy line) and north (light line) velocity
components of 15 m and 55 m instruments, computed as figure 1. The 95%
level of no significance and 95% confidence limits for zero phase are
shown as dotted lines (Koopmans, 1974). The 15 m level leads the 85 m
level at the inertial frequency.



approach, which will be employed here, is to filter the observed veloci-

ties to form the time series of velocity within a particular spectral

band. The variations in this filtered velocity are then compared with

the observed density structure, so that features of the velocity field

which are correlated with the density structure may be identified. This

technique has been applied to frequency bands spanning the superinertial

range of frequencies shown in figure 2. Significant structure is found

only for high frequency (> 1 cph) and near inertial bands, as might be

expected from the mean spectra. The results for these two bands are dis-

cussed in the following two chapters.



Chapter 4. Observations of high frequency velocities

The benthic boundary layer is believed to be turbulent. An in-

creasing level of high frequency velocity fluctuations is seen in this

experiment near the bottom (figure 2). In this chapter these fluct-

uations are shown to be consistent with the expected energy level of

boundary layer turbulence, and their intensity is correlated with the

observed density and lower frequency velocity fields.

East and north velocities from each instrument were high pass

filtered with an 11 element smooth non-recursive filter constructed by

an algorithm described in Hamming (1977). The frequency response of

this filter is shown in figure 2. Large spikes in the filtered signal

are caused by instrument rotor stalls. These spikes have been eliminated

in the processing. The velocity signals processed in this way will be

called high pass velocity.

The velocity measured by the VACM sensors (rotor and vane) is

vector averaged by the VACM electronics over a 7.5 minute interval. The

recorded velocity is thus a low pass filtered version of the velocity

measured by the sensors. The combination of this VACM low pass filter

and the digital high pass filter described above yields a band pass

filter with a maximum energy transmission of .6 and an equivalent

50 per cent energy transmission pass band from 2 to 5 cph. Assuming the

VACM sensors to be perfect, the transfer function between the oceanic

velocity and the computed high pass velocity is described by this band

pass filter.



Observed high pass velocities

Figures 5, 6 and 7 display the high pass velocity signal for 3

periods. Various features of the observed high pass velocity are illus-

trated in these figures and are discussed below. The complete record of

high pass energy is displayed in figure 8c. The corresponding potential

temperature and 1 day mean speed records are shown in figures 8b and 8a.

A thick mixed layer: Figure 5a shows the high pass north velocity for

each instrument. The amplitude of the high pass fluctuations is clearly

modulated at slower time scales. Figure 5b displays contours of filtered

high pass energy, as a function of time and height off the bottom. The

energy time series are calculated from the high pass east and north

velocity time series. These are then filtered with a half cosine filter

of half width 3 hours to form the high pass energy time series displayed

in figure 5b. The correspondence between regions of large high pass

energy in figure 5b and large amplitude fluctuations in figure 5a should

be clear.

Figure 5c shows 2 mOC isotherms of potential temperature as a fun-

ction of time and height off the bottom. The potential temperature here,

and in all subsequent figures, is filtered with a half cosine filter of

half width 3 hours, the same filter used on the high pass energy in

figure 5b. A 45 m thick, well defined bottom mixed layer is present from

July 26 to August 1. The lower frequency velocity during this period

is approximately the same at all levels and consists of a steady 7 cm/'s

current with approximately 1 cm/s internal wave fluctuations (figure 8a).



Figure 5

High pass velocity during a period of thick mixed layer

a) High pass north velocity for all 7 instruments. Frequency response
of high pass filter is shown in figure 2. Data from each instru-
ment is plotted so that zero velocity corresponds to the height
of that instrument off the bottom as shown on the left hand axis.
The data at 75 m is formed by averaging the 65 m and 85 m data.

b) Contours of filtered high pass energy, plotted as a function of
time and height off the bottom on the same scale as a). The
energy is formed from the individual high pass velocity components
and then filtered with a half cosine filter of half width 3 hours.
Notice how clouds of high pass energy intermittently fill the
mixed layer shown in c).

c) Contours of potential temperature filtered as in b) plotted on
same scale.

d) Least squares ellipses fit to successive 24 hour pieces of high
pass velocity. The ellipses are rotated so that high pass
velocity fluctuations parallel to the 24 hour mean velocity are
horizontal on the figure; velocity fluctuations perpendicular to
the 24 hour mean velocity are vertical. The size and orientation
of these ellipses show the energy and directionality of the high
pass velocity, respectively.
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Comparing the high pass energy seen in figure 5b with the density struc-

ture shown in figure 5c reveals clouds of high pass energy extending from

the bottom and intermittently filling the mixed layer. This looks like

bottom generated turbulence. It is more intense near the bottom, and is

present only when the mixed layer is present. Below, the energy and

frequency of these fluctuations is shown to be similar to that expected

for bottom turbulence.

Strong density gradients: Figures 6b and 6c show high pass energy and

potential temperature contours as in figures 5b, c. The density struc-

ture is more complex here with a frontlike feature on June 4 and 5, a

shallow mixed layer from June 5 to 9 and a thick mixed layer starting on

June 9. Note that the potential temperature contour interval is 5 mOC

as opposed to the 2 mOC in figure 5. The density gradients above the

mixed layer are much stronger here than in figure 5. The mean speed is

also much lower during this period. Figure 6a marks times during which

the VACM rotor did not move. During these periods the calculated high

pass velocity is zero.

Figure 6b shows the high pass energy for this period. Intermittent

near bottom maxima of high pass energy, similar to those in figure 5b,

are seen here within the thick mixed layer starting on June 9. Here,

however, they are much less energetic, and do not extend to the mixed

layer top. Unlike in figure 5b, much of the high pass energy is here co-

herent with the regions of strong temperature gradient; the front on

June 4, 5 and the mixed layer cap starting on June 7 clearly correspond

with regions of large high pass energy. The high pass energy associated
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with these temperature gradients is distinct from the near bottom, pre-

sumably turbulent, high pass energy. It may result from advection of

small scale, low frequency shear, associated with the temperature

gradients, by the low frequency horizontal current. Significantly, the

interior homogeneous region extending from June 5 to 8, shows little

high pass energy. If this is a detached bottom mixed layer, as hypo-

thesized by Armi and D'Asaro (1980) it clearly does not show the same

level of high pass energy as the bottom mixed layers. This suggests that

it is no longer actively turbulent.

A complex region: Figure 7 shows the high pass energy and potential

temperature structure during a third period, characterized by rapid

changes in the mixed layer characteristics and a large (10 cm/s) mean

current. During this period interior homogeneous layers merge with bot-

tom mixed layers on 3 occasions: June 26, June 29 and July 2. Mixed

layer detachment may be occurring here as hypothesized by Armi and

D'Asaro (1980).

The high pass energy structure shows many features seen previously.

The bottom intensified maxima on June 27, July 2, and July 3 appear sim-

ilar to those in figure 5; the maxima on July 3 extends to the mixed

layer top 50 m above the bottom. The region of strong temperature gra-

dient from June 23 to June 26 is accompanied by regions of large high

pass energy, as in figure 6. The numerous interior homogeneous layers

show a generally low level of high pass energy. The maxima in high pass

energy on June 26, however, occurs within a bottom mixed layer, which is

continuous with an interior layer. This feature is unusual in that it
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Figure 8

Mean velocity, density, high pass velocity and near inertial velocity
structure for entire record. All figures plotted with same vertical
and horizontal scales. Differences in start and stop times are due to
differences in averaging.

a) Left axis: 1 day mean speed at 15 m. Right axis: Turbulent

Ekman layer height, .4u*/f, computed using u* = S/30.
S is 1 day mean speed.

b) Potential temperature contours as in figure 6c.

c) High pass energy contours as in figure 5b.

d) High pass velocity ellipses as in figure 5d.

e) Contours of near inertial clockwise energy computed as described
in the text. The spectral response of the near inertial filter

is shown in figure 2. A nearly independent estimate is computed

every 60 hours.

f) Contours of near inertial phase of each instrument relative to

the phase of the vertical mean near inertial velocity. Clockwise
leading phases are shaded. Phase contours are not shown when
near inertial energy is less than .25 cm2/s2
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is not bottom intensified, but occurs within a well mixed region. A

separated turbulent boundary layer would have such a mid-water maximum

in turbulent kinetic energy.

Expected Turbulence Proeerties

The above observations reveal two major kinds of high pass

velocity fluctuations, fluctuations occurring within regions of strong

temperature gradient, and bottom intensified fluctuations occurring

within the bottom mixed layer. This second variety of fluctuations looks

like bottom generated turbulence. In this section the expected pro-

perties of such bottom generated turbulence are defined and a comparison

with the observed properties is made.

The turbulence in the benthic boundary layer is probably generated

by a mechanism similar to that operating in a two dimensional laboratory

turbulent boundary layer, such as can be produced in a wind tunnel or

flume. Such boundary layers have been extensively studied and their

properties are well known. The extrapolation of these measurements to

the benthic boundary layer will define the expected properties of the

boundary layer turbulence.

