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ABSTRACT

A Numerical Study of Rupture Propagation

And Earthquake Source Mechanisms

by

Shamita Das

Submitted to the Department of Earth
and Planetary Sciences in July 1976

in partial fulfillment of the
requirements for the degree of

Doctor of Science

Rupture propagation in an elastic medium represents an

important aspect of seismic source mechanism of an earthquake.

In this thesis, we present a numerical technique to determine

the displacement and stress fields due to propagation of

two-dimensional shear cracks in an infinite, homogeneous

medium which is linearly elastic everywhere off the crack-

plane. Starting from the representation theorem, an integral

equation for the displacements inside the crack is found.

This integral equation is solved for various initial and

boundary conditions on the crack surface. Tests of the

numbrical method are made against the analytical solution of

Kostrov and the numerical solution of Madariaga. A critical

stress-jump across the tip of a crack is used as a fracture
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criterion and shown to be equivalent to Irwin's fracture

criterion based upon the critical stress-intensity factor.

For an in-plane shear crack starting from the Griffith's

critical length, the terminal velocity of the crack-tip is

found to be sub-Rayleigh or super-shear depending on the

strength of the material measured by the critical stress-

jump. Observed sub-Rayleigh rupture velocities for large

earthquakes imply that the apparent specific surface energies

for actual earthquakes are many orders of magnitudes greater

than the values measured in the laboratory on small rock

samples. For large earthquakes, they may be of the order of

1010 ergs/cm2 .

Our numerical technique is used to study (1) spontaneous

unilateral propagation of a finite shear crack,(2) effect of

obstacles (part of fault plane with greater strength) on the

near- and far-field displacements and their spectra (3) and, the

arrest mechanisms for stopping rupture. We find that the

difference in dynamic displacement field for unilateral and

bilateral crack propagation are more than what may be expected

from different geometries. We show also that the corner

frequency may not be significantly different between ruptures

with and without obstacles, but the corresponding far-field

wave-forms are distinctly different between the two. The

-2
high-frequency spectra decay as W0 , for most cases, but at

stations located near the plane of rupture propagation, segments

-3/2 -1
of the spectral curve decaying as W or W are found. Our

*I~ i_
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results for rupture propagation in the fault plane with

obstacles show good agreement with observations of rockbursts

in a deep mine.

We can predict how the arrest of a propagating shear

crack occurs for a given distribution of strength of the

medium along the fault-plane. Finally, for the case when the

prestressed region is limited, the crack-tip is found to

"overshoot" into the unstressed region before coming to a

stop. The amounts of overshoot are calculated for finite in-

plane shear cracks under various conditions of initial stress.

When the rupture stops abruptly, the high frequency asymptote

of the spectra fall off as 6 2. When the tip stops gradually,

we found a wide intermediate range in which the spectrum

decays as C-I

Thesis Supervisor: Keiiti Aki

Professor of Geophysics



-5-

Acknowledgements

I would like to express my deepest gratitude to my advisor

Professor Keiiti Aki for suggesting the thesis topic and being

a constant source of inspiration and encouragement. Working with

Kei has been a rewarding experience due to his limitless supply

of patience, great physical insight, and continued confidence

in me.

I would like to thank all the people who, directly and

indirectly, helped in the writing of this thesis. In particular,

I would like to thank Gerry LaTorraca and Mike Fehler for

innumerable discussions and moral support. Also, I gratefully

acknowledge the helpful discussions with Raul Madariaga and

Yed Angoran.

I am grateful to Dr. John Filson for advice and assistance,

both scientific and human, and to Lincoln Laboratory for

supporting me during part of my stay at M.I.T. Dr. Joe Andrews

of the U.S.G.S., Menlo Park, was kind enough to let me use one

of his figures (Figure 3.6 of this thesis) before it was

published.

Finally, I would like to thank my parents and my husband

for the many sacrifices they have made for me.

This research was supported by the National Science

Foundation under grant DES74-22025.

Ils~SLYY___~~LI_~_1_X__li~_-i



-6-

TABLE OF CONTENTS

Abstract . . . . . . . . . ....................... . . 2

Acknowledgements ... .... ........... . . 5

I. Introduction .... .. ............. ... 8

1.1 Summary of recent works . ......... . .. . 8

1.2 Outline of thesis .... ... ....... . .. 11

II. Formulation of the prdblem and method of solution . 13

2.1 Description of the problem and derivation of
initial and boundary conditions . ........ 16

2.2 The mathematical formulation of the problem . . . 26

2.31 The integral equation for the antiplane shear
crack. ............ ... ...... 30

2.32 The integral equation for the in-plane shear crack 32

2.4 Numerical method for solving the integral equation 36

2.5 Comparison of numerical results for anti-plane
crack with analytical results of Kostrov (1966). . 48

2.6 Comparison of our-numerical results with existing
numerical solutions of some in-plane crack problems 63

III. Fracture criteria and physical parameters of a shear
crack . . . . . . . . . . . . . . ... . 75

3.1 The mathematical theory of equilibrium cracks and
discussion of fracture criteria . ........ 79

3.2 Friction on the crack surface . . . . ..... 91

3.3 Determination of relation between Hamano's and
Irwin's fracture criterion . .. . ....... . 95

3.4 Semi-infinite instantaneous antiplane shear crack
with concentrated loading ............ 104

3.5 Comparison of our numerical solution for in-plane
shear crack with results of Andrews (1975) . . . 111

3.6 Estimation of T, the specific surface energy . . 118



-7-

IV. Application to the study of earthquake source mechanisms 122

4.1 Unilateral propagation of in-plane shear crack and
comparison with experimental results of Archuleta
and Brune (1975) . . . . . . . . . . . . . . . . . . 122

4.2 Study of the effect of obstacles on the fault plane
on the near-field and far-field displacements . . . 142

4.3 Arrest mechanism for rupture propagation . . . . . . 188

V. Conclusions . ........ . . ............. 205

References . ...... . .................. . 208

Appendix I . . . ......................... . . 214



-8-

CHAPTER I

Introduction

A recent trend in seismology has been to model earth-

quakes as propagating shear cracks with various geometries.

A shear crack is a surface Sl, say, of a body, subjected to

an initial stress field, over which the shear tractions fall

below their initial values resulting in a displacement

discontinuity across Sl. The slip motion on a propagating

crack can be determined by the shape, size, and orientation

of'Sl, the initial stress field acting on S1 and the

distribution of strength parameter corresponding to an

adopted fracture criterion on S1 . Once the slip motion

across Sl is determined, we can compute the far-field

seismograms using the Green function representation theorem.

1.1 Summary of recent works

The problem of finding the time-history of crack-tip

location from a knowledge of the cohesive-force distribution

on the crack plane was first studied by Kostrov in 1966, in

a paper entitled "Unsteady Propagation of Longitudinal Shear

Cracks". Following a method similar to one developed

originally in the field of aerodynamics by Evvard (1947)

(and described in detail by Ward (1950)), Kostrov solved the

dynamic problem of a semi-infinite, instantaneous, anti-plane

shear crack in an infinite medium by reducing the problem

to a mixed boundary value problem in a half-space. He found

closed form expressions for the displacements inside the
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crack and the stresses outside the crack both on the plane of

the crack. Kostrov determined the actual motion of the crack

tip by using Griffith's fracture criterion in which T, the

energy required to create unit area of the crack surface is

a material constant. In principle, Kostrov's method is also

applicable to finite cracks. In practice, however, the

multiple integrals resulting from the repeated wave diffrac-

tions at the crack tips cannot be obtained in closed form for

even simple cases.

In spite of this limitation, Kostrov's work gave insight

into the process of how energy is consumed at the crack-tip

as the crack-tip advances. It led to the work of Burridge

(1969) who used a numerical technique to solve the problem of

anti-plane as well as in-plane finite shear cracks. He

studied the case when the crack-tip moves at a fixed velocity.

In 1974, Hamano extended the analyses of Kostrov and

Burridge to the case of finite, two-dimensional cracks in an

infinite medium where the time history of crack-tip location

need not be assumed a priori. Instead, he determined the

rupture velocity from the conditions of strength distribution

on the crack-plane. He used a critical stress-jump fracture

criterion which is easily incorporated into the scheme of

numerical computation. Hamano's technique is applicable to

all three modes of two-dimensional crack extension: the

tensile crack and the in-plane and antiplane shear cracks.

In 1976, Andrews combined a finite difference technique
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with Griffith's fracture criterion, given in terms of Ida's

(1973) cohesive force diagram, to solve for the rupture

propagation of a finite, two-dimensional shear crack in an

infinite medium. He showed the maximum rupture velocity for

the in-plane shear crack to be sub-Rayleigh or super-shear

depending on the strength of the material on the fault plane.

Richards (1976) solved analytically the problem of a three-

dimensional elliptical self-similar shear crack in an infinite

medium. In this case, the crack dimension grows linearly

with time and never stops. Madariaga (1976) calculated, by

a finite difference technique, the slip motion for a circular

shear crack which grows at a fixed velocity and stops suddenly.

Later, in this thesis, we shall compare results obtained by

Hamano's method with those of Kostrov, Andrews, Richards and

Madariaga.

In addition, we shall compare our theoretical results

with the model experiment of Archuleta and Brune (1975) who

studied unilateral propagation of a shear crack in foam

rubber. One of the interesting results is that the normal

component of displacement across,the fault, in both our

calculation and foam rubber experiment, does not show an

impulsive form predicted by a propagating step-like disloca-

tion and observed at station #2 for the Parkfield,

California, earthquake of 1966.

A study of arrest mechanisms for propagating cracks was

made by Husseini et al. (1975). They suggested two stopping
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mechanisms. One is called the "fracture energy barrier"

arrest mechanism for which a fault encounters a region of

greater strength and stops. The other is called the "seismic

gap" arrest mechanism. In this case, only a finite region of

the fault is prestressed so that the crack-tip

propagates into-unstressed regions, slows down and eventually

stops. Husseini et al. studied these arrest mechanisms for

the case of semi-infinite, instantaneous, antiplane shear

crack in an infinite medium. In this thesis, we shall apply

these two arrest mechanisms to the more complicated cases

of finite, shear cracks in an infinite medium and shall

determine the stopping positions of the crack-tip under

various conditions of initial stress and strength distribution

on the crack plane.

1.2 Outline of thesis

In Chapter II, we provide a physical description of the

crack propagation problem and derive an integral equation,

which is common to all the crack configurations studied in

this thesis. The integral equation is solved numerically

to determine the displacements on the crack plane. We

compare our results with available analytic and numerical

solutions.

In Chapter III, we introduce the fracture criterion and

frictional arrest of fault slip. We briefly review existing

fracture criteria and find the relation between these fracture

criteria and Hamano's criterion based on the stress jump
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across the crack tip. We calculate the terminal velocity of

anti-plane and in-plane shear cracks using Hamano's criterion

and compare the results with those of Kostrov and Andrews.

We find an estimate for the apparent specific surface energy

for earthquakes by observing that the rupture velocity is

sub-Rayleigh for most large earthquakes.

In Chapter IV, we consider spontaneous propagation of

two-dimensional, unilateral, in-plane shear cracks and

compare our results with the experimental results of Archuleta

and Brune. We simulate obstacles to rupture propagation by

regions of greater strength on the crack-plane and find their

effect on the near- aid far-field displacements and their

spectra. We compare our results with observations made by

Spottiswoode and McGarr (1975) on rockbursts in deep mines.

Finally, we discuss the possible mechanisms by which a

finite propagating crack can stop.

In Appendix I we derive an equation for the balance of

rates of energies at the tip of a crack.
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Chapter II

Formulation of the Problem and Method of Solution.

In this chapter, we shall first describe the physical

set-up of the problem for the case of in-plane shear

crack and anti-plane shear crack, such as the initial

conditions, boundary conditions and the symmetries of stress

and displacement components. Next, we shall give a

mathematical formulation of the problem and derive the

integral equation for the displacements on the crack

surface. The numerical technique used to solve this

integral equation for given initial and boundary conditions

will be described. Finally, we shall make some comparisons

of our solution with available analytical or other numerical

techniques to find the accuracy of our numerical method.

Y?-~Y-~-- -----r~l~_ -ur- -. ~-II.Y---L---XIIYhYIIY~ -I YL~~-Y^ ~
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Fni

Gni(x, t;y,s)

k

H( )

nj

t,s

t

Tp

Ts

Sl

S2

x

Xl,X 2 ,X 3

x1

x2

Yp

Ys

ui (x,t)

Glossary of Symbols

(in alphabetical order)

= grid length along xl-direction in numerical
method

= discretized values of gni

= Green's function for general elastodynamic
problems

= Green's function for a homogeneous
half-space

= stress-intensity factor

= Heaviside unit step function

= direction - cosines of normal to surface

= time

= grid-length in time in numerical method

= c(t/d

=P t/d

= crack region on x2 = 0 plane

= region outside crack on plane of crack

= velocity intensity factor

= xl/d

= Cartesian coordinates

= axis along which crack tip propagates

= normal to crack plane

= X/Tp

= X/Ts

= displacements
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ia = compressional wave velocity

= shear wave velocity

T.. = stress components
13

To  = initial stress

Tf = dynamic friction stress on crack

E = s/xl
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§2.1 Description of the problem and derivation of

initial and boundary conditions.

We shall model the earthquake source as a two-dimen-

sional propagating shear crack in an infinite, isotropic

homogeneous elastic solid. Figure 2.1 shows the geometry of

the crack. Let x2 = 0 be the plane on which the slip

occurs, the crack being infinitely long in the x3 direction.

Initially the infinite body is under a uniform shear stress

which has only one non-zero component acting on the plane

x2 = 0. The direction of the initial shear stress deter-

mines the mode of crack propagation. For an in-plane shear

crack, the non-zero shear component of prestress is T21

and for the antiplane shear crack, it is T2 3 . Let us

assume that the initial shear stress is increased so that

the crack extends along the plane x2 = 0, in the direction

x1 . We shall take the origin of time s = 0 as the time when

the crack starts extending. The extension of the crack

may be rapid enough to generate elastic waves. The tip of

the crack may move at some predetermined velocity or the

position of the crack-tip as a function of time may be found

using the state of stress near the crack-tip and appropriate

fracture criterion. As the crack extends, there is relative

motion between the regions x2 < 0 and x2 > 0 and a displace-

ment discontinuity is set up across the x2 = 0 plane. This
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S2
Z.ZLL ZLL

X2

X3

Figure 2.1. Geometry of the crack and the coordinate axes.
xI is the direction of crack-propagation and

x2 = 0 is the plane of the crack. The crack
is infinitely long in the x -direction. S1
is the crack region and S2 is the region
outside the crack on the plane of the crack.

