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ABSTRACT

In exploration for minerals and hydrocarbons, pros-

pecting targets are commonly selected on the basis of a

geologist's subjective interpretation of a combination

of diverse geological data. This thesis investigates

the possibility of automating and standardizing this

interpretation task. Four pattern recognition algorithms

that provide quantitative, reproducible means of coding,

organizing, and interpreting geological data are used

here to make exploration decisions. Although data collec-

tion is still a fundamental, somewhat subjective input,

the remainder of a combined interpretation problem is

handled in an automated, algorithmic fashion.

Reconnaissance level data are used to estimate favor-

ability for sandstone-type uranium deposits on the Colorado

Plateau and in the Casper Quadrangle of central Wyoming.

Pattern recognition procedures are used to identify geolog-

ical features that mark areas favorable for ore. Pattern

recognition algorithms provide a logical framework for

organizing these features for the recognition of areas

favorable for uranium ore occurrence. Automated data

evaluations have produced geologically reasonable predic-
tions of new exploration targets.

Variations in the performance of these four algorithms

suggest guides to the use of these and other pattern recog-

nition procedures in geological problems. Control experi-

ments test the predictive potential of these techniques

and verify the stability of pattern recognition analyses.

Pattern recognition techniques may be useful in a

variety of exploration problems where large amounts of

diverse data must be winnowed, integrated, and interpreted

for decision making.
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CHAPTER 1

Computer programs that simulate modes of human

learning can provide a quantitative, logical framework

for the combined interpretation of diverse geological

data. This work considers uranium deposits of the

Casper, Wyoming Quadrangle and of the Colorado Plateau

for testing the ability of four pattern classification

procedures to provide computerized combined interpreta-

tions of geological data for mineral exploration. Each

of the four algorithms offers a different model of the

way an exploration geologist might think. So that their

performance characteristics and individual merits may be

compared, each algorithm is applied to the same tasks.

Reconnaissance level geological data covering the

entire Colorado Plateau and the entire Casper Quadrangle

are searched by machine in much the same way that a

geologist might scan individual surveys to find geologic

signatures that mark uranium-producing areas. The work

of multiple survey interpretation to designate unexplored

ground as favorable or unfavorable for exploration is

taken over by pattern recognition algorithms that use

these geologic signatures in quantified decision processes

that replace conventional subjective interpretation.
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Mineral deposits are commonly discovered in three

ways - by accident, by exhaustive search, or by inference

from geological data. Ancient ore finds were made without

input from a reliable body of geological knowledge, and

must have resulted from accidental discovery. Today,

readily located ore bodies with surface shows of ore are

decreasing in number. As shallow ore bodies are exhausted,

new discoveries must be made at depth, and surface shows

of a mineral may no longer be expected to mark ore

occurrences. Accidental discovery cannot be relied upon

to secure the deeper ore deposits because work at depth is

not within the means of amateur prospectors.

In historical times, prospectors have relied on

exhaustive search to find ores. The ephemeral boom towns

of the American frontier offer many examples of small land

areas saturated with prospectors searching the ground for

gold, silver, or other metals. Because exhaustive search

guarantees results, some propose, even today, that

mineral or hydrocarbon exploration be based on extensive

programs of closely-spaced drilling. Saturation ground

coverage by exhaustive drilling programs may be logistically

and economically the least feasible method for locating

ore.

Because reserves of many minerals remain finite
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while consumption is increasing, a variety of exploration

survey techniques, some newly borrowed from petroleum

exploration, are now being used to assess the favorability-

for-ore of land parcels. Despite the numerous exploration

tools available to the mining industry, and the work of

many expert geologists, accidental discovery still accounts

for a substantial fraction (perhaps a majority*) of new

discoveries of uranium and other minerals. Accidental

discovery is neither an aggressive exploration policy

nor one that can be relied upon to provide a continuous

supply of mineral resources. To make exploration more

economical and efficient, standard predictive geologic

capabilities should be developed and augmented by new

analytical techniques whenever possible.

The intercomparison and interpretation of exploration

surveys by geologists is now of increasing importance in

the search for many types of ore deposits. In modern

mineral exploration work, a large amount of data must be

organized, winnowed, and interpreted before promising

targets for exploration can be selected. No techniques

This suggestion is difficult to prove, but reflects
the opinion of several geologists in the mineral
industry interviewed by the author.
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other than drilling are available for the direct

detection of ore; geological and geophysical surveys

observe the objects of interest only indirectly. The

diversity and ambiguity of data available from geologi-

cal and geophysical surveys often make a well-integrated

and orderly interpretation difficult to obtain. The

emergence of new survey techniques, such as LANDSAT

imagery, water and soil gas analyses, and new logging

tools may further complicate exploration work, as these

survey tools may provide data of unfamiliar or uncertain

interpretation and of unknown relation to more conven-

tional surveys. The quantity and diversity of data now

available in exploration may conspire to make conven-

tional, subjective attempts at combined interpretations

suboptimal.

Pattern recognition techniques can unite very

diverse data types (numeric, quantized, and descriptive

data) into a single logical framework for learning and

interpretation. The pattern recognition algorithms used

here offer simple but useful simulations of human learn-

ing habits. Computers may "learn" about ore deposits

and predict their occurrence in somewhat the same way

that a geologist does. Clearly defined learning

algorithms may be used to enhance the interpretive

power of the geologist by using computers to produce
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quantitative, reproducible evaluations of prospects.

To select targets for prospecting, information

from geological, geochemical, and geophysical surveys

must all be integrated into a decision process. Conven-

tionally, combined interpretation is performed by a

geologist who uses rules learned consciously or uncon-

sciously from his previous experience with ore occurrences

to organize information and arrive at a qualitative

evaluation of a prospect's potential.

Subjective interpretation of data has some undesir-

able features that may be obviated by use of computerized

combined interpretation. For example, a given geologist's

interpretation of data may be non-unique, and possibly

non-reproducible. Different experts commonly reach

varying conclusions from the same body of data. Differ-

ent geologists may also use somewhat different sets of

learned rules to guide their interpretations; they may

weight the significance of particular pieces of informa-

tion differently, each according to his personal learning

history and experience. Also, even a skilled interpretor

may not be able to state explicitly, or even be fully

aware of, all the rules for combined interpretation that

have contributed to his evaluation. Nor is he likely

to know just how his mind has combined these rules to
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work together; hunches and "geologic intuition" may

significantly color exploration recommendations and

decisions. Finally, and perhaps most importantly,

there is a combinatorial problem involved in most modern

exploration work. There is rather little difficulty in

picking the outstanding features of a single survey.

When several types of surveys are available over an

area, however, the opportunity to consider each data

item in the context of all other data arises. Exploring

all the possible interrelations among surveys may

be beyond the computing and memory capabilities of even

skilled geologists.

Given the complexity of ore-forming systems,

quantified, computerized methods for combined interpreta-

tion of exploration surveys offer a reasonable way of

synthesizing diverse geological information toward

exploration goals. Two complimentary strategies are

now emerging to model geologic interpretation. These two

strategies may be classed broadly as artificial intelli-

gence techniques and pattern recognition techniques. The

artificial intelligence approach uses rules for interpre-

tation taken by interview from geologists with expertise

in a particular geological problem. These expert inter-

pretors or prospectors also provide estimates of the
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relative importance and the interrelationships of their

rules for interpretation. To the extent that it is

known, the structure of the logical or probabilistic

interrelationships among the rules is programmed into

computer software as a network or net of evidences and

hypotheses (observations and plausible conclusions)

about geological objects (Duda et al., 1976, 1977).

The information net is complete before any geological

objects are analyzed. Data describing an area of

interest with unknown resource potential are given to

the net which then generates an estimate of the probabili-

ty of finding an ore deposit in the unexplored area. In

the artificial intelligence approach, experts specify the

interpretation rules, their weights, and their interrela-

tionships. In contrast, the pattern recognition approach-

es to interpretation presented here start with data

describing known resource areas and attempt to recognize

in these data regularities that can form a basis for

interpretation rules. The specific rules for interpreta-

tion generated by generalized learning algorithms can

then be used to recognize the resource potential of

unfamiliar geological objects. If the data base permits,

the computer-generated rules for combined interpretation

may lend new insight into geological processes. In a
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sense, the artificial intelligence approach tries to

apply the extant, conventional wisdom to whatever data

are at hand, while pattern recognition tries to draw

forward the most effective set of rules for interpreta-

tion of the available data.

The strategy used here for recognition of resource

potential proceeds as follows. Geological data describing

areas of known mineral production are contrasted with data

describing surrounding areas that are initially presumed

to be barren. The computer collects salient features

of the available data that contribute to the distinction

of barren from producing areas. Some of these features

within a given data base might well be overlooked by

human interpretors. Each piece of geologic evidence

relating to the favorability-for-ore is then weighed in

a quantitative, reproducible way, according to quantita-

tive decision criteria. After data assembly, learning

algorithms that consider individual pieces of evidence

or synergistic combinations of evidence can be used to

find signatures of uranium-bearing areas within data.

Contrasting characteristic signatures of barren areas

are also sought. If a signature exists, and the computer

has shown an ability to correctly classify a training

set of locations as uranium-producing or barren, a pre-
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dictive phase may be entered wherein new uranium prospects

can be selected by applying the learned interpretation

rules to geologic data describing new locations with

unknown uranium reserves.

In Chapter 2 of this thesis, current theories of

uranium ore genesis are reviewed for the peneconcordant

Colorado Plateau-type ores and for the roll-type deposits

of Wyoming. This review provides a background for under-

standing and evaluating the results of pattern recogni-

tion surveys of the Wyoming and Colorado Plateau areas.

Chapter 3 describes the selection of features from a

large data base, and the feature coding procedures used

here. The significance of features and their individual

interpretations are also discussed. Chapter 4 presents

the individual characteristics of the four pattern

classification algorithms applied to the feature data

base. Chapter 5 presents the results of computerized

combined interpretation for the entire Colorado Plateau

and Wyoming study areas. The geological "reasonableness"

of the four algorithms'performance are discussed.

Chapter 6 investigates the stability of recognition and

the performance of classification algorithms with various

combinations of features. Chapter 7 offers control

experiments that test for self-deception in automated
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combined interpretations and simulate predictive use of

these classifiers. Chapter 8 presents conclusions from

this work and suggests other geological problems that

might profitably be approached by pattern recognition

treatment.



CHAPTER 2

The two areas surveyed here for uranium favorabil-

ity are the Colorado Plateau and the Casper Quadrangle

of Wyoming. Together, the Colorado Plateau and Wyoming

basins have accounted for about 90% of uranium produc-

tion in the United States to date. In addition to con-

siderable past production, these two areas are of

current interest to prospectors because they are credited

with large possible and speculative uranium reserves.

The Colorado Plateau and Wyoming study areas also

provide particularly interesting venues for pattern

recognition prospecting because the results of three

decades' active field exploration can serve as a control

or standard of comparison for these pattern recognition

surveys. Although the uranium deposits of these two

areas have been objects of geologic interest for some

time, their origins are still incompletely understood.

The basis for computerized recognition of uranium-

favorable areas should show a reasonable similarity to

existing theories of ore genesis, and-might also provide

new insights into ore genesis.

This chapter presents a brief geologic history of

both study areas, describes the origin of the penecon-

cordant and roll-front types of uranium deposits charac-
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teristic of the Colorado Plateau and Wyoming basins,

respectively. In the context of modern theories of ore

genesis, the features for recognition appear to have

reasonable geologic interpretations. One of the learn-

ing algorithms used here synthesizes these individual

features into compound features that are easily inter-

preted. These compound features are the computer's way

of generating a model of ore deposition, and can be

understood as parallels to parts of the theories of ore

genesis developed by geologists. The data available

here (see Chapter 3) are not fully adequate to locate

ore-bearing areas. The incomplete ability of the

present data to resolve uranium-favorable and -unfavorable

areas can also be understood in light of accepted models

of ore deposition.

2.1 The Colorado Plateau

The Colorado Plateau structural province covers

140,000 square miles of Colorado, Utah, Arizona, and New

Mexico (Figure 2-1). The plateau contains a number of

well-developed mining areas and has produced more

uranium than any other province in the United States

(197,800 tons U3 08 to 1976). Despite previous production,

even pessimistic analyses suggest that considerable ore

may remain undiscovered (Lieberman, 1976), and current
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FIGURE 2-1: Major tectonic blocks

of the Colorado Plateau study area.
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reserve estimates offer hope of both continued production

and new discoveries on the Plateau in the future. Poten-

tial resources of $30/lb. U308 on the Plateau break down

as follows: probable, 433,000 tons; possible, 632,000

tons; speculative, 103,000 tons (U.S.E.R.D.A., 1976).

The Colorado Plateau has existed as a structural

unit since the Cambrian. Today, high plateaus form a

roughly circular province about 500 miles in diameter.

Seven major sedimentary basins cover 1/3 of the area and

nine major uplifts cover another 1/5 of the area. A

sequence of sedimentary rocks of Paleozoic age and young-

er are widespread; metamorphic and granitic rocks of

Precambrian age crop out in the Uncompahgre and Zuni

uplifts and in the Black and Grand Canyons. Younger

volcanic and intrusive rocks, mostly of Upper Cretaceous

age, punctuate the sedimentary cover of the Plateau.

Since Cambrian time, the Colorado Plateau has under-

gone two major episodes of deformation. The Laramide

orogeny of Late Cretaceous and Early Tertiary time was

contemporaneous with uranium deposition on the Plateau,

and had a direct influence on uranium deposition. An

earlier episode of deformation during Pennsylvanian and

Permian time also influenced ore deposition. Pre-ore

tectonic events influenced not only the paleohydrology
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and erosional history of the Plateau, but also the

environment in which younger ore-bearing sediments

were deposited. Older structural features aLso guided

later Laramide igneous intrusions and the trends and

forms of Laramide uplifts and basins. Pre-existing

structures have influenced later geologic evolution of

the Plateau for the last 300 million years (Kelly, 1955).

The Colorado Plateau was stable during most of the

Paleozoic. In the Pennsylvanian, the first episode of

deformation began, elevating the Zuni and Uncompahgre

uplifts. Through the Triassic, sedimentation proceeded

over much of the Plateau as major basins and uplifts

began to appear. Principal uranium-bearing formations,

the Chinle and Morrison, were deposited in the Late

Triassic and Late Jurassic, respectively. In the Late

Cretaceous, the Laramide orogeny rejuvenated major features

such as the San Juan, Black Mesa, Uinta and Piceance

Basins, the Monument, Kaibab, Defiance, San Rafael, Circle

Cliffs, Zuni, and Uncompahgre uplifts (Figure 2-1). Num-

erous laccoliths and smaller igneous bodies intruded

Plateau sediments in the Late Cretaceous; volcanic fields

were also active during this time. Many smaller struc-

tures including folds, fractures, anticlines, and synclines

that may have locally influenced ore deposition also
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formed in Laramide time. Uranium-lead dates indicate a

Late Cretaceous, Early Tertiary episode of uranium min-

eralization throughout the Plateau.(Shoemaker, 1955).

A period of crustal quiescence persisted from Larimide

time to the Miocene. During the Miocene, the entire

Colorado Plateau was uplifted. This uplift rejuvenated

streams and groundwater circulation etching the paleo-

drainage pattern into the Plateau. Some minor structural

features formed at this time, guided by pre-existing

structural trends. Minor structural adjustments contin-

ued into the Quaternary.

For much of the last half aeon, ancient structural

features have persistently influenced structural change

on the Colorado Plateau. Paleostructural and hydrologic

factors critically affected ore emplacement, because

uranium was transported by and precipitated from circula-

ting groundwaters. The persistence of geological structures

on the Plateau suggests that there should be some indica-

tion in pattern recognition features and results that the

structures now visible on the Colorado Plateau are related

in a geologically reasonable way to paleostructural

features and to the locations of uranium ores. Structur-

al features, though not the sole controls of ore deposition,

should combine with lithologic information to play an
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important role in qualifying areas as favorable for

uranium ore deposition.

Uranium deposits are widespread in the continental

sedimentary rocks that cover the Colorado Plateau.