Friction velocity: The turbulent velocity fluctuations within the boun-

dary layer are expected to scale with u*, the friction velocity, where

pu*2 equals the wall drag. Since u* is not measured in this experi-

ment it must be estimated from the measured velocity at 15 m. The impor-

tant parameters in this estimate are the oottom roughness and the

Reynold's number, Re = U 6/v. An interior velocity U1
= 10 cm/s and



a boundary layer height of 6 = 20 m yield Re = 2 x 10 . For a smooth

wall turbulent boundary layer at this Re, a value of U /u* = 35 is

predicted using the Millikan drag law (Millikan, 1939). Bottom photo-

graphs of the Hatteras Abyssal Plain show a flat bottom with occasional

1 cm bumps (Biscaye and Eittreim, 1977). A sand grain roughness of

k = 1 cm, which certainly overestimates the effect of these bumps,

yields a roughness Reynold's number u*Z/V of approximately 30, which

is transitional between smooth and rough flow (Hinze, 1959, p. 486) and

predicts Ul/u* r 29. Csanady's (1967) Ekman drag formula with

z = V/u* yields Ul/u* = 34. A value of Ul/u* = 32 will be used

below.

Frequency and energy: Figure 9a shows the measured turbulent velocity

fluctuation intensity through a laboratory turbulent boundary layer

(Klebanoff, 1954). The turbulent velocity fluctuations scale with u*

and become small above 699, the boundary layer thickness. In the outer

part of the boundary layer the horizontal kinetic energy due to these

turbulent velocity fluctuations is approximately u*2 . Using

Ul/u* = 32, this yields u*2 = 10- 3 U12.

The high pass energy is sensitive only to velocity fluctuations

within a particular range of frequencies. Do the expected turbulent

velocity fluctuations have energy in this frequency range? Figure 9b

shows the spectra of downstream and crossstream velocity fluctuations

in the outer part of a laboratory turbulent boundary layer (Bradshaw,

1966). Velocity spectra in the outer part of a laboratory turbulent
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Figure 9a

Turbulent velocity fluctuations through a laboratory two dimensional

turbulent boundary layer (from Hinze, 1959, pg. 488). z/69 9  is frac-
tional height within the boundary layer.
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Spectrum of turbulent velocity fluctuations in a laboratory two dimen-
sional turbulent boundary layer (Bradshaw, 1966). z/6 = .89.

995
Vertical axis is arbitrary. Center frequency of high pass filter is
shown in same nondimensional coordinates for a range of U(5-10 cm/s)
and 6 (10-20 m). The half power bandwidth of this filter is also
shown.



Ekman layer are similar (Caldwell et al. 1972). Plotted in the same

non-dimensional coordinates is the high pass energy central frequency,

3.5 cph, for a range of mean speeds, 5-10 cm/s, and a range of 6995'

10-20 m. The high pass energy central frequency is seen to be near the

spectral peak of the expected turbulent velocity fluctuations. The high

pass energy should thus be an excellent indicator of the presence of

turbulent boundary layer velocity fluctuations.

The half power bandwidth of the high pass velocity transfer func-

tion is also shown in figure 9b. Roughly 20 per cent of the turbulent

horizontal kinetic energy shown in figure 9b is contained within this

bandwidth. Since this is a 50 per cent transmission bandwidth a

measurement of high pass energy in the outer part of a turbulent boun-

dary is expected to yield approximately 10 per cent of the total tur-

bulent horizontal kinetic energy or (.01 U1)2.

Stratification: The mixed layers observed in this experiment commonly

show a slightly stable density stratification, measured by potential tem-

perature. Stable density stratification can strongly influence a tur-

bulent boundary layer and if sufficiently strong can suppress the tur-

bulence completely (Turner, 1973; Arya, 1972). Assuming the energetic

eddies in the outer part of the boundary layer to be of the same scale

as the boundary layer, H = 10 m and that they have an energy density

U*2 , U = 7 cm/s gives a kinetic energy of u*2 H N 48 ergs/cm2

Assuming that these eddies will completely mix any existing stratifica-

tion Ap on the scale H, this will require energy g- . Using

g Ap = .1 AO and H = 10 m, 4 ergs/cm2 are required to mix a tem-



perature gradient of .5 mOC/10 m, typical of a mixed layer, while

80 ergs/cm2 are required to mix the typical 10 mOC/10 m temperature

gradient above the mixed layer. Thus the typical stratification within

the mixed layer can be mixed by the boundary layer turbulence without

suppressing this turbulence. Boundary layer turbulence in the strati-

fied fluid above the mixed layer, however, will be strongly damped by

the stratification. Velocity fluctuations in the stratified region are

thus likely to be wavelike, rather than turbulent (Csanady, 1978;

Turner, 1973; Piat and Hopfinger, 1980). Boundary layer turbulence is

therefore expected only within the bottom mixed layer.

Is it turbulence?

Figure 10 shows scatter plots of (high pass energy) versus speed

at 85 m (10a) and 15 m (10b) for the entire 92 day record. Speed is

here formed from the east and north velocity components filtered with a

half cosine filter of 3 hour half width. The 15 m instrument is commonly

in a mixed layer, while the 85 m instrument never is. At 85 m the high

pass energy displays a constant level of approximately (.04 cm/s)
2 inde-

pendent of speed except at low speeds where the finite threshold of the

VACM is important. At 15 m the fluctuation intensity is much higher,

approximately .1 cm/s at a speed of 10 cm/s and is roughly correlated

with speed. At 15 m the high pass energy level is consistent with the

expected properties of boundary layer turbulence, i.e., the velocity

fluctuations scale with speed, and have a magnitude of ..01U. This is

not true at 85 m.
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The observed high pass velocity fluctuations appear to be due

primarily to boundary layer turbulence. This is supported by the fol-

lowing observations: The high pass velocity is sensitive to velocity

fluctuations near the expected spectral peak of boundary layer tur-

bulence (figure 9b). The observed high pass energy level is roughly cor-

related with the lower frequency velocity (figure 10b) as expected for

boundary layer turbulence; the high pass energy level is consistent with

the expected turbulent energy level. Boundary layer turbulence should

be confined to the mixed layer, and be more energetic near the ocean bot-

tom. The high pass energy in figure 5 is certainly of this character,

as is much of the high pass energy in figures 6 and 7.

Sources of high frequency velocity fluctuations other than boun-

dary layer turbulence are also apparent in the data. The velocity fluc-

tuations associated with the large temperature gradients in figures 6

and 7 are one example. The background level of high pass energy in

figure 10a suggests an instrumental noise source. Simulations of VACM

round off errors (McCullough, 1975) yield an intrinsic high pass velo-

city noise level of about .03 cm/s. This is comparable to the back-

ground energy level in figure 10a. Other instrumental sources of high

pass energy, from mooring motion or imperfect sensor response, are

possible. These sources, however, should be sensitive only to the velo-

city field, not to the boundary layer density structure. The observed

fluctuations show a clear correlation with the boundary layer density

structure. The high pass velocity, especially that part occurring with-



in bottom mixed layers, will thus be interpreted as due primarily to

boundary layer turbulence.

The high pass velocity is a measure of boundary layer turbulence.

Unfortunately, it is a quite limited one. It is sensitive only to velo-

city fluctuations in a narrow frequency range, which is estimated to con-

tain only 10% of the total turbulent kinetic energy. Changes in either

the frequency or energy of the turbulent velocity fluctuations will re-

sult in a change in the high pass energy, so that changes in high pass

energy do not necessarily correspond to changes in the turbulent energy.

The high pass velocity is also a noisy measure of boundary layer tur-

bulence with a significant high pass signal coming from other oceanic

velocity fluctuations (figure 6) and instrumental noise. The high pass

velocity can therefore not be used to detail the structure of boundary

layer turbulence, but only to indicate its approximate strength as a

function of time. The measurements are further limited by the VACM

locations to between 15 and 85 m above the bottom. Weatherly's (1972)

observations of the boundary layer with a similar mean speed indicate

that this is significantly above the logarithmic region of the boun-

dary layer. Remembering all of the above limitations, the measurements

of high pass energy provide a useful measure of the turbulence struc-

ture across the mixed layer, which can be compared with other measure-

ments and theoretical constructs.



Observations of boundary layer turbulence

The high pass velocity shows several interesting aspects of the

boundary layer turbulence. The turbulence appears to intermittently

fill the entire bottom mixed layer. This is seen clearly in figure 5,

starting on July 26; in figure 7 on July 3, and in figure 8 on May 18-21,

May 30, July 11, and August 13-18. In figure 8a the turbulent Ekman

layer height 6EK = .4u*/f is plotted with u* = S/30, S being the

speed computed from the 1 day mean velocity at 15 m. 6EK is generally

less than 15 m and usually is less than the mixed layer height (Armi and

Millard, 1976). For example in figure 5 6EK 15 m, while the mixed
EK \%

layer height and the penetration height of the boundary layer turbulence

is approximately 40 m. Other examples can be seen in figure 7 on July 3

and in figure 8 on May 18-21 and August 13-18, while a counter example

can be seen in figure 6 starting on June 9. These observations indicate

that the boundary layer turbulence commonly extends above a turbulent

Ekman layer height, in contrast to the expected properties of a turbulent

Ekman layer. These observations are consistent with previous obser-

vations of Radon-222 (Sarmiento, 1978) in this area, which indicate that

turbulent mixing, on the time scale of a few days, penetrates to the top

of the mixed layer, and above a turbulent Ekman layer height.