_~X~~~X_ __
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discontinuity in displacement is a function only of the

coordinate xl and time s. For the in-plane crack, the

displacement discontinuity is the difference of the xl

component of displacement between the positive (x2 > 0) and

negative (x2 < 0) sides of the fault-plane and for the anti-

plane crack, it is the difference in the x3 component of

displacement between the positive and negative sides of the

plane x2 = 0. The stress on the crack surface is zero if

there is complete stress release or equal to some constant

value corresponding to the dynamic frictional stress on the

crack surface. Using the principle of superposition, we

can subtract the initial static state of stress from the.

subsequent dynamic state of stress. Then, the problem will

reduce to one for zero initial stress and the stress

assigned on the crack is the dynamic friction stress (Tf)

minus the initial stress T 0 . We can assign the stress on

the crack as a function of position and time, if necessary.

Thus, before rupture occurs, the body is in equilibrium

with zero initial prestress. We shall assume that initially

the displacements and velocities are zero everywhere in the

medium. This gives the initial conditions for the problem.

We discuss next the symmetry of the displacements and

stresses across the plane x2 = 0.

Let us first consider the case of the in-plane shear

crack. For the two-dimensional case, there are two compo-

p
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nents of displacement u1 (xl,x 2 ,s) and u 2 (xl,x 2 ,s) and three

components of stress

au1 (x 1 ,x 2 ,S) au2 (xl,x 2
, s)

+21 ax2 1

au2 (x 1 ,x 2 ,s)
T22 = T + 2p x 22

au (xl,x 2 ,s)
11 ax+2-

1

The displacements u 1 (xlx 2 ,s) and u 2 (x l ,x 2 ,s) satisfy the

equations of motion

1 aA 2
p 2 = (A + I) ~x + IV U1as 1

2.1

au2 A 2
p U2 ) A + PV u2as 2  ax2  2

au au
where A =5 ax 2 , X, p being Lame's parameters and p the

1  2
density of the medium. The equations of motion are satis-

fied by

ua- - and u - +
1  a-X ax 2  ax ax 1

provided 4 and i satisfy the following wave-equations:

a2% a2~ _ 1 a2
2 2 2 2

ax ax 2  as
1 2

and

2 2  2

ax ax 2 as
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where a = '(A + 2y)/p and = 7p/p are the P and S wave

velocities respectively. * and * are called the scalar
potentials. The above wave-equations have solutions of the

form

iws+ikx V x2
0= e

iws+ikx ±2x2

where v1 = /k - w2/a2 and v2 = k2 - W2 2, k being the

wave-number and w the frequency. We require 4 and P to

satisfy the "radiation condition" of Sommerfeld, i.e. there

is no wave source at infinity, so that 4 and * tend to zero

as x2 - ±w.

Thus, for the region x2 > 0, we have

iws+ikxl- 1 x2

+ iws+ikx1- 2 x2e

and for x2 < 0, we have

iws+ikxl+ lx2

Siws+ikxl+ 
2x2

The boundary conditions are that the tractions T21 and T22'

and the normal component displacement u2 are continuous

across the crack-plane x2 = 0, and ul is continuous outside

the crack across x2 = 0 but discontinuous across the portion
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of x2 = 0 which contains the crack. The continuity of u2

and T21 across x2 = 0 leads to the conditions

- ( +  + - ) + ik(*+ - -) = 0

+ 2 2 +
2ikv (1 + -) + (k + V2) ( - ) = 0

The determinant of coefficients here does not vanish as long

as ~ a, so that we must have

+ +¢-= 0

and

+ -- = o

Therefore += - and + = -

Substituting these relationships in the equations for

u1 and u2, i.e.,

u1  ax ax2

and u2  + a2 ax axt

we find that ul(xl,x 2 ,s) and T22 are odd functions of x2

and u2 (xl,x2 ,s) and T21 are even functions of x2. Now T22

is odd in x2 but it is also continuous across x2 = 0. Hence

T22 = 0 at x2 = 0. Since ul(xl,x 2 ,s) is odd in x2 , and

discontinuous across that part of x2 = 0 which contains the

crack, we can write for the cracked region of plane x2 = 0,

u 1 (x l , +0,s) = -u 1 (x 1 1 - 0 ,s) = Au1 , where Aul is the relative



-22-

displacement in the xl-direction across the plane x2 = 0.

For the antiplane case, we have one component of dis-

placement u3 (xl'x2 ,s) and two components of stress

T13 =  3(x l x 2 ,s) and T23= a 3(x2lX2 s )

1 2

The displacement u 3 (xl,x 2 ,s) satisfies the equation of

motion

S3(x x s) a 1 3  323

a 1 aX 2

which reduces to the wave-equation

a 3(x,x 2 ,s) = 2[ a (x 1 ,x2') +
as 2 ax2

1

0 being the shear-wave velocity. Assume

the form

iws+ikxl +2x 2u = e

v 2 = /k 2 2/8 2

ax2
2

a solution of

k is the wave-number and w the frequency. u3 (xl,x2 ,s) has

to satisfy the "radiation condition" so that u3 tends to

zero as x2  ±M .

For the region x2 > 0,

+ iws+ikxl 1 -x 2u3 = u3 e

and for the region x2 < 0,

where
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iws + ikx + v x 2
u3 = u3 e

The boundary conditions are that u3 is continuous outside

the region of the crack across x2 = 0 but discontinuous

across the part of x2 = 0 containing the crack and T23 is

continuous across x 2 = 0.(The stress component T1 3 does not

act on the plane x2 = 0). The continuity of T23 across the

plane x 2 = 0 gives u3 = -u 3 so that u3 is odd in x2 and

T23 is even in x2. Since u3 (x1 , x 2 , s) is odd in x 2 and

discontinuous across the broken part of the plane x2 = 0,

we can write, for the broken region of x 2 = 0, u3 (xl, + 0, s)

= -u 3 (xl, -0, s) = 1/2 Au3 , where Au3 is the relative

displacement in the x3-direction across the x2 = 0 plane.

Thus, we have shown that both in the case of the in-

plane shear crack and the antiplane shear crack, there is a

symmetry in the pfoblem about the plane x2 = 0. Due to this

symmetry, it will be sufficient to solve the problem in a

half-space bounded by the plane containing the crack, i.e.

the plane x2 - 0.

Let us divide the plane x2 = 0 into two regions, S1

and S2 where S 1 is the region occupied by the crack and S 2

is the region outside the crack on the plane of the crack.

In Sl , the stress has some known value. We shall solve the

problem in the upper half-plane x2 > 0. The initial

conditions for the case of the plane shear crack are

~I___PaDY_~_I__LCa__
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u 1 (xl' 0, s) = 0

u2(xl' 0, s) = 0

for s < 0 2.3

-- l-(xI  0, s) = 0

au
as , , s) = 0

and for the case of antiplane shear crack are u3 (xl, 0, s) = 0

and au3(x I , 0, s) = 0, s < 0. 2.4
ds

Next, we discuss the boundary conditions. For the plane

shear crack, the component of motion ul(x 1 , x2 , s) is anti-

symmetric in x2 but continuous across x2 = 0 outside the crack

region, i.e. in S2 . Hence ul = 0 in S2 .

Thus, the boundary conditions are:

(i) In Sl T 2 1 = Tf - To , where Tf is the dynamic frictional

stress and T the initial stress.

(ii) In S1l and S2 f T22 = 0 2.5
(iii) In S2 , u l (xl, O, s) = 0

For the antiplane case, we get, by a similar argument,

the boundary conditions as

(i) In Sl', T2 3 = Tf- To 2.62.6
(ii) In S 2 , u 3 (xl, 0, s) = 0

(2.5) and (2.6) define two mixed boundary-value problems.
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We have thus reduced the problem of a crack in an

infinite medium to the problem of a half-space bounded by

the plane x2 = 0. The advantage of this is that we will be

able to use the Green's function for a half-space in the

formulation of relatively simple integral equations. The

displacement discontinuity (slip) between the two faces of

fault plane will be twice the surface displacement determined

for the half-space problem. In later discussions, the

parallel component of displacement on the crack will always

refer to the displacement determined for the half-space. In

the next section, we deduce the integral equation for the

displacement on the crack.



-26-

2.2 The mathematical formulation of the problem.

Let us start with the general case of the three

dimensional elasto-dynamic problem and consider a volume V

of an elastic body bounded by the surface S. Let ui(A,t)

be the i-th component of the displacement vector, cijpq (R)

the elastic constants of the medium and fi(3,t) the i-th

component of the body forces at x = (x l , x 2 , x 3 ) and time t.

ui(x,t) satisfies the equation of motion o

Let vi (x,t) be another motion due to body force gi(x,t).

Then v i (x ,t) satisfies

(C~Poe vr.t4. -s)i ,-

Let vp(Xt) = v p(x,-t) and gi(xt) = gi(tx,-t)

Betti's theorem says that

OLt S (Uif -at 14V f fIicS(V hj d C

where y = (ylY 2,Y 3 ) is a point in V, Ani is the Kronecker
delta and $(x) is the Dirac delta function. Then
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Let Gin(x,t;y,s) be the impulse response corresponding to

gi(x",t) so that the impulse response corresponding to

gi(x't) is Gin(X,-t;y,-s). Gin(X' , t;y,s) is the displacement

in the xi-direction at (x,t) due to an impulsive point

force of unit amplitude in the Yn-direction at (y,s). Sub-

stituting this form of 'i(,'t) into Betti's theorem, we

get the representation theorem
,, (',t; .Y-) ; (, t) dV*

J0 u (0,f) A9t G £) (II (x,- Y- 

If there is no body force or fi(x,t) = 0, we have

(Y~); SGLt fvv C&;. t

The last term of the right hand side of the above

equation can be eliminated, if our Green's function gives

tractions which vanish on the surface S, because then
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hj Cj G,, C. , -% C,-t i

Furthermore, for the homogeneous boundary conditions, the

Green's function satisfies the following reciprocity

(Knopoff and Gangi, 1959),

Therefore, we get

L,, (.£ Gk, (,k - ,A) *0jpq, C) X- , +, C

If y is also on S, which is the case we encounter in

this paper, we cannot eliminate the surface integral

containing i = Cijpq Gpn,q (x,-t;y,-s), because it does

not vanish for y on S. In fact, the surface traction

Sijnj at y is equivalent to the S-function body force that

we put in the form of g(x,t) =ni bxt;ys

If we include this point force in the surface integral as

traction then we must eliminate it from the volume integral in

the representation theorem. Thus, Betti's theorem will give

-o 5

-W(LZ ( S)
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which reduces to the same equation as for the case of y

inside S. For a homogeneous half-space, we write the Green's

function

L (jtS)

free

C -(, s; xt) 9 ( , s-) , and

S00a S-j L (V-i S-+) CLjpq, (XA)

• , (jes) bSx

gives the x -component of displacement at y at time s due

to an impulsive point force of unit magnitude applied at

x at time t, x and y both being on S.

In the two-dimensional problem described in the

preceding section, putting both of x = (x,O) and

y = (x 1 , 0) on the plane x 2 = 0, we get

U4 (x, S)
f Okt f %L ( ,X, XC , ,t) * (*t) LX-dD

-- (2,7)

where

tA - ( + _

tA ( '_'OL +
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2.3 The integral equation for the antiplane shear crack

In the problem of anti-plane shear crack, we assume

that the initial stress is constant and has the only non-zero
component
1 23. The only component of displacement will be in the

x3-direction and will be independent of x3 . Let it be

u3 (xl ,x2 ,s). The non-zero components of stress are

13 - U3 (XI, X), ) n(: T230- (Jx,,x,, s)
x2.

u3 is odd in x2 and T23 is even in x2. The geometry of the

crack and the directions of the surface tractions are-shown

in Fig. 2.2.

The displacement u3 (xl ,x2 ,s) satisfies the equation of

motion(2.2). The wave motions set up by the movement along

the crack will be of the SH type, travelling with the shear

wave velocity. The Green's function for the half-space

x2>0 is given in this case, by (cf. Achenbach, 1973)

where RP (-t) 1 - (X- X,). - X=

and H( ), is the Heaviside unit-step function. The

Green's function is non-zero only in the cone defined by

(S t)- ( x-x,) S>/> 7o (2.8)
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X2

Direction of initial
surfac tractions acting
on X2

= 0 plane.

X3

Figure 2.2. Geometry of the crack for the antiplane shear
crack. The direction of the initial stress in
the regions x2 > 0 and x2 < 0 are shown by
arrows. S1 is the broken region and S2 is
the unbroken region.
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From equation (2.7) we get

u3 ( ,,o.) t (2. 9)srt R

S being that part of the x-t plane that lies inside the

cone defined by Equation (2.8). On x 2 = 0, the region of

integration reduces to a triangle in the x-t plane, given

2 2 2
by the pair of straight lines 2 (s-t) -(x-x 1 ) 2>0, S ,t.

If 23(x,t) were known in the entire region of integration,

then integration of (2.9)will uniquely determine the

solution. However, 1 2 3 (x,t) is known in the region S 1 but

not in S 2 , so that we must first determine t 2 3 (x,t) in S 2

before we can carry out the integration in equation (2.91

The initial conditions under which (2.9)has to be solved

are given by equation(2.4)and the boundary conditions are

given by equation (2.6)

2.32 The Integral Equation for the In-Plane Shear Crack

We consider the same two-dimensional geometry of a plane

crack as in the anti-plane case, but now the only non-zero

component of the initially applied stress is T21 (Fig. 2.3).

There are two components of displacement, both in the plane

(xl-x2 ) given by u 1 (x l ,x 2 ,s) and u2 (x l ,x 2 ,s). As shown

before, ul is anti-symmetric in x2 and u2 and T21 are
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X2

Direction of initial surface
traction acting on X2 = 0

X3

Figure 2.3. Geometry of the crack for the in-plane shear
crack. Arrows indicate the direction of the
initial stress in the regions x2 > 0 and x2 < 0.

S2
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symmetric in x2. The displacements ul and u2 satisfy the

equations of motion given by equation (2.1).

Let gll(x-xl,0,s-t) and g 2 1 (x-xl,0,s-t) be the xl

and x2 components of the Green's functions for the half-space

x2 > 0. 11l and g2 1 were given by Lamb (1904).

Writing gll = 11 + 11 S, we find we have on x2 = 0,

4 - , ,, Va 2 ..

(2.10)

where 5 = s/xl, a and 8 are the compressional and shear wave

velocities respectively, and

-is proportional to the Rayleigh equation. Lamb also gives

(2 (2.k1")2)

where c is the Rayleigh wave velocity.

The constant (' in the above expression depends on the

elastic constants of the medium and can be written as
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K' (2

For =r i.e. = 3 2  K' =125 000. Using equation 2.7,

we can deduce the integral equations to determine U 1 and U 2

on x2 = 0 as

(2.13a)

(2.13b)

the region of integration S being the triangle in the

(x-t) plane given by

(s-()' -(X- X,) 0 , > 0o

If t21(x,t) were known in S, we could carry out the inte-

grations in equation 2.13 to find ul and u2 . Since we know

T 21 (x,t) only inside the crack region 
Sl , we have to

determine it in S2 before we can integrate equation 2.13.