Although sedimentary formations ranging in age from

Pennsylvanian to Tertiary are known to contain ore-grade

uranium, most production has been from the Morrison

Formation (in the Grants, New Mexico, and Uravan,

Colorado/Utah mineral belts) and from the Triassic Chinle

Formation (particularly the Shinarump Member, Lisbon

Valley and White Canyon, Utah and Monument Valley,

Arizona). Significant production has also come from the

Permian Cutler Formation (Paradox Basin, Colorado) and

the Jurassic Todilto Limestone (Grants, New Mexico).

Ore-bearing rocks of the Morrison, Chinle, and Cutler

Formations are quartzose or arkosic, lenticular cross-

bedded fluvial sandstones with interbedded clay and mud-

stone lenses; the Shinarump Member of the Chinle is a

sandstone and conglomerate. Local variations in the

sedimentary environment within these formations appear

to have had a primary influence on the flow of uranium-

bearing groundwaters and the deposition of uranium.

By far, the most numerous and productive ore bodies

on the Colorado Plateau are the peneconcordant type that

occur in gently dipping sandstone beds. These ore
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bodies are typically tabular - a few feet in thickness,

but extending laterally for hundreds of feet, often in

ancient stream channels, between enclosing sedimentary

members. Within these tabular volumes, uranium minerals

coat and, in some instances, replace grains in the host

rocks. Most deposits occur in fluvial sediments that

are micaceous or arkosic. Fossil organic matter is

usually associated with the ore zones. The most favored

host rocks are locally thickened sedimentary members

containing mudstone, shale, or clay lenses interbedded

with the sandstone. Large volumes of lithologically

favorable rock contain no known ore.

Four possibilities (summarized by Kerr, 1957)

have been advanced to explain the origin of Colorado

Plateau uranium ores. Each has its strengths and

shortcomings, so that the question of ore genesis is

neither fully understood nor finally settled.

In one scenario, igneous activity associated with

the Laramide orogeny is of genetic importance. Heated,

mineralized solutions derived from magmas carried,

among others, compounds of uranium. These solutions

mixed with groundwaters, enriching them in uranium.

As groundwaters circulated laterally away from uranium

sources, they encountered fractures that provided
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conduits for vertical movement between beds. Thus

uranium-rich groundwaters could flow through a great

volume of the more-or-less permeable sedimentary

beds of the Plateau. Occasionally, these fluids passed

through volumes of rock enclosing chemical constituents

(e.g. fossil humic material) that caused the reduction of

uranium compounds. These reduced compounds of uranium

are relatively insoluble in water and precipitated, form-

ing the interstitial ore minerals found in sediments.

A second theory contends that normal groundwater

concentrations of uranium derived from leaching of base-

ment rock were adequate to form ore deposits as they

circulated through the sediments. These waters encounter-

ed zones containing carbonaceous reductants that precipi-

tated uranium compounds. In some deposits, however,

solutions clearly heated above normal groundwater temper-

atures were involved in ore formation. Also, the volumes

of basement rock postulated to have been leached and the

volume of groundwater needed to form deposits may be

prohibitively large (Fisher, 1974).

A third theory notes that deposits of volcanic ash

are widespread in both Upper and Lower Mesozoic formations,

including the Chinle and Morrison. Uranium, assumed to

be present in the ash, could have been leached by meteor-
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ic waters and precipitated in deeper strata that were

locally favorable. Some workers claim that this theory

is stratigraphically and/or geometrically inadequate.

The widespread mineralization of collapse features,

breccia pipes and fractures, the influence of structural

controls on deposition, and the mineralization accompany-

ing uranium in some deposits all cast doubt on this theory.

A syngenetic origin of ores is also possible. The

large areas of Precambrian basement that were exposed

during the evolution of the Plateau may have been eroded

and leached repeatedly, providing surface waters with

abnormally high concentrations of uranium. As these

solutions circulated through the near-surface, uranium

deposits may have formed contemporaneously with the

enclosing sediments. Decaying plant material in stream

channels might have served to precipitate uranium, as

mineralized logs and plants are not uncommon in Plateau

ore bodies. This theory has difficulty, however,

explaining the many similar uranium deposits of

nearly coincident U/Pb ages that occur through a large

part of the stratigraphic column.

Though each of these theories differ substantially

in detail, they have essential elements in common. Uran-

ium in an oxidized state is transported down-dip and
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laterally, possibly for great distances, in aqueous

solution to the site of deposition. Ore grade deposits

developed within formations when uranium-bearing solu-

tions invaded locally favorable environments. Precipita-

tion of uranium minerals occurred where oxidation/

reduction reactions involving uranium compounds could

proceed - in geochemically reducing environments and/or

perhaps in areas of groundwater flow stagnation. Struc-

tural and lithologic controls, an adequate source of

uranium, and a reducing environment are critical elements

in all these theories.

For prospecting, one would like to predict the

occurrence of all these features. Subtle lithologic

variations at depth and the accidental occurrence of

locally reducing zones may never be predictable.

Structural influences on groundwater circulation and

some possible sources of uranium, however, should be

recognizable and useful for prediction. These elements

do appear in the features for recognition presented in

Chapter 3.

2.2 The Casper, Wyoming Quadrangle

The Casper Quadrangle, within the Wyoming Basins

structural province, covers the area in central Wyoming
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from 420 and 43*N and from 1060 to 108 0 W (Figure 2-2).

There are four well-developed mining districts within

the Quadrangle - Gas Hills and Crooks Gap in the west,

and Shirley Basin and Poison Spider in the east. These,

together with other mining areas within the Wyoming

Basins, trail only the Colorado Plateau province in

uranium production. Fifty percent (165,000 tons U308)

of probable reserves for the Wyoming Basins are within

the Quadrangle; most possible and speculative reserves

of the Wyoming Basins are believed to lie outside the

Quadrangle (U.S.E.R.D.A., 1976).

The uranium deposits of the Wyoming Basins are

reviewed by Harshman (1972), Rackley (1972), Melin (1964),

and Sharp and Gibbons (1964). During the Precambrian,

rocks in the Casper Quadrangle were folded, metamorphosed,

and intruded by granitic batholiths and mafic dikes. A

long period of erosion reduced the area to a nearly flat

surface that was repeatedly transgressed by epicontinen-

tal seas during the Paleozoic. During these transgres-

sions, a thick series of marine, littoral, and continen-

tal sediments accumulated in the area, culminating in

the Jurassic with the Morrison Formation. At the end of

the Jurassic, the seas migrated eastward for a final time,

and clastic material eroded from highlands to the west
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FIGURE 2-2: Outline map of Wyoming

showing location of Casper Quadrangle.

The major tectonic units in and near

the Casper Quadrangle are:

1) Powder River Basin; 2) Bighorn

Uplift; 3) Bighorn Basin; 4) Owl

Creek Uplift; 5) Wind River Basin;

6) Wind River Uplift; 7) Green River

Basin; 8) Rock Springs Uplift; 9) Red

Desert Basin; 10) Rawlins Uplift;

11) Hanna Basin; 12) Laramie Basin;

13) Laramie Uplift; 14) Hartville

Uplift; 15) Casper Arch; 16) Sweetwater

Arch; 17) Shirley Basin; 18) Shirley

Mountains.

Uranium Mining Areas: A) Gas Hills;

B) Crooks Gap; C) Shirley Basin;

D) Poison Spider.
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was deposited near the shores of the Cretaceous seas.

The Larimide orogeny deformed the area in the Late

Cretaceous, forming basins and uplifts. After the seas

withdrew for a final time, erosion of the newly formed

mountains began in Paleocene time. Detritus eroded

from the mountains partly filled basins during the

Paleocene and early Eocene. The resulting sediments

are predominantly sands and silts with occasional

arkosic sands and gravels. The Wind River Formation,

which is the most important uranium host unit in the

Quadrangle, was deposited in the early Eocene. Over the

Wind River were deposited arkose and clay followed by

tuffaceous sediments that filled the basins. During the

Pliocene, broad regional uplift occurred, Mid-Tertiary

sediments were removed, and mountain ranges were uncov-

ered exposing Lower Tertiary strata. Quaternary stream

gravels and alluvium now cover some areas in the

Quadrangle.

Uranium ore in the Casper Quadrangle is found in

roll front deposits in Tertiary fluvial, arkosic sand-

stones and conglomerates containing interbedded clay,

silt, and occasional limestone. Deposits are character-

istically tongue-shaped accumulations of uranium minerals

within a single host unit. The uranium deposits mark
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the interfaces between altered host rock updip of the

deposit and unaltered rock downdip. The roll fronts are

generally only a few tens of feet thick, but may extend

laterally for up to thousands of feet.

Uranium leached from Precambrian granites or from

young, tuffaceous sediments appears to have been taken

up by slightly acidic groundwaters during the

Miocene. The weathering of pyrite or bacterial decom-

position of hydrocarbons may have produced the acidic

groundwater conditions. These uranium-bearing waters

moved downdip within permeable strata, altering feld-

spars, removing calcite and numerous trace elements from

the host beds. Eventually these waters entered higher Ph

environments, and uranium was rapidly precipitated.

In contrast to the Colorado Plateau case, immobile

carbonaceous reducing material seems to have enhanced

only slightly the chemical conditions favoring deposi-

tion. Downdip from zones of uranium deposition, there

is little alteration of the host beds, so that ores

marked the Ph boundary of a geochemical cell within

the host formations. As new acidic groundwaters contin-

ued to enter the zones of deposition, uranium would re-

enter solution and again be deposited, a short distance

downdip, on the alkaline side of slowly migrating roll
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fronts. Today, groundwater flow is reduced, and the

deposits of uranium have taken up stable positions in

the host beds.

As on the Colorado Plateau, structural features

that influenced the flow of groundwater and the sedimen-

tary environment should play an important role in recog-

nition of zones favorable for uranium deposition. Subtle

chemical and lithologic variations at depth that

controlled ore emplacement perhaps cannot be predicted

or related to structural features.
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CHAPTER 3

This chapter defines the objects for recognition

and presents the features used in recognition. Features

are extracted from geologic data in a partly subjective,

yet algorithmic way. In addition to statistical

estimates of the significance of features, geologic

interpretations are offered here to explain the features

selected for recognition. If features can be reasonably

understood in the context of current theories of ore

genesis, this will lend confidence both in the present

features and in the feature selection procedure when

it is used in recognition problems with less familiar

characteristics (e.g. less well understood mineral

deposits).

Without assuming a model of ore deposition, the

feature selection procedure has picked many features

for recognition that are recognizable as elements of

ore deposition models. Many unfamiliar features are

also found, however, and tentative geologic interpreta-

tions of these may suggest less familiar influences

upon ore deposition.
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3.1 Objects for Recognition

The area of the Colorado Plateau is divided into

7-1/2 minute cells for recognition. The resulting

grid of 508 cells is shown in Figure 3-1. This division

of the plateau yields cells of a size appropriate to the

resolution available in the data, and provides a manage-

able, yet statistically adequate, number of objects for

computerized classification.

There are two logical ways to divide these 508 cells

into uranium producing, U, and non-producing, U*, classes

a priori. U and U* classes may be assigned according to

the amount of ore-grade uranium in each cell - total

production plus probable reserves. Alternatively, since

uranium deposits tend to be found in either Triassic

strata or in Jurassic/Cretaceous rocks within a given

cell, this division may be used. Feature selection and

several pattern recognition experiments were run to

determine the relative merits of these two divisions.

Although many features are common to the class of all

producing cells, cells with Jurassic/Cretaceous produc-

tion,and cells with Triassic production, the division

according to age of host rock produces more interesting

and stronger sets of features, and more area-specific

recognition results than a division according to produc-
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FIGURE 3-1: Grid of 508 15-minute

cells for evaluation of uranium

favorability on the Colorado Plateau.

Each cell is coded according to its

uranium production as follows:

1 - uranium production less than

1000 tons (ore >0.1% U 0 );

2 - uranium production from 1000 to

1,000,000 tons (ore >0.1% U 0 );

3 - uranium production greater than

1,000,000 tons (ore >0.1% U 0 );

4 - no uranium production to date;

C - uranium produced from Jurassic

and/or Cretaceous host beds;

R - uranium produced from Triassic

or older host beds;

T - uranium produced from Tertiary

host beds;

V - uranium produced from vein or

breccia pipe deposits.
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tion alone. The Colorado Plateau is studied here in

two ways. One set of recognition experiments used

features obtained from contrasting 45 cells with produc-

tion from Triassic strata against barren cells. A second

set of recognition experiments uses features generated

from contrasting cells with production from Jurassic/

Cretaceous host rocks against barren cells.

For the Casper Quadrangle of Wyoming, recognition

is based on data of somewhat finer resolution than for

the Colorado Plateau. Accordingly, the Quadrangle is

divided into smaller objects for recognition. An 18 x

26 grid of points on a 4 x 4 mile spacing covers the

Quadrangle. Some data are incomplete in the southern

three rows of points and in 10 points in the northeast

corner of the Quadrangle; these areas were not considered

in this study. Neighborhoods around the 380 remaining

points are the objects for recognition. Uranium produc-

ing areas are shown on the grid of objects for recogni-

tion in Figure 3-2. Of 380 points, 21 are associated

with known uranium production, 30 are uranium prospects,

26 are reported uranium occurrences, and 303 are presumed

barren. The designations of "prospect" and "occurrence"

are very uncertain indicators of uranium deposits;

prospects are generally so designated on the basis of
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FIGURE 3-2: Grid of 390 points spaced

at 4 x 4 miles for evaluation of uranium

favorability in the Casper, Wyoming

Quadrangle. Points are coded according

to their uranium production as follows:

1 - uranium mined within 3 miles of the

point;

2 - uranium prospect within 3 miles of

the point;

3 - uranium occurrence within 3 miles

of the point;

4 - presumed barren;

5 - not used in this study.
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somewhat stronger field evidence of ore potential than

are occurrences. In feature selection, features that

would characterize not only mining areas but also

prospects and occurrences were sought. Statistically,

the prospect and occurrence classes closely resemble

barren areas, and so features used for recognition are

those that distinguish the 21 producing points from the

non-producing points.

3.2 Feature Selection

A large body of data was processed for both study

areas to find features relevant to discrimination of U

from U* objects.

One-dimensional projections of the disposition of

objects within this feature space were used to select

features for use in recognition from the large bodies

of raw data. Although some U* objects are undoubtedly

yet unrecognized U objects, the samples of U and U*

objects as they are now known were used to define U and

U* classes. The range of values for each feature was

divided into 10 equal regions, and a 10-cell histogram

of the feature values for U and U* objects was formed

for each feature. These histograms were used as esti-

mates of feature probability density functions (PDF's)

conditioned on the state of nature, U or U*. If the
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histogram estimates of PDF's for U and U* objects on a

feature indicate, according to the tests described below,

that the U and U* objects are two distinct populations,

the feature was used in recognition. Features that

showed essentially identical PDF's for U and U* objects,

and features that could separate U and U* objects only

if the range of feature values were partitioned into a

number of disconnected subregions, were not used.

Figure 3-3 illustrates typical types of state-

conditional PDF estimates. A feature such as F
a

Figure 3-3a, with essentially indistinguishable U and

U* PDF's is not used in recognition. It is possible

that such a feature might actually be useful in recogni-

tion, but it appears uninformative when the locations of

objects in the multidimensional feature space are

projected onto the F axis. The features F and F are
a b c

typical of those used in recognition. For example, in

Figure 3-4, features 3, 7, and 8 have one-dimensional

distributions similar to Fb; features 4, 10, and 11 have

distributions similar to F . A tendency toward separation
c

of the U and U* classes is apparent along the Fb and Fc

axes of the feature space. The Fb and Fc axes may be

broken into two and three regions, respectively, that are

populated mostly by U or mostly by U* objects. The
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FIGURE 3-3: Typical types of state-

conditional probability density func-

tions for recognition features.