Figures 5d and 8d display the directionality of the high pass hori-

zontal velocity. For each 24 hour period the best least squares ellipse

is fit to the two components of high pass velocity (Calman, 1978). These

ellipses are plotted for each day and rotated so that a vertical line



corresponds to high pass velocity fluctuations oriented perpendicular

to the 24 hour mean velocity, while a horizontal line corresponds to

fluctuations oriented parallel to the 24 hour mean velocity. Figure 5d

clearly shows a concentration of high pass energy within the mixed

layer and near the bottom. The velocity fluctuations are seen to align

themselves roughly 450 clockwise of the mean velocity whenever the

bottommost instrument is within a mixed layer. A preference for this

general direction can also be seen in figure 8d (May 18-21, May 28,

July 5-10, August 12-16). Assuming that these turbulent fluctuations

are generated by the lower frequency mean velocity, this asymmetry

between the direction of the mean velocity and the orientation of the

fluctuations, suggests that rotation, which enters the equations of

motion in an asymmetrical way, must be important in the dynamics of the

boundary layer.

The discussion of these observations is postponed to chapter 6,

so that the observations of the near inertial motions, which yield ad-

ditional information on the boundary layer turbulence, may be described.



Chapter 5. Observations of near inertial velocities

The average horizontal kinetic energy spectra shown in figure 2

indicate less near inertial energy in the bottommost instruments than

in the upper instruments. Similar near bottom decreases in near inertial

energy have been observed by Kundu (1976), Hayes (1980) and Leaman (1976)

and can clearly be seen in figure 5 of Weatherly and Wimbush (1980). In

the following section the relation of this decrease to the bottom mixed

layer structure is examined.

The 92 day velocity record from each instrument was broken into 36,

120 hour long 50% overlapping pieces. The near inertial clockwise and

anticlockwise components of velocity in each piece were found using a

demodulation filter with center frequency of 1/24 cph and a 4-term

Blackman-Harris window described by Harris (1978). The spectral re-

sponse of this window is shown in figure 2. Near the center frequency

it has a shape similar to that of a Hanning window with a 72 hour piece.

The side lobes, however, are much lower. Several other windows have

been used and none of the results shown below depend critically on the

particular window used.

Clockwise velocities

Most of the near inertial energy is in clockwise motions (figure 3).

The analysis of the near inertial velocity will thus concentrate on the

clockwise component of motion. Figure 8e shows contours of clockwise

inertial energy as a function of time and height off the bottom. The

near inertial energy level is vertically coherent, but varies signifi-



cantly with time. There is clearly less near inertial energy near the

ocean bottom, as is seen in the average spectra (figure 2). The height

at which the energy decreases most rapidly, however, varies with time.

Comparing 8e with the 5 mOC isotherms of potential temperature displayed

in figure 8b, the height at which the inertial energy decreases most

rapidly is seen to correlate with the height of the bottom mixed layer.

For example, both the mixed layer height and the height of maximum

gradient are large on May 20 and July 27-31. On June 21-29 and August

12-16 they both are small. The mixed layer top and the height of max-

imum gradient both decrease 20 m between July 6 and July 13. The major

exception to this pattern occurs on May 28, when a maximum in inertial

energy is seen at the mixed layer top. At this time, however, the mean

velocity is small (figure 8a) and any turbulent boundary layer effects

will thus be small. In general the mixed layer exhibits less near

inertial energy than the interior, with the maximum gradient in energy

occurring slightly above the top of the mixed layer.

Figure 8f shows contours of the phase of the clockwise inertial

velocity at each level relative to the phase of the mean clockwise

inertial velocity. Using the vertical mean as a reference rather than

a particular level allows all levels to be treated identically. Regions

of negative phase lead the mean and are shaded. The computed phases

are not shown when the near inertial energy is less than .25 cm2/s2;

they are quite noisy at these times.



The computed phases clearly show the 15 m instrument leading, on

the average, relative to the mean, and leading almost always relative

to the 25 m instrument. The typical phase difference of 250 is sig-

nificantly larger than any expected instrumental errors. Unlike the

energy, the near inertial phase exhibits large gradients within the bot-

tom mixed layer, for example on May 20-26, June 3, July 3 and August 10-

15. Similar gradients do not generally appear above the mixed layer.

The phases computed here clearly show the apparent instrumental

direction errors discussed in chapter 2. Instruments 2 and 3 show a

consistently positive (anticlockwise) phase, while instruments 1 and 4

show a consistently negative (clockwise) phase. This effect is espec-

ially striking in late June and early July in the long tongues of

negative phase at 45 m (instrument 4).

The phase structure of the near inertial motions shows far less

correlation with the density structure than does the energy. Although

this may reflect the physics of the boundary layer it may also be due

to the much higher noise level in the phase measurement. Spectral

leakage from adjacent frequency bands affects phase more strongly

than energy since these other frequencies, by definition, have rapidly

varying phase with respect to the inertial frequency. The spectral

leakage is also more severe for phase, being proportional to the filter

transmission, rather than the transmission squared as for energy.

Finally the phase, unlike horizontal kinetic energy, is sensitive to

instrumental direction errors.



Anticlockwise velocities

The near inertial anticlockwise motions are much less energetic

than the clockwise motions. They do not show the strong correlation with

density structure found for the clockwise motions; energy and phase

diagrams similar to figures 8e, f are therefore not shown here.

Simple WKB internal wave theory predicts a ratio r of clockwise

to anticlockwise energy of r = (a + f)2/(a - f)2 for a % f (Fofonoff,

1969). Fu (1980), accounting for the variability of f with latitude,

finds this prediction should be valid for a > 1.01f. The value of F

observed here is not consistent with these predictions. For example,

figure 2 shows, r = 50, at a = f, corresponding to a WKB prediction

of a = 1.33f. There is more anticlockwise energy than is predicted.

This suggests that much of the observed anticlockwise motion is not due

to internal waves. Fu (1980) finds a similar excess of near inertial

anticlockwise energy in a large number of North Atlantic current meter

measurements.

Anisotropy

The directionality of the near inertial motions can be examined

by computing the average variance ellipse. Following Gonella (1972)

and Calman (1978) the amplitude and phase of

R - c(a) C(-a)

defines the stability and direction of the average ellipse. C(C) and

C(-G) are the clockwise and anticlockwise amplitudes for the near



inertial band. The ellipse stability has the same form and probability

distribution as a coherence; if it is significantly different from zero,

the ellipse is significantly anisotropic.

Table 1 lists the ellipse properties computed for the top instru-

ment using the same Fourier transforming procedure used to make

figure 8e, f. These ellipse parameters are computed in both an east/

north (geographical) coordinate system, and with each Fourier transformed

piece rotated so that the central one day mean velocities in each piece

are parallel (velocity coordinate system). The one day mean velocity

points roughly east for most of the record. The near inertial velocities

show a small but significant anisotropy, in either coordinate system,

with the major axis of the ellipse pointing in the direction of the mean

velocity. The anisotropy is somewhat stronger in the velocity coor-

dinate system.

If the observed velocity fluctuations are interpreted as internal

waves, the direction of the velocity ellipse gives the direction of

wave propagation (Calman, 1978). Here, this would indicate waves pro-

pagating primarily parallel to 1 day mean velocity vector. This inter-

pretation assumes, however, that the observed anticlockwise motions

are due to internal waves, which, as discussed above, may not be true.



Table 1

Average Near Inertial Ellipse

Geographical
Coordinates

Velocity
Coordinates

Major Axis (cm/s)

Minor Axis (cm/s)

Direction of Major Axis 70 from East -30 from downstream

Ellipse Stability

95% level of no
significance @ 72 EDOF

.93

.75

.95

.73

.36

.29

.43

.29



Summary

Motions in the inertial-gravity wave frequency band show a strong

boundary layer signal only near the inertial frequency. The near inertial

clockwise behavior is summarized in figure 11. Each arrow represents the

amplitude and phase of the near inertial clockwise velocity. The energy

decreases near the top of the mixed layer with little phase change.

Within the mixed layer the phase begins to lead, with the phase angle

increasing downward. Extrapolating to the bottom, the energy should

drop to zero, with an unknown phase. These variations may occur sig-

nificantly above a turbulent Ekman layer height.

The observed near inertial anticlockwise velocities do not show

a similarly simple pattern and contain more energy than is predicted by

simple internal wave theory. The near inertial motions are slightly

anisotropic with the major axis of the mean variance ellipse oriented

parallel with the 1 day mean velocity.
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Figure 11

Summary of observed near inertial clockwise response. Arrows represent
energy and phase of near inertial clockwise velocity. Near inertial
energy decreases into the mixed layer, with the phase constant. Within
the mixed layer the energy decreases slowly and the phase begins to
lead the interior. The mixed layers are typically larger than a tur-
bulent Ekman layer height.
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Chapter 6. Discussion

In chapter 7 the observed near inertial structure is interpreted

in terms of the interaction of the internal wave field with the boun-

dary layer turbulence. Here, the qualitative features of the observed

high pass and inertial structure are discussed.