The initial conditions under which 2.13 has to be solved

are given by equation 2.3 and the boundary conditions are

4iven by equation 2.5.

~~_____^ lLl___l_1 1_1 _11~_~~i
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2.4 Numerical method of solving the integral equation

The integral equations that we have to solve in the

case of the plane and the antiplane shear crack are both

of the form

S

where u is the appropriate component of displacement, g the

appropriate component of the Green's function and t(x,t)

the traction on the crack.

In order to solve the integral equation 2.14 numer-

ically, we divide the (xl-t) plane into small sections

called "grids" each having length Ad~along the xl-direction

and At along the t direction. The ratio of At/x is a

constant called the "grid ratio". The grid points are the

points given by xl = LAX and s = nAt where L= 0, 1, t 2,

±3, ... and n = 0, 1, 2, 3... The stresses and the

displacements are assumed to be constant within each grid

element. The kernel g has to be discretized so that the

integrals in equations 2.14 can be replaced by summations

over grids. Now, g is the appropriate component of the

surface displacement due to a surface point source. Following

Hamano (1974), we shall discretize g by averaging it over a

grid interval centered at the observation point as well as at

source point. Then the discretized green function is:
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where we average over a grid of length d = 4x, whose

center is at xj, and

is the displacement at (x,t) due to a distribution of point

forces in the segment (-d/2, + d/2).

Discretizing the integral equation (2.14), we obtain

the matrix equation

where (xi, tk) refer to the observation point and the

summation extends over the source points and times. The

component of the stress tensor used in equation (2.16) is

121 for the in plane shear crack and T23 for the anti-plane

shear crack. From equation 2.16 and the boundary condition

that the parallel component of displacement vanishes outside

the crack, we have

VAO~ S2.

1Y___~__I/~ ~ WLLIY_~~- I_. _ .C--~ I*L-~.~..__ I-l)pqU l~ilrPIL~-8 ~.~
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i.e. dt x L K-Xj ,k,- E -L)'.XjtA,) 0 t IS
Jt

or L F(xc-x-, t--tL ) T (,X ti)- - F(O,1) TC)(tK) (2.17)

k L

This gives "(xi,t k ) in S2 from the value of - in S I.

Knowing I on S 1 and S 2 , we can substitute it in equation

2.16 to get un(xi,tk). To identify the regions S 1 and S 2,

the position of the crack-tip as a function of time must

be known, either a priori or must be found using the state

of stress near the crack-tip and an appropriate fracture

criterion.

Fig. 2.4 shows the trajectory of the crack-tip as a

function of time in the ()x-s) plane. From the principle

of causality, the region of integration in the (x-s) plane

when finding the displacement at (xl,t1 ) is the rectangle

OABC which has one corner at (xl,tl). To find the stress

at (Xo ,t o ) , the region of integration is over the rectangle

OA BC ,1' but excluding the point (Xo ,t). For a crack half-

length of unity and assuming the fastest wave speed to be

unity, the number of computational operations we would need

up to a time T is proportional to (1X)N3T 4 , where N is the

number of grids in the xl-direction.
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.. . . .. . ...
. . . . . .. . . .....-. . . •. . . . . ....

. .- .'.. .: -... .... - .. .'. ."... . ...... -TIP

P . ..:.i . P

(x, t) (xo, to)

C,
UNDISTURBED UNDISTURBED

REGION C REGION

0 xI

Figure 2.4. Trajectory of the crack-tip in the (x-s) plane.
S1 is the crack region and S2 is the region
outside the crack.

P and S denote the P and S
waves from the initial point of break.
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Discretized kernels for the in-plane and anti-

plane shear crack

Using equation (2.15), we can discretize the kernels

91 1 ' g21 ' g33 so as to be able to use them in equation 2.16.

For the antiplane case, the discretized kernel is given by

F(,T) TS TS DJ' (YS) (2,18)

where x: Xd/ s : s/ £l , Y- X/T

d is the grid length in the space dimension (X and Ts are

thus dimensionless distance and time), and

' y- (Y+,) - 2. -() + I(Y-)

,(1 )=- 'i, sw'Y5 + / Ya 'S S ,

Note that the shape of F3 3 (X,Ts) does not depend explicitly

on X but only on the ratio X/Ts. The discretized kernel

F 3 3 (X,Ts) is shown in Figure 2.5.

For the in-plane shear crack, we get

S= FP ,+ FS
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GREEN'S FUNCTION USED FOR

THE RNTIPLRNE SHEAR CR:CK

Figure 2.5. Composite plot showing the discretized kernel
F33 (X,Ts) giving the Green's function, for the
antiplane problem. F33 (X,Ts) is symmetric
about X = 0.
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where a 3 p p p

(2.19)

Fs (x, -)T _L_ T [- P9, ( v)
3 s

where

d = Ax being the grid length in the xl-direction, and 1/z.'s

are t2 times the roots of the Rayleigh equation h(1
2 ) = 0

and

12" (Y; *):

Jzts~l
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+ 1, 02

A;, + .z 2 + C-.)

Ail

S
A2. 6s- 3

If we assume Poisson's condition, i.e. X =

C1:

I, then

1/zl,/z2,1/z3 = 1(3-) (3+

The discretized kernel F 11(X,Tp) is shown in Figure 2.6.

-Z A2I

I (ESL A. 4 + C2)

+ C2. )

= _¢, €/4-
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PIRRLLEL COMPONENT OF GREEN'S FUNCTION

USED FOR PLRNE SHEAR CBRFCK

Figure 2.6. Composite plot showing the discretized kernel
Fll(X,Tp) giving the parallel component of the
Green's function for the in-plane problem.
The P-waves and Rayleigh waves are clearly
visible. F11 (X,Tp) is symmetric about X = 0.
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For the component g21 (xl,s) of the Green's function

the discretized kernel F2 1 cannot be evaluated analytically

since the integrals obtained by using equation 2.15 reduce

to elliptic integrals. Hence, in this case, the integrals

are evaluated numerically at each grid point, and F21 (X,Tp)

is shown in Figure 2.7.

Substituting these discretized kernels in equation

2.16 we can solve the integral equations for ul(xl,s),

u2(xl,s), u3 (xl,s) provided we know the location of the

crack-tip as a function of time.
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PERPENDICULRR COMPONENT OF GREEN'S FUNCTION

USED FOR PLRNE SHERR CRRCK

Figure 2.7. Composite plot showing the discretized kernel
F21 (X,Tp) giving the normal component of the
Green's function for the in-plane problem.
The P-wave and Rayleigh wave are clearly
visible. F2 1 (X,Tp) is antisymmetric about
X = 0.
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2.5 Comparison of numerical results for anti-plane

crack with analytical result of Kostrov (1966)

We shall first compare our solution with the analytic

solutibn given by Kostrov (1966) for the anti-plane crack to

find the accuracy of our method. Kostrov gives the expression

for displacements on the surface of the crack and stresses on

the plane of the crack outside the broken region. The semi-

infinite anti-plane crack which never stops will be considered

as this is the only case for which the analytic solution of

Kostrov is correct for an indefinitely long time interval. If

the semi-infinite crack stops, then the wave reflected from

the tip has to be taken into account. For a finite crack,

the exact solutions found by Kostrov are correct only till

the disturbances from one end of the crack reach the other

end. After this, the multiple integrals that result from

repeated wave diffractions cannot be obtained in closed form,

even in simple cases.

We consider an infinite, elastic body which is initially

under a homogeneous state of stress such that C23 = o

At t = 0, an instantaneous semi-infinite crack comes into

existence, occupying the negative xl-axis, the origin

of the coordinate system being at the tip, and starts

extending immediately in its own plane with a velocity equal
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to half the shear-wave velocity. It is also assumed that the

crack never stops but grows for all time.

On the crack surface, the value of the shear stress

component T23 will drop from the level of the prestress to

some lower level, say Tf, the dynamic frictional stress on

the crack. As mentioned earlier, by the principle of super-

position, we can take the initial stress to be zero and the

final stress on the crack to be (Tf-To). For complete stress

release on the crack, Tf=0. We shall normalize all stresses

by the stress drop (T -T ) so that all results presented from
o f

here on will be for a stress drop equal to unity, unless

specifically stated otherwise. The wave-front generated by

the fracture is shown in Fig. 2.8.

As explained in an earlier section, the problem of the

crack in the infinite medium reduces to the half-space

problem and we can use equation 2.9 to determine the

displacement on the crack and the stresses on the plane of

the crack outside the crack region.

The general expression for the displacement on the

crack surface x2=0, in terms of characteristic coordinates

( 1 1) can be written using equation (2.9), as

K f)
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X2

01 ol

Figure 2.8. The wave-front generated by dynamic fracture
for a semi-infinite antiplane shear crack.
x, = Z(s) gives the position of the crack-tip
as a function of time,
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where ( 1 S- X( .t S + X

and K(Il) is the solution of

Th - K (T)

T23 (i) =

=z(+ K(T) )rz-

where the position of the crack-tip as a function of time

is given by xl = Z(s). For the case when the crack-tip

moves at the velocity /2, xl = s/2, whence K( 1) =) )

Let us take r= 1 and f= 1 so that 4= 1 and K(11) =~1/3'

As mentioned earlier, the stress drop is taken as unity,

T 3 (.1)= I

and we have:

___ CL

7/3

IIT C'
(2.21)

+ S -51 '9,

From Kostrov (1966), the general expression for stresst 23

at any point (9,J) ahead of the crack on the plane of the

crack is given by

L2.3 (I's)

-- L j",'p L
Tt [ :0
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N C)
T 22L. 31 (2,22)

where N(f) is the solution of

The stress outside the crack on the plane of the crack is

thus determined by the stress inside the crack. For the

case when the crack-tip moves at half the shear wave

velocity xl = ps/2 and N() = 3V , we have

2- $ T2_(~ 1- - A,

123(,u) is the stress drop inside the crack, which we

normalize to unity. If = 1 and p = 1 so that = i,

i [4 1 + --it - j (2.23)1

If equation (2.23) is written in (xl,s) coordinates, we
have

St x, ,) XI -x, V
23k r-
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where sl is computed from ps-xl = Psl-Z(sl).

This can be written as

+ o, s~,(- )+(s)

(2.24)

ki
±t- ofx"i) ]

where k is called the "stress-intensity factor".

The particle velocity behind the crack-tip can be

obtained by differentiating equation (2.20) and using

the relation

16 -t

In (xl-s) coordinates, we can write

e_____lL__1IYYILL_^3C-~~~-- - .--.- . __

tz~ (xs)= .1 (S)~
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_.L4 (x,, s) / __lsI

•f r.3 (v, S- *(,)+V ) , (2.25)

+ o(J( )_ x, )

S - ..- O(. ()- x,)

U3 is called the "velocity-intensity factor". The square-

root singularity associated with the stress-intensity

factor and the velocity-intensity factor commonly occurs

at the tip of various types of cracks.

The problem of a semi-infinite crack extending at a

constant velocity is a "self-similar" problem, since there

is no characteristic length scale in the problem. Let us

consider two points in the (xl-s) plane, given by say

(x l ,sl) and (x 2 ,s 2 ) such that s2 = (x 2 /x 1 ) s I . Then,

u 3 (x 2 ,s 2 ) = (x 2 /xl) u 3 (x l , s1 ) (2.26)

Thus, if we know the displacement at (xl,s1 ) we can find the

displacement at (x2 ,s2 ) simply by multiplying by the

factor x2/x1 without having to evaluate it from equation

2.22.

To compare our numerical solution with the analytical

solution, we first evaluate equation (2.22) and plot the
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displacement against Ts = s /d. The numerical solution is

determined using equations 2.16 and 2.18. We take

At = d/ ATs and Ax = dAX, where Ts and X were defined in

section 2.4. We solved the integral equation numerically

for At/x = .1, .2, .4, .5, .75, 1.0. We expect some

difference between the analytical and numerical solutions

since the continuous motion of the crack-tip is approximated

by discrete steps in the grid. For At/Ax = .1 and .2, the

solution agrees almost exactly with the analytical solution

for the first four or five time steps. (The agreement at

the first point, however, will not be complete for any

ratio of At/ax due to the uncertainty in the positions of

the crack-tip within the discretization interval.) After

the first few time-steps, the solution starts oscillating

about the analytic solution, the oscillations becoming

larger as X increases. For a given X, the amplitude of

the oscillation is constant in time. The period of the

oscillations are constant for all space and time.

For At/&x = .4, .5, the numerical solution does not

agree well with the analytical solution for the first four

or five time-steps but afterwards, agrees very well, and

has only minor oscillations about the analytic solution.

At/Ax = .5 is found to have slightly smaller oscillations

than At/&x = .4. For &t/&x = .75 and 1.0, the numerical

solution does not agree with the analytic one even after

twenty time steps. Fig. 2.9 shows a comparison of the

__laL~~ ~~Y~n~



INSTANTANEOUS SEMI-INFINITE
ANTIPLANE SHEAR CRACK
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Figure 2.9. Comparison of numerical results for AT/AX = .1, .2, .5 and 1.0 with the
analytic solution at X (= xl/d) = 2 for the semi-infinite instantaneous
antiplane shear crack moving at half the shear-wave velocity. The best
agreement with the numerical result is for AT/AX = .5.
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numerical results for various values of 4t/Ax, at a

particular value of X, with the analytical solution.

Thus we see that for small 4t/Ax, the solution is

poor in the later part, and for large At/Ax it is poor

in the early part. The optimum value for At/Ax

appears to be around .5.

The departure of the numerical solution from the

analytical solution near the crack-tip can be reduced by

going to smaller values of At/ax but then the amount of

calculation and computer time involved will be increased.

Thus, we conclude that if we are interested in the

fine details of motion near the crack-tip, we should use

values of At/Ax < .2. If we are not interested in the

motion near the crack-tip but want to obtain the motion

at points in the interior of the crack, At/Ax = .5 is an

optimum value.

We point out, in this respect, the work of Burridge

(1969) who solves the same problem by a method essentially

the same as our method, the only difference being in the

method of discretizing the kernel in the integral equation.

Burridge's result also shows that the solution near the tip

does not agree well with the analytic solution of Kostrov,

but the agreement seems to be good for any time later than

a few steps after the crack-tip passage (Burridge chooses

4t/4x = 1.0).
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Fig. 2.10 shows the analytic and numerical solutions

for the parallel component of the displacement on the

plane x2 = 0 , plotted against time for various Values

of X. At/4x was chosen to be .5. The agreement between

the two solutions is quite satisfactory.