A.- Producing and barren objects

indistinguishable on feature F ;
a

B - U objects are often characterized

by high values of Fb , U* objects

by low values of Fb;

C - U objects are often characterized

by the highest or lowest values of

F C, U* objects tend to have inter-

mediate values of F ;
c

D - Multimodal, interleaved density

functions for U and U* objects on

feature Fd.
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boundaries of U and U* regions are estimated to be at

feature values where the U and U* PDF's cross. If the

histograms provide accurate estimates of feature PDF's,

these boundaries are optimal in the sense that they

minimize the probability of classification error with

a feature, if objects with feature values in the U range

are classified as U and objects with feature values in

the U* range are classified as U*. In the features Fb

and F , large and small, or intermediate and extreme,c

values of a parameter are contrasted. Such features are

useful in distinguishing U and U* objects, and may often

have a simple geologic interpretation. By contrast,

feature Fd of Figure 3-3d exhibits more complex, multi-

modal, and interleaved density functions. The Fd axis

may be partitioned into a number of subregions, each

populated almost exclusively by U or U* objects. Such

a division of the Fd axis could serve to separate the U

and U* objects, but no plausible geological interpreta-

tion of such a division is usually apparent, and such

features are not used in this recognition procedure.

3.3 Feature Coding

The four algorithms used in this study make use of

two extreme, and in a sense, opposite methods of feature
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coding. In one case, the exact values of data for each

feature are used to give the most precise description

possible of each object in the feature space. Objects

are described by multidimensional data vectors with

numerical components. Geological objects, such as ore

bodies and areas favorable for ore deposition, while in

many ways similar, will show some variability not

clearly related to their ore potential. To emphasize the

essential characteristics of geological objects, and to

remove some differences in detail, the second data coding

scheme records for an object not the exact values of its

features, but only whether the values of the object's

features fall in a characteristic U or U* range of that

feature (where the U or U* PDF is greater than the

other, respectively). Objects are thus described by

multidimensional data vectors with binary components.

Although this scheme produces the greatest possible

quantization noise, it eliminates differences between

objects within the U and U* ranges of a feature param-

eter. The major benefit of binary coding is that both

qualitative and quantitative data that are continuous,

quantized, coded, and intrinsically binary can be re-

duced to a uniform data format and united for use in

recognition. Coded, quantized, and qualitative descrip-

tive geological data are not readily integrated into the
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vector space classification framework typical of recogni-

tion algorithms that use exact values of features. It

is an open question to what extent a geologist uses the

exact values of all features when producing a subjective

combined interpretation, and to what extent he notes the

range of values into which an object's features fall.

It is certain, however, that descriptive, semiquantita-

tive, and non-numerical data may carry important informa-

ation about geological objects, and are normally included

in geological evaluations.

3.4 Feature Ranking

The feature spaces for the Colorado Plateau and

Casper study areas are of high dimensionality, 17, 32,

and 36, for Triassic, Jurassic/Cretaceous, and Wyoming

deposits, respectively. This high dimensionality

hampers analysis because a 30-dimensional space is much

more difficult to explore than, say, a 10-dimensional

space; one is reluctant, however, to discard information

that can contribute to geological evaluations. This

high dimensionality is also a problem when few samples

are available. For example, with 36 features but only

21 samples of U objects for the Casper Quadrangle, it is

difficult to obtain accurate estimates of PDF's or to
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determine the extent to which features are correlated or

redundant (Chapter 6 investigates this problem). One

would like a method of measuring the significance or use-

fulness of the features; such a ranking, in combination

with geological criteria,could suggest subsets of the

features that might be particularly useful in recognition.

Because the geological data used here are of various

natures (numerical, coded, or intrinsically binary), three

non-parametric techniques were used to measure the

significance of features and their ability to separate

the known populations of U and U* objects.

The first measure indicates the ability of binary-

coded versions of features to separate U and U* objects.

If p. = Prob(f. = l1IU) and q. = Prob(f. = 11U*), then a
1 1 1 1

measure of a binary-valued feature's ability to separate

U and U* objects along that feature axis is

p.(1 - q.)
1 1w = log

q.( - p.)
1 1

(this factor is used to weight features in the simplest

of the four classification algorithms used here; see

Chapter 4, section 4.1). This ranking measures a

feature's ability to separate U and U* objects along

one feature axis. It does not, however, measure a

feature's ability to separate objects when combined
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with other features in a multidimensional decision

process.

A rank sum test was also applied to exact values of

the features. U and U* objects are arranged and ranked

in order of increasing magnitude of their values for a

feature. The sum of these ranks is a normally distributed

random variable with expected value

E = n (n + n 2 + 1)/2 or E 2 = n2(n1 + n 2 + 1)/2

and variance

2
F = nln2(n1 + n 2 + 1)/12

where n1 and n 2 are the numbers of U and U* objects. The

output of this test is a confidence level at which one

can presume that the U and U* objects do form different

populations with respect to the feature. One difficulty

with this test, however, is that it is not applicable to

intrinsically binary or coded features. Also, a feature

such as that of Figure 3-3c, which is clearly a good

discriminant, may have a low confidence rank in this

test. When using this confidence rank, therefore, the

shape of the feature PDF must be considered.

Finally, each feature's information content, esti-

mated from the 10-place one-dimensional histograms, was

computed. The information content of a feature, F, is
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10 2 2
I(F) = E P(d)E P(dlc)logP(dic) - Z P(c)logP(c)

d=l c=l c=1

where d represents one of ten deciles in the histograms,

and c is one of two classes,U or U*. When natural

logrithms are used, I(F) has a maximum possible value of

0.693. This test indicates a feature's ability to

separate U from U* objects in classification outcome

space rather than feature space (Boyle, 1976; Gallager,

1968). This rank is applicable to binary, coded, and

continuous features, but a PDF, such as that of Figure

3-3d,may have a high information rank even though its

estimated PDF may make no geologic sense. Though this

measure of feature strength proved to be the most reliable

of the three tests used here, the shape of estimated PDF's

should be considered when using this rank.

The three ranks of features for the Colorado

Plateau Jurassic/Cretaceous, Colorado Plateau Triassic,

and Casper Quadrangle uranium deposits are given in

Tables 3-1, 3-2, and 3-3. The rank ordering of the

features often varies considerably between the three

measures, though two of the three ranks are usually

nearly the same for a feature. In geological problems

such as this, there appears to be no single "best" way

of measuring feature strength, though the information
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measure is the most versatile and seems the most useful

for classification problems. In general, several compli-

mentary tests, such as these three, should be used to

insure the statistical significance of feature PDF's

and to determine an ordering of feature strength, should

one wish to discard some features from recognition.

3.5 Features for Recognition

The features used in recognition for the Casper

Quadrangle and for the Colorado Plateau are listed below.

A brief interpretation of each feature is also given to

suggest a reasonable geologic connection between the

features and uranium deposition.

The geological data used in classification are

taken entirely from public sources. There are many

features relevant to uranium favorability that are not

used here. Data such as geochemical soil and water

analyses, well log data, evidence of alteration, etc.,

are available only over small subregions of the study

areas and/or are proprietary to private concerns. The

features used here, then, do not form an ideal feature

set, and do not contain all information relevant to

uranium favorability. Several important influences on

uranium deposition are contained within the features,
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however, and useful syntheses of this data and reasonable

predictions have emerged from pattern recognition treat-

ment.

Data for the Colorado Plateau were taken from the

Geologic Atlas of the Rocky Mountain Region (R.M.A.G.,

1972), from new U.S.G.S. isopach maps of Cretaceous sedi-

ments on the Colorado Plateau, and from standard U.S.G.S.

topographic maps. Data for the Casper, Wyoming,

Quadrangle were assembled for analysis by E.R.D.A., Grand

Junction, from subcontracted work. A radiometric survey

flown at 2-mile spacing, surface geological, structural,

topographic, geothermal gradient, gravity, and magnetic

maps, and lineament analysis of LANDSAT imagery were

available to generate features for recognition.

The features used in recognition were selected from

a larger set of candidate features derived from these

data sources using a pre-determined algorithm independent

of the problem at hand. It is noteworthy, therefore, that

so many features are explicable in terms of modern

theories of ore genesis, particularly in the case of the

Colorado Plateau. Also note that although the present

feature selection procedure has found features for the

Colorado Plateau that refer to geological events from the

Pennsylvanian to the present, an emphasis on Late
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Cretaceous time, the time of ore deposition, has natural-

ly emerged in the features.

Several prospecting guides to sandstone-type uranium

deposits have been recognized by geologists (Fisher,

1974; McKay, 1955; Grutt, 1972). These include the age,

thickness, and depositional environment of the host rock,

interbedding of thin lenses of shale, mudstone, and

conglomerate with the host sandstones, bleaching or other

discoloration of host rocks, occurrence of unconformities

and small scale faults, trace element anomalies in ground-

waters or host rocks, occurrence of fossil carbonaceous

material, and mineralogical characteristics of the host

sandstones. Some of these diagnostics cannot be determ-

ined without extensive field work; others will be of

little use for detecting deposits at depth without

drilling. Wherever data permit, a reflection of these

well-known guides occurs in the features for recognition,

e.g. reference to bed dip angle, proximity to tuffaceous

beds, proximity to small faults, LANDSAT lineaments,

radiometric anomalies, occurrence of carbonates, deposi-

tional environment of the host sediments, and thickness

of host beds.

Because some well-known guides for prospecting emerge

naturally from pattern recognition techniques as features,

it is reasonable to suppose that the unfamiliar features
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may also be of geological significance and may be useful

as prospecting guides. Further, when deeper deposits

are sought, and objective feature selection process may

be an effective way of generating prospecting guides

from geophysical and other survey data.

The features for recognition follow; histogram

estimates of their state conditional PDF's are given in

Figures 3-4, 3-5, and 3-6. Most features are continous-

valued, many referring to the distance from a recogni-

tion object to the nearest geological entity of a given

type (e.g. features #1 and #3 from Figure 3-4); other

features are coded (e.g. feature #2 from Figure 3-4);

other features are intrinsically binary (e.g. feature #6

from Figure 3-4). State-conditional PDF's for all

features are given in 10-place histogram formats.
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3.5.1 Features for Recognition of Uranium Deposits in

Cretaceous Sediments on the Colorado Plateau

1. Proximity to Cretaceous shoreline of Eagle time.

(Areas near the paleocoastline are favored for

uranium. The series of Cretaceous marine trans-

gressions were major geological events occurring

nearly contemporaneously with ore deposition.

Near the interface between marine and continental

environments, sands, shales, silt, and limestone

may be interbedded. Oxidation/reduction reactions

might proceed quite differently from a clean sand

environment in these interbedded sediments of vary-

ing porosities, permeabilities, surface areas per

unit volume, and chemical characteristics. The

presence of an ancient ocean may have influenced

paleohydrology on both sides of a paleocoastine.

Other features suggest that relative elevation was

an influence on uranium deposition; a paleocoastline

marks a reference elevation that may be reconstructed

regardless of subsequent elevation changes within a

province.)

2. Lithofacies of the Entrada and Carmel Formations.

(Areas of marine, rather than continental, sandstone
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are favored for uranium. These formations are not

major uranium producers, but they may provide bar-

riers to the vertical movement and escape of ground-

waters circulating through adjacent beds.)

3. Proximity to local maxima in thickness of the

Brushy Basin Shale Member of the Morrison Formation.

(Areas near thickenings of the Brushy Basin are

favored for uranium. Locally thickened areas mark

depositional foci; after deposition of the Brushy

Basin, groundwaters may have continued to be

focused toward these areas. As shale is relatively

impermeable, flow through the enclosing beds may

have been affected by variations in the thickness

of the Brushy Basin.)

4. Proximity to Cretaceous shoreline of Late Skull

Creek time.

(Proximity to the paleoshoreline is favored for

uranium. See feature 1.)

5. Thickness of the Pennsylvanian System.

(Thicker areas are favored for uranium. Depositional

foci of the Pennsylvanian may mark long-lived struc-

tural features that persisted throughout the evolu-

tion of the Plateau.)
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6. Presence of a Miocene/Eocene intrusive body within

the cell.

(Cells with intrusions are favored for uranium.

Mineralizing solutions may have been derived from

intrusive magmas.)

7. Proximity to local maximum of thickness of the

entire Morrison Formation.

(Proximity to locally thickened areas is favorable

for uranium; this is a familiar prospecting guide.

Thickened areas are depositional foci, and perhaps

groundwater flow foci. Thickened areas may have

more numerous or thick interbedded shales, mudstones,

and sandstones that are known to be favorable

lithologic influences on ore deposition.)

8. Proximity to Cenozoic volcanic and intrusive rocks.

(Cenozoic igneous bodies post-date ore emplacement.

As they occur in areas quite different from Cretaceous

intrusives, it is possible that new tectonic influ-

ences activated zones of crustal weakness and a

system of magma conduits distinct from those associa-

ted with ores. Possibly pre-existing uranium deposits

may have been exposed to oxygenated waters where

these volcanics disrupted Plateau sediments. These
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volcanics ring the Plateau in the south and east.

Proximity to them is unfavorable for uranium. It

may be, therefore, that this feature merely reflects

the fact that a majority of known ore bodies in

Cretaceous sediments are clustered in the center of

the Plateau.)

9. Minimum thickness of the Morrison Formation in the

cell.

(Thinnest areas are unfavorable for ore. This

feature reflects both the fact that the Morrison is

the major host unit for uranium (zero thickness is

unfavorable for ore), and that thicker areas within

the Morrison are particularly favorable for ore.)

10. Minimum thickness of the Brushy Basin Member of the

Morrison in the cell.

(Thicker areas are favorable for uranium. See

features 3 and 9.)

11. Proximity to a pinch-out of the Entrada/Carmel

Formations.

(Areas where these formations are present, at moder-

ate distances from the pinch-outs, are favored for

ore. Paleo-topographic highs are ringed by pinch-

outs.)
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12. Thickness of Swift Age sediments (Summerville and

Todilto Formations).

(Areas where these sediments are present, but

relatively thin, are favored for ore.)

13. Proximity to Cretaceous shoreline of Late Moury

time.

(Proximity is favored for uranium. See feature 1.)

14. Proximity to a pinch-out of the Westwater Member of

the Morrison Formation.

(Proximity to a pinch-out is favored for ore.)

15. Maximum thickness of the Salt Wash Member of the

Morrison Formation in the cell.

(Thicker areas are favored for uranium. See feature

7.)

16. Proximity to a local maximum in thickness of the

Salt Wash Member of the Morrison Formation.

(Proximity to maxima of thickness are favored for

uranium. See features 3 and 9.)

17. Proximity to Cretaceous shoreline of Judith River

time.

(Proximity to the paleoshore is favored for uranium.

See feature 1.)
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18. Maximum thickness of Brushy Basin Member of the

Morrison Formation in the cell.

(Areas of greatest thickness are favored for

uranium. See features 3 and 9.)

19. Thickness of Triassic rocks in the cell.

(Areas where these rocks are present, but thin,

are favorable for uranium.)

20. Proximity to a pinch-out of lowest Cretaceous

sediments.

(Proximity to a pinch-out is favored for uranium.)

21. Proximity to the Cretaceous shoreline of Early

Clagett time.

(Proximity to the paleoshoreline is favored for

uranium. See feature 1.)

22. Proximity to Upper Cretaceous intrusive rocks.

(Proximity to intrusive bodies is favorable for

uranium. Intrusives may have been a source of

mineralizing solutions.)

23. Minimum thickness of the Salt Wash Member of the

Morrison Formation in the cell.

(Areas of greater thickness are favored for uranium.

See feature 7.)
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24. Proximity to a pinch-out of the Triassic Moenkopi

Formation.

(Proximity to the pinch-outs are favored for uranium.
14

This formation is older than either the Chinle or

Morrison; enduring paleotopographic highs are marked

by the pinch-outs.)

25. Proximity to a pinch-out of Swift Age rocks.

(Rather large distances from the pinch-outs are

favored for uranium. These Jurassic sediments mark

the paleotopographic highs present just before the

Cretaceous.)

26. Proximity to a pinch-out of the Recapture Member

of the Morrison Formation.

(Proximity to the pinch-outs is favored for uranium.)

27. Proximity to the Cretaceous shoreline of Early Belle

Fourche time.

(Proximity to the shoreline is favored for uranium.

See feature 1.)

28. Proximity to the Cretaceous shoreline of Middle

Green Horn time.

(Proximity to this shoreline is unfavorable for

uranium, in contrast to other shoreline features
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listed above. No interpretation of this feature

is obvious.)

29. Proximity to major anticlines.

(Major anticlines and uplifts may have offered

structural controls on circulation of groundwaters.

Uplifts may have exposed Precambrian basement rocks,

possibly providing uranium source material. Vertical

movements of fluids may have been facilitated by

faults near the axes of anticlines. Proximity to

these structures is favored for uranium.)