One possible model of the benthic boundary layer is a steady

turbulent boundary layer, entraining upward into the prexisting strati-

fication. If horizontal effects are small a one dimensional model

results, which is the benthic boundary layer analogue of one dimensional

upper ocean models (Garwood, 1979). Such models have been used to

model the benthic boundary layer (Weatherly and Martin, 1978; Csanady,

1974; Armi, 1977). Armi and D'Asaro (1980) find that the observed

density fluctuations in this area are due primarily to horizontal ad-

vection. This cannot be modeled using a one dimensional model.

Here, another problem with this class of models is seen. Three indi-

cators of boundary layer turbulence, the high pass velocity, the

near inertial velocity deficit, and the Radon-222 measurements

(Sarmiento, 1978), all indicate that the turbulence commonly extends to

the mixed layer top. Since the mixed layers are commonly thicker than

a turbulent Ekman layer, these observations indicate that the boundary

layer turbulence commonly extends above a turbulent Ekman layer height.

The very height of the mixed layer is also an indicator of the turbulence

penetration height (Armi and Millard, 1976).



The one dimensional steady boundary layer models used to model the

benthic boundary layer should become identical to the turbulent Ekman

layer model in the limit of no stratification. In particular the pre-

dicted thickness should become the turbulent Ekman layer height in this

limit. The presence of stratification should decrease the predicted

boundary layer height (Businger and Arya, 1974). The observations here,

therefore, show a boundary layer much thicker than would be predicted

by steady, one dimensional models.

A striking feature of the high pass energy shown in figure 5 is

the highly intermittent character of the boundary layer turbulence. At

times the turbulence extends throughout the mixed layer, while a few

hours later it is completely absent. These variations occur on tidal

and inertial time scales. This suggests that the observed fluctuations

in the boundary layer may be driven by the oceanic internal wave field,

which has similar time scales.

A laminar Ekman layer, when subject to a clockwise rotating

interior flow of frequency a, increases in height by the factor

1I - G/fl-  leading to an infinite height for inertial forcing

(Greenspan, 1968). Figure 3 shows that near inertial clockwise

motions are present in a significant amplitude. This suggests that

they may thicken the boundary layer. Weatherly et al. (1980) using a

turbulence closure model to simulate the boundary layer in this region

find that the addition of inertial foriLng results in a doubling of

the boundary layer height. This mechanism may explain the thickness of



the observed boundary layer. It does not address the question of inter-

mittency.

Turbulent boundary layers are known to be quite sensitive to the

acceleration or deceleration of their driving flow. For two-dimensional

boundary layers deceleration results in a decreased drag coefficient, a

more rapid growth rate, higher turbulence levels, and if continued suf-

ficiently long, separation (Yaglom, 1979; Goldstein, 1965). It seems

plausible, therefore, that the observed intermittency in the benthic

boundary layer, is driven by the intermittent internal wave deceleration

of the boundary layer. Application of a simple scaling theory (D'Asaro,

1980) to the benthic boundary layer predicts that the observed internal

wave decelerations should lead to a significant increase in boundary

layer thickness on a few hours time scale. The data, however, indicate

no significant correlation between high pass energy at 15 m and the de-

celeration of the 15 m velocity in either a downstream or crossstream

direction. A correlation between the internal wave vertical velocity

and boundary layer thickness might also be expected. Using the 85 m

temperature variations to compute the vertical velocity, no correlation

is found. Thus although the observed boundary layer fluctuations may

be driven by the internal wave field, no direct evidence of this is

found.

The possibility remains that the observed boundary layer height

and intermittency are not due to the unsteadiness of the interior

velocity, but is instead an intrinsic feature of the benthic boundary

layer driven by a steady velocity. "Bursting" intermittency, with a



period of roughly 2.5 6/U is commonly observed in the outer part of tur-

bulent boundary layers (Kovasznay et al., 1970; Falco, 1977) where 6

is the thickness of the boundary layer. Using 6 = 20 m, U = 7 cm/s,

a "bursting" period of less than an hour is expected. This is much

shorter than the observed intermittency period. The observed intermit-

tency is thus probably not due to "bursting".

A laminar Ekman layer is unstable at sufficiently high Reynold's

number. Could the boundary layer fluctuations observed here be due to

a similar type of secondary circulation within the turbulent Ekman layer,

as postulated by Brown (1970)? The calculated instabilities for a lami-

nar Ekman layer (Lilly, 1966; Faller and Kaylor, 1966) have a frequency

of magnitude much larger than f(e.g., Caldwell and van Atta, 1970,

fig. 16) which changes sign very near the fastest growing instability.

Thus the predicted frequency of the fastest growing wave, is highly

variable depending on exactly which wave is chosen. Most likely, how-

ever, the frequency is much larger than f, and thus cannot account

for the boundary layer variations observed here. It should be noted

that Caldwell and van Atta (1970) and Deardorff(1970) see no evidence

of laminar Ekman layer instabilities at the high Reynold's numbers

characteristic of the turbulent Ekman layer.

In summary then, no satisfactory explantion for the origin of

the clouds of turbulence seen in figure 5 has been found. The obser-

vations are not consistent with a steady, turbulent Ekman layer, as far



as its properties are known. Although internal wave forcing may cause

the boundary layer to become thicker than a turbulent Ekman layer height,

no correlation between the observed turbulence fluctuations and observed

internal wave fluctuations is found.

The observed high pass and near inertial velocities both show a

distinct mixed layer signal which is here attributed to boundary layer

turbulence within the mixed layer. Careful examination of the calculated

high pass and inertial velocities reveals, however, that the mixed

layer signal for both extends some distance into the stratified fluid.

This suggests that the boundary layer velocity fluctuations and stresses

extend into the stratification, perhaps partially as evanescent fluc-

tuations (Phillips, 1955) or high frequency, stress carrying, internal

waves (Csanady, 1978). This may be important in the entrainment of

fluid into the mixed layer. The boundary layer model of Weatherly and

Martin (1978) exhibits a similar behavior, with the computed turbulence

intensity and the diffusion coefficients diminishing to zero only above

the mixed layer top.



Chapter 7. Internal wave interaction with the boundary layer

During the last decade great progress has been made in describing

the space-time structure of the internal wave field (Garrett and Munk,

1979; Gregg and Briscoe, 1979). Still elusive, however, is a clear

understanding of the dynamics of the internal wave field and the magni-

tude and character of its sources and sinks. One possible location of

internal wave generation and/or absorption is the benthic boundary

layer. The boundary layer is known to have characteristics distinct

from the oceanic interior (Bowden, 1978), and is certainly the site of

considerable energy dissipation. How much of this dissipated energy

comes from the internal wave field? Leaman (1976) estimates a net down-

ward energy flux in the internal wave field of .2 - .3 ergs/cm 2/s for

a 4 day period in the Sargasso Sea. Muller et al. (1978), analyzing

the IWEX experiment, find a similar asymmetry confined to the near iner-

tial frequency band. Kundu (1976) finds a somewhat larger net downward

flux in the near inertial band on the Oregon shelf. One interpretation

is that this net downward energy flux results from absorption of near

inertial waves by the benthic boundary layer. Fu (1980), however, pro-

poses an alternative explanation based on the kinematic properties of

surface generated near inertial waves. Below a direct estimate of the

absorption of near inertial waves by the benthic boundary layer on a

flat abyssal plain in the western North Atlantic is made.



Theoretical approach

The near inertial observations in chapter 5 indicate a signifi-

cant interaction between the near inertial motions and the boundary

layer. In the analysis presented below, these motions will be analyzed

as linear internal waves. The long non-linear interaction times com-

puted for the energy containing near inertial waves (McComas, 1977)

justifies this approach. McComas' calculations are based on thermo-

cline wave scales. In the deep ocean the wave scales are significantly

larger, and the non-linear interactions much weaker.

Consider a set of linear internal waves incident on a flat bot-

tomed ocean, with a thin turbulent bottom boundary layer. These waves

are superimposed on currents with much slower time scales here called

"mean" currents. In the absence of any waves the mean shear within the

boundary layer is balanced by the turbulent stress divergence. The

energy to maintain the stresses is drawn from the kinetic energy of the

mean flow. Any wave superimposed on this balance will modulate the

stresses. The energy to maintain the stresses may now come partially

from the wave as well as from the mean flow. If there are many waves,

the energy may be drawn from some unknown combination of these waves

and the mean flow. Since the boundary layer is highly non-linear one

should not expect the energy extracted from any given wave to depend

solely on the characteristics of that wave; it may also depend on the

other waves and on the mean flow.



The following analysis is designed to compute the absorption of

energy from linear internal waves by a turbulent boundary layer. The

analysis assumes the waves to be large compared to the boundary layer

and uses the observed wave motions at a particular frequency to compute

the turbulent stresses acting on these motions. No assumption concern-

ing the source of these stresses is made; they may be due to motions

at other frequencies.

Below, the relevant internal wave and boundary layer scales will

be computed, and the equations of motion simplified for these scales.