The stresses obtained numerically are also compared

against the analytical result (equation 2.23). Fig. 2.11

shows the analytical and numerical solution plotted

against X for various values of Ts. The stress singularity

at the tip is eliminated by our averaging scheme. Changing

At/dx does not affect the stresses appreciably. After about

50 time steps, the stresses start showing minor oscillations,

but the amplitude is negligibly small. To determine whether

these oscillations are negligible or not, we solved the problem

again, this time by smoothing the stresses when the oscilla-

tions start by taking three-point averages with the point

where it oscillates being the center point of the averaging

scheme. The oscillations are damped out but after 100 time

steps, the corresponding displacements are the dame, even

in the second decimal place as the displacements when the

oscillations in the stresses are not smoothed. So we

conclude that the small oscillations in the stresses do not

affect the displacement. The good agreement of our numerical

result on stress near the tip with the analytic solution

allows us to use the stress at the grid poiit immediately

ahead of the crack tip in the fracture criterion, which will

be discussed in the next chapter.



Figure 2.10. Comparison of analytical solution due to Kostrov (1966) with our numerical
solution for a semi-infinite instantaneous antiplane shear crack extenuing
at half the shear wave velocity.
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Figure 2.11. Comparison of stresses found by Kostrov (1966) with our numerical method
for the same case as Figure 2.10, for ATs/AX = .5.
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We also plot in Fig. 2.12 a comparison between the

analytical and numerical results for the displacements

when the crack-tip moves at the shear-wave velocity P,

the case when At/Ax = .5. The agreement is found to be

very good.



Figure 2.12. Same as Figure 2.10 but for the case when the crack-tip velocity is equal
to the shear-wave velocity.
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2.6 Comparison of our numerical results with existing

numerical solutions of some in-plane crack problems

Since no analytic solution is available yet for a

crack that extends at a constant velocity and stops, we

compare our result with Madariaga's numerical solution

for the case when the crack extends at half the P wave

speed and stops. We shall make the crack stop to find

the effect of the stopping phases on the displacement.

As in the anti-plane case, we consider an infinite,

elastic body which is initially under a homogeneous state

of stress whose only non-zero shear component is T21 = To'

say, T being a constant. At t = 0, a crack whose initial

length is equal to one grid length in the space-dimension

xI comes into existence and starts extending in both positive

and negative xl directions at half the P wave speed. The

origin of the coordinate system is taken at the center of the

initial crack. The crack is stopped when it reaches a

length equal to 41 times the grid-length in space. The

wavefronts generated by the fracture, before it stops, is

shown in Fig. 2.13.

The value of the shear stress component T 21 drops to

some lower level, say Tf, the dynamic frictional stress on

crack from its constant initial value T , on the crack

surface. We shall take the stress-drop as the unit of

stress. As shown before, the problem reduces to a half-



X2

X,
s= /2

3 3

Figure 2.13. Wavefronts generated by dynamic fracture by a finite plane strain shear
crack. The diffracted P, S and head-waves are shown by the numbers 1,
2 and 3.
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space problem and we can use equation 2.13 and equation

2.19 to get the integral equation whose solution will

give displacements on the crack as well as tractions on

the plane of the crack outside the crack.

Madariaga (1976) directly discretizes the equation of

motion by a leap-frog method on a staggered grid and

determines the particle velocities inside the crack and

stresses outside the crack. The displacements inside the

crack are obtained by integrating the particle velocity.

Madariaga does not allow a sudden jump in the stresses at

the crack tip. Instead he introduces a smoothing of the

stresses over the crack-tip from inside to outside of the

crack. Because of this smoothing, his solution does not

show the square-root rise of slip-function which is common

to all the analytic solutions.

Fig. 2.14 shows a comparison of the numerical solution

obtained by Madariaga for a crack extending bilaterally at

half the P-wave velocity together with our solution for the

parallel component of displacement for the same case. The
center of the

displacements are plotted in Figure 2.14a at the A fault
in Figure 2.14b

X=0.0 and A half-way between the center and the tip, X = .5,

the final half-length of the crack being taken as unity.

The result can be improved by increasing the number of grid

points oh the fault. In Fig. 2.14 we have taken

t = ATp = .025 and Ax= o4X = .05.

The stopping phases from tips are denoted by P0 and SO
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Figure 2.14. (a) Comparison of result obtained by Madariaga with that obtained using
Hamano's method for a finite bilateral crack extending with velocity a/2,
and stopping when it reaches a half-length of unity. ATp/AX = .5 in the
case shown. The parallel displacements are plotted at the centre of the
fault (X = 0). The static solution at the centre is shown. Po, So denote
the stopping phases.
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Figure 2.14. (b) Same as 2.14 (a) but the parallel displacements are plotted at the

midpoint between the centre and the tip (X = .5). P1, S1 denote the

stopping phases.
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for X = 0.0 (here the stopping phases from both tips come

in simultaneously) and for X = 0.5, the stopping phases

from the nearer tips are denoted by P1 and S1 on Figure

2.14b. Our result agrees well with Madariaga's result

till the P-stopping phase comes in, after which there is a

difference of about 10% between the two results at Tp = 4.0

for X = 0.0 and of 15% at Tp = 4.0 for X = 0.5.

It is interesting to note in Fig. 2.14 that the crack

does not stop as soon as the P stopping phases comes in but

that there is a lag between the arrival of the P-stopping

phase and the stoppage of slip on the crack. To quote from

Madariaga, "it appears as if a 'healing' wave propagates

inwards from the edge of the fault some time after the P

and S stopping phases. The velocity of this healing wave

appears to be variable but it is difficult to calculate due

to numerical uncertainty in determining the healing time".

The static solution, for this case, is given by

(Starr, 1928)

-1_ () . T- I <,,2 , I

o , Ix, >I

At X = 0.0, the static solution is 2.25 and at X = 0.5,

the static solution is 1.95. The static solutions are also

shown in Fig. 2.14. The slip at the fault thus overshoots

the static solution. The disagreement between Madariaga's
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solution and ours at the first few points in time is due

to the difference in smoothing.

Fig. 2.15 shows the component of displacement perpen-

dicular to the fault plane found by the two methods, at

X = 0.5 and X = 1.0. The corresponding static solution is

given by Burridge (1969) as

4

S_ -1< X,< I

Thus, the perpendicular component is not zero outside the

crack but has some value in the whole plane of the crack,

and is an odd function of xI . There is a disagreement

between Madariaga's result and our result in the early part

of the perpendicular displacements. Near the arrival time

of S waves from the nucleation point, we find a small but

significant negative displacement but Madariaga does not.

Richards' (1976) analytic solution, for a self-similar

shear crack which does not stop, also shows this negative

displacement, in favor of our solution.

Burridge (1969) also studied the same problem using

the numerical method mentioned earlier. His results are

quite similar to our results shown in Figs. 2.14 and 2.15.

His solution is rougher than ours, because there are only



Figure 2.15. Same as Figure 2.14 but for the normal component of displacement, plotted
at X = .5 and X = 1.0. P, S and C denote the arrival of the P and S waves
from the first point of break and the passage of the rupture front.
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ten grid points over half the crack length, whereas in

Madariaga's case and in our case we use twice as many grid

points.

Figs. 2.16 and 2.17 show three-dimensional plots for the

parallel and perpendicular components of displacement for

the in-plane shear crack extending at half the P-wave

velocity. They are again quite similar to the results

obtained by Burridge (1969). Fig. 2.18 shows the

comparison of our numerical solution with that of Madariaga

for the parallel and perpendicular component of displacement

when the crack-tip moves at the compressional wave velocity,

o for the case when 4t/Ax = .5. The agreement between the

two solutions is found to be very good.

In this chapter, we have shown that our numerical

method gives results which agree well with existing

analytical and numerical solutions. We have only considered

the case of a crack-tip extending at a known constant

velocity. In the next chapter, we shall show how we can

find the motion of the crack-tip from the physical properties

of the fault and the conditions of pre-existing stress on the

basis of fracture criterion similar to the ones used by

Griffith (1920), Irwin (1958), Barenblatt (1962) and

Kostrov (1966).
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PARALLEL
COMPONENT
OF DISPLACEMENT
ON CRACK
SURFACE

PLANE STRAIN
SHEAR
CRACK EXTENDING
BILATERALLY AT A
VELOCITY OF a/2 .

Figure 2.16. Composite plot showing parallel component of
displacement on the crack surface for a
bilateral crack extending at half the
compressional wave velocity.
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U2

NORMAL COMPONENT
OF DISPLACEMENT
ON CRACK
SURFACE

PLANE STRAIN
SHEAR CRACK
EXTENDING
BILATERALLY AT A
VELOCITY OF a /2.

Figure 2.17. Same as Figure 2.16 for the normal component
of displacement on the crack surface.



-74-

DISPLACEMENTS DUE TO A BILATERAL PLANE CRACK

RUPTURE VELOCITY = a
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Figure 2.18. Same as Figures 2.14 and 2.15 but for case
when crack tip moves at the velocity a.

X= 1.0
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Chapter III

Fracture Criteria and Physical Parameters of a Shear Crack

In the previous chapter, the crack-tip position was

known a priori as a function of time. In case the crack-

tip position is not known, a fracture criterion is required

to determine the rupture process. Kostrov (1966) has given

an analytic solution for the position of crack-tip as a

function of time for a semi-infinite instantaneous antiplane

shear crack. We shall discuss his results and compare our

numerical solution with his to find the relation between

Hamano's fracture criterion and that of Irwin for the

antiplane shear crack. For the in-plane shear crack, no

analytical solution exists yet for the dynamic problem.

Andrews (1976) has solved the problem of.propagation of

the in-plane shear crack by a finite difference technique

for various values of the limiting rupture stress, and has

shown that in certain cases, the velocity of the crack-tip

goes from sub-Rayleigh to super-shear. We shall solve this

problem by our method and compare our results with those

of Andrews.

An "ideal" brittle body is defined to be one in which

each element of the body can exist only in two states:

either the element is continuous or it has been broken into

two parts. No intermediate state exists and the material

passes from the continuous state to the fractured state

~CL_~
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at the edge of the crack.

A "non-ideal" brittle body is one in which an inter-

mediate state exists between the broken and unbroken states,

where the crack is not completely continuous or completely

broken but is in a transitional state. This intermediate

state is characterized by cohesive forces existing near

the edges of the growing crack.

We next give a brief review of the mathematical theory

of equilibrium cracks and discuss the fracture criteria of

Griffith, Irwin and Barenblatt and Hamano.
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Glossary of Symbols used in Chapter III

c = a constant =2.0 to 3.0

d = slip required for stress to drop jAndrews (1976)]

d = width of end-zone in Barenblatt model

g(k) = distribution of cohesive forces in end-zone

S = (Tu -T 0 )/(T 0 -T f)

t = time of onset of fracture

F = rate of work done in rupture process

FD = frictional stress

G = F/xl = energy release rate

K = modulus of cohesion

Z = distance from crack tip along crack surface

(0 < L < dl) in Barenblatt model

L = instantaneous crack half-length

Lc = Griffith's critical crack half-length

W = work done by relaxing forces

y = specific surface energy

'd = coefficient of dynamic friction

IIs = coefficient of static friction

U= average stress over grid

TO = initial stress
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= limiting rupture stress (or static friction

stress)

= final stress (or dynamic friction stress)

T

Tf
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§3.1 The mathematical theory of equilibrium cracks

and discussion of fracture criteria.

Consider a crack of area S in a linearly elastic body

subjected to a uniform state of stress T... Due to the

applied stress field, there is astrain energy in the body.

The crack surface is assumed to be stress-free. Let the

area of the crack extend from S to S + 6S, with the

boundary condition that the new surface 6S is also stress-

free. The new stress-free surface 6S is obtained by

gradually relaxing to zero the stress on 6S, or, equiva-

lently, by gradually applying a traction with the same

magnitude but opposite in sign to the one due to the

initial stress on 6S, while maintaining equilibrium. Due

to the extension of the crack area from S to S + 6S, the

body loses strain energy it had accumulated from the

application of the initial stress T... It is assumed that

the body is held fixed at infinity. Let the displacement

field before crack extension be u. and after extension be1

u. + 6u. and let the stress field after crack extension be
1 1

T.. + 6Ti... Then the strain energy 6W released in the

extension 6S is equal to the work required to close 6S,

and is given by

6W = 1/ n T..ij [6ui ] dS
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where n. is the normal to SS, [6ui ] is the relative dis-

placement of the crack surfaces and the integration is over

the newly formed crack surface 6S. For the extension 6S

to be possible, the strain energy lost by the body must

at least be equal to the increase in surface energy 2y cS,

where y is the energy required to create unit area of

crack surface or the "specific surface energy". Thus,

crack extension requires that

6W > 2y 6S (3.1)

where y is a material constant. This is Griffith's

criterion for the static problem.

If the stress on the crack is released abruptly, then

the problem becomes a dynamic one and we have to consider

the kinetic energy of the system as well. Griffith's

criterion can then be written as 6W - 6K = 2y 6S, where

6K is the change in the kinetic energy of the body.

Thermal effects are neglected. In the dynamic case as

well, y is a material constant characterising the rupture

strength of the material. Brace and Walsh (1960) have

measured y experimentally in the laboratory for quartz and

found it to be of the order of 103 ergs/cm2 for tensile

cracks. Griffith's criterion holds for an ideal, brittle

body.
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Irwin's fracture criterion

Griffith's criterion is a global criterion and is thus

not convenient for practical applications. Irwin (1958)

introduced a local criterion, that the crack extends when

the stress intensity factor k at the tip of the crack

exceeds a constant K/u. Irwin's criterion is equivalent to

the Griffith criterion in the static case, in which the

stress intensity factor and the energy flow per unit length

of crack extension are uniquely related to each other.

The Barenblatt Crack Model and Fracture Criterion

Let us now try to understand what happens at the tips

of the crack. If the distance between the two sides of

the crack is greater than the radius of molecular attraction

at all points, then the increase of surface energy due to

crack extension will be given with sufficient accuracy by

the product of the increment of surface area and the surface

tension of the material. However, at the very ends of the

crack the two faces remain very close together and large

forces of atomic or molecular attraction exist across the

two faces. In a sufficiently long crack, the error in

strain-energy due to neglecting these molecular forces of

attraction may be small, but for cracks of small length, the

error may be significant.
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Barenblatt (1959) represented these "attractions" or

"cohesive forces" as intense force distributions acting

at small zones at the crack tip. These cohesive forces

pull the crack faces together. If the crack exists in an

infinite body which is under a tensional load applied at

infinity, a stress singularity is introduced at the tip

which is tensile in nature (i.e. it tends to pull the two

faces of the crack apart). If the cohesive forces are

taken by themselves (i.e. no remote tension is applied),

then they induce a stress singularity at the end which is

compressive in nature (i.e. it tends to pull the two faces

together). It is possible that the two stress singularities

cancel one another and the final stress field has no

singularity at the crack tip. Goodier (1958) says that

this cancellation has to be postulated and is not subject

to proof. It can be shown (Barenblatt, 1959) that as the

result of the vanishing of the stress singularity, the two

faces of the crack, after deformation, join smoothly in

cusp form at the tips, as shown in Figure 3.1.