30. Maximum thickness of the Westwater Member of the

Morrison Formation in the cell.

(Areas of greater thickness are favored for uranium.

See features 3 and 9.)

31. Proximity to a local maximum of thickness of the

Recapture Member of the Morrison Formation.

(Proximity to thickened areas is favorable for

uranium. See features 3 and 9.)

32. Proximity to a local maximum of thickness of the

Westwater Member of the Morrison Formation.

(Proximity to thickened areas is favorable for

uranium. See features 3 and 9.)
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TABLE 3-1: Ranks of Features for Recognition of Uranium
Deposits in Jurassic Sediments on the Colorado
Plateau.

Feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Information
Information Rank

Bayes
Weight

2.6
2.2
2.2
1.9
1.8
1.8
1.8
1.7
1.7
1.7
1.6
1.6
1.6
1.6
1.6
1.6
1.5
1.5
1.4
1.4
1.4
1.4
1.4
1.3
1.3
1.3
1.1
1.0
0.9
0.9
0.8
0.6

Rank Sum
Confidence

99%
NA
99%
99%
99%
NA
99%
99%
99%
99%
99%
96%
99%
99%
99%
99%
99%
99%
96%
99%
99%
99%
96%
99%
99%
96%
99%
99%
99%
NA
92%
95%

.039

.159

.104

.046

.150

.239
.083
.080
.075
.137
.079
.077
.072
.092
.147
.121
.046
.101
.144
.146
.060
.059
.139
.101
.080
.097
.088
.149
.111
.080
.085
.103

32
2

12
30

3
1

20
21
26

9
24
25
27
17

5
10
31
14

7
6

28
29

8
15
22
16
18

4
11
23
19
13
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FIGURE 3-4: Histogram estimates of state

conditional probability density functions

for features of uranium deposits in

Colorado Plateau Jurassic/Cretaceous

sediments. These 10-place histogram esti-

mates are based on 58 U objects, 450 U*

objects. The vertical axis measures

percentages of U and U* populations;

U PDF's are indicated by dashed lines,

U* PDF's are indicated by solid lines.
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3.5.2 Features for Recognition of Uranium Deposits in

Triassic Sediments on the Colorado Plateau

1. Combined thickness of Navajo Sandstone and Kayenta

Formation.

(These are of Upper Triassic Age, and do not extend

over the entire Plateau. Thickness of these forma-

tions carries information about ancient surface

water flow. Groundwater flow may have been concen-

trated in areas of surface water flow concentration.

Uranium is favored where these formations exceed

500 feet in thickness.)

2. Thickness of the Devonian System.

(Areas of greater thickness are favored for uranium.

Thickness of this system reflects, in part, distance

from the Uncompahgre and Defiance and Central New

Mexico uplifts, which influenced paleohydrology and

sedimentation on the Plateau for considerable

geologic time. Smaller scale irregularities in

thickness may reflect pre-ore topographic or

structural features.)

3. Proximity to a major anticline structure.

(These large structural features, 100-200 km in



-82-

length, such as the Zuni, Kaibab, and Uncompahgre

uplifts, are pre-ore and exerted a considerable

influence on paleohydrology. Proximity (< 100 km)

to these uplifts is favored for ore. The flanks

of these structures may have had a more stable

hydrologic regime through time than other areas on

the Plateau.)

4. Proximity to the marine/non-marine sedimentary

interface of Belle Fourche time.

(Areas nearer the paleocoastline are favored for

uranium. The changing sedimentary environment near

the coast may have allowed increased interbedding

of sands, shales, and marine sediments. Interbedding

of sediments of different porosities and permeabili-

ties might increase the tortuosity of groundwater

flow paths and slow groundwater flow so that oxida-

tion/reduction reactions could proceed toward

completion. Marine deposits may offer constituents,

such as limestone, that influence the chemistry of

uranium deposition.)

5. Minimum elevation in the cell.

(Minimum, maximum, and average elevation in cells are

strongly correlated; this feature offered the best
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separation of the classes. Lower modern elevations

are favored for uranium. Modern elevations are not

unrelated to paleoelevations on the Plateau, and

erosion reflects the effects of post-ore surface

water flow. Lower areas are expected to be areas of

groundwater concentration. Possible sources of

uranium include Precambrian rocks in uplifted areas

that are now denuded of sediments. If groundwaters

acquired uranium as they moved from highlands to

lowlands, waters circulating in lowlands might, in

general, have been exposed to more source material

and might carry more uranium in solution.)

6. Proximity to pinch-out of Carmel and Arapian Forma-

tions of Piper-Nesson Age.

(These Jurassic units resulted from a marine invasion

of the Plateau from the north and west. Proximity

to the boundary is favored for uranium. See feature

4.)

7. Proximity to pinch-outs of the Entrada and Carmel

Formations of Rierdon Age.

(These sediments are more widespread than those of

Piper-Nesson Age. They result from a second Jurassic

marine invasion. Pinch-outs indicate paleotopograph-
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ic highs. Areas at moderate distance from pinch-

outs are favored for uranium.)

8. Proximity to a pinch-out of Swift Age sediments,

Summerville and Todilto Formations.

(Another Jurassic marine invasion. Pinch-outs

reflect paleo-topographic highs as well as areas of

negligible sediment thickness. Areas at moderate

distance from pinch-outs are favored for uranium.)

9. Thickness of upper Triassic sediments, Chinle and

Dolores Formations.

(Areas of moderate thickness of the principal

Triassic uranium host formation are favored for

uranium.)

10. Minimum thickness of the Salt Wash Member of the

Morrison Formation in the cell.

(Areas of thicker sediment cover are favored for

uranium in underlying Triassic sediments. Thickness

of the sediments overlying the host beds offer an

indication of ground and surface water circulation

after the deposition of the uranium host beds.)

11. Proximity to the Cretaceous shoreline of Late Skull

Creek time.

(Marine transgression may have influenced groundwater
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circulation in near-shore sediments. Proximity to

this coast is favored for uranium. See feature 4.)

12. Proximity to the Cretaceous shoreline of Late Maury

time.

(Proximity to the shoreline is favored for uranium.

See feature 4.)

13. Maximum thickness of the Salt Wash Member of the

Morrison Formation in the cell.

(Areas of greater thickness should represent foci

for surface water flow, and are favored for uranium.

See feature 10.)

14. Maximum elevation in the cell.

(Areas at lower elevations are favored for the

accumulation and deposition of uranium. See feature

5.)

15. Proximity to a pinch-out of lowest Cretaceous

sediments.

(Paleo-topographic highs are indicated.)

16. Proximity to a pinch-out of the Recapture Member

of the Morrison Formation.

(See feature 15.)
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17. Proximity to the Cretaceous shoreline of Telegraph

Creek time.

(See feature 4.)
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TABLE 3-2: Ranks of Features for Recognition of Uranium

Deposits in Triassic sediments on the
Colorado Plateau.

Rank Sum
Confidence

99%
99%
99%
99%
99%
99%

<67%
96%

<67%
95%

<67%
<67%
99%
99%
97%
92%
99%

Information
Information Rank

.155

.202

.128

.075

.210

.133

.159

.158

.016

.134

.087

.122

.142

.199

.181

.125

.105

7
2

11
16

1
10

5
6

17
9

15
13

8
3
4

12
14

Feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Bayes
Weight

2.2
2.1
1.7
1.6
1.6
1.5
1.4
1.4
1.3
1.3
1.2
1.2
1.2
1.1
0.8
0.8
0.7
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FIGURE 3-5: Histogram estimates of state-

conditional probability density functions

for features of uranium deposits in

Colorado Plateau Triassic sediments.

These 10-place histogram estimates are

based on 45 U objects and 463 U* objects.

The vertical axis measures percentages of

U and U* populations; U PDF's are indicated

by dashed lines, U* PDF's are indicated by

solid lines.
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3.5.3 Features for Recognition of Uranium Deposits in

the Casper, Wyoming Quadrangle

1. Proximity to major anomaly in airborne radiometric

survey.

(Will pick up surface shows of uranium, shallow

deposits that have enriched overlaying soil with

uranium; will not record deeper deposits; will

pick up workings from mine operations.)

2. Proximity to an anomaly of any strength in airbone

radiometric survey.

(Includes all areas of feature 1, and smaller anomal-

ies. There is no predictable relationship between

the size of a deposit and uranium enrichment of

overlaying soil; an aerorad anomaly of any size may

be associated with a deposit of any size.)

3. Proximity to outcrop of mixed sandstone/limestone/

clay of Tertiary Age.

(This may be a possible source of uranium; limestone

and clay may have provided compounds favorable for

uranium deposition. Despite Quaternary erosion,

the location of modern surface exposures may help

locate areas where meteoric waters could most easily

have entered the formation.)
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4. Proximity to outcrop of Tertiary Wagonbed Formation.

(The Wagonbed is a possible uranium source bed;

outcrops may mark areas where water could have

entered the formation.)

5. Proximity to a basin boundary.

(The interiors of basins mark concentrations of

sediment and surface and groundwater flow.)

6. Proximity to an extremum of terrain-corrected

gravity anomaly.

(Highs mark mountain cores; lows mark basins; this

feature may be of no other significance.)

7. Proximity to a major LANDSAT lineament.

(These subcontinental scale linears may mark deep

zones of basement weakness or mobility. Such zones

might have influenced the depositional environment

of uranium host beds, and could have provided

conduits for the vertical migration of reducing

gases derived from the decay of carbonaceous or

petroliferous material.)

8. Proximity to the axis of the drainage unit in which

the point is located.

(Uranium source material collected from throughout a
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drainage unit will be concentrated by groundwater flow

and sediment transport toward the axis of the drain-

age unit. Drainage patterns have not changed markedly

here since the latest Tertiary.)

9. Proximity to the major axis of a sedimentary basin.

(This feature is similar to feature 8, but picks out

with more certainty foci of paleodrainage in the

Casper Quadrangle; drainage units are larger than the

basins and include them.)

10. Proximity to nearest thrust fault.

(Faults with vertical displacement may provide impor-

tant structural influences on groundwater flow. Even

if faulting post-dates initial ore deposition, post-

ore groundwater circulation may preserve, destroy,

or relocate roll front deposits. Thrust faults are

especially numerous in this area of largely vertical

crustal movement.)

11. Proximity to outcrops of host formations, Fort Union

and Wind River.

(Areas near outcrops appear favored for uranium

because the most readily located ore bodies are those

with surface shows. There appears to be no reason

why these host beds should not hold reserves at depth



-101-

oxygenated water could assess buried strata around

these linears, possibly removing uranium.)

16. The total number of structural elements within

4 miles.

(The most complex regions are somewhat favored for

uranium.)

17. Proximity to second-closest extremum of terrain-

corrected gravity anomaly.

(Areas close to two extrema are favored for uranium.

This feature may only measure proximity to basins

and ancient, granitic mountain cores.)

18. Proximity to a minor LANDSAT linear of northwesterly

trend.

(Areas closer to this group of sub-parallel linears

are less favorable for uranium. This feature over-

laps with feature 15.)

19. Number of structural elements between point and

nearest major anticline axis.

(Groundwaters will tend to move downdip away from

anticlinal folds. Uranium deposits tend to occur

closer to the anticlines, before numerous structural

features intervene on water ciculation.)
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in areas away from outcrops.)

12. Proximity to Precambrian rock outcrop.

(Areas near uplifted Precambrian rock are favored

for uranium. The ancient granites may have been a

source of uranium.)

13. Proximity to an aeromagnetic lineament.

(Areas near aeromagnetic lineaments are favored for

uranium. These magnetic anomalies may mark basement

faults, which,if continually remobilized, could have

distributed accumulating sediments and may mark zones

along which chemical species could migrate vertically.)

14. Proximity to an uplift boundary.

(Areas near uplift boundaries are favored for uranium.

Uranium-bearing waters may have entered host beds at

these points.)

15. Proximity to both northeast- and northwest-trending

minor LANDSAT linears.

(This feature measures lineament density. Areas near

linears from both of these suborthogonal sets of

linears are not favored for uranium, although minor

linears may enhance groundwater flow. If the smallest,

least developed linears are post-ore, it may be that
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20. Average bed dip within 4 miles of a point.

(Areas with gently dipping beds are favored for

uranium over more steeply dipping or chaotic areas.)

21. Number of dip-slip faults within 4 miles.

(Areas of greater structural complexity are favored

for uranium. This feature and feature 10 both

suggest important structural controls on ore emplace-

ment by faults with vertical offset.)

22. Proximity to areas of Quaternary sedimentation.

(Areas that have continued to receive sediment since

the Tertiary are favored for uranium - another sugges-

tion that the drainage characteristics of the area

have not changed markedly since ore deposition.)

23. Proximity to a minor LANDSAT linear of any azimuth.

(Areas immediately surrounding minor lineaments are

not favored for uranium, although minor linears may

enhance groundwater flow. If the smallest, least

developed linears are post-ore, it may be that

oxygenated water could access buried strata around

these linears, possibly removing uranium. This

feature overlaps with feature 15.)
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24. Number of anticline axes within 4 miles.

(Areas near anticlinal folds are favored for uranium.

A structural control on groundwater is suggested.)

25. Proximity to an intersection of major LANDSAT

lineaments.

(Areas near intersections of major lineaments that

may reflect deep, pre-ore crustal structures are

favored for ore.)

26. Number of thrust faults between point and the nearest

major anticline axis.

(Areas that do not have thrust faults intervening

between them and the nearest anticline are favored

for uranium.

27. Proximity to a minor syncline axis.

(Areas closer to synclinal features are favored for

uranium. A focusing or concentration of groundwater

flow is suggested.)

28. Gradient of terrain-corrected gravity anomaly.

(Areas of high lateral gradient are favored for

uranium. This feature may only pick out uplift/

basin interfaces.
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29. Maximum terrain-corrected gravity anomaly within 4

miles.

(Areas near positive anomalies are favored for

uranium. This feature probably picks out areas

near granitic source rocks.)

30. Maximum elevation within 3 miles.

(Highlands within the study area are favored for

uranium. Perhaps known deposits are those closer

to possible uranium sources in ancient mountain areas.)

31. Proximity to outcrop of Tertiary White River Formation.

(Proximity weakly favored for uranium. Features 31,

32, 33, and 34 relate known uranium deposits to out-

crops of those strata that were deposited most nearly

contemporaneously with the ores.)

32. Proximity to outcrop of Tertiary Moonstone Formation.

(Proximity weakly favored for uranium.)

33. Proximity to outcrop of Tertiary Fort Union Formation.

(Proximity weakly favored for uranium.)

34. Proximity to outcrop of Mesozoic Lance Formation.

(Proximity weakly favored for uranium.)
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35. Number of syncline axes within 4 miles.

(The axes of major synclines are not favored for

uranium. Smaller synclinal folds and the flanks of

larger synclines are favored; see feature 27).

36. Proximity to drainage divide.

(Proximity favored for uranium. This feature may

recognize uplift boundaries; see feature 14.)
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TABLE 3-3: Ranks of Features for Recognition of Uranium
Deposits in the Casper, Wyoming Quadrangle.

Bayes Rank Sum
Weight Confidence

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

2.3
2.1
2.0
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.4
1.3
1.2
1.2
1.2
1.1
1.1
1.1
1.1
1.1
1.0
1.0
1.0
1.0
1.0
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.8
0.7
0.7
0.6

Information
Information Rank

99%
99%

<68%
95%
90%
68%
99%
97%
94%

<68%
95%
86%
96%
80%
95%
88%

<68%
95%
85%
NA
94%
95%
86%
NA
96%
NA
68%
68%
84%
92%
73%

<68%
68%

<68%
NA
92%

0.15
0.17
0.19
0.23
0.25
0.19
0.29
0.26
0.28
0.27
0.23
0.32
0.34
0.25
0.25
0.36
0.26
0.27
0.29
0.32
0.16
0.16
0.31
0.38
0.25
0.28
0.24
0.29
0.07
0.25
0.27
0.17
0.24
0.27
0.24
0.32

Feature

35
31
29
27
19
30

8
17
11
13
28

4
3

20
21

2
18
14

9
5

33
34

7
1

22
12
24
10
36
23
15
32
25
16
26

6
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FIGURE 3-6: Histogram estimates of state-

conditional probability density functions

for features of uranium deposits in the

Casper Quadrangle of Wyoming. These 10-

place histogram estimates are based on

21 U objects and 359 U* objects. The

vertical axis measures percentage of U

and U* populations; U PDF's are indicated

by dashed lines, U* PDF's are indicated

by solid lines.
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CHAPTER 4

This chapter describes the four pattern recognition

algorithms used here to quantify exploration evaluations.