The resulting equations will be used to interpret the structure shown in

figure 11; the first qualitatively, and then quantitatively by computing

the energy absorption from the near inertial waves.

Wave scales

The vertical scales of internal waves in the thermocline away from

the inertial frequency are well known (Garrett and Munk, 1979). The

vertical scales of near inertial waves, particularly in the deep ocean,

are less well characterized. Munk and Phillips (1968) suggest that they

may be modeled as horizontally propagating internal wave modes which are

near their northern turning latitude. In such a model the vertical

structure of each mode is independent of latitude, so the near inertial

vertical wavenumber spectrum is determined by the high frequency

(relative to f) wavenumber spectrum at lower latitudes. Fu (1980),

following Munk and Phillips (1968), shows that this approach accurately

models the observed near inertial energy spectra in the deep North



Atlantic. One result of his analysis is that the near inertial vertical

wavenumber spectrum should be similar to that at higher frequencies, with,

however, less energy in the low mode waves, as these have a more south-

erly turning latitude. The inverse analysis of the IWEX experiment

(Mller et al., 1978), consistent with this prediction, finds little

energy at the lowest 3 modes for near inertial motions; these modes con-

tain significant energy only at higher frequencies.

The vertical near inertial wave scales will be estimated using

the GM75 (Garrett and Munk, 1975) wavenumber spectrum with the addition

of a low wavenumber cutoff. The wavenumber spectrum is given by

A() = 1.5 > d (1)
[1 + (X - d)] 2 *5

=0 <d

where A = 8/8* for vertical wavenumber 8 and, 8* = j*TN/bN ,

b = 1.3 km, No = 3 cph, j* = 6, and d = jp/j*. The low mode cutoff

jp is taken as 3, following Muller et al. (1978). Using a local

Vaisala frequency N = .45 cph, the characteristic vertical wavenumber

* is found to be 2.2 x 10-  or (460 m) . The smallest energetic

wavenumber is j p/j* 8* or (920 m)- . Integrating (1) 45 per cent of

the energy is found at wavenumbers less than S*, 90 per cent of the



energy is found at wavenumbers less than 48* = (115 m)-l. For typical

mixed layer height of H = 20 m, (*H has a value of .04, with 90 per

cent of the wave energy having BH < .17. The boundary layer is thin com-

pared to the vertical scale of the energetic waves.

Horizontally, Fu (1980) finds near-inertial wave scales larger than

20 km for the energy containing waves. The interaction of the waves and

boundary layer will also be modulated by the horizontal boundary layer

scales. Armi and D'Asaro (1980) find gross boundary layer characteristics

varying on scales 10 km or larger. Both these scales are much larger than

the boundary layer height.

Equations of motion

The horizontal x momentum equation for an f plane, turbulent,

Boussinesq fluid with no mean velocity can be written

DU - -p _ a
+ u - f = (uw ) (u ) ( )

t ax az x y

1 u u*2 F 10H H
T1 1 (2)
fT fL fuH L L

where turbulent stresses have been scaled by values typical of a two-

dimensional turbulent boundary layer (Townsend, 1976, pg. 290) and the

mean density has been absorbed into P. For near inertial waves inter-

acting with a turbulent boundary layer of typical height (H = 20 m) and

typical wave velocity (u = 1 cm/s), length (L = 20 km), and time



(T = 1/f = 10 s) scales the following non-dimensional numbers are small:

f = .005, 10 H/L = .01. The horizontal momentum equations can now befL

written:

- fv = - - (3)at ax az

aV aP a7(
- + fu = (4)
at ay az

The magnitude of P can be estimated by Fourier transforming

(3) and (4) w = fw e'(kx + y - t and solving for the kinetic energy

( - 2 )2 [Il( 2 + 11] = (a2 + f2 )(k + Z2) j 2  (5)

so that

uL (a2 _ f2)
P = (6)

(a2 + f2)

Note that the pressure gradients above the boundary layer become very

small near the inertial frequency.

Armi and D'Asaro (1980) conclude that on the time scale of several

days or shorter the temperature fluctuations observed at a fixed mooring

are primarily due to horizontal and vertical advection. Turbulent mass

transport becomes important only on a longer time scale. Making this

assumption the appropriate mass conservation equation for the super-

inertial motion is



P = Pz 5 (7)

, = w (8)

where 5 is the vertical displacement and p is the mean density. The

non-linear terms have been eliminated as from (2) above.

The vertical momentum equation can be written

ap 2  (9-)z = - [t +  5] - [ _ (w )] (9)
tt - Z

N2 = - g n p) (10)
3z

where N is the Vaisala frequency, (7) has been used, and the non-linear

and horizontal stress divergence terms have been eliminated as in (2)

above.

In the absence of turbulent stresses, equations (3), (4), (7), (8),

and (9) are the equations for inviscid linear internal waves. For a

iSz
constant N they have solutions of the form e , where is the

vertical wavenumber. In the presence of stresses the pressure change

across the boundary layer is given by the sum of the two terms in (9).

The vertical displacement E is strongly constrained by the ocean bot-

tom at z = 0 and the internal wave displacements above the mixed layer.

The fractional pressure change across the boundary layer of thickness



H due to the first term in (9) should thus be similar to that in the

inviscid case, H, and thus be small. The fractional change in pres-

sure due to the second bracketed term in (9) has a magnitude

u*2/(a - f)uL < 10-2  using (6) to estimate P, and G > 1.03f,

u* < .2 cm/s. The fractional change in pressure across the boundary

layer is thus small. This results primarily from the large vertical

scale of the near inertial waves, relative to the boundary layer

thickness.

Scaled equations

The scaled equations for motions near the inertial frequency

are

-i G - f v (11)
ax az

ap 3 vw
-io v + f = (12)

ay aZ

-= 0 (13)
az

-+ + = 0 (14)
ax ay az

where the caret denotes a Fourier transform in time only. These

equations are appropriate for a thin domain stretching from the ocean

bottom z = 0, tc just above the boundary layer. Note that the stress

terms in (11) and (12) are the components of turbulent stress divergence

with frequency G, not the total stress divergences.



These equations can be used to evaluate the interaction of the

boundary layer and the wave motions at frequency a. Consider a level

z above the boundary layer chosen so that the stress terms in (11) and

(12) are negligible. Since the pressure is constant across the boundary

layer, the pressure terms in (11) and (12) can be evaluated from the

velocity field at z , yielding equations for the boundary layer

stresses in terms of the velocity field.

Su w
z - iG( - Y^ - f(v - ) (15)

a v- w
z = -i(v - 0) + f(U - U 0) (16)

where u , v are velocity components measured at z .
o o o

Equations (15) and (16) state that the presence of boundary layer

stresses leads to different velocities within the boundary layer than

above it, even though the pressure field is the same. They state that

all observed velocity shears within the boundary layer are due to tur-

bulent stresses. This is the usual assumption in boundary layer

analysis. For low frequency motions, a << f, (15) and (16) become

the steady Ekman layer equations with a three way balance of Coriolis

force, fu; pressure gradient, f o ; and turbulent stresses

(Priestly, 1959, pg. 34 ). For internal wave motions, however, a > f,

so the additional terms in (15) and (16) must be included.



Energy equation

Equations (15) and (16) allow the turbulent stresses which act

upon the motions at frequency G to be computed from the velocity field.

It is precisely these stresses that may absorb energy from the internal

wave motions, and thus act to dissipate the waves. Multiplying (11),

At It ^t
(12) and the Fourier transform of (9) by u , v and w respec-

tively, (the dagger denotes complex conjugation), summing the products,

adding the complex conjugate of the sum and using (14), an energy equa-

tion is derived:

)t^ ta A a
Re * (u P) = -Re {(u (u W) + v' (V'w) + (w" 2 )} (17)

where Re {x} is the real part of x. Equation (17) states that for

motions at frequency a the energy flux divergence is equal to the rate

of working by the boundary layer stresses on the velocity field.

In the Appendix the work done by the third term on the RHS of (17)

is shown to be small compared to that done by the first two terms. The

turbulent stress divergences can be evaluated using (15) and (16) which

yields

Work per unit volume

per unit time done by = (C - f) Im {C(a) Ct (F)
A (18)

stresses on motions - (a + f) Im {C(-a) C (-a)}

at frequency a



C = (u + iv)/v2 (19)

where C () is a complex velocity vector, corresponding to clockwise

motion for positive a and anticlockwise motion for negative a.

C (a) is evaluated at the reference height z , above the boundary
o o

layer.



Chapter 8. Interpretation of near inertial observations

General features

The observed near inertial structure is shown in figure 11. Near

inertial motions have less energy within the mixed layer than in the

interior. Equations (15) and (16) require that all differences in

velocity be due to turbulent stresses. The observations thus require

turbulent stresses to fill the mixed layer, assuming no turbulent stress-

es in the interior. Note that a random, statistically steady stress

field will have an average inertial component of zero and thus will not

affect the near inertial energy level. At any time such a stress field

is as likely to increase the local near inertial amplitude as decrease it.

Consistently less near inertial energy within the mixed layer indicates

a variation of the boundary layer stresses phase locked with the near

inertial motions, i.e., the boundary layer stresses are modulated by the

near inertial wave motions.