In Barenblatt's crack model, a transitional region

exists between the broken and unbroken states of the crack,

where the elements of the medium are neither continuous

nor completely separate. The three postulates of his model

are:

(i) The dimension dl of the transitional region is small
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Figure 3.1 Schematic diagram showing the cohesive forces at
crack tips in Barenblatt's theory, a is the crack-
half-length, dl the length of the end-zones over
which the cohesive forces act. The two faces of
the crack join smoothly in cusp form at the tips
of the crack. The dotted line shows the equili-
brium shape of the crack, which is an ellipse.
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in comparison with the size of the whole crack.

(ii) The distribution of the displacement in the transition

region does not depend upon the acting load and for a given

material under given conditions (temperature, composition

and pressure of the surrounding atmosphere, etc.) is always

the same.

According to this, the crack-tips in a given material

under given conditions are always the same. During

propagation of the crack, the transitional region moves

over to another place but the distribution of the distortion

remains the same. Since the cohesive forces attracting

the two faces of the crack to one. another depend only on

the displacement distribution, the stresses due to the

cohesive forces will be the same at the tip, as the tip

moves.

(iii) The opposite sides of the crack are smoothly joined

at the ends or, which amounts to the same thing, the stress

at the end of a crack is finite.

Barenblatt derives his fracture criterion from the

condition of boundedness of stress at the crack-tip, i.e.

the requirement of cancellation of stress singularities at

the tip. For finite stress at the tip, the cohesive forces

must adjust themselves so that they reduce to zero the

stress concentration factor k which the applied loads alone

would produce. If k is too great, the cohesive forces
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cannot cancel it and the crack will extend. This leads to

the criterion

k = / g() d£ = K/w (3.3)
0

where k is the stress-intensity factor calculated neglecting

cohesive forces, Z is the distance from the crack-tip along

the crack surface, g(Z) is the distribution of cohesive

forces in the end zone, dl is the length of the end zone,

and K is a constant. By the third assumption of Barenblatt,

K is a material constant and is called the "cohesive

modulus". It has the dimension of [FL - 3/2 = [ML- 1/2 T-2

where L is the dimension of length, F the dimension of

force, M the dimension of mass and T of time.

Barenblatt (1962), Goodier (1968) and Willis (1967)

have shown that the critical load required for the extension

of a crack in the static case using the Griffith and

Barenblatt fracture criteria are the same. Goodier shows

this by evaluating the work done at the tip, during an

infinitesimal extension of the crack, by the forces near

the tip. In the Barenblatt theory, since there is no

stress singularity, there is no contribution to the work

done at the tip from the "holding force" distribution

(i.e. by the load on the body) on the crack extension and

all work is done by the cohesive force distribution g(£).

_L1 (C=~ _^___I



-86-

In Griffith's theory, all the work comes from the "holding

force" distribution on the crack extension and results in

a finite energy flow into the crack tip (Freund, 1972).

The form of the cohesive force as a function of

distance between the faces of the crack is shown in

Figure 3.2. The force of atomic attraction first increases

in proportion to the separation between the two faces. But

as the separation proceeds, the force rises to a maximum

and then decreases towards zero as the two faces separate

beyond the range of significant attraction. The exact form

of this function is not known. Brace and Walsh (1960) have

approximated it by a sine-function which is zero when the

atoms on the two faces of the crack have their normal

separation, then rises to a maximum f , which is of the.max
order of Young's modulus, and is again zero at a distance

equal to the atomic radius of these atoms.

It is thus seen that the fracture criteria of Griffith,

Irwin or Barenblatt lead to the same result for the static

case. Thus for the purpose of determining when a crack

starts to propagate, it is immaterial which fracture

criterion is used. However, if we want to determine the

rupture process for a propagating crack, the result will

depend on the fracture criterion used. The Barenblatt criter-

ion offers a more realistic picture of the stresses near the

crack-tip. In Griffith's theory ris the material
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Cohesive

force

fmax

0 b

Separation distance between

two sides of the crack.

Figure 3.2 Form of the cohesive force as a function of the

distance between the faces of the crack. At
distances less than b there is no cohesive force

i.e. b is the normal separation distance between

the atoms.
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constant and is independent of the crack-tip velocity xl.

In the Irwin . criterion, K is the

material constant and during propagation the relation

k(x ) = is satisfied, k(xl) being the instantaneous

stress-intensity factor for the dynamic problem and depends

on x1 [Equation (2.24)], and the crack-tip position using the Ir-

win criterion will be different from that using Griffith's

criterion. An example of this will be given in Section

3.3, for the antiplane shear crack and this will illustrate

the difference between the fracture criteria.

The fracture criteria discussed above are not directly

adaptable to numerical computation. Hamano (1974) introduced

a fracture criterion suitable for numerical techniques. In

this criterion, when the stress at a grid point outside

the crack and nearest to the crack tip exceeds a certain

critical value, the crack extends by one grid point. This

stress may be considered as an average of an analytic

solution over the grid length d immediately ahead of the

crack-tip (Fig. 3.3). Since the analytic solution for the

stress T is approximated near the crack-tip by

T = Tf + -

1

where xlis the distance from the tip, the stress at the

grid point obtained by the numerical method can be obtained

as



Figure 3

I
.3 Figure' showing the form of the stress near the

crack-tip as a function of the distance from the
tip. The analytic solution shows the square-rootT singularity at the tip. The discrete solution is
step-l ike nd is ap roximately equ-T"al to the

cal solution over aaveraged value of the analyti
grid.
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- d• 1 d k7 T + -f dx
f /0  - 1

= Tf + 2k//d- (3.4)

Equations (28), (31), (34) and (37) of Ida and Aki (1972)

show that the stress singularity term refers to Tf, the

stress inside the crack rather than to T, the initial stress.

Then, we find the stress intensity factor k is related

to T by

(T - Tf) /d
k= 2

In other words, Hamano's criterion that r must exceed a

certain critical stress Tu is approximately equivalent to

Irwin's criterion that the stress intensity factor k must

exceed k . kc and TU are related by

(Tu - Tf) i
k=c 2'

We shall introduce a factor c to relate k and Tu

exactly as

k = u - Tf /
c c (3.5)

We expect c to be about 2. Thus, Hamano's criterion is an

approximate form of Irwin's criterion.
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§3.2 Friction on the crack surface.

In our previous discussion, a point on the fault-plane

was broken according to some fracture criterion and the

final stress inside the broken region was put equal to the

dynamic frictional stress, but the frictional arrest of

the slip motion was not considered. Inside the ruptured

region, the slip is resisted by the dynamic friction

between the two sides of the crack. If Pd is the coeffi-

cient of dynamic friction, which is assumed to be a constant

and [Ul] is the relative velocity across the crack plane

x2 = 0, then the frictional stress FD on the upper side

of the fault (i.e. x+ = 0 plane) is

FD initiad 22 sgn[l] when [u1 ] f 0 (3.6)

where initial is the normal component of initial stresswhere22

on the body. This is Coulomb's law of friction. T22

remains constant throughout the rupture process in the

case of a plane fault in an infinite, homogeneous medium

(Richards, 1976) so that FD is time-independent. The stress

S+
on the lower side of the fault is opposite in sign to F D

The negative sign in equation (3.6) indicates that friction

resists slip. We may assume that the slip at any



-92-

point on the fault is arrested when the slip velocity

reaches a certain value, which we may call the "critical

velocity". If we take the critical velocity to be zero,

we would get the case analogous to the "stick-slip" of rock

mechanics. In this case, the motion is stopped when the

slip velocity tends to reverse sign, i.e. when the slip has

reached its maximum value. There is thus no overshoot in

displacement but there will be an overshoot in the stress

inside the crack at the time of arrest and the final stress

on the crack will be lower than the dynamic frictional

stress. If the critical velocity is taken to be large and

negative, then there will be no frictional arrest of sliding

and there will be an overshoot in the displacement. The

slip at a point will stop, in this case, only after the

waves reflected from the crack-tip(s) become negligible.

If the critical velocity is positive, the slip will stop

before it reaches its maximum value. Once a point is

stopped, it will not slip until the stress exceeds the

static friction stress.

Burridge (1973) has considered the case of in-plane

self-similar shear cracks with friction but lacking cohesion,

i.e. the stress intensity factor k = 0. He assumes that

initially the two crack faces are not welded together but

merely pressed together and that the static limiting friction

is high enough to prevent slippage on the crack plane.
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Thus, in addition to equation (3.6), he has the condition

Sinitial
- initial when [ul ] = 0 (3.7)

where ps is the coefficient of static friction. Burridge

has shown that when a zone of slip, governed by a Coulomb

law of friction, spreads, only certain rupture speeds are

possible. Such a crack cannot propagate at speeds except

at the Rayleigh wave speed, at which the stress intensity

factor vanishes. Burridge showed that even at the Rayleigh

velocity, the stress ahead of the crack at the S-wave front

may exceed the static friction and cause the fault to slip.
T -T

If u 0 > 1.63, where T is the static friction stress,
TO - Tf u

the crack can run at the Rayleigh velocity. If the static

limiting friction is sufficiently low, the crack may

propagate at the P-wave velocity.

Burridge and Halliday (1971) have considered cohesion-

less antiplane shear cracks having friction. The fracture

criterion is that a rupture will propagate when the stress

at the tip overcomes the static frictional stress. The

assumption of lack of cohesion implies that the stress-

intensity factor k = 0. They find that for such a crack

to decelerate and stop, the stress-drop must change sign.

If a negative stress drop cannot exist, then the crack will

propagate with the shear-wave velocity and will never stop.

It may be well to point out here the basic difference
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between Hamano's criterion and that of Burridge and

Halliday. Burridge and Halliday do not have a stress-

singularity at the crack-tip while Hamano does have the

stress concentration at the tip, which is only smoothed.

Thus Hamano's criterion is for cracks having cohesion and

is different from the criterion used by Burridge (1973)

and Burridge and Halliday (1971).
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§3.3 Determination of relation between Hamano's and

Irwin's fracture criterion.

Kostrov (1966) analytically determined the rupture

process for a semi-infinite instantaneous antiplane shear

crack in an infinite medium by using Griffith's fracture

criterion, i.e. assuming y is a material constant. Follow-

ing a method similar to Kostrov's, we can find the rupture

process for Irwin's fracture criterion, i.e. assuming the

stress-intensity factor K is the material constant. Then,

the constant c defined by equation (3.5) can be determined

by comparing the fracture process as found by Hamano's

method and as found by Irwin's criterion.

Following Atkinson and Eshelby (1968) we define G, the

"energy release rate" as the amount of energy which "leaves"

the material by way of the tip, calculated per unit length

of the crack tip advance. The rate of work done in the

rupture process is given by

F = - k[Uj - ] (3.8)

where k is the stress-intensity factor and U- are the
+

velocity-intensity factor on x2 = 0. This equation is

derived in Appendix I. k and U7 were given in equations

(2.24) and (2.25) for the semi-infinite antiplane shear

crack. Substituting these relations in equation (3.8) we

I__^_ __~__^III____/_YLY____I_~IIX-~--~l
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get

F wk2-- = G(xlAl) = (3.9)1 lJ1 - 2/2

where

k = 1 f(v) dv (3.10)
S x - v(310)

x -Bs 1

T = f(xl) is the stress inside the crack and thus a known

quantity in equation (3.10). Al is the instantaneous

crack-tip velocity. If all the work done is spent in

increasing the surface energy of the newly formed crack

surface, then

G(xlB1 ) = 2y (3.11)

where y is the specific surface energy of the body. This is

the equation of motion of the crack-tip. G(xl, 1 ) does not

depend on the acceleration of the tip so that if ,we regard

the tip as a "particle" it has no inertia. [The sudden

jump at the tip from a zero velocity to a finite velocity

is allowable because of this property that the tip has no

inertia!!] However, Husseini et al. (1975) showed that

the tip can extend into a region where no stress exists

(cf. Chapter 4).

Using equations (3.9) and (3.11) we get a non-linear

differential equation for the crack-tip motion. This
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equation is, in general, not easy to solve analytically.

For two very special cases, Kostrov (1966) has found the

analytic solution, one of which we discuss next, and the

other in Section 3.4.

Kostrov (1966) studied the case of an infinite, elastic

body, initially under a homogeneous state of stress 23=

To, say. At time t = 0, a semi-infinite crack instantane-

ously appears and the stress on the crack surface is taken

to be completely released. The geometry of the crack is

shown in Figure 2.2. As in section 2.5, we can take the

initial stress to be zero and the final stress on the crack

to be TO (since there is complete stress release, Tf = 0).

Then f(xl) = T0 . If we normalize all stresses by TO , we

can take f(x1 ) = 1. The stress intensity factor is given

by equation (3.10) as

=I - _ /l xl dv
X1_8

s Vx - v
x -Bs 1

= /as (3.12)

Kostrov uses the fracture criterion that fracture occurs

when the stress-intensity factor found without regard to

the cohesive forces is equal to the modulus of cohesion K

divided by n, K being a function of 1 only. From equation

(3.9) and this condition we get

_Il.a .- --.-- ~LI~,C- ---- r._ .____--L .̂  _--IC- I1~--^ -I----~--*I~~(~L-Y*CC
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K(Xl •G *2 2- k(x ) =- 1 - x/

so that

K(x I ) = In G 1 - X2 2 (3.13)

and thus

K(0) = .fK(0

The crack remains stationary as long as k(O) < . The

time tc of onset of fracture is given by the condition k(O)

SK(O) and using equation (3.12) this leads to

K 2 7
t (0) (3.14)c 48

We can also find an equation for the position of the

crack-tip as a function of time, using the criterion that
K(x I )

during propagation k(x ) = . [Here K(x1) is not a

material constant.] This gives the differential equation

K(k l) 2
- 21 - x1 /8 /s (3.15)

If K(x1) is bounded, then from the above equation x1

for t oo. Thus, the velocity of the tip tends to the shear

wave velocity for large t and once the crack starts propa-

gating it never stops. For purely brittle fracture, we

can take G = 2y, and using k(xl) = K(xl )/', and the

equations (3.12) and (3.13) we find the position of the

crack-tip as a function of time as
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-1 s
x = Bs + (- 1- 2 tan -  ) tc  (3.16)

c
K(x1)

Thus, Kostrov used the condition k(xl) = and

assumed y to be the material constant to determine equation

(3.16).