Previous workers have made some efforts to suppli-

ment subjective methods of prospecting and resource

estimates with quantitative and semi-quantitative tech-

niques. Organized lists of geologic features that are

often associated with uranium deposits are a first

step toward reproducible estimation of resource poten-

tial. With such lists as those proposed by Fisher (1974),

McKay (1955), and Grutt (1972), various subjective pre-

dictions could at least proceed using the same criteria.

Semi-quantitative prediction of uranium potential using

a few, arbitrarily weighted geological characteristics,

has been reported by Wier (1952). Harris (1966) has

used factors hypothesized to be related to ore occurrence

to estimate the probability that an area contains mineral

resources of a certain worth. Collyer and Merriam (1973)

used cluster analysis of subjectively weighted character-

istics to group several tungsten mining areas into

families. Such procedures often require more subjective

input than the pattern recognition techniques used here,

and sometimes are not easily tailored to suit available

data. Application of more objective pattern recognition
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techniques to regional geology has been reported by

Gelfand et al. (1976) for earthquake prediction problems.

Four algorithms are used here to recognize patterns

in geological data that are indicative of uranium

favorability. Three of these algorithms operate with

binary-coded features, the fourth uses continuous valued

features in a vector space treatment. Although one

expects most rational decision processes to have much in

common, these four algorithms have important differences

and, accordingly, each has its idiosyncratic strengths

and weaknesses.

4.1 Recognition with Individual Binary-Coded Features

The first algorithm, based on Bayes' rule, is perhaps

the simplest. Each feature gives a yes/no answer about

the geological patterns in a 2-class classification

problem. Features are coded in binary form as discussed

in Chapter 3, and with f features, the objects for

recognition are described by f-dimensional data vectors

with binary valued components,

X = (x1 , x2 ,  . . . .. . . .. . . . xf).

A likelihood ratio is used to decide whether a data

vector X represents a uranium-bearing or a barren area.
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If pk = Prob(xk = l1 U) and qk = Prob(xk = lI U*),

and if the features are conditionally independent, then

P(XIU) and P(XIU*) can be computed from the product of

the probabilities of the components of X, the x.:

f x. 1-x.
P(XIU) = p (1 - 1p

i=l

and

f x. 1-x.
P(XIU*) = 7T q. (1 - q.)

i=l

P(X U)
Forming the likelihood ratio, P(XIU) yields the

P(X u*)

following discriminant function for classification:

Pi (1-P P(U)G(X) = log-- + (l-x.)log ] + log
S q[x i (1-q) P(U*)

i= 1 1

which is of the form

f
G(X) = w.x. + w .

il1 1 03- 3 0i=1

Each binary feature is weighted according to how well it

separates the two classes, U and U*, of a training popu-

lation. The weight of the i-th feature is

p.(l - q.)
1 1

w. = log ( .
I qi(1 - p. )

1Features most often associated with U areas receive a

Features most often associated with U areas receive a
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positive weight; features characteristic of U* areas

receive a negative weight (feature weights generated by

this algorithm for the complete study area are given in

Tables 3-1, 3-2, and 3-3). The weights of features

occurring at each object are summed to give a classifica-

tion rank; the more indicators of uranium an object has,

the more positive its rank. The rank of each object is

then compared to the threshold, w . If an object's rank
o

exceeds the threshold

f 1 - p.
1 P(U)

W0 = E log + logo . log 1 - qi P(U*)
i=l I

that object is classed as U; otherwise, it is classed as

U*.

Note that the weight given each feature depends on

the significance of a "yes" answer for that feature. If

pi = q., the i-th feature gives no information about the

state of nature, U or U*, and its weight is zero. The

decision threshold, w , depends on the a priori probabi-o

lities of U and U*, and biases the decision in favor of

whichever is more likely, here, U*. This decision

algorithm is described more fully by Duda and Hart (1973).

The features used here are not independent, but are

treated as though they were. Strongly correlated features
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effectively add two weighted votes for two pieces of

information which, though perhaps geologically indepen-

dent, occur often in combination with one another.

Experiments were run with subsets of the full compli-

ment of features to investigate the effect of this

treatment. In general, the error rate of the classifier

increases as features are removed from consideration.

When one member from each pair of strongly correlated

features is removed from recognition, the error rate of

this classifier also increases. In general, it appears

preferable with this classifier to include slightly redun-

dant information rather than to discard features from

recognition (see Chapter 6).

4.2 Combinations of Binary Features

A second approach to recognition attempts to seek

out important contextual relationships between data.

Features are binary coded as before, but all are weighted

equally. An algorithm adapted from M.M. Bongard (Bongard

et al., 1966; Briggs and Press, 1977) looks for particu-

lar combinations of binary values of particular features

that are especially characteristic of U or of U* objects.

Given sample populations of U and U* objects, the

Bongard procedure searches all the different combinations
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of binary values of every different combination of 1, 2,

and 3 features taken together to find some combinations

of values that are particularly indicative of an object's

membership in one class or another. These sets of charac-

teristic feature values are called "traits." Traits may be

formed of single features, F., with two possible binary

values:
values:

Trait 1

Trait 2

or of one of the four possible

two features, F. and F.:
1 3

Trait

Trait

Trait

Trait 4

1

0

combinations of values of

F.

0

1

0

1

or of one of eight possible combinations of values of

three features, F., F., Fk , in combination:1

Trait 1

Trait 2

Trait 8

F. 3

0

0

1

Fk

0

1

1
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Each of these possible traits may be characteristic of

U or of U* objects if the particular combination of

feature values occurs often in one group of objects and

seldom in the other group of objects. For example, close

proximity to an intrusive body and a thickening of the

Morrison Formation may be characteristic of uranium-

producing areas on the Colorado Plateau. It is required

that traits characteristic of U objects occur at more than

K U objects and at fewer than K * U* objects in the U

and U* training populations. Similarly, traits character-

istic of U* objects must occur at more than K 2 U* objects

and at fewer than K2* objects of the U training sample.

KI, KI*, K2 , and K2* are adjusted to pick a manageable

number of traits (usually 10 to 20) to characterize each

group. There is no restriction on how often an indivi-

dual feature need or may be a component of the traits

selected. All traits are weighted equally; each U trait

in an object's data vector contributes +1 vote for that

object, each U* trait contributes a -1 vote for that

object. Having found characteristic traits, the classi-

fier then determines from each object's data vector the

number of U and U* traits that occur at the object. The

algebraic sum of the U and U* votes for an object is

compared to a decision threshold (generally near zero)
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determined from recognition on the training sample. A

net vote in excess of the threshold classifies an object

as U.

The originators of this algorithm note the following

relationships among the traits. Consider two traits of

class C, T and T . If T and T should occur at exactly
A B A B

the same sets of objects of class C, then they are equiva-

lent traits, and one is arbitrarily designated independent,

the other dependent. If there is at least one object of

class C at which T occurs but T does not, then T is
A B A

independent of T . If the set of class C objects at

which T occurs is a proper subset of the class C objectsB

at which trait TA occurs, then TB is dependent on TA

Recognition may be performed with independent traits

only, or with all traits.

The Bongard algorithm is designed to pick out syner-

gistic combinations of geologic features that may be more

strongly indicative of class membership than the occur-

rence of the individual features used in the previous

algorithm. No geologist could keep in mind the thousands

f
of possible traits that this algorithm reviews (2C 1 +

f f f
4C f + 8C , where C is the number of combinations of f

2 3 m

features taken m at a time - 9920 traits for 20 features,

34,280 traits for 30 features, etc.). Because this

algorithm examines all singlet, doublet, and triplet
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traits, new insights into geological processes may emerge

from interpretation of the particular combinations of

features that are picked as traits. There is no pro-

vision for weighting the traits or features according to

their hypothesized or apparent significance. The

algorithm is free, however, to select individual features

for use in traits as often as warrented subject to the

K/K* conditions.

4.3 Unsupervised Hierarchical Clustering with Binary

Features

A third approach to recognition involves unsuper-

vised learning and clustering. An unsupervised learning

technique is particularly useful in geological problems

where the most natural grouping of objects into classes

is sought. Here, for example, clustering experiments

suggested that a grouping of Colorado Plateau U objects

according to host bed ages was preferable to a grouping

according to the size of deposits. Features are again

taken in binary coded form, unweighted to form dendro-

grams of inter-object similarity.

The dendrogram is a tree-like diagram showing simi-

larity relations among a group of objects. Individual

objects form the leaves of the tree; all objects are

joined in a single root of the tree. The intervening



-138-

branches join one another at different levels between

the leaves and root, graphically expressing the mutual

similarity of objects on the branches. There is one and

only one path joining any two objects. Two similar

objects are connected by branches that join together in

a node near the leaves; two relatively dissimilar objects

are joined by a path that passes through the trunk of

the tree rather near its root. The Hamming distance

is used to measure inter-object dissimilarity. With f-

dimensional binary data vectors, the Hamming distance

simply measures the similarity of two objects as the

number of features, m, with the same binary answer in

each of the two objects's data vectors; the dissimilarity

is then f-m. For example, the two data vectors V 1 -

(1,0,1,1,0,1,0,0) and V 2 = (1,0,1,1,1,1,1,1) are separated

by a Hamming distance of 3.

The measure of distance between clusters A and B is

the maximum of the dissimilarities between objects of A

and objects of B,

D(A,B) = max(D(a,b))

where objects a are in cluster A, and objects b are in

cluster B. Clusters are grown one object at a time to

maintain a minimum cluster diameter; the diameter of a

cluster is the maximum dissimilarity between any two
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objects within that cluster,

Dia(A) = max d(a,a')

Objects found most similar to known U objects are

suggested as new targets for prospecting. The designa-

tion of new prospecting targets may proceed in two ways.

Given a dendrogram with some known U objects as leaves,

the classification of unfamiliar objects as U may proceed

from the leaves of the dendrogram toward the root to

include all the objects on those limbs that have higher-

than-expected numbers of U objects above where the limb

joins the body of the tree. Given a dendrogram, one may

also consider using a nearest-neighbor or N-nearest

neighbor rule for classification.

4.4 Minimum Distance Classifier

The fourth classification technique is a vector

space minimum distance classifier (Young and Van Otterloo,

to be published). Data are used in original form, not

binary-coded, so that quantization noise is eliminated.

Only features that are continuous measures with monomodal

PDF's are used in recognition. Only monomodal features

are considered so that the number of U objects in a

cluster will not drop to a statistically unacceptable

level.
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Again, two classes of training objects are speci-

fied, U and U*. Data vectors for these samples are

used to estimate means, variances, and covariances of

the features for the clusters U and U*. The dissimil-

arity between an object and a cluster or class is taken

as proportional to the distance from the object to the

class mean. Because the original features are neither

normalized to be compatible with one another, nor ortho-

gonal, a coordinate system that is both scaled and rotated

compared to the original input features is established.

Distance, or dissimilarity, is measured in this new

feature space, not in units of the individual features,

but in terms of their standard deviations. The squared

distance from an object x. to the K-th class mean, k'

is given by:

2 t -1
D (x.,P ) = C(x. - Pk ) S (x. - P )

1k 1 k 1 k

-i
where C is a constant that may be dropped, and S1 is

the inverse covariance matrix of the features. An un-

familiar object is then classed as a member of the

cluster to which it is closer in the transformed feature

space.

This system makes use of a more formal definition

of similarity/dissimilarity involving a distance metric
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in the transformed data space. The geological signifi-

cance of the new coordinates, which are linear combina-

tions of the original features, is obscured, however.
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CHAPTER 5

This chapter presents the results of applying

four pattern recognition algorithms to the three

feature data bases discussed in Chapter 3. In these

experiments, all available features were used in

recognition and the class membership of each object

was taken as known a priori in developing classifiers.

Recognition experiments using the identities of all

objects indicate whether or not the known deposits will

cluster at all, and if so, how well the known deposits

can be distinguished from barren areas given the data

at hand. Classification results proved to be the best

when the largest possible training samples were used

and,with few exceptions, when all available features

were used in recognition. These experiments correspond

to a prospecting mode in which some deposits have been

located in a metallogenic province and, based on their

characteristics, one wishes to predict the locations of

all similar deposits within the province.

5.1 Recognition with Individual Features

Casper Quadrangle:

All 21 points near known uranium deposits, and 303

points presumed barren were used to train the linear



-143-

discriminant classifier. These points provided estimates

of the probability of binary feature values for U and U*

classes. Because there is little evidence that they

mark significant uranium deposits, the 56 points near

uranium prospects and occurrences were withheld from the

training, but were evaluated by the classifier.

Points classed as U are indicated in Figure 5-1.

Sixteen of 21 producing areas conform to a regional

pattern and are classed as U. Two isolated U points in

the northeast, and one in the south central part of the

Quadrangle are not correctly recognized as U (rows 1 and

2, column 22, and row 13, column 15). These do not

conform to the regional pattern which is set by the

mining areas of greater areal extent, Shirley Basin, Gas

Hills, and Crooks Gap. In all the recognition experi-

ments for the Casper Quadrangle, these errors in classi-

fication persist. The regional pattern is perhaps too

strongly influenced by the larger mining areas, yet with

only 21 samples of U objects, one cannot consider drop-

ping many of these points and still hope to retain a

fair idea of the relevant feature distribution functions.

Nine prospects, one occurrence, and ten U* points

are also classed as U; these areas are outlined in Figure

5-1. Most of these twenty non-producing objects are
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FIGURE 5-1: Recognition results for

the Casper Quadrangle - linear discrim-

inant algorithm trained on 21 producing

points. Areas classified favorable for

uranium are within the solid outlines

(see legend Figure 3-2).
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adjacent to known producing areas, suggesting productive

extensions of these mining areas. Three areas in the

central part of the Quadrangle, however, are not near

any known production. The southernmost of these (rows

12 and 13, column 19) is a highly faulted area of

relatively thin sediments on the flanks of exposed

Tertiary volcanic rocks that might have provided uranium

source material. The other two areas (rows 5 and 8,

column 18) are near the southern tip of the Wind River

Basin, near oil and gas fields. Perhaps chemical condi-

tions related to the occurrence of hydrocarbons might

favor uranium deposition in these areas.

Colorado Plateau Jurassic/Cretaceous Deposits:

Fifty-eight cells with uranium production from

Jurassic or Cretaceous host beds were contrasted with

450 remaining cells to train the linear discriminant.

Preliminary feature selection and recognition experiments

indicated that cells with uranium production from

Triassic and Tertiary host beds, and vein and breccia

pipe deposits introduced no significant contamination

into the U* class. The classifier, trained on 508 cells,

was then used to re-evaluate all 508 cells to suggest

new prospects.
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Cells classified favorable for uranium are indicated

in Figure 5-2. Forty of 58 cells with production from

Jurassic or Cretaceous strata are correctly classified as

U. One hundred six, or 24% of the remaining 450 cells,

however, are also classed as U; of these 106, 24% have

significant uranium production from host beds other than

Jurassic or Cretaceous strata. This result, to some

extent, indicates a similarity in the genesis of uranium

deposits within Cretaceous, Jurassic, and Triassic strata.

More importantly, a weakness of the classifier becomes

apparent in this application. Except for one cell in the

northeast, the 146 cells classed U form a contiguous area

despite the fact that producing cells are widely distri-

buted over the Plateau, and that about 1/3 of the

Jurassic/Cretaceous U cells are quite far from the

largest single spatial cluster of U cells. The linear

discriminant with binary features tends to ignore subtle

differences between adjacent land areas and is, therefore,

prone to error. This behavior is in strong contrast to

the performance of the minimum distance classifier,

discussed below. The performance of the linear discrim-

inant on the Colorado Plateau also contrasts with the

results for Wyoming discussed above. In the Casper

Quadrangle, with very few training samples, this classi-
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FIGURE 5-2: Recognition results for the

Colorado Plateau - linear discriminant

trained on 58 Jurassic/Cretaceous pro-

ducing cells. Areas classified favorable

for uranium are within the solid out-

lines (see legend Figure 3-1).
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fier provided sensible, rather conservative predictions.