Equation (17) gives the energy absorbed by the boundary layer from

the near inertial motions. Note that the presence of stresses alone

does not lead to energy absorption. For this the stresses must be cor-

related with the motion so that work is done. Equation (18) expresses

this same energy absorption as the sum of terms involving the clockwise

and anticlockwise components of the velocity field at frequency a.

Each term is proportional to the quadrature spectrum of the motion

within the boundary layer with that at some reference level outside the



boundary layer. The quadrature spectrum can be expressed as

Im {C C = yCCo y sin e (20)
0 0

where y and 8 are the coherence and phase of the boundary layer ve-

locity with respect to the reference velocity. Since 0 < y < 1 the

sign of the energy transfer between the wave velocities and the tur-

bulent stresses is determined by the sign of the phase, as shown in

table 2. These results, for the case of energy absorption alone, have

been derived by Munk et al. (1970) for a laminar Ekman layer. Their

results are here shown to be determined on purely energetic grounds.

The observations in figure 11 show the boundary layer near iner-

tial clockwise velocities leading the interior. By table 2 this implies

energy absorption by the boundary layer from internal wave motions with

a > f, and/or energy flux into motions with a < f. Note that although

the turbulent stresses fill the mixed layer, they only exchange energy

with the waves in the lower part of the mixed layer.

Energy flux calculation

The total work done by the boundary layer stresses on the motions

at frequency G, per unit area per unit time, H(G), is found by inte-

grating (18) across the boundary layer.

z z

(a) = Im{(a - f)C(a,z)C (a,zo)}dz - Im{(a + f)C(-a,z)C (-C,z )}dz

o 0
(21)



Table 2

Energy flux and boundary layer phase

Clockwise motion

a > f

B.L. leads + absorption

B.L. lags + production

y < f

B.L. leads + production

B.L. lags + absorption

Anticlockwise motion

all a

B.L. leads + absorption

B.L. lags + production

Lead and lag are relative to the direction of rotation



Equation (21) is used below to compute the flux of near inertial wave

energy into the benthic boundary layer.

For near inertial motions the spectral estimates C(c,z) in (21)

must be evaluated with a high frequency resolution to resolve a - f.

C(a) is therefore computed for each instrument using a 1024 element

Fourier transform acting on a single 92 day Hamming windowed piece

(Harris, 1978). The raw data is averaged and subsampled over 127.5

minutes before Fourier transforming, resulting in a variance reduction

of approximately 5 per cent at .05 cph. This processing yields estimates

of C(a) with a frequency resolution of approximately .Olf. For a

given instrument pair Im{(a - f)Cl C 2} is computed for each spectral

estimate, these products are then averaged over frequency to increase

the statistical reliability of the estimate. This processing yields

spectral averages at a fixed height off the bottom and ignores any vari-

ations in mixed layer height. For a record of only 92 days length, this

is unavoidable. The calculation also ignores any Doppler shifting of

the wave frequency by the mean current.

The integrands in equation (21) are functions of both frequency

and the pair of instruments used. The frequency dependence will be ex-

amined first. In figure 12b the reference level z is chosen as 55 m
o

and the energy flux resulting from the clockwise term in (21) is plotted

for z = 15 m as a function of frequency. The solid line shows the

results; the dashed lines give 95% confidence limits computed using the

phase confidence limits given by Koopmans (1974, pg. 285). The computed



energy flux is indistinguishable from zero at frequencies above .08 cph.

Some energy absorption is indicated at the M2 tidal frequency. Near

the inertial frequency significant energy absorption is indicated for

a > f; significant production of energy is indicated for a < f. Fre-

quencies below .02 cph are not well behaved; the magnitude of the

energy transfer varies widely with frequency and details of the cal-

culation procedure. They are not shown in figure 12.

Figure 12a shows the same computation with z = 65 m, z = 55 m.

Both these levels are above the boundary layer and as expected there is

no energy absorption indicated. The same calculation for the anticlock-

wise term in (21) shows a weak pattern of energy absorption within the

boundary layer and near the inertial frequency.

The integration required by equation (21) is shown in figure 13

for two near inertial frequency bands. The results are tabulated in

table 3. Figure 13a shows the integration of the clockwise term for a

band extending from the inertial frequency .04 cph, to .069 cph. Each

curve in 13a plots the integrand from (21), i.e., the energy flux per

unit volume, as a function of z for a fixed reference height z . The

area under each curve gives the energy fluxper unit area. The solid

vertical lines are selected 95 per cent confidence limits. Figure 13a

indicates significant energy absorption for z < 20 m for all reference

levels. The double diagonal line, a rough average over all reference

levels, yields an energy absorption rate of .015 ergs/cm2/s. Notice
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Figure 12

Energy absorption density by turbulent boundary layer as computed from
equation (21) for the clockwise velocity component. The 95% confidence
limits computed from phase confidence limit3 are shown as dashed lines.

a) Reference instrument at 65 m, z = 55 m;

b) Reference instrument at 55 m, z = 15 m.

68

E
O

0

x

U)

Ce4

E



-40-

-2 01-

meters
above
bottom

-- 85
65

...... 55
---- 45
-- 35

meters
above
bottom

-40

-20

0

20

Clockwise
04 - 069 cph

10 \ 

Anti - Clockwise
.04 - 069 cph

---- 85
- 65
...... 55
---- 45
-- 35

b

50 70 meters
/ above

bottom

Anti - Clockwise

.04 - 049 cph

- - 85
- 65
...... 55
---- 45
-- 35

0o 70 meters
above
bottom

Figure 13

Computation of near inertial energy absorption rate per unit area by
boundary layer using equation (21). Each figure plots an integrand of
(21) versus height for 5 different reference levels, 35 m to 85 m. The
area under each curve gives the estimated energy absorption. The clock-
wise (figures a, c) and anticlockwise (figures b, d) contributions are
shown for two near inertial frequency bands.

69

K.'

-- 85
- 65

S55
---- 45
-- 35

10 30

Clockwise
.04 - 049 cph

I_L



however, that a large contribution to this integral occurs for

z < 15 m, where there is no data. Fortunately, the contribution from

this region can be bounded by noting that the vertical coordinate in

figure 13a is a quadrature spectrum and by equation (20) is bounded above

by 1(a - f)C(a,z)C( ( ,zo ). Estimating this by (a - f) IC(o,zl) 2

z1 = 15 m, yields a maximum value of the vertical coordinate of

.018 ergs/cm2/s per 10 m. If the diagonal line in 13a is bent at

zI = 15 so that it intersects 18 at z = 0 an estimate of

.024 ergs/cm 2/s for the energy absorption is found. This value is

probably an overestimate. A lower bound can be estimated from the area

under a diagonal line from 30 m on the horizontal axis to

.003 ergs/cm 2/s per 10 m on the vertical axis. This yields

.004 ergs/cm 2/s.

Figure 13b shows the same calculation for the anticlockwise term

in (21). The individual curves show a strong peak at 45 m. As dis-

cussed abovethe instrument at 45 m is believed to exhibit a directional

bias of up to 100 relative to the instruments at 55 m and 65 m for un-

known reasons. The peak at 45 m is likely due to instrumental effects,

and is not included in the integration. This effect is more pronounced

for the anticlockwise motions than for the clockwise motions, due to

the smaller anticlockwise phases.



Figures 13c, d show the same calculation for a narrower frequency

band, .04-.049 cph. The clockwise terms, figure 13c, have less error

and larger coherences and phases than for the wider band, figure 13a.

The anticlockwise terms, figure 13d, however, are barely distinguish-

able from zero and show much less order than in figure 13b.

Internal wave energy absorption

The calculation outlined above yields the energy absorption rates

shown in table 3. The results are shown for two near inertial frequency

bands, along with estimated errors. These errors are dominated by the

lack of measurements below 15 m, although the finite record length also

makes a contribution.

The array used in this experiment is short compared to typical

vertical internal wave scales. Given the instrumental errors and the

significant phase differences attributed to turbulent stresses, the

array yields no information on the vertical structure of the deep ocean

internal wave field. The spectral shape and energy level of the ob-

served superinertial fluctuations are similar to the universal internal

wave forms. This alone suggests that these fluctuations should be at-

tributed to internal waves, and the calculated energy flux be included

in the internal wave field energy budget.

The above calculation yields energy fluxes between the boundary

layer and superinertial and subinertial, clockwise and anticlockwise

motions. Which of these fluxes should be included in the energy budget

for internal waves? The superinertial clockwise motions are most



likely due to internal waves and the flux of energy associated with them

will be included in the internal wave energy budget. As noted in

chapter 5, the near inertial anticlockwise motions show far more energy

than would be predicted by internal wave theory. This suggests that

these motions are not due to internal waves. The associated energy flux

will not be included in the internal wave energy budget.

The above calculation suggests an energy flux into the subinertial

motions, as shown in figure 12b. The change in the sign of the computed

energy flux at the inertial frequency is due to the change in sign of

(a - f) in equation (21); the sign of the relative phase of the boundary

layer and interior motions remains unchanged. Motions with a << f are

believed to be highly nonlinear and quasigeostrophic (Rhines, 1979);

motions with a > f are believed to be linear internal waves. The7

dynamics of slightly subinertial motions is unclear. Since the calcu-

lation used above assumes a linear momentum equation, it may not cor-

rectly estimate the energy flux for a < f.