Let us solve the same problem analytically using

Irwin's fracture criterion. For the moving crack, Irwin's

criterion can be written as k(x) - K) , where K is now

the material constant, and is its value for zero rupture

velocity. Then, from equations (3.12) and (3.13) we get

212 - K()

The time of onset of fracture t is the same as given by

equation (3.14). Then, the above equation can be written as

t
c

(1 - 1 /)

which can be solved to give the crack-tip position xl as a

function of time s, as

x1 = a(s - tc ) - tc log s/t c  (3.17)

Let us now solve the same problem once again, this time

numerically using Hamano's criterion and determine the

rupture process required. We assume that a point breaks

when the stress at that point reaches a limiting rupture
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stress T , say. If the final state of stress of the system

is not zero but has some value Tf, then the fracture

criterion is that a point breaks when the stress jump

(Tu - Tf) exceeds a certain limit. Let us define the

dimensionless quantity

T -T 0
u 0 (3.18)
0 f

where TO is the initial stress on the crack. Then

T - T
(1 + S) = u f

T0 - f

is the stress jump normalized to the stress drop (T0 - Tf),

and from (3.5),

ck
1 + S = c (3.19)

(T0 - Tf) Y'a

is the fracture criterion. The sign of Tf is opposite to

that of T 0 and Tu, since the stress inside the crack is of

opposite sign to the stress outside the crack. Kostrov

took Tf = 0. In Figure 3.4, we plot the position xl of the

crack-tip as a function of time t as found using Hamano's

criterion for various values of S. These are given by

step-like lines. We also plot on the same figure, the curve

given by equation (3.17), i.e. using Irwin's criterion,

for various values of tc. These are given by the continuous

lines. The value of t for which the analytic curve fits
c
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Figure 3.4 Position of crack-tip (~sM).as a function of time (s(t/d) for various values
of S using Hamano's criterion are given by step-like lines. Equation (3.16)
is plotted for various values of actc/d.

15.
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the numerical solution the best is taken as corresponding

to the S of the numerical solution. Table I shows the

values of 4tc/d = Tc for various values of S. Now using

the relation

ck1 + S = k
(Z0 - tf) d

and finding k(0) from equation (3.12), and remembering that

equation (3.12) was normalized by the factor (TO - f), we

get

c = (1 + S)

from which the values of c shown in Table I for different

values of S are obtained. As we can see, c lies between

2.4 and 2.0 and approaches 2.0 as S increases, i.e. as the

critical stress for rupture becomes greater. Note also

the difference between the crack-tip locus determined by

Kostrov using Griffith's criterion (equation (3.16)) and

that by using Irwin's criterion (equation (3.17)). For the

same tc, the curve for Griffith's criterion lies above the

curve for Irwin's Criterion, i.e. the Griffith crack moves

faster than the Irwin crack.
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Table I

S atc/d = T c

0 0

.5 1.5 2.53

1 3.0 2.39

2 7.0 2.34

3 14.0 2.21

4 23.0 2.16

35.0 2.10
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§3.4 Semi-infinite instantaneous antiplane shear crack

with concentrated loading.

Kostrov (1966) also studied the case of a semi-infinite

antiplane shear crack in an infinite medium, with a

concentrated loading applied at a point behind the crack-

tip and analytically determined the crack-tip motion using

Griffith's criterion. We shall solve the same problem

analytically using Irwin's fracture criterion and we shall

also solve it numerically by Hamano's method and compare

the results.

The geometry of the crack is the same as in Figure 2.2,

but now a concentrated load 23 = p6(x + x) is applied

at the point xl = -x0 at time s = 0, so that the crack1

surface is stress-free except at the point xl = -x0. The

stress-intensity factor, which was defined by equation

(2.24), is

- o X 6(v + x )
k(xl) = p f 1 dv

xl-fs 1

o /1 - 1= p- H(Os - xo) (3.20)

1 1

where H( ) is the Heavyside unit step-function, so that

o
k is zero for as < xI, i.e. until the disturbance due to the

suddenly applied load reaches the crack-tip, i.e. xl = 0 for
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as < xl.

At time s = x /

1 1
k = 0 /- V R (0) < P

We shall extend the Irwin's fracture criterion to the

dynamic case by assuming that

K(O)

The crack will propagate if the condition

- ,> K(0)

1

is satisfied, and the crack-tip motion is determined by the

differential equation

o 1- xl/ _S= K(0) (3.21)
x + x0  T

1

The crack-tip will stop when xl = 0. Let the position at

which the crack-tip stops.be x m. Then, from equation (3.21)

02
P -=x + xo

K2 (0) m

or

X 2 Ox (3.22)
K2 (0) 1

Substituting (3.22) into (3.21) we get

1 - 1/B 11 0(3.23)
o o

X1 + X1 Xm 1
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as the differential equation giving the crack-tip motion in

terms of xm . Equation (3.21) gave the crack-tip motion in

terms of K(0). It would seem possible to use the relation

1 + S cK(O)

V (T0 - Tf)

and solve (3.21) for various values of S, and we would not

have needed to know xm to find the crack-tip position.

However, we only know the values of the constant c for the

values of S shown in Table I, and so we shall not follow

this approach. Instead, we solve (3.23) under the condition

that xl = 0 when s = xl, and obtain the position of the

crack tip as a function of time for the Irwin criterion as

x
t o + (x + xo) log m

1 m 1 x 1Xm-X 1

or

x
at /= [x0 + (x + xo) log m ], (3.24)1 m 1 x-x

xI < Bs

Let us now solve the same problem using our numerical

method. We take -a = 2 for our example, where d = grid

length in the x -direction. We shall normalize all lengths

by d, all times by a/d and all stress by pO. Then, the

condition that crack propagation will occur is
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> K(0)

Here
T - pO

S =
p

so that
T

1 + S T
o u

p

when p0 = 1i

cK(0)

by equation (3.19) which gives the condition for crack

propagation as S < .4 for c = 2.0 and as S < 1.9 for c = 4.0.

By our numerical method, we find by trial that the crack

propagates only for the values S < .3 and does not propagate

for S > .4. This numerical result is consistent with the

necessary condition for crack propagation for values of

c > 2.0. [For c = 1.5, the condition is S < .07.] In

Table I, we noted that the smaller the value of S, the

larger the value of c, with the extreme value that when

S = 0.0, c + W. So it is likely that c is much larger

than 2.0 for S values of .1, .2 and .3. To find the

position of the crack-tip as a function of time for S =

.1, .2 and .3 we have to evaluate equation (3.24) but we
x x

need to know the value of I - m at which the crack stops
d d

to do this. We find x /d from our numerical method. For

S = .2 and S = .3, Xm/d = 5 and xm/d = 1 respectively.

_____I _I ~ ~~--*~LP~-FI~U--IIIXII
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For S = .1, it is rather difficult to determine the exact

stopping point of the crack, since for small values of S,

the usually small oscillations in the stresses outside the

crack become significant. However, as an approximate

value of xm/d we take that value of xl/d at which the crack

speed is the lowest as the value of x m/d and find that for

S = .1, x m/d = 21. Figure 3.5 shows the analytical solu-

tions for Irwin's criterion for crack-tip position as a

function of time [equation (3.24)] for xm/d = 1, 5, and 21.

The numerical solutions for S = .1, .2 and .3 are also

plotted on the same figure. Even for S = .1, the agreement

is good, surprisingly so, since we are dealing with very

small values of S, and xm/d was only an approximate value

for this case. Using the values of x m/d we obtained from

our numerical solution, we find the values of c for S = .1,

.2 and .3 (Table II). The values of c are quite consistent

with the values obtained in Table 1.



INSTANTANEOUS SEMI-INFINITE
20. ANTIPLANE SHEAR CRACK S=O.I

WITH CONCENTRATED LOADING

. --21
Analytical Solution

(Irwin criterion)
15.-

Numerical Solution
Xl (AT/AX= 0.2)
d

X-Loading point d = 2
10. -

I

S=0.2

Xm=5

S = 0.3
Xm/d=1I
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Figure 3,5 Same as figure 3.4 but for the case of concentrated loading at the point
X1/d = 2, behind the crack tip. The continuous line is given by equation (3.24).
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Table II

S Xm/d c

.1 21 5.3

.2 5 3.2

.3 1 2.3
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§3.5 Comparison of our numerical solution for in-plane

shear crack with results of Andrews (1975).

In this case no analytical solution similar to the

one obtained by Kostrov (1966) for the anti-plane shear

crack exists yet. Kostrov (1975) has analytically deter-

mined the expression for the stress-intensity factor for

the semi-infinite and the finite in-plane shear crack for

the case when the crack-tip velocity is lower than the

Rayleigh wave velocity. Fossum and Freund (1975) derived

similar expressions to determine the crack-tip velocity in

some special cases. However, the amount and

complications of the calculations involved are prohibitive

and do not make this a feasible approach to the problem.

Andrews (1976) has found a numerical solution for an

in-plane shear crack that starts from a finite length,

propagates bilaterally according to the Ida-Griffith

fracture criterion, accelerates to some terminal velocity

and continues to propagate at this velocity for ever. The

initial half-length Lc is taken as the Griffith critical

half-length and is the minimum half-length required for

the crack to start propagating quasi-statically, i.e.

without the generation of waves. Andrews uses a finite

difference method to solve the problem. He assumed,

following Ida (1972), that the traction T across the fault
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plane is related to the slip Au by the following relations:

T(AU) = Tu - (Tu -f) Au/d o , Au < do

T(Au) = Tf , Au > d o

where, Tu and Tf have the same meaning as in Section 3.3,

and do is the slip required for the stress to drop to Tf.

The inelastic work done at the rupture front in excess of

the work done against the stress Tf is identified as the

specific surface energy y and given by

1
Y = ( - Tf) do

The boundary conditions on the fault are

(i) When the fault is not slipping,

IT0 + -auT + T2  < T(Au), if Au 0.

(ii) During slip,

@Au aAu
TO  21 = t(Au) * sign(-- ), if a 0.

These conditions are the same as those given by equations

(3.6) and (3.7). With these boundary conditions, Andrews

studied the symmetric propagation of a plane shear crack,

starting from initial half-length Lc . Andrews has given

his results in terms of the two dimensionless quantities

Lc/L and S, where L is the instantaneous crack half-length
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and S was defined by equation (3.17). He studies the

rupture velocity in the parameter space of Lc/L and S

(Fig. 3.6). He finds that if S is greater than about 1.63

(in agreement with Burridge (1973)), the rupture velocity

is always less than the Rayleigh wave velocity, and the

rupture velocity approaches the Rayleigh wave velocity as

L increases, i.e. the ratio L /L decreases. For values of

S less than 1.63, the crack starts with a sub-Rayleigh

velocity but as the crack length increases, the velocity

changes from sub-Rayleigh to super-shear and finally

approaches the P-wave velocity. Fig. 3.6 shows this

transitional region where the velocity changes from sub-

Rayleigh to super-shear.

We shall now solve the same problem as Andrews by our

numerical method. To find the starting crack-length, we

need to know Lc for different values of S. From the work

of Starr (1928), the stress-intensity factor k is related to

the crack-half-length by the relation,

k = ( 0 - Tf) 2

The critical stress-intensity factor and the critical crack

length are thus related by the formula kc = (t0 - rf)c /2

where "critical" means the value at the start of rupture

propagation. Also, from equation (3.19) we have

~..ir__...~~.. .~
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Figure 3.6 Andrews (1976) plot of rupture velocity domains in the parameter space of
Lc/L and S. Shaded region is the region of transition from sub-Rayleigh to
super-shear velocities.
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ck
1 + S = c (3.25)

(TO - Tf) V

Thus, we get the relation between S and Lc, as

L 2c 2(1 + S) (3.26)
d c

Table III shows the values of 2L c/d for various values of S.

We use these values of Lc as the initial half-length and

solve the problem for various S. Fig. 3.7 shows our results

in a plot similar to Andrews. Qualitatively, we find the

same result as Andrews. However, the zone of transition is

not exactly the same. Remembering that Andrews says that

his values of Lc/L may be in error by a factor of two and

that he uses Griffith's criterion and we use Irwin's

criterion, we conclude that our results are in qualitative

agreement with his results. In any case, both Irwin-

Barenblatt fracture criterion and Ida-Griffith criterion

lead to the surprising result that, for S < 1.63, the

rupture velocity of in-plane shear crack grows to the P-

velocity as the crack length increases. This result is

unexpected. Previous works on in-plane shear crack

propagation, usually under the assumption of sub-shear

velocity propagation, indicated that the propagation

velocity could not exceed Rayleigh velocity. In-plane

tension crack, on the other hand, does not exceed Rayleigh

wave velocity because of the nature of Green's function for

that problem (Hamano, 1974).

~II__ __j L _ ~I __laVYI lrmaP_____~
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Figure 3.7 Contour plot showing the crack-tip velocity for
different values of the parameters Lc/L and S
for an in-plane shear crack, starting from one
initial Griffith's critical length of Lc.
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Table III

S c 2Lc/d

0 00 0.0

.5 2.53 1.41

1 2.39 2.80

2 2.34 6.57

3 2.21 13.11

4 2.16 21.41-

5 2.10 32.65

_
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3.6 Estimation of :, the specific surface energy

Ida (1973) estimated T to be of the order of 1010

ergs/cm 2 for earthquakes, from the observed maximum seismic

motion due to an earthquake. Takeuchi and Kikuchi (1973)

independently proposed a similar value from a rough estimate

of time needed for the rupture velocity to approach the

terminal velocity. Let us try to estimate T for earthquakes

from our foregoing results.

We saw in the previous section (section 3.6) that for

the in-plane shear crack if S = T u -to is less than 1.63,

the crack speed can exceed the shear wave speed and may reach

the compressional wave speed. A review of the literature

reveals that for most earthquakes studied so far, the rupture

velocity is less than the shear wave velocity (Tsai and Patton,

(1972), Eaton (1967), Kanamori (1970a, 1970b, 1971, 1972),

Takeuchi and Kikuchi (1973), Wu and Kanamori (1972), Niazy

(1975), Aki (1968), Filson and McEvilly (1967), Tsai and Aki

(1968), Abe (1974a, 1974b) and others). A single example

(Fukao, 1970) was found where the rupture velocity was not only

higher than the shear wave velocity but also higher than

the P-wave velocity. This is essentially the case of

simultaneous rupture over the fault surface. We must

note that in the studies mentioned above, the rupture

velocities determined from seismograms are an average of

rupture velocities over the entire length of the fault.

Our results of the previous section show that for constant
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S, the fault starts with a low velocity and accelerates to

the terminal velocity, the terminal velocity depending on

the value of S. Thus, the average velocity reported for

earthquakes may be lower than the true terminal velocity.

However, the smaller S is, the quicker the terminal velocity

is reached. Therefore, we expect that rupture velocity close

to P wave velocity would be reported for most earthquakes if

S is very small. Since we don't observe that, S cannot be

much smaller than 1.6. Probably, S is of the order of 1.

From equation (3.19), we have the relation between the

parameter S and the critical stress intensity factor kc as

c kc
I+S-

where T is the applied stress at 0. On the other hand, for

in-plane shear crack, T and kc are related by

A,tl being Lame parameters (c.f. Andrews, (1976)).