With three times as many U objects available for training

on the Plateau, a more complex feature coding and recogni-

tion procedure seems to be favored. Though there is a

high apparent error rate on U* objects on the Colorado

Plateau, results from this classifier are not unreasonable,

as the area classed as U includes that part of the

Plateau where the Morrison Formation is thickest and

most often productive.

Colorado Plateau Triassic Deposits:

Forty-five cells with uranium deposits in Triassic

strata were contrasted with the 463 remaining Plateau

cells to train the linear discriminant. Once again,

inclusion of Jurassic, Cretaceous, and vein-type deposits

in the U* class did not affect feature selection or

recognition.

Cells classed as favorable for uranium deposits in

Triassic strata are indicated in Figure 5-3. Twenty-

eight of 45 U objects are recognized as U, along with

60 U* objects. Of these 60 cells, 21 have significant

uranium production from other than Triassic host beds;

39 cells without uranium production are classed as U.

Although the number of misclassifications is smaller

than in the case of Jurassic/Cretaceous deposits,
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FIGURE 5-3: Recognition results for the

Colorado Plateau - linear discriminant

trained on 45 Triassic producing cells.

Areas classified favorable for uranium

are within the solid outlines (see

legend Figure 3-1).
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recognition results from this algorithm are similar to

those obtained for training on Jurassic/Cretaceous

deposits. The cells classed as U form a contiguous

area which exludes many deposits in Triassic strata

that are far from the north-central area of the Plateau,

where many of these deposits are clustered.

5.2 Recognition with the Bongard Algorithm

The Bongard algorithm yields recognition results

that have some properties of both the linear discriminant

discussed above and the minimum distance classifier

discussed below. In general, localized clusters of

deposits still heavily weight recognition results, but

the area classed as favorable for uranium extends away

from these clusters to include deposits far from such a

central cluster. The error rate of this classifier is

high, however, because U* objects intervening between

correctly recognized U objects are likely to have binary-

valued features more similar to features of surrounding

U objects than to features of more distant U* objects.

These U* objects will have more characteristic U traits

than U* traits, and thus are likely to be misclassified

as U.
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Casper Quadrangle:

Binary-valued features of twenty-one U points were

contrasted with features of 303 points presumed barren

to develop characteristic traits of U and U* objects.

All points, including prospects and occurrences were

then evaluated with these traits. Results of recognition

are shown in Figure 5-4. As with the linear discriminant,

the isolated mining areas in the south-central and north-

east parts of the Quadrangle are not recognized as U.

Sixteen of 21 U points are correctly classified; 8 pros-

pects, 2 occurrences, and 26 presumably barren points

are also classed as U. Most of these are extensions of

known mining areas. Three areas distant from mining

activity are suggested as prospects. Two of these areas

overlap predictions of the linear discriminant (row 5,

column 18 and row 8, column 18). A third area classified

favorable for uranium consists of six points in the south

Wind River Basin in an area of thick sediments and hydro-

carbon accumulations (row 4, column 14 and adjacent

points).

Colorado Plateau Jurassic/Cretaceous Deposits:

To produce the strongest contrast of traits for

recognition and interpretation with the Bongard algorithm,
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FIGURE 5-4: Recognition results for the

Casper Quadrangle - Bongard algorithm

trained on 21 producing points. Areas

classified favorable for uranium are

within the solid outlines (see legend

Figure 3-2).
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the binary features used in the previous algorithm were

scanned to develop traits characteristic of the 55 cells

with Jurassic/Cretaceous deposits and of 391 cells with

no known uranium deposits; 59 cells with uranium produc-

tion from other than Jurassic or Cretaceous host beds

were not included in trait selection, but were later

evaluated by the Bongard classifier.

Recognition with independent traits produced slightly

fewer misclassifications of U* objects than did recogni-

tion with all traits. Results of this recognition are

shown in Figure 5-5. Forty-four of 58 U objects are

correctly recognized. Twenty cells with deposits in other

host environments are recognized as U, and 80 of 391

barren cells are predicted to be favorable for uranium.

These results are not unreasonable, but some large

deposits have been discovered outside the favorable

area; this suggests that the largest cluster of U objects

has had an overly strong influence on recognition results.

Because uranium deposits are rare geological objects, one

might reasonably have more confidence in the predictions

of a system that classified as U something less than the

present 20% of U objects.
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FIGURE 5-5: Recognition results for the

Colorado Plateau - Bongard algorithm

trained on 58 Jurassic/Cretaceous

producing cells. Areas classified

favorable for uranium are within the

solid outlines (see legend Figure 3-1).
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Colorado Plateau Triassic Deposits:

To characterize Triassic deposits, 45 cells with

uranium deposits in Triassic rocks were contrasted with

391 cells presumed barren. Known uranium deposits in

other than Triassic host rock were withheld from the

trait selection stage of classification.

The results of recognition using all traits is shown

in Figure 5-6. Perhaps because Triassic deposits are

more widely dispersed over the Plateau than Cretaceous

deposits, the traits may have embodied more essential

characteristics of these Triassic deposits, as they

provided better discrimination between U and U* objects

than in the Jurassic/Cretaceous case. Thirty-four of 45

U objects are correctly recognized. Eighteen other

uranium producing cells and 48 non-producing cells are

also classed as U. This error rate in U* objects is

about half that of the Jurassic/Cretaceous case. Areas

classed as U no longer form a contiguous area, but are

split into two areas. In this case, the Bongard algorithm

begins to approach the performance of an ideal classifier

that could pick isolated productive zones out from surround-

ing barren areas. Interestingly, in both applications of

the Bongard algorithm to the Colorado Plateau, producing

cells of types different from the designated U objects
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FIGURE 5-6: Recognition results for the

Colorado Plateau - Bongard algorithm

trained on 45 Triassic producing cells.

Areas classified favorable for uranium

are within the solid outlines (see

legend Figure 3-1).
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are classed as U only when they lie between clusters of

correctly recognized U objects. The Bongard algorithm

tends to ignore producing cells different from those of

the designated U class. In part this is due to differ-

ences in the features selected for recognition on

Cretaceous and on Triassic deposits, and in part it

reflects the fact that characteristic traits are

developed to suit a particular type of deposit.

5.3 Recognition with the Minimum Distance Classifier

A treatment of recognition using a distance metric

in a continuous-valued feature space provides the best

classification results for the Colorado Plateau. In the

Casper Quadrangle, however, its error rate is very high

when all available features are used. When the number of

samples of the smallest class is approximately equal to,

or greater than, twice the number of features, the mini-

mum distance classifier proved to be the best of the

four recognition techniques used here. The Casper

Quadrangle contrasts with the Colorado Plateau by proving

an example of a feature space of high dimensionality that

is under-populated with one class of objects (in this

case, U objects).
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Casper Quadrangle:

The small number of U objects, 21, is not sufficient

to populate a 33-dimensional feature space (3 of 36

features are not suited to vector space treatment).

The previous sections of this chapter suggest that at

least 3 of these 21 U objects do not conform to a

regional pattern of uranium deposits; this reduces the

number of similar-appearing U objects to 18 or less.

Performance is considerably improved when various sub-

sets of the 33 features are used in recognition (see

Chapter 6). The result of recognition with all features

is shown in Figure 5-7 as an illustration of the danger

of using a feature space of high dimensionality in recog-

nition with too few training samples. With a very small

number of training samples, performance was improved by

use of binary-coded features that confine U and U*

objects to the corners of a hypercube rather than continu-

ous-valued features that disperse objects through the

entire volume of a multidimensional feature space. When

all available features are used in recognition, 15 of 21

U objects are correctly identified. Eight prospects and

8 occurrences are classed as U, and 83 of 303 U* objects

are classed as U (Figure 5-7). The high error rate on U*

objects, 27%, makes the predictions of this recognition

analysis suspect.
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FIGURE 5-7: Recognition results for the

Casper Quadrangle - minimum distance

classifier trained on 21 producing

points. Areas classified favorable

for uranium are within solid outlines

(see legend Figure 3-2).
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Colorado Plateau Jurassic/Cretaceous Deposits:

A two-class recognition problem was set up to

classify Jurassic/Cretaceous deposits. Fifty-eight U

objects were taken as a group and contrasted with the

450 remaining Plateau cells. Control recognition experi-

ments with Triassic and other deposits withheld from

training demonstrated that the introduction of these

uranium-producing cells into the U* class did not adverse-

ly affect recognition.

The results of recognition with all available features

is shown in Figure 5-8. Forty-seven of 58 U objects are

correctly recognized; except for two isolated U objects

which are not recognized, the classifier correctly

recognizes some cells within every mining area on the

Plateau without a large number of misclassifications of

U* objects. Only 8 of the 391 non-producing cells are

classed as U, all of them adjacent to producing cells.

Two deposits in Triassic rocks are classed as U; all

other objects are classed as U*. Although not all

Jurassic/Cretaceous deposits conform to a regional

pattern, the performance of this classifier is remarkable

insofar as it can distinguish not only producing from

barren cells, but also Jurassic/Cretaceous cells from

neighboring cells with production from Triassic strata.
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FIGURE 5-8: Recognition results for the

Colorado Plateau - minimum distance

classifier trained on 58 Jurassic/

Cretaceous producing cells. Areas

classified favorable for uranium are

within solid outlines (see legend

Figure 3-1).
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Remarkably few U* objects are classified as U. This

algorithm has combined features that are individually

rather poor discriminants to form an effective classi-

fier.

Colorado Plateau Triassic Deposits:

Forty-five cells with production from Triassic host

rocks were opposed to all other cells in a two-class

recognition problem. Inclusion of other types of produc-

ing cells in the U* class had no deleterious effects on

recognition.

The results of recognition are shown in Figure 5-9.

The number of Triassic cells available to form the U

cluster in the present 17-dimensional feature space is

only about 3/4 the size of the Jurassic/Cretaceous

training population described above. This may explain

why performance of the minimum distance classifier is

slightly poorer here than in the Jurassic/Cretaceous

case. From another point of view, this is a somewhat

surprising result because the ratio of the number of U

samples to the dimensionality of the feature space is

higher in this recognition than in the Jurassic/Cretaceous

case (2.6 and 1.8, respectively). Apparently the

Triassic deposits are a more diverse family of objects
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FIGURE 5-9: Recognition results from

the Colorado Plateau - minimum distance

classifier trained on 45 Triassic

producing cells. Areas classified

favorable for uranium are within solid

outlines (see legend Figure 3-1).
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with respect to their feature space than are the

Jurassic/Cretaceous. Another factor which could con-

tribute to weakened recognition is a lack of redundant

features which, though often considered a nuisance,

appear useful in combined interpretation for bringing

outliers into their proper cluster (see Chapter 6).

In Figure 5-9, 28 of 45 Triassic deposits are

correctly recognized. As in the Jurassic/Cretaceous

case, this classifier seldom misclassifies producing

cells of other types as U objects; only 3 Jurassic/

Cretaceous cells of the remaining 72 producing cells are

designated U. In this case, the classifier correctly

recognizes some cells in every area on the Plateau that

has production from Triassic host rocks, except for 3

isolated producing cells. This widespread correct

recognition is achieved without misclassification of U*

cells intervening between areas of Triassic production.

Only 10 non-producing cells are classed as U; all of

these are adjacent to cells with production from Triassic

strata (Figure 5-9).

5.4 Unsupervised Clustering with Binary Features

Clustering with binary features does not assume a

priori any class identity for each object. Objects are



-174-

grouped naturally into minimum diameter clusters to-form

a dendrogram. If any U* objects are very similar to

U objects, they will be clustered with U objects,

suggesting that these U* objects may hold undiscovered

uranium deposits. With the dendrogram structure, it is

never obvious where one should separate a branch from

the larger tree and call it a cluster. Two reasonable,

but ad hoc rules were followed in defining clusters.

With F features, two objects's feature vectors are

expected to have F/2 identical components by chance;

clusters were defined to include objects with at least

3/4 of their features identical. Also, a U cluster was

not identified unless more than 3 U objects appeared in

the cluster, and the fraction of U objects in the cluster

exceeded three times the average frequency of occurrence

of U objects in the population of all objects.

Casper Quadrangle:

The uranium-producing points within the Casper

Quadrangle do not cluster together strongly enough to

pass the tests outlined above. The clusters shown in

Figure 5-10 were formed to include each of the 21 U

points and all other points that had more than 2/3 of

their binary feature values identical to one of these
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FIGURE 5-10: Recognition results for

the Casper Quadrangle-clustering

algorithm. Clusters of points contain-

ing all known producing areas are shown

by solid outlines (see legend Figure

3-2).
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21 U points. Most predicted new deposits are extensions

of existing mining areas.

Colorado Plateau Jurassic/Cretaceous Deposits:

Forty of 58 Jurassic/Cretaceous deposits fall in

clusters conforming to the above rules. These clusters

include 24 Triassic deposits and 48 non-producing cells.

Cells classified as U form a single contiguous area

shown in Figure 5-11.

Colorado Plateau Triassic Deposits:

Clustering with Triassic deposits results in two

main clusters of cells shown in Figure 5-12. Thirty-

four of 45 U objects are included in the clusters,

along with 12 Jurassic/Cretaceous deposits and 34 non-

producing cells.
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FIGURE 5-11: Recognition results for

the Colorado Plateau - clustering

algorithm. Areas classified favorable

for uranium in Jurassic/Cretaceous

strata are within solid outlines (see

legend Figure 3-1).
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FIGURE 5-12: Recognition results for

the Colorado Plateau - clustering

algorithm. Areas classified favorable

for uranium in Triassic strata are

within solid outlines (see legend

Figure 3-1).
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In all the foregoing recognition experiments with

the four algorithms, all objects were classified as

either U or U*. Performance in these recognition

experiments is summarized in Table 5-1. Table 5-1

shows the numbers of objects of each type from each

study area that are classified as U or U*.by the

four algorithms used here. For the Casper Quadrangle,

recognition results are tabulated for four types of

objects - known uranium resource areas; uranium

prospects; uranium occurrences; and barren areas. For

the Colorado Plateau, recognition results are tabulated

for five types of objects - cells with uranium resources

in Jurassic/Cretaceous strata; cells with uranium

resources in Triassic strata; cells with uranium resources

in Tertiary strata; cells with vein or breccia pipe

deposits; and barren cells.



TABLE 5-1: SUMMARY OF PRINCIPAL RECOGNITION RESULTS

Training:

Classifier

Linear
Decision
Surface

Bongard
Algorithm

Vector
Space
Distance
Metric

Clustering

Casper Quadrangle

U U*

Known U
Prospects
Occurrences
Barren

Known U
Prospects
Occurrences
Barren

Known U
Prospects
Occurrences
Barren

Known U
Prospects
Occurrences
Barren

16
9
1

10

16
8
2

26

15
8
8

83

21
4
1

30

5
21
25

293

Colorado Plateau
Jurassic/Cretaceous

U U*

J/C
TR
Tert
Vein
Barren

J/C
TR
Tert
Vein
Barren

J/C
TR
Tert
Vein
Barren

J/C
TR
Tert
Vein
Barren

5
22
24

277

6
22
18

220

N.A.
26
25

273

40
17

3
1

85

44
16

4
0

80

47
2
0
0
8

40
24

0
0

48

18
28

1
9

306

14
29

0
10

311

11
43

4
10

383

18
21

4
10

343

Colorado Plateau
Triassic

U U*

J/C
TR
Tert
Vein
Barren

J/C
TR
Tert
Vein
Barren

J/c
TR
Tert
Vein
Barren

J/C
TR
Tert
Vein
Barren

20
28

1
0
39

17
34

0
1

48

3
28

0
0

10

12
34

0
0

34

38
17

3

10
352

41
11

4
9

343

55
17

4
10

381

46
11

4
10

357

J/C = Jurassic/Cretaceous; TR = Triassic; Tert = Tertiary; Vein = Vein, Breccia Pipe

rra4unr~glWrP8'~s8~iB~b*llslll~ll~dBCrrr*
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CHAPTER 6

This chapter investigates changes in the performance

of the linear discriminant and minimum distance classi-

fier in several recognition experiments based on sub-

sets of the features listed in Chapter 3. Experiments

with various feature sets serve as tests of the stability

of recognition and may in some cases lead to improved

recognition results. The Bongard algorithm automatically

selects subsets of features to form traits of U and U*

objects; the clustering procedure used here provides no

intrinsic feature ranks to guide the choice of feature

subsets. These two algorithms are not considered here.