The above calculation also assumes no mean velocity. Doppler shif-

ting of the wave frequency by the mean velocity will result in some

superinertial wave energy at subinertial frequencies. The calculation

will compute the wrong energy flux for these waves. The computed energy

flux at slightly subinertial frequencies will not be included in the

internal wave energy budget.

Only the calculated energy flux from near inertial clockwise

motions will be used in the following calculations. This should yield

the best estimate of the effect of the benthic boundary layer on the

internal wave field. Including the anticlockwise or subinertial energy

absorption in the internal wave energy budget could have a significant



effect on the estimated energy fluxes (c.f. table 3, figure 12). The

anticlockwise motions would increase the total wave energy absorption;

the subinertial motions would decrease it.

Results of calculations

The calculated energy fluxes are shown in table 3. Over the

period of this experiment the boundary layer absorbs roughly H =

.015 ergs/cm2/s from the near inertial internal wave field. This is a

net flux. Although generation of internal waves by the boundary layer

may be occurring (Townsend, 1965), absorption of near inertial waves

generated elsewhere dominates, resulting in a net absorption of near

inertial energy.

The calculated clockwise energy absorption rate has been used to

compute a wave reflection coefficient

F ( ) (a)
IR()12 = + 1 (22)

F (0) F (0)

where F+, F_ are the upward and downward internal wave energy fluxes

respectively. The downward energy flux F can be estimated from

F =C
- g 2

2 f2 E(C) (23)
aB 2



.04 - .069 cph .04 - .049 cph

Absorption of Energy
(ergs/cm /s)

Clockwise

.004 - .025 .003 - .012

Anticlockwise

Downward Energy Flux

(ergs/cm /s)

Reflection Coefficient

.007

.004 - .017

.35

.96

.99 - .93

Clockwise Relaxation Time (days) 1.4

4.6 - .84

Table 3

.015 .007

.005

0 - .008

.12

.94

.975 - .9

2.4

5.5 - 1.3



where C is the vertical component of internal wave group velocity
g

(Lighthill, 1978, chapter 4). RI2  is assumed to be close to 1 so that

roughly half of the internal wave energy E(G) is propagating downward.

Equation (23) is evaluated using the same technique used to evaluate the

integrands of (21). A value of S = 5* = (460 m) ', roughly the value

of 8- weighted by the spectrum (1), is used. The resulting values of

F_ and IR12 are shown in table 3. The reflection coefficient is

roughly .95 so that 5 per cent of the wave energy is absorbed in each

reflection.

Another useful measure of the energy absorption rate is the

boundary layer relaxation time

E() H
T'( (24)R H(Ca)

which gives the time required for the observed energy absorption rate to

reduce the observed kinetic energy within the boundary layer of height

H to zero, if there were no .energy input. Unlike the reflection co-

efficient, TR depends only on boundary layer properties and does not

require any knowledge of the wave properties. Evaluating (24) yields

relaxation times of several days.



Chapter 9. Slab model of the boundary layer

In the previous section the absorption of internal wave energy by

the benthic boundary layer was computed. Below the physics responsible

for this absorption is examined. A simple slab model with a linearized

quadratic drag law will be shown to account for most of the observed

internal wave/boundary layer interactions.

Equations

Consider a mixed layer of height H, uniform in velocity and

density above a flat bottom, and underlying a region with constant

Vaisala frequency N (Figure 14). A constant velocity U is imposed

in the +x direction. Above the mixed layer the fluid is inviscid.

The observed mixed layers are generally capped by a density change of

order A-% N2H. Since SH << 1 for vertical wavenumbers, 8, typical

of the deep ocean, this density step is dynamically insignificant

(D'Asaro, 1978), and not included in the model.

The observations presented here clearly indicate the presence of

turbulent stresses throughout the mixed layer. Their structure within

the mixed layer is less clear, particularly as no measurements were taken

within 15 m of the bottom. An integral model of the boundary layer will

thus be used. Within the mixed layer the turbulent stresses, T, are

assumed to decay linearly from their bottom value T to zero at z = H.

T acts to oppose the instantaneous mixed layer velocity and has mag-

nitude IT o = u*2 = CDS2  where S is the instantaneous mixed layer

speed. The linearized Boussinesq equations for the perturbation quan-

tities in the mixed layer are:
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Figure 14

Slab model of internal wave interaction with boundary layer. The mixed
layer is uniform in density and velocity with a drag applied to it at

the ocean bottom. The interior is inviscid, with constant N, and a

downward propagating wave reflecting from the mixed layer.
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fv = 2ru
at ax

av aP
-- + fu = rv
at ax

Du av aw
+ + -= 0

ax ay az

C U
D

where r = results from linearizing the drag law, and
H

the pressure divided by density. Within the mixed layer u,

aw aw w(H)-z are constant and since w(0) = 0, ~ - . The mixed
az az H

velocities are completely determined by the value of P at

This model is similar to that of Fu (1980), although he does

a mean current.

In the interior equations (25) - (27) apply with r =

P denotes

v, P and

layer

z = H.

not include

0 and

aw + N2  =

at az

-t = W.
at

These are the well known internal wave equations (Garrett and Munk,

i(kx + Zy - at)
1979). Assuming that all quantities vary as e

interior equations have a solution of the form

P = ei S z + Re - i z

(25)

(26)

(27)

(28)

(29)

(30)



82 = (k 2 + 2)(N -_ a2)/(a2 - f2) (31)

This corresponds for 8 > 0 to a downward propagating internal wave of

unit amplitude and an upward propagating wave of amplitude R. The

equations can be solved by requiring P and w to be continuous at

z = H.

Solving the mixed layer and interior equations separately for

w(H) in terms of P yields:

1 - R 2 - f2 - 2r2 + 3 ir
1 + R 8 H(4 - f ) r(l + sin 2 8) - i (32)

where sin = /(k 2 + 2).

Solving (25) and (26) for Ju1 2 + Iv1 2 in terms of P with and

without r, yields the ratio of kinetic energy within the mixed layer

to that immediately above it.

(Iu12 + V12)

(jul 2 + v 2) INT

(c2 - fZ) 2 a2 + f2 + r 2 (l + 3 sin 2 0) - 2rf sin 6 cos
(33)(a2 + f 2 ) (a2 _ f 2 _ 2r 2 )2 + 9r 2 G 2

A similar calculation yields the cross spectra for the clockwise

component of motion



ML) CINT

a + f - rsin 8 cos 8 + ir(l + sin 2 8) (k2 + 22)2 IP12  (34)
(a - f)[a2 - f2 - 2r 2 + 3ir] 2

The relaxation time TR defined by (24) can be computed by forming an

energy equation yielding

1 02 + f 2 - 2rf sin e cos e + r 2 (l + 3 sin 2 8)
T = (35)R 2r a2 + f 2 + a2 cos 2 8 + f2 sin 2 8 + 2r2 (l + sin2 8)

Results

The slab model has one parameter, r = CD U/H. Using U/u* = 32,

H = 20 m, U = 7 cm/s yields r = 3.4 x 10 sec - . Note that r << f.

For a given incident internal wave specified by a frequency a, a ver-

tical wavenumber 8, and a propagation direction 0, the model predicts

the boundary layer velocity field, and a wave reflection coefficient R.

Since both the interior velocity field at z = H, and the boundary

layer velocity field are determined by the pressure at z = H, all

quantities involving just these velocities are independent of the ver-

tical wavenumber of the wave.

Figure 15a plots the relaxation time TR(a) from equation (35).

It is somewhat larger than 1 day, and roughly independent of frequency

and wave direction. This value is somewhat smaller, but certainly with-

in the range of values calculated from the current meter data (Table 3).



Figure 15

Slab model results plotted versus frequency, for wave orientation
O = -90 ° , -45*, 00, 450, 900 and r = 3 x 106.

a) Relaxation time (equation 35).

b) Ratio of horizontal kinetic energy density within mixed layer to
energy above mixed layer (equation 33).

c) Phase of clockwise velocity within mixed layer relative to interior
(equation 34).

d) Same for anticlockwise velocity.

e) Reflection coefficient for wave energy assuming 8 = (460 m)-

(equation 32).
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From equation (35) T is seen to be roughly 1 for G 'I f andR 3r ,

r/f << 1. This result can be simply derived by forming an energy

equation from equations (25) - (29); the energy absorption rate is seen

to be r [2 1u 2 + Iv12 ]. If JU1 2 - IV1 2 the energy absorption rate is

3r (Jul + vy2 ) (5u0+ =Vl/r3r 2 + v 2 ) the energy density is ( 2 +  so 1/3r.2 2 R

Figure 15b plots the ratio of horizontal kinetic energy in the

mixed layer with that in the interior at z = H (equation (33)). The

results are independent of direction, but strongly frequency dependent.

For a > 1.3f these energies are nearly the same; for a < 1.3f, the

boundary layer energy decreases, reaching zero at a = f. This behavior

is consistent with the observations which show significantly less iner-

tial energy in the bottommost instruments only for a near f.