For A=J, this gives r 37 ke

Using the above equations, we find the relation between

and S as

1+ S 
(3.27)
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Let us assume some typical values of , T., and d

appropriate for an earthquake:

ALv 3 x 1011 dynes/cm 2

1, AN 108 dynes/cm 2

'rV 105 cm, (d being the grid length in
our numerical method)

3 2
If we use ca2 and T10 ergs/cm , then from equation (3.27)

we find that

-3
1 + S e0

or Stv -.999

This result is unacceptable because S cannot be negative

by definition. c becomes large as S approaches zero (Table II)

keeping S positive. In any case, V cannot be of the order of

103 ergs/cm if S for an earthquake is of the order of 1.

For the condition SNl to be satisfied, T must be 109 ergs/cm2

This value corresponds to the grid interval of 1 km which may

be appropriate for a fault that is 10 kilometers long. For

a fault that is 100 kilometers long, the corresponding d

would be about 10 km. For S-1, this gives T&1010 ergs/cm 2

For a fault 1000 kilometers long, d = 100 km and S~l leads to

TiV011 ergs/cm2 . Thus, the fact that the average rupture

speeds for major earthquakes are less than the shear wave

speed implies that the apparent I for large earthquakes is
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of the order of 10 ergs/cm in agreement with the estimates

of Ida (1973) and Takeuchi and Kikuchi (1973).

Laboratory experiments of Brace and Walsh (1962) in

quartz give the value of ' to be of the order of 10
3 ergs/cm2.

The cause of this discrepancy between laboratory samples and

large earthquakes was attributed by Andrews (1975) and by

Brace (personal communication) to the fact that in the case

of an earthquake, instead of a single fracture surface,

a large number of small cracks are created in the fault

gouge. The total surface area of these cracks may be several

orders of magnitude larger than the main fracture surface and

the resulting value of r would be much larger than that in

the laboratory where there is only one single fracture surface.

Andrews (1975) also suggested another reason to account for

this discrepancy. When the crack length becomes large, the

region around the tip with stress above a critical value

increases and the work spent in plastic deformation around

the tip becomes large. These reasons give the probable

explanation for the discrepancy between laboratory results

and the results based on maximum rupture velocity

determined for earthquakes.
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CHAPTER IV

Application to the Study of Earthquake
Source Mechanisms

In this chapter, we shall apply our method developed in

earlier chapters to the problem of earthquake source mechanism.

We shall study, for example, the displacement field for

unilateral in-plane shear crack propagation for various

distribution of the parameter S along the fault, where S,

defined by equation (3.18) is a measure of the strength on

the fault plane. S is related approximately to the critical

stress-intensity factor by equation (3.19) and to the

specific surface energy (for the static case) by equation

(3.27). We shall simulate an obstacle to rupture propagation

by a box-car distribution of S (Hamano, 1974) and study how

the presence of one or more obstacles on the fault-plane

affect the near- and far-field displacements and their spectra.

We shall also study the effect of initial stress distribution

on crack propagation. We are especially interested in how a

crack stops for various distributions of S and initial stress.

4.1 Unilateral propagation of in-plane shear crack and
comparison with experimental results of Archuleta and
Brune (1975)

We shall first present some theoretical results for

unilateral propagation at a fixed velocity and then consider

the case of unilateral propagation for a uniform

distribution of S to compare with Archuleta and Brune's
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experiment on a crack propagation in foam rubber.

Hanson et al. (1974) first solved the two-dimensional

problem of unilateral crack propagation which propagates at

a constant velocity of .4 times the compressional wave-velocity

and then stops. The initial crack-length is taken as L/7, L

being the final crack-length. Hanson et al. have used a

finite-difference technique to solve the problem. We shall

solve the problem for a slightly different rupture velocity.

We take the initial crack length to be L/21, where L is

the final crack length. The geometry of the crack and the

direction of the initial applied stress is as shown in

Figure 2.3 except that the crack now only occupies the

positive part of the xl-axis, with the fixed tip at xl = 0.

The right tip moves with a constant velocity of 4/2 in the

xl-direction. The trajectory of the crack tip for the

general case of non-uniform sub-shear rupture velocity

is shown in Figure 4.1. The

symmetry that existed in the bilateral case, about the

x, = 0 axis, no longer exists in the present problem. Thus

the stresses and the normal component of displacement in

the regions Sl, S2 and S 3 have to be separately calculated,

S 1l is the crack region, S2 is the region outside the crack to

the right of the moving tip and S 3 is the region outside the

crack to the left of the fixed tip. As the crack starts

propagating, the waves generated by the moving tip are

reflected from the fixed tip almost immediately. As a
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result of this, the displacement-time history on the crack

surface due to an unilaterally propagating fault is much

more complicated than that due to a bilaterally propagating

fault.

Using the method described in Chapter 2, we solve the

integral equation (2.16) with the initial and boundary

conditions given by equation (2.4) and (2.6) respectively.

The grid ratio c4t/4xl is taken as .5 and o( = J3. All

displacements are normalized by the quantity L(TO - Tf)/t,

where x is the modulus of rigidity, L is the crack-length

and (to - If) is the stress-drop. (For the bilateral case

discussed in Section 2.6, we used the crack half-length in

the normalizing factor instead of the total crack length as

in the unilateral case, in keeping with the usual convention

found in the literature). In Figure 4.2 we show the parallel

and normal components of displacements at four different points

along the fault for the half-space x2i0. The four points are

denoted by X = .025, .52, .9, .975 where X = xl/L. The point

X = .025 is located very close to the fixed tip, the point

X = .52 about half-way between the fixed tip and the final

position of the moving tip and the point X = .975 is very close

to the final position of the moving tip. We see that at X=.025,

the parallel component motion is very small and the normal

component displacement shows a negative sign, (negative indi-
cates

displacement in the negative x2-direction, cf. Figure 2.3).

The maximum value of the parallel component is reached at
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X = .52 at a time given by 2.65 (/L). The phase generated

at the stopping of the moving tip reaches this point at time

2.52 (d/L) so that the maximum value of the parallel component

is reached just after the P stopping phase reaches this point.

The corresponding normal,!component is very small. The normal

component starts movement with the initial P arrival, and has

a negative sign until the rupture front passes, after which it

changes sign and becomes positive. At X = .9, the parallel

component is smaller than at X = .52 and again is non-zero

before the rupture front passes after which it changes sign,

the maximum negative displacement being larger than at X = .52.

At X = .975, both components of displacement are small and the

absolute value of the maximum negative displacement is larger

than at X = .9. For the case we have plotted, frictional

arrest of sliding was not implemented and the displacements

were allowed to decrease from their maximum value resulting in

an overshoot (i.e. the final displacement is not the maximum

displacement). On the other hand, if the static friction

arrests the fault slip when the crack velocity reverses sign,

the displacements would remain at the maximum value it reached.

In that case, the stress on the crack-plane will be of opposite

sign to the initial stress and the stress drop (the initial

minus the final stress) on the crack would be greater than that

in the static case (cf. Section 3.2).

To demonstrate the difference in nature between unilateral

and bilateral crack propagation, we compare the parallel

components of displacement for the half-space x 2 )0 for the two

-
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cases in Figure 4.3 and the normal component of displacement

for the two cases in Figure 4.4, when the crack-tip is

constrained to move at half the P-wave velocity. We shall

implement frictional arrest of sliding and stop the slip when

it reaches its maximum value. The displacements are normalized

by the factor L(t - T f)/r where L is the crack half-length for

both the unilateral and bilateral case. (These two ifigures

are the only figures in which we shall deviate from our usual

convention of using the total crack length in the normalizing

factor for the unilateral case). The normalized displacements

are plotted as a function of xl/L, the normalized distance from

the origin, along the crack plane, at time intervals given by

6Tp = .5, where Tp =o0t/L. The time required for a P-wave to

travel the crack half-length L is taken as the unit of time.

Thus, the line labeled as 2 corresponds to the time when P

wave travel the full length of the crack. The normal component

displacement for the bilateral crack is plotted with the same

normalization in distance and time. Since the displacement for

the bilateral crack are symmetrical about the origin, 0, we

plot one side of it.

The normal component displacement for the unilateral



Figure 4.3. Comparison of the parallel component of motion on the crack surface as a
function of the distance from the point of crack initiation, 0, for
unilateral and bilateral in-plane shear crack with rupture velocity o/2.
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case in Figure 4.4 has been plotted for -3(x 1 /L<3. (The

scale in Figure 4.4, for the unilateral case, is given by

the numbers below the xl/L axis and the scale for the

bilateral case is given by the numbers above the x /L axis).

Our results confirm the conclusion of Hanson et al. (1974)

that the dynamic displacement field for unilateral crack

propagation is quite different from that for bilateral

crack propagation.

We now describe the experiment of Archuleta and Brune

(1975) who made a study of the velocity and displacement

field due to a "stick-slip" event in foam rubber ("stick-

slip" means here that the slip stops when the particle

velocity reverses sign). They simulate a pre-existing strike-

slip fault which intersects the free surface by making a semi-

circular cut of radius 80 mm in the center of one of the square

sides of a .76 x .76 x .38 m3 block of foam rubber. Figures

4.5a and 4.5b show respectively the side and top view of the

block with the cut in it. By gluing 3/4 inch plywood to

opposite sides of the foam rubber, uniform normal and shear

stress as shown in Figure 4.5b can be applied to the block

using the machine described by Brune (1973). The block size

is such that the dynamic processes at the fault surface

terminate before the reflections from the sides of the blocks

return to the fault surface. To create a stick-slip event, the

normal stress is first fixed at some constant value, and then
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the shear stress is applied by displacing the two plywoods

glued to the foam rubber in opposite directions. The shear

tractions on the sides of the fault are increased until a

stick-slip event occurs. Beads are planted on the surface

of the foam rubber on the two sides of the cut and a wire grid

is placed about 10 mm above the surface of the foam rubber as

a reference grid against which the displacement of the beads

may be measured. A fast camera films

the surface of the foam rubber as the stick-slip event occurs.

By measuring the displacement of the beads on enlarged frames

of the film, the displacement-time history of the stick-slip

event is found.

It was found that the propagation had been essentially

unilateral, initiating 30 mm from the left end, as shown in

Figure 4.5a. The rupture velocity was found to be between

.6P and . 7p. Archuleta and Brune have plotted the parallel

component of displacement at the center and the normal

component of displacement at the tips of the fault. The

final static value of the parallel component motion is .6 mm

at the center of the crack. The final normal component

displacements are .25 mm and .18 mm at the left and right tips

respectively. The average value of the static parallel

displacement was .48 mm. Comparing this with the analytical

expression (Eshelby, 1957) for the average static displacement,

the stress drop is found to be .016.

Let us now solve the spontaneous propagating crack

I~Ln_~l--U-UL~VLVI ~---- --- dll*.(-UYI Y~I~IY~~UII
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problem for the unilateral, in-plane shear crack to compare

with Archuleta and Brune's experiment described above.

Instead of giving the crack-tip velocity a priori, the

velocity is determined from a cohesive force distribution on

the crack plane. The parameter S defined by equation (3.18)

is taken to be uniform along the crack plane and the crack is

stopped when the tip reaches the twenty-first grid point by

making S very large beyond this point. Frictional arrest of

sliding is not implemented. In Figure 4.'6 we plot the parallel

and normal components of displacement versus time at four

points along the fault on the fault-plane, for the case when

S = .25 for the half-space x2 > 0. The normalized position

of the points along the fault are given by X = X1 /L = .025,

.52, .9, .975, L being the crack length. The crack-tip velocity

was found to be slightly lower than the P-wave velocity. The

time at which the crack reached its final length is about

1.25 times the time required for a P-wave to traverse the full

crack length once. The general features of the displacement

are the same as for the case of unilateral propagation at a

constant velocity of c0/2. But, interestingly, the normal

component of displacement is zero till the rupture front

passes, a result different from the case of propagation at the

fixed velocity of o(/2. After the passage of the rupture, the

normal component reaches a somewhat higher amplitude than the

case of fixed rupture velocity at o(/2.
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The reason for the absence of motion before the arrival

of the rupture front in the spontaneous case is simply that

in this case, the P-wave from the first point of break and

the rupture front arrive nearly simultaneously at every point

along the fault-plane. (Reference to Figures 2.15 and Figure

2.18 shows that a similar conclusion holds for the case of

bilateral crack propagation as well.) For the case of

unilateral rupture propagation at the constant velocity of

0(/4 (not plotted) we find that the normal component of

displacement at a point is initially negative but changes

sign when the S-wave (or Rayleigh wave, since these two

waves are not easily distinguishable as their velocities are

very close to one another) from the first point Of break

arrives at that point. In this case just after the passage

of the S- (or Rayleigh) wave, the normal component reaches its

final value. The reason for the normal component of motion

being negative initially for rupture velocities less than

can be found by examining the discretized Green's function

F21(X, T p) for the normal component given by equations (2.12)

and (2.15) and shown in Figure 2.7. The initial motion is

negative till the S-wave Or Rayleigh wave comes in when it

changes sign and becomes positive. Richards (1976) found

a similar result for an elliptical self-similar shear crack

which grows at a speed less than I and never stops.

The properties of unilateral crack propagation are

the following:
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(i) The parallel component of displacement always has the

same sign (positive, referred to Figure 2.3 for x2 _ 0),

the maximum displacement at any instant occurring near the

instantaneous center of the crack.

(ii) The rising part of parallel displacement at a point is

steeper the closer the point is to the final position of the

moving tip i.e. the rise time at X = .975 is shorter and at

X = .025 is very gradual.

(iii) For constant rupture velocity of o/2, the normal

component of motion at a point is non-zero soon after the

P-wave from the first pointolof break arrives at the point and

changes sign from negative to positive as the rupture front

passes the point. For a constant rupture velocity of 0/4,

this reversal takes place when the S-wave or Rayleigh wave

from the first point of break arrives at the point. For the

case of spontaneous rupture propagation for low values of

S = (tr - T o)(T - t f) on the fault, for which rupture

propagation velocity become close to o, there is naturally no

distottion ahead of the tip, as exists for a case of rupture

propagation at constant velocity of less than o(.

(iv) The normal component motion is very complicated due to

the fact that the crack rotates about its instantaneous center

which moves as the crack propagates.

--
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We had some difficulties in reproducing a spontaneous

crack propagation which agrees completely with experimental

results of Archuleta and Brune. In their experiment, they

found that the rupture velocity was about .6f to .7j and

was uhiform almost fkom the beginning.

From our previous results on the relation between the

rupture velocity and the parameter S, this implies a large

value of S = "L-L -, where Cu in this case is the static

friction holding the two faces of the precut crack together.

Then, we found for a large uniform S distribution unilateral

propagation of in-plane shear crack requires a long time

before the rupture velocity reaches the terminal velocity.