Good recognition results can often be obtained with

a small number of features. Increasing the number of

features used to classify a training sample can produce

an under-populated feature space and unstable or mis-

leading recognition results. Each new feature will add

not only information (some of which may already be

carried by previous features), but may also introduce

additional noise into an already imperfect classification

process. Performance may improve as the first few

features are added to recognition and then may deterior-

ate as still more features are introduced. Human inter-
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pretors of geological data are not likely to disregard

any information in making exploration decisions, however.

One is reluctant, therefore, to cast features out from

automated classification. The experiments presented

here suggest that performance in combined interpretation

will seldom deteriorate with the addition of features, so

that all relevant data at hand may be used in recognition.

With a training sample of reasonable size (about twice as

many objects as features), the use of numerous features

often appears to stabilize recognition results. When

only a small number of training samples are available,

simpler recognition algorithms or a smaller number of

features may yield the best results.

In many pattern recognition problems, the incremental

improvement in performance with each additional feature

becomes smaller as the total number of features grows,

if the features are of roughly equal significance. The

worst possible performance is achieved when no features

are used in classification and every object is assigned

to that class which has the maximum a priori probability.

In the present examples, the worst possible performance

in this sense would be to class, for example, all 508

Colorado Plateau cells as U*, producing errors on all

the known U objects. The error rate is then 100% for U



-186-

objects and 0% for U* objects, but only approximately

15% on all 508 objects. When one, and then several,

features are used in recognition, the fraction of the

U population removed from the U* class will be larger

than the fraction of U* objects incorrectly classed as

U. Although the total number of errors may increase,

the summed percentages of each class correctly recognized

will also increase. Although there will then be two

kinds of errors, more productive recognition will result.

Variations in the performance of a classifier should

be judged in the context of some sort of penalty for

wrong decisions and some reward for correct decisions.

The reward for correct classification of U and U* objects

is a minimization of exploration costs and the efficient,

orderly exploitation of mineral resources. Because human

prospectors often make mistakes and because U objects are

the targets of exploration, the misidentification of a U*

object seems implicitly less serious an error than mis-

classification of a U object.

Clearly the two types of errors have different penal-

ties. When a U object is not correctly recognized, the

opportunity to profit from a uranium deposit is lost, at

least temporarily. The magnitude of the loss is related

to the size of the deposit, to the cost of accessing
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mining and milling the ore, and to prevailing market

prices for ore. Some gain is registered, however,

because the expenses of land acquisition, detailed

field exploration, and drilling are not incurred, and

this unused exploration capability may be used elsewhere.

When a U* object is misclassified, the loss consists of

land acquisition costs, detailed exploration, and perhaps

drilling costs until the futile search for a deposit is

abandoned. There is also a less tangible loss from both

types of errors that results from the incorrect disposi-

tion of capital and field crews and resultant loss of any

time advantage in exploration to other groups that may

be searching in more productive areas.

The penalty for either type of error is difficult to

assess, and will be different for each misclassified

object, depending on the difficulty of exploration and

the expected payoff of a deposit. A logical framework

for automated prospecting decisions could eventually

include variously weighted penalties for incorrect

decisions. It is not the aim of the present study to

find guides for estimating these penalties; therefore,

all errors in recognition are treated equally. The "best"

recognition results are sought under this condition.
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6.1 Casper Quadrangle

The Casper Quadrangle offers an interesting perform-

ance contrast between the linear discriminant with

binary features and the minimum distance classifier with

continuous-valued features.

The error rates for the minimum distance classifier

using the first 1, 2, 4, 6, 12, and all vector space

features ranked according to their information content

are shown in Figure 6-1. As features are added through

the first 12, recognition seems to be converging toward

correct classification of about 95% of U* objects and

55% of U objects as the incremental change in recognition

continually decreases. When all 32 features suitable for

vector space treatment are used in recognition, however,

recognition of U* objects deteriorates considerably.

In the lower dimensional feature spaces, more than half

of the 21 U objects apparently form a cluster that is

tight enough to exclude all but a few U* objects. In

32-dimensional space, however, the U and U* objects are

sufficiently dispersed and mixed so that the U* error

rate rises dramatically. The danger of using too many

features with too few training samples is obvious.

In geological problems such as this, where only a few

samples may be available, it will be wise to check the
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FIGURE 6-1: Error rates for several

variants of recognition in the Casper

Quadrangle. Axes represent fractions

of the U and U* classes correctly recog-

nized. MAP refers to the maximum a priori

probability classification. Outcomes of

recognition with the minimum distance

classifier using 1, 2, 4, 6, 12 (11, 21,

4I, 6I, 121), and all (A) features are

linked by dotted lines. Outcomes of

recognition with the linear discriminant

using 1, 5, 10, 15, 20, 25, 30, and 36

features (IB . . . . 36B) are linked

with solid lines.
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performance of a classifier with subsets of all available

features. It may be the case, as here, that discarding

some features will produce more useful recognition results.

Because uranium deposits are known to be rare, one is more

inclined to have confidence in predicted new prospects

if new predictions amount to 3% rather than 30% of all

objects originally presumed barren.

The linear discriminant with binary-coded features

offers an alternative to discarding features in order to

reduce the dimensionality of a feature space. When

features are binary-coded, the entire volume of the 36-

dimensional feature space is collapsed onto the vertices

of a 36-dimensional hypercube. This severe quantization

of features seems to inhibit mixing of the groups.

Recognition with the linear discriminant using increas-

ing numbers of features up to 15 very quickly converges

to a correct recognition rate, of 76% of U objects and

93% of U* objects (Figure 6-1). More than doubling the

number of features does not affect recognition. This

simplified recognition algorithm that uses easily

interpreted binary features may be most useful when a

limited number of samples are available, although its

performance is often poorer than the minimum distance

classifier when numerous samples are available.
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6.2 Colorado Plateau Jurassic/Cretaceous Deposits

Here there are 58 U objects and 450 U* objects for

recognition with 32 features. In all experiments, the

58 U objects seem sufficient to support the 32 features.

Although there are eight times as many objects in the U*

class than in the U class, the U* class may not be

excessively large. The paths of geological evolution

that will lead an object to be barren are undoubtedly

more numerous than those that will lead to an ore deposit.

In exploration problems, barren objects should probably

outnumber producing objects so that the variety of a

geological province may be adequately represented in the

training samples.

The trajectory of the linear discriminant's recogni-

tion through the U/U* error graph is shown in Figure 6-2.

Recognition with fewer than 10 features is unstable, but

with 10 or more features taken in order of decreasing

weight from this classifier, recognition converges toward

70% U objects and 75% U* objects correctly classified.

As features are added in order of decreasing information

content to the minimum distance classifier, performance

varies widely (Figure 6-2). The best performance of the

minimum distance classifier is that using all features,

indicating that most of the 58 U objects, though widely
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FIGURE 6-2: Error rates for several

variants of recognition on the Colorado

Plateau. Axes measure fractions of the

U and U* populations correctly recogni-

zed. MAP refers to the maximum a priori

probability classification. Outcomes of

recognition with the minimum distance

classifier using 1, 2, 4, 6, 12, and all

features (11, 21, 4I, 6I, 121, A) are

joined by dotted lines. Outcomes of

recognition with the linear discriminant

using 1, 5, 10, 15, 20, 25, and 32

features (lB ...... 32B) are joined

by solid lines. The point labelled p

is the outcome of recognition with the

minimum distance classifier using all

features with correlations less than

0.75.
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scattered on the Plateau, do form a fairly compact cluster

in feature space.

Another variant of recognition with the minimum dis-

tance classifier is also plotted in Figure 6-2. The

feature set used consists of 23 features, all with mutual

correlation coefficients, p, -0.75 < p < 0.75. When this

set of more nearly independent features is used, correct

recognition of U objects drops to about 25%. This is a

dramatic deterioration of performance. Recognition with

these 23 features is barely better than that using only

one feature. Similar results were suggested in Chapter 5

for use of all features in the minimum distance classifier

for the Casper Quadrangle (the magnitudes of mutual

correlation coefficients for these Casper Quadrangle

features were almost all less than 0.75). This result

suggests the merit of retaining redundant, highly correl-

ated features in recognition. If an object has an

abnormal value for one feature, one or two partially

redundant features may help return it to its proper

class. For example, a U object may have an abnormal

value for only one of 3 highly correlated features; a U*

object, however, is more likely to have all 3 of these

feature values far from the U class mean. The value of

retaining highly correlated features, just as human inter-
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pretors do, is suggested here. When the dimensionality of

a feature space is increased by the addition of redundant

features, some outliers may be returned to their proper

clusters.

Colorado Plateau Triassic Deposits:

Recognition results for both classifiers with sub-

sets of features are shown in Figure 6-3. The 45 U

objects are adequate to support the 17 available features

in both the linear discriminant and minimum distance

classifiers. Correct recognition with the linear discrim-

inant converges toward about 60% of U and 85% of U*

objects. Recognition with features taken in order of

information rank converges somewhat less strongly toward

about 60% of U and 95% of U* objects correctly recognized.

The best performance is obtained with only two features

in the minimum distance classifier, though the results

with all 17 features are not substantially worse. Again,

recognition with all features is superior to recognition

using only features with mutual correlation coefficients,

-0.75 < p < 0.75.

To summarize, it is dangerous to under-populate a

feature space. In exploration problems, however, there

will probably always be an abundance of locations pre-

sumed barren and rather few examples of productive areas.
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FIGURE 6-3: Error rates for several

variants of recognition on the Colorado

Plateau. Axes measure the fractions of

the U and U* populations correctly

recognized. MAP refers to the maximum

a priori probability classifier. Out-

comes of recognition with the minimum

distance classifier using 1, 2, 4, 6,

12, and all features (11, 2I,' 4I, 6I,

121, A) are joined by dotted lines.

Outcomes of recognition with the

linear discriminant using 1, 5, 10,

and 17 features (IB ...... 17B) are

joined by solid lines. The point labelled

p is the outcome of recognition with the

minimum distance classifier using all

features with correlations less than

0.75.
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The problem of sample size may be relieved in two ways.

Simple recognition algorithms can be used (e.g. the

linear discriminant or Bongard algorithms), with

severely coded features. Partially redundant features

can be included in recognition schemes to restore some

outliers to the appropriate classes. In either case,

the most unusual deposits may never be recognized. If

the sample size is extremely small, less than about 10

objects, even the Bongard and linear discriminant

algorithms may not be reliable, and sufficient statistics

probably cannot be generated to support a vector space

treatment. Some sort of template matching or nearest-

neighbor algorithm may be useful in these cases - one

could search in whatever feature space is available for

unexplored areas that look identical or nearly identical

to each of the known resource areas.
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CHAPTER 7

This chapter presents recognition experiments that

simulate prospecting with automated classification.

Subregions within the Colorado Plateau are used to train

classifiers; these classifiers then select prospecting

targets in the remainder of the Plateau. These experi-

ments serve as tests of previous recognition results and

give some insight into the performance to be expected

in prediction.

Within a training subregion, classifiers are developed

as in previous chapters. Raw data are surveyed to find

features that discriminate the U and U* objects within

that region. Several variants of recognition are perform-

ed within the training region to "fine tune" a classifier

for that area. The tuned classifier then picks prospect-

ing targets within the part of the study area that was not

used in training. If active mining areas within the pre-

diction area are recognized by the classifier, this will

lend confidence in the recognition procedure used. If

the features developed from the smaller training district

are similar to those given in Chapter 3 in terms of both

the parameters that emerge as significant and the esti-

mated PDF's on those parameters, this will substantiate

the significance of the features given in Chapter 3. If,
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however, features and/or recognition results differ

substantially from the previous results, an unstable,

misleading classification system based on insufficient

training is indicated at least for the partial training

area, and possibly for the full study area.

We cannot now verify whether or not the U* objects

classified in Chapter 5 to be favorable for uranium do,

in fact, hold undiscovered uranium deposits. These exper-

iments with a partial training area give some indication

of the accuracy expected in prediction with the complete

training areas. If the recognition appears stable, the

more reasonable predictions of new U objects are probably

those that emerge from training based on all known U

objects.

7.1 Recognition/Prediction in the Casper Quadrangle

Recognition/prediction experiments for the Casper

Quadrangle are not be presented in detail here. Recog-

nition results are unsatisfactory in that they recognize

as U only the U objects in the diminished training

population. The linear discriminant algorithm that gave

the best performance for the Quadrangle in Chapter 5

could not successfully recognize any of the three largest

mining areas when they were not included in training.
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The minimum distance classifier could not separate the

U and U* groups without an unacceptably high error rate.

In the Casper Quadrangle, at least 4 of the 21 known

U objects are never correctly recognized when all 21 of

these U objects are used for training. Removing these

from the training sample will not alter recognition.

When the points within one of the three remaining mining

areas are removed from training, estimates of feature PDF's

are based on approximately 10 samples. These U objects

that remain for training are too few to support the

statistics for recognition. As they come from only two

major mining areas, these training samples also seem to

have too little variety to suggest the range of possible

appearances of U objects within the Quadrangle.

7.2 Recognition/Prediction on the Colorado Plateau

Recognition and prediction with learning based on

subsets of the 45 Triassic and of the 58 Jurassic/Creta-

ceous U objects on the Colorado Plateau have many

characteristics in common. Examples of control experi-

ments with the Jurassic/Cretaceous deposits are discussed

here as these U objects are both more numerous and wide-

spread on the Plateau.

For performance comparisons, the reader is referred

to Figures 5-2, 5-5, and 5-8 which show recognition
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analyses with the linear discriminant, Bongard, and

minimum distance algorithms, respectively, trained on

Jurassic/Cretaceous deposits from the entire Colorado

Plateau. Because the largest possible U and U* training

populations were used in the analyses in Chapter 5, the

numbers of objects correctly recognized in those experi-

ments offer an upper limit to the performance that can

be expected from these algorithms when they are trained

on only a portion of the plateau.

Prediction Experiment 1:

Cells in the first 11 rows of the Colorado Plateau

grid (north of 37-3/4*N) were used to train linear dis-

criminant, Bongard, and minimum distance classifiers

for simulated prediction in the southern part of the

Plateau. Raw data were scanned to find features that

would discriminate the 30 U objects from the remaining

162 U* objects in the north. Twenty of the 23 features

found were among the 32 listed in Chapter 3 for recogni-

tion of Jurassic/Cretaceous deposits (in some of these

features, the decision threshold was shifted by one

decile); three new features arose because only the north-

ern portion of the Plateau was used in training.

Prediction with the linear discriminant using binary-

valued features picks 46 new prospects in the south that



-204-

form a single contiguous area (Figure 7-1). Of these

46, 12, or 26% are correctly predicted Jurassic/

Cretaceous U objects, 3 have deposits in other host

rocks, and 31 are believed to be barren. This prediction

area is reasonable when compared to the linear discrim-

inant's recognition on the whole Plateau (Figure 5-2).

The predictions offer what a conservative geologist

might, suggesting a southward extension of known mining

areas with uranium favorability extended toward the east,

following a slight southeasterly trend in the disposition

of the known mining areas. No distant deposits in the

extreme southeast are predicted (nor were these correctly

recognized when this algorithm was trained on the entire

Plateau).

The Bongard algorithm, using the same 23 binary-valued

features selects prospects in the south that are substan-

tially the same as those in Figure 7-1. The predicted

favorable zone is again a single contiguous area with 16

U objects and 36 U* objects forming a southeasterly con-

tinuation of mining areas to the north. This area lies

within the area recognized as uranium-favorable when the

Bongard algorithm was trained on the entire Plateau

(Figure 5-5). In prediction, however, the favorable zone

extends southward only to row 18; no cells further south
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FIGURE 7-1: Learning/prediction experi-

ment with the linear discriminant trained

to recognize Jurassic/Cretaceous uranium

deposits in the northern 11 rows of cells.