A scale analysis of the momentum equations (25) and (26) explains

the special significance of the inertial frequency. Within the boundary

layer a balance of inertial, frictional and pressure forces exists. The

magnitude of the pressure forces is u (a - f) by (6), where u is the
o o

typical velocity above the boundary layer. For a - f >> r the inertial

forces have magnitude au. The frictional forces, of magnitude ru,

are much smaller since r << f. The inertial and pressure forces balance,

just as in the interior, and the velocities inside the boundary layer are

the same as above it. The relative magnitudes of the terms in (25) for

a - f >> r are



-iau - fv = -ikP -2ru

(36)

(a - f)u (a - f)u ru
0

For a - f r this balance can no longer hold and the frictional terms

become important. For a - f << r they become dominant and a new

balance exists

ru (a - f)u ru (37)

The boundary layer velocity u, is much smaller than the interior

velocity u , their ratio being roughly (a - f)/r, as in (33).
o

Physically, the drag forces are small and only become important near the

inertial frequency where the inertial forces and pressure gradients in

the waves become small.

Figures 15c, d show the relative phase of the boundary layer and

interior velocities for clockwise and anticlockwise components respec-

tively. These phases are small except near the inertial frequency,

for the reasons discussed above. Near the inertial frequency the boun-

dary layer leads in the clockwise component consistent with energy absor-

ption; the anticlockwise phase is strongly dependent on 0. The pre-

dicted clockwise phase is roughly consistent with the observations;

figure 3, for example, shows the clockwise phase leading for a < 1.4f.



The near inertial band anistropy seen in the data can be interpreted as

internal wave propagation parallel to the mean flow, i.e., 0 = 0. In

this case the slab model predicts a leading anticlockwise velocity com-

ponent in the boundary layer, as observed. If, as seems likely, the

anticlockwise velocities are not due primarily to internal wave motions,

these model predictions cannot be compared with the observations.

Figure 15e plots the model reflection coefficient, IR12 , as a

function of frequency. Unlike the quantities shown in 15a - d, (R12 ,

depends on the vertical wavenumber of the incoming wave. A value of

8 = (460 m)-l. is used, the same value used in Table 3. The predicted

reflection coefficient is significantly less than 1 only near the

inertial frequency. It achieves a minimum value of approximately .9,

at a % l.f, before rising to 1 at a = f. The value of IR12 com-

puted from the data is consistent with this behavior, showing a sig-

nificant absorption only near the inertial frequency, with a value of

JR 2 q .95 (Table 2, figure 3). The predicted behavior of R1 2 can be

explained by noting that

E
H ML 2R 2 = 1 (39)

T E C
R INT g

using (22) - (24). From figure 15a TR can be considered constant;

E ML /EINT is shown in figure 15b. For >> f E ML/EINT = 1. C ,

however, varies as a - f2 so that 1 - JR12 q 1/( 2 - f 2 ). For

a - f << r, E ML/EINT decreases as (a2 - f 2 )2  (equation (33)) so
ML~ INT



1 - IR2 (a2 - f 2 ). A minimum value of IRI2 therefore occurs for

a % f + r. Physically IRI2  is near 1 for a >> f because the

frictional terms are small. IR12  decreases as a approaches f

because the group velocity decreases and the small frictional forces

have more time to act on the wave. Very near f, the frictional

forces decrease the boundary layer velocities and IR12 increases

toward 1.

The least known parameter in the above model is 8, the vertical

wavenumber. Noting that the group velocity is proportional to 8- ,

IR12 is seen to be highly dependent on 8 (equation 39). Longer waves

have a faster group velocity and are absorbed less, while short waves,

conversely, are absorbed more strongly. Thus, although the boundary

layer may not strongly absorb the internal wave field as a whole, its

effect may be much stronger on the shorter, slower internal waves.



Chapter 10. Discussion

The above calculation of near inertial energy flux into the boun-

dary layer is subject to several uncertainties not included in the error

bounds. The array used in this experiment is, as mentioned above, too

short to provide any vertical wavenumber estimates for the internal wave

field. The calculation provides an estimate of energy flux from the

near inertial motions into the boundary layer, but does not require the

near inertial motions to be related to the internal wave field in mid-

water. Leaman (1976) finds a near bottom peak in internal wave energy

within a few hundred meters of the bottom in this area. This suggests

that the dynamics of the nearbottom internal wave field may be dif-

ferent from that in midwater, so that the flux measured here cannot

necessarily be used in the energy budget of the midwater internal wave

field. A related source of uncertainty results from the division of

the energy flux into clockwise and anticlockwise sources. As discussed

above only the flux resulting from the clockwise near inertial motions

is used in the calculations. Similarly, the calculation indicates a

significant energy flux out of the boundary layer at slightly subinertial

frequencies. This flux has, perhaps incorrectly, not been included in

the estimated near inertial wave energy flux. Statistical estimates of

these uncertainties are difficult to form, but they probably will not

change the sign or general magnitude of the computed flux.



The estimated flux of energy from the internal wave field given

above includes only contributions from the near inertial motions.

Energy absorption from frequencies above .07 cph has not been included,

as the calculated absorption is below the statistical noise. The model

presented in chapter 9 suggests that for a >> f the absorption of

internal waves by the boundary layer can be modeled using a constant

relaxation time TR acting on the wave kinetic energy. Using TR =

2 days, a boundary layer height H = 20 m, and an energy of .7 cm2/s2

for the band .07 - .45 cph, an energy flux of .008 ergs/cm 2/s is

obtained, which adds significantly to the total absorption of internal

wave energy.

The relative importance of the near inertial and low frequency

motions in the boundary layer energetics can be estimated by comparing

the energy fluxes from these two sources. The low frequency turbulent

kinetic energy production in the boundary layer is roughly given by

integrating u w T across the boundary layer with u w u* and
az

BU u*
Sz kz' as appropriate for a logarithmic boundary layer; k y .4 is

von Karman's constant (Hinze, 1959). Integrating from z = 4v/u* to

a height of 20 m yields a total production of .24 ergs/cm 2/s for

U = 7 cm/s. This is much more than the energy absorbed from the

internal waves. The boundary layer is thus driven primarily by the low

frequency geostrophic velocities; the internal waves only modulate it.



The flux of internal wave energy into the boundary layer calculated

here is for one location averaged over 3 months. The model presented in

chapter 9 suggests that this flux should be proportional to the near

bottom current speed. This predicts considerably larger absorption of

the wave energy to the north of this site where the currents are larger

(Schmitz, 1976) and considerably less absorption for regions of low

near bottom speeds. The calculation is probably not relevant to regions

of significant bottom slope or rough topography where the kinematics of

the internal wave field is more complex (Phillips, 1977, chapter 5).

Thus this calculation cannot be used to estimate fluxes in or out of

the internal wave field over rough topography.

Previous observations of near inertial waves have shown a net

downward energy flux (Muller et al., 1978; Leaman, 1976). if the dif-

ference between downward and upward going energy is attributed to absorp-

tion in the boundary layer a reflection coefficient IRI2 n .5 is

predicted (Leaman, 1976). The analysis presented here is not consistent

with such a small value of IR12  and suggests that an alternate

explanation, such as that advanced by Fu (1980) is more correct.

The absorption of internal wave energy by the boundary layer will

act as a net sink of energy for the internal wave field. Assuming an

internal wave energy of 4 x 106 ergs/cm 2  (Garrett and Munk, 1979) a

flux of energy to the boundary layer of .02 ergs cm2/s will absorb all

the energy in the internal wave field in roughly 6 years. For comparison

an internal wave driven vertical eddy diffusivity of 3 x 10- 3 cm2/s



would yield roughly the same wave energy absorption rate (Garrett and

Munk, 1979). Estimates of energy input to the internal wave field are

generally an order of magnitude larger than the energy absorption rate

calculated here (Kaise, 1979; Fu, 1980; Bell, 1975). Unless internal

wave field relaxation time is much longer than indicated by these es-

timates, the benthic boundary layer over a flat bottom plays a minor

role in dissipating internal wave energy.



Appendix
A

The third term in (17) Re { z-- (w 2 )} cannot be evaluated from

the current meter data, so its magnitude is here estimated and shown to

be small. The total energy flux per unit area due to this term is

D = (z) wz dz (1A)

Q(z) is strongly constrained by Q(0) = 0, and ^(z ), the latter

being due solely to internal waves. w7 will not be larger than

U*2  (U/30)2. Thus an upper bound for (lA) is

D < jo(z0o) U*2  (2A)

For internal waves (Fofonoff, 1969)

IW 1 2 = 2 (2 2 f2

JU1 2 + 2 N2 + f (3A)

Fu (1980) shows that due to turning point effects, this expression is

only valid for a > 1.02f; for smaller a - f, iw,2 is bounded

above by (3A) with a = 1.3f. Using a = 1.3f, a = .1 N, lu12 + I2 -

1 cm2/s2 , U = 7 cm/s yields

D < .0027 ergs/cm2/s (4A)

which is less than 20% of total calculated energy absorption from the

clockwise term in (18).
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