The area recognized favorable for uranium

in the training area is within the solid

outline. The area in the south that is

predicted to be favorable for uranium

is within the dotted outline (see legend

Figure 3-1).
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are recognized as U, although when the Bongard algorithm

was trained on the entire Plateau, U objects as far south

as row 23 were correctly recognized.

The minimum distance classifier exhibits somewhat

different behavior in prediction. None of the objects in

the prediction area south of row 11 are classed as U; all

objects are more similar to the U* class. This suggests

that the few U objects used in training form a relatively

tight cluster in feature space. More examples of U

objects are required to manifest the variety of U objects.

One alternative to giving up a search for uranium in

the south is to examine those objects that are most similar

to the U training cluster. The 50 objects nearest to the

U cluster again form a southward and eastward extension of

the known producing areas to the north. None of the

deposits in the extreme south that were recognized with

training on the whole Plateau are included in the 50

objects most similar to the U cluster.

An interesting recognition phenomenon appears here

when various feature sets are used with the minimum dis-

tance classifier. When only a small training sample is

available, the classifier performs better with fewer

features. Figure 7-2 shows the number of U objects

correctly predicted as a function of the total number of
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FIGURE 7-2: Graph of the number of

correct predictions of Jurassic/

Cretaceous uranium-producing cells

south of row 11 as a function of the

total number of predictions through

the first 50 prediction objects

nearest the U training cluster. The

minimum distance classifier was

trained to recognize Jurassic/Creta-

ceous uranium deposits in the northern

11 rows of cells. Results of recogni-

tion with 5, 10, 15, and 23 features

are plotted (see legend Figure 3-1).
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objects predicted to be favorable for uranium through

the first 50 objects closest to the U cluster in 5, 10,

15, and 23-dimensional feature spaces. With all feature

sets, the number of correct predictions increases logar-

ithmically with the total number of predictions. One is

naturally more inclined to accept as U those objects that,

if not within the U cluster,are the closest objects to

the U training cluster. Prediction with fewer features

scores many more successes in the first few predictions

then does prediction with more features. In Chapter 6

additional features tended to stabilize recognition

results when the training sample was large and varied.

Here the training sample is smaller and less varied so

that additional features measured on an object are more

likely to make that object an outlier from the U cluster

and to mix it with U* objects in the feature space.

Prediction Experiment 2:

In a second set of prediction trials, information

from the western 2/3 of the Plateau was used to pick

exploration targets in the east. Cells in columns 1-17

formed a training set with 25 Jurassic/Cretaceous U

objects and 320 U* objects.

Despite the fact that the number of U objects avail-

able for training was less than half of the 58 used to
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generate features for the whole Plateau, and the fact

that 45 Triassic U objects were in the U* group, features

selected for this recognition were very similar to those

used to recognize Jurassic/Cretaceous deposits on the

whole Plateau. Nineteen of 25 features were essentially

unchanged from those given in Chapter 3. Six new features

appeared for this limited training population.

The result of recognition with the linear discriminant

using binary-valued features is shown in Figure 7-3. In

the training area, a broad zone including 16 U objects and

46 U* objects is classified as U. In the prediction area,

49 objects are classified as U. All producing cells in

and near the Uravan mineral belt are correctly classified

as U. In all, 19 cells with production from Jurassic/

Cretaceous host rocks are correctly recognized. The

correct prediction rate here is at least 38%, and perhaps

more if some cells now presumed barren do hold undiscovered

deposits. The area predicted favorable for uranium com-

bined with the area recognized as U in the training area

form very nearly the same as that area classified as U

when this classifier was trained on the whole Plateau,

again indicating the stability of recognition. Very

similar predictions emerge when the Bongard algorithm is

used with these binary-valued features.
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FIGURE 7-3: Recognition/prediction

experiment with the linear discriminant

trained to recognize Jurassic/Cretaceous

uranium deposits in the western 17

columns of cells. Areas within the

training area recognized favorable for

uranium in the training area are within

the solid outline. Areas predicted

favorable for uranium are within the

dotted outline (see legend Figure 3-1).
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The performance of the minimum distance classifier

is shown in Figure 7-4. The variant of recognition

shown uses the first 10 of 25 available features,

according to their information rank. Seventeen of 25

U objects in the training area are correctly recognized

with few U* objects classified as U. In the prediction

area, only 2 objects are within the U cluster; both of

these are producing cells in the Uravan area. The 20

objects from the prediction area that are nearest to the

U cluster are indicated in Figure 7-4. Ten of the first

10, and 15 of the first 20 have recorded production from

Jurassic/Cretaceous host beds. Here, again, the number

of U objects correctly predicted increases roughly logar-

ithmically with the total number of objects predicted.

A cutoff at the first 20 objects is arbitrary; more U

objects could be predicted correctly, but only with the

penalty of an increased error rate.

In a final test of prediction, the cells in a large

cluster of 17 Jurassic/Cretaceous U objects around the

Uravan-Gateway area (between rows 7 and 14 and columns

16 and 21) were withheld from training. When trained on

the remaining 41 Jurassic/Cretaceous U objects, all three

classifiers were able to correctly recognize all 17 of

these U objects.
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FIGURE 7-4: Recognition/prediction exper-

iment with the minimum distance classifier

trained to recognize uranium deposits in

the western 17 columns of cells. Areas

within the training area recognized

favorable for uranium are within the

solid outline. Areas predicted favorable

for uranium are within the dotted outline.

(see legend Figure 3-1).
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In all cases where adequate training was available,

prediction experiments classified as favorable for

uranium areas that were substantially the same as those

areas classified favorable when training on the entire

Plateau was available. Features developed for the

smaller training areas also show a close resemblance to

features for the whole Plateau. Success rates in predic-

tion ranged from 1 in 4 to 3 in 4 or better, depending on

the number of predictions made. These success rates

suggest that automated prediction of mineral resources

is a very practical possibility.
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CHAPTER 8

This chapter reviews the pattern recognition proce-

dures applied to uranium prospecting and the results

that emerge from combined interpretation of geological

data for the Colorado Plateau and Casper Quadrangle.

Other geological problems that might be investigated

with pattern recognition techniques are suggested.

8.1 Feature Selection

Previous quantitative formulations of prospecting

problems have had some subjective elements in the way

that geological criteria were chosen, weighted, or

combined for decision-making. In this study, the

features used in recognition were selected algorithmi-

cally from a larger pool of candidate features. Construc-

tion of this pool of candidate features is the outstand-

ing subjective aspect of the present procedures. There

seems to be no way to avoid subjectivity at this most

fundamental level of the prospecting problem.

One may minimize subjectively in feature selection,

however, by proposing a large number of candidate features

that thoroughly explore, if they do not exhaust, the

types of features that might be constructed from a given

data base. A single type of data may suggest a plurality
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of features, only one of which may finally be selected

for use in recognition. For example, a map of faults in

a province could be used to generate features related to

fault density per unit area, strike of the faults, proxim-

ity to faults, proximity to faults of specific types,

proximity to intersections of faults, and so on. The

most effective features for recognition may be discovered

only by examining a large number of candidates. A large

pool of candidate features is easily winnowed by computer.

8.2 Feature Coding and Training Sample Size

The binary feature coding used in this study is an

extreme type of coding, but is obviously useful in some

situations (e.g. the Casper Quadrangle). Some precision

in the descriptions of objects is lost in binary coding,

but simple geological interpretations of features may

emerge. With few training samples, one may be more

accurate in estimating the statistics of binary-valued

features than the statistics of probability density

functions. Simple, easily implemented decision algorithms

may be used with binary-valued features. Duda et al.

(1977) have used less severely quantized features

(effectively 4-place histograms) in diagnostic approaches

to prospecting. When many training samples are available,
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exact values of feature data may be retained to give

the most precise descriptions of objects for effective

recognition.

Automated classification with continuous-valued

features appears to be useful for combined interpretation

when many samples of each class are available for train-

ing. In this study, classification with the minimum

distance classifier proved to be effective when the

number of samples of each class was approximately equal

to or greater than twice the number of features. Because

barren areas are probably more various than areas with a

particular type of mineral deposit, the number of barren

objects used in training should probably be greater than

the number of producing areas,so that the full variety of

these barren objects may be adequately represented.

When few samples are available to train an exploration

classifier, pattern recognition techniques may still be

applicable. Feature coding techniques that collapse

feature spaces onto a finite number of points may be use-

ful in unmixing classes of objects. These feature coding

techniques lead naturally to simple decision algorithms

that do not require, for example, estimates of covariance

matrices or probability density functions. Parzen esti-

mates might prove useful for providing estimates of feature
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probability density functions so that vector space

techniques could be used with few training samples.

With only one or a very few examples of mining areas,

exact matches to the features of a mining area might be

sought among barren objects. If no exact matches exist,

a nearest-neighbor classification procedure might be

useful, but with few samples it is difficult to determine

how slight variations in feature values may affect the

ore favorability of an object. With a small number of

productive areas for training, the semantic network or

diagnostic approaches to prospect evaluation might be

the most reliable procedures, provided that models of

ore deposition are sufficiently advanced to support the

required software.

8.3 Recognition Algorithms

When pattern recognition is applicable to combined

interpretation problems, a variety of algorithms are

available for use. Different algorithms offer different

models of the learning and decision-making process. The

choice of algorithm depends on the problem at hand; if

no one type of algorithm is a clear choice for recognition,

the results from several different algorithms may compli-

ment one another.
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Clustering algorithms such as the one used here can

be used with coded or numerical data. Though they do

not automatically make decisions, unsupervised clustering

algorithms are conceptually simple and manifest natural

groupings of objects. Two types of clusterings might be

particularly useful in geological problems. Clusters of

minimum diameter can isolate a number of separate families

of objects within a feature space. Chain-type clusterings

that grow clusters by addition of the object nearest to a

point already within the cluster might be useful for

following through a feature space a spectrum of related

objects that differ from one another by slight variations

in several features.

Linear discriminants are conceptually simple and may

be used with continuous-valued or quantized features.

These algorithms divide a feature space into two regions,

each associated with one of the classes in a 2-class

problem. Classifiers that divide a feature space with

several hyperplanes are more difficult to implement, but

can be used in many-class problems. Non-linear decision

surfaces can be used to segment a feature space, but

these typically require more training samples than linear

surfaces.
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The Bongard algorithm using binary-valued features

may be particularly useful in poorly understood problems.

The characteristic traits that emerge from this algorithm

are easily interpreted and may suggest new insights into

complex, incompletely understood phenomena. Press and

Briggs (1975) used this algorithm to suggest a model of

Chandler Wobble excitation and decay.

Minimum distance classifiers such as the one used in

this study use continuous-valued features that offer the

precise descriptions of geological objects. The features

used with these classifiers obscure neither the overall

variety of objects within a class, nor the details of

individual objects. These vector space techniques cannot

readily accommodate non-numerical descriptive or qualita-

tive geological data that may be important to exploration

evaluations.

8.4 Summary of Results from the Colorado Plateau and

Casper Quadrangle

Recognition analyses with binary-valued features in

Chapter 5 suggest that large areas of the Colorado Plateau

might be favorable for uranium in Jurassic, Cretaceous,

or Triassic strata. The minimum distance classifier,

however, recognizes few new productive areas. Most of

the non-producing areas classified as favorable by the



-224-

minimum distance classifier are adjacent to known

resource areas. Because the performance of the minimum

distance classifier proved to be superior to that of the

other classifiers, one might infer that there are few

new resource areas to be found on the Colorado Plateau

(recall, though, that the data available here are insuf-

ficient to unequivocally determine uranium favorability).

Fisher (1974) has suggested that exploration on the

Colorado Plateau be directed toward location of new

mining districts or clusters of deposits rather than

isolated, individual deposits. If any such clusters

exist, the minimum distance classifier suggests that

they may be adjacent to known resource areas. Deposits

dissimilar to those used to train the classifiers could

not be recognized on the Colorado Plateau; unusual types

of uranium deposits may exist on the periphery of the

Plateau. The small number of new predictions supports

Lieberman's (1976) conclusion that most major uranium

deposits on the Colorado Plateau may have been discovered.

The Casper, Wyoming Quadrangle appears in all recogni-

tion experiments to be a less mature mining area than the

Colorado Plateau. On the basis of more diverse data than

are available for the Colorado Plateau, several areas far

removed from active mining operations in the Quadrangle
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are recognized as favorable for uranium (Figures 5-1 and

5-4).

In addition to extensions of active mining areas,

eleven points that form a north-south trending zone

through the east-central portion of the Quadrangle were

predicted to be favorable for uranium. This zone coin-

cides with newly recognized anomalies in an airborne

radiometric survey delivered to E.R.D.A. by subcontractors

after the completion of this pattern recognition study.

Eight of the eleven points picked by pattern recognition

analysis coincide with significant radiometric anomalies.

In recognition experiments, proximity to major radiometric

anomalies proved to be the strongest single feature for

the Casper Quadrangle. Geological information synthesized

from other features was sufficient to override an absence

of recognized radiometric anomalies in this zone and to

pick this area out from the rest of the Quadrangle as

favorable for uranium. Surface radiometric anomalies do

not guarantee a productive zone at depth, but the coin-

cidence of pattern recognition predictions with the most

extensive anomalies not associated with established mining

areas lends confidence in pattern recognition approaches

to combined interpretation. The most favorable ground

for prospecting in the Quadrangle may be near those areas
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where geological criteria from pattern recognition

combined interpretations coincide with radiometric

anomalies.

8.5 Other Geological Applications of Pattern Recognition

Computerized classification techniques may be the

only practical way to manipulate and interpret large,

complex geological data bases. When data are of unfamil-

iar interrelationships, quantified decision procedures

may provide the most efficient paths toward establishing

learned experience and expertise in interpretation.

LANDSAT photographs offer one example of large data

bases that, for some applications, lack well-known inter-

pretation rules (one LANDSAT frame has approximately 7.3

x 106 pixels). With the 4-band LANDSAT imagery now

available, many problems are open to pattern recognition

analysis. The generation of photographic satellites

designed to succeed LANDSAT will procude many-band images

that will segment the visible into more narrow wavelength

bands and extend photographic coverage into the infrared.

This increased number of wavelength bands over an extended

spectral range will increase the number of features that

can be considered in automated photographic analysis.
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Limited recognition of surface rock type based on

spectral signatures has been attempted with present 4-

band images (Rowan et al., 1974). This work can undoubt-

edly be extended and refined with the many-band images

soon to be available. Techniques for detection of

hydrothermally altered rock (Rowan et al., 1977) and

recognition of diagnostic spectral signatures of soils

overlaying mineral deposits (Vincent, 1977) should follow

similar growth. Where rock and soil features are not

directly visible in photographs, anomalous patterns in

seasonal variations of vegetation may be useful in geo-

botanical prospecting.

Geological structures might be analyzed for resource

potential with pattern recognition techniques. Structures

such as anticlines or basins may have features visible

only in satellite imagery that might indicate favorable

environments for hydrocarbon accumulation. Seismic sec-

tions through "bright spots" might be analyzed for subtle

features indicative of the presence of hydrocarbons.

Automated evaluations of these structures might supplement

the interpretations of trained geologists.

Problems of a more inferential nature such as combined

interpretation of geological data offer a different use of

pattern recognition techniques. Pattern recognition
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techniques could provide quantitative rankings of favor-

ability for ore in parcels of land. The following

questions might be addressed:

1) Given a plurality of available tracts of land,

which one(s) are most favorable to purchase or

lease?

2) Given several parcels of land, which one(s)

should be explored first and in what order should

the totality be explored so as to maximize return?

3) Given several parcels of land, which should be

disposed of to suit a limited exploration budget

and/or the time constraints of leases?

As more detailed geological data are secured, data bases

may be easily updated so that one may be directed with

increasing resolution in the search for resources.

Pattern recognition analysis of diverse geological

data might be most useful in producing quantitative,

explicable, and reproducible analyses of geological

problems. These analyses could serve as a common

reference point for different interpretors and as a

point of departure for more intuitive or speculative

exploration decisions. The recognition framework offers

an easily managed, well-organized data base into which

new data may be readily integrated to produce revised,
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updated interpretations. Use of quantitative procedures

for the combined interpretation of geological data may

lead to reductions in the amounts of time, money, and

manpower needed to locate ores, and may help to provide

an uninterrupted supply of some minerals.
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