A slow acceleration of rupture is not consistent with

Archuleta and Brune's experimentally observed crack-tip

history. To reproduce a case in which the terminal velocity

is reached very quickly, we needed small S and then the

terminal velocity will be the P-wave velocity. We may be

able to reconcile these contradictions by assuming a

particular non-uniform distribution of S. Instead of trying

to find such an S distribution, however, we decided to use

a small uniform value of S, in view of the similarity in

displacements between the case of spontaneous propagation

with small S(0.25) (Figure 4.6) and the case of rupture

propagation at the velocity o(/2, (Figure 4.2) which is very

close to the observed terminal velocity of Archuleta and

Brune. Thus, so far as the displacements are concerned,

our conclusions in this section will not be affected by our
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choice of small S.

There is another difference between their experiment and

our computation. The problems set up in their experiment are

three-dimensional and concerned with the crack intersecting

the free surface. In our problem, we have considered a two-

dimensional crack in an infinite medium. We shall show below

that it is meaningful to compare the ratio of the maximum

(which is the final displacement for "stick-slip" event)

parallel and normal displacement, in spite of the difference

in the problem solved by us and the experiment of Archuleta

and Brune. The general broad features of the two solutions,

e.g. the form of the parallel and normal components of

displacement as a function of time, are found to be quite

similar.

As supporting evidence, we compare below the static

solutions for a two-dimensional plane shear crack (Starr, 1928)

and a three-dimensional circular shear crack in an infinite

medium (Eshelby, 1957) to show their similarity, Let ul and

u2 be the displacement components at the crack along xl and

x2 axes (cf. Figure 2.1) for the two-dimensional in-plane

shear crack of length 2 . For the circular shear crack of

radius , let ul and u2 be the displacements at the crack

along the direction of applied shear stress and normal to

the plane of the crack respectively.



-140-

Three-dimensional circular shear crack of radius

U 12- L t
r7n-

VCi - ('

4 T 2. ,LJL_ Y -

- .41

7 / XI

AT = s -r esj di-ok

Two-dimensional plane shear crack of length 2t

"'I - 3 o:r4  4

- '75- 4 T
7A

e~- Xl2

4T

7e

*a5S 4

U2



-141-

This shows that the static displacements inside the crack for

a 2-D plane crack and a 3-D circular crack differ only by a

constant factor and u1/u2 = 3 and 4 respectively for the two

cases. This justifies comparing our theoretical results for

two-dimensional crack with the experiments of Archuleta and

Brune. The ratio of the maximum parallel displacement to the

maximum normal displacement is about 3:1 in our theoretical

result as well as in the form rubber experiments.

A most interesting result is that the normal component

motion in both our theoretical result and in Archuleta and
does

Brune's experiment / not exhibit an impulse-like displacement

form such as observed at Station #2 for the Parkfield

earthquake of 1966 and explained in terms of a propagating

step-like slip dislocation. For example, if we consider a

step-function slip in a propagating in-plane shear dislocation

(Boore, Aki and Todd (1971)) or Eshelby (1949)), the normal

component shows an impulsive, symmetric form with a

logarithmic singularity log (xl-vt) at the rupture front,

x1 = vt, v being the velocity of rupture propagation. This

discrepancy is probably due to the fact that for the Parkfield

earthquake the fault was long and thin. The slip may have

been quickly terminated by reflections from the bottom of the

fault and the slip function was more like a step-function

than the square-root (of distance from tip) dependence for

a crack.
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4.2 Study of the Effect of Obstacles On the Fault-plane on
the Near-Field and Far-Field Displacements

We shall study the effect of obstacles (high strength

region in the fault plane) on rupture propagation and their

effect on far-field seismograms. Our method of findig the

displacements and slip velocities for a spontaneous propagation

as a function of the strength parameter S defined by equation

(3.18), is particularly suited to such a study.

We consider a two-dimensional fault in an infinite medium

which is homogeneous and linearly elastic everywhere off the

crack plane and the fault extends only in its own plane. We

shall simulate obstacles by regions where the parameter S is

large. Such representation of obstacles by regions where S is

large was first done by Hamano (1974). Let us first study the

bilateral propagation of an antiplane shear crack with initial

length L/10 and final length 2L. We shall consider the

following fbur cases.

Case SH-O

Smooth propagation without obstacles

Case SH-1

One obstacle at center of each half of the fault plane,

which never break.

Case SH-2

Two obstacles on each half of fault-plane which never

break.

Case SH-3

Two obstacles on each half of fault-plane which break

after a while, spontaneously.
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Figures 4.7 and 4.8 show the position of the obstacles on one

half of the fault-plane. We have plotted the value of the

critical normalized stress jump (1 + S) across the crack-tip

(strength parameter, see section 3.3) assigned to the fault

plane as a function of distance from the center, for the above

four cases. (1 + S) is only plotted for half the fault because

of symmetry. The parallel displacements on the crack are

computed by solving the integral equation (2.16) under the

initial and boundary conditions, given by equations (2.4) and

(2.6) respectively. We consider the case where the slip on

the crack stops when the slip velocity reverses sign. These

displacements are also shown in Figure 4.7 and 4.8. The

displacements are normalized by L( - tf)/ and are plotted

against normalized distance xl/L along the crack where L is

the half crack-length. The displacements are plotted also for

half the crack, because of symmetry. The slip velocity on the

crack is found by numerical differentiation of the parallel

displacement on the crack using a three-point central difference

formula. In Figure 4.9 we show a comparison of the normalized

slip velocities at the three points along the fault given by

xl/L = 0.0, .55, .95 for the case SH-0, as determined by us

with those determined by the method of Madariaga (1975) in

which velocities are determined directly from his finite

difference scheme. The slip velocities are normalized to

P (o - Tf)/'-, being the shear wave velocity. Since numerical

differentiation is a "roughing" operation, it introduces

oscillations in our slip velocities. They oscillate about

1~~_1~ ) _ _~II_____YUah____i_ _r_ ~ ~__~___~_q



Figure 4.7. Strength distribution on crack plane and corresponding displacements on
the crack for the cases SH-O and SH-1.
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Figure 4.8 Same as Figure 4.7 but for cases SH-2 and SH-3.
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Madariaga's solution. From Figure 4.9 we see that there are

about 5 cycles per unit of normalized time Pt/L, in the

oscillations. Since L is ten times the grid-length,

the oscillations in the slip velocities affect wave-lengths

of about two times the grid length. Since our numerical

method of solving the integral equation (2.16) is accurate

only down to wave-lengths of about five grid lengths, the

numerical oscillations in the slip velocities will not

affect the wavelengths where we consider the solution to

be accurate.

We shall use these slip velocities on the crack to

determine far-field wave'forms and spectra. Before we do

this, let us examine the condition under which the use of our

two-dimensional fault model to study the far-field is justified.

For a circular crack, the form of the slip function (Madariaga,

1975) is very similar to that for a two-dimensional crack

(Figure 2.14) and, as we showed in Section 4.1, the final static

values differ only by a constant factor. Thus, for this case,

the two-dimensional model will give reasonable results. For a

long, thin crack, the application of the two-dimensional model

is more restrictive. Aki (1968) shows that the width of the

fault H is not important to the total motion if the following

inequality between the width H, the frequency f and the

distance of the observation point from the fault R is satisfied:

I 2 H/1 >I where c is the velocity of the

waves concerned. This can be written as AR/0 < 2./,
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where A is the wavelength of the wave concerned ( A = c/f).

This inequality will be satisfied for very small R, i.e. if

the observation point is on or very close to the fault. Thus

we are justified in using the slip velocities on the fault

obtained from two-dimensional calculation to determine far-

field displacements and spectra in three-dimension.

The far-field waveforms can be computed from the slip

velocity on the crack by the relation (Haskell, 1964),

(neglecting the radiation pattern and distance dependence)

Ab.(, ,.I/c) '4 ." (4.1)

where S is the location vector of a point on the fault , V

is the location vector pointing from E to an observation point,

and S1 is the fault plane. We define 9 as the angle between

the x2-axis and r i.e. the direction to the receiver. A(i(f,t)

is the slip velocity at E at time t, and c is the velocity of

the wave observed at far-field. It is possible, in theory,

to obtain the far-field pulse shapes by numerical integration

of equation (4.1). However, this is not a practical method

because of the singularities involved in A.

A more convenient method is to introduce the double

Fourier transform of Au(f,t) with respect to 1 and t as

--O
"" Il
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where k is the wave-number and ) is the angular frequency.

If 01 (o 0,0)

- (4.2)

where k is the wave-number component in the xl-direction.

Using a far-field approximation on Iri in (4.1) we find,

following Aki (1967), that,

0" 
o1 , 41

which gives the far-field wave form for different 0. We

use the fast Fourier transform technique to get B(k,w) and

u(0,t).

Figures 4.10, 4.11, 4.12 and 4.13 show contour plots of

the amplitude spectrum tB(k,a)/p(t O - Tf) in the k- space

for the four cases under study. The contours are plotted at

a unit interval in amplitude spectrum. The far-field S-waves

are determined by the region of k-c)space in which k _C J/P.

This is because only waves with phase velocity GYIkI (along

the plane Sl) greater than the medium velocity P can radiate
into the medium. Waves with smaller phase velocity than f

are inhomogeneous S waves (i.e. having imaginary x2-component

wave number) trapped near the fault. The far-field spectrum

at angle 9 is proportional to B(k,0) along the line k = 0Sm*/.

---ruLlrUidr~*-Pii-nu*~~-r--*sL-r~~--^-
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Thus, this diagram gives far-field spectra for S waves for

all directions at a glance.

The logarithm of normalized amplitude spectrum against

the logarithm of frequency is plotted on the right side of

Figures 4.14, 4.15, 4.16 and 4.17 for 6= 00, 14.50, 300 and

90* for the four cases SH-0, SH-1, SH-2 and SH-3. The

normalizing factor for the amplitude spectrum is the value of

te spectrum at W = o, k = o. Since we are considering the

case in which the slip never reverses direction, u(r,t) will

have the same sign for all t. The maximum value of spectrum

is at (J= o, k = o, and the normalized spectrum is always

less than unity. In Figs. 4.14 through 4.17, each spectra is

shifted by one decade in amplitude relative to the one above it

for the purpose of clarity. In figures showing the cases

SH-1, SH-2 and SH-3, we have indicated by dotted lines the

corresponding spectra for SH-O for comparison. The lines of

slope a-2 and &)- 3 are also shown in the figures. We have

plotted the spectra up to the frequency given by WL/P = 10.0.

For L = 10d, where d is the grid length in numerical solution

of the integral equation (2.16), this corresponds to a

grid length of 27d % 6d. This is longer than our earlier

estimate of the limiting wave length 5d above which the

error in numerical calculation may be neglected. Let us now

look at the corner frequency, defined as the frequency of

intersection of the low and high frequency asymptote in

the spectrum drawn in the log-log plot.
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Table IV lists the corner frequencies in radians, in the

unit of P/L, L being the crack half-length, for different d

measured from the spectral curves shown in Figure 4-14

through 4-17.

TABLE IV

SH-O SH-1 SH-2 SH-3

00 1.9 2.3 2. 1.35

14.50 1.55 2.1 1.55 1.2

300 1.3 1.5 1.1 1.1

900 .76 .7 .5 .72

In a few cases, the high-frequency asymptote was not

clearly definable and in these cases the value of the corner

frequency in Table IV is approximate.

Note that the corner frequencies for a given 8 are not

significantly different among the cases SH-O, SH-1 and SH-2.

Thus, if we try to find the length of a fault from these

corner frequencies (Brune, 1970) we would get the same length

in all these three cases, the length for case SH-1 and SH-2

being the total length of the whole region of rupture. We
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shall return to this point in a later section where we discuss

comparison with observations on rock bursts in a deep mine.

It is found that the high frequency decay of the far-

field spectra depend on the azimuth. At 0= 0 and 14.5 the
-2

decay is clearly proportional to 60-2 for all cases. At = 300

and 900 a segment of the high frequency asymptote that decays

as ( - 3 / 2 is also seen for SH-O and SH-3. For SH-1 and SH-2 the

high frequencies for G= 300 decay as -3/2 but as A-1 for 0=900.

On the other hand, the corner frequency is higher at 6 = 00 than

at e= 900, for all four cases. This is due to the well-known

sin x effect (Ben-Menahem, 1961) where x= oL ( ,- S1, Vc
x A1

being the rupture velocity, which has smoothing effect on

high frequencies due to destructive interference between waves

coming from a finite source. The smoothing effect is weakest

in the direction of rupture propagation (0 = 900) and becomes

stronger as 9 decreases. We note that the case SH-3 generally

has more structure at frequencies between := 5f/I and jw=/of/

than the other cases for the same 6. This is expected

because these intermediate frequencies are affected both by

the temporary stopping by obstacles and by their eventual

breaking.

Brune (1970) has suggested an existence of a segment of

source spectra which decays as C0- 1 between the flat part and

the high-frequency asymptote when the stress drop is not

-1uniform and coherent in space. The 6 dependence comes from

an assumption that in the case of partial stress drop, the
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stress on the fault drops below the final stress (static

friction) during slipping. He models this by applying an

initial shear stress pulse 0 say, instantaneously over the

whole fault plane and after a short time, applies a reverse

stress pulse (1 - 6)r over the whole fault plane. This leads

to the existence of the 0- 1 decay in the far-field spectrum.

This behavior of the stress on the fault-plane is not found

in our results. We found that the stress drop on the crack

plane can overshoot because of stick-slip arrest but never

reverse the sense of change. Our results show that no u-1

decay is found in the spectra for small 0 but, for large B

such a behavior is seen in cases of SH-1 and SH-2. We shall

return to this point again in the discussion of the unilateral,

in-plane shear crack.

The left sides of Figure 4.14, 4.15, 4.16 and 4.17 show

the far-field waveforms u(O,t) for the four cases under study,

for 9 = 00, 14.50, 300 and 90 0 . Time is measured relative to

the arrival from the center of the fault and the arrows show

the theoretical arrival times of waves radiated from the

nearer and farther tips of the fault. The time intervals

between the first arrival from the center of the fault and

the arrival of stopping phases from the nearer and farther

ends are given by

-+ SI P
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where L = half length of fault, Vcr is the rupture velocity,

+ refers to the farther end, - to the near end.

The figures show that for the SH-O

case the far-field wave form has a triangular shape at

= 00 , progressively gets wider at the top as 9 increases

andtakes trapezoidal shapes and is almost rectangular at

S= 90 0 . A comparison of the four different cases shows that

width of the pulse at the base depends on the time of duration

of the whole rupture process, so that the pulses for SH-O and

SH-3 are wider than that for SH-1 and SH-2. u(8, t) as

defined in (4.1) and (4.3) only gives the shape of wave form.

The actual amplitude of the displacements are dependent on

the radiation pattern, the geometrical spreading and material

properties of the medium. For the anti-plane shear crack the

radiation pattern is given by cosO which is maximum at 0 = 0 °

and zero at G = 90*, so that we would never actually be able

to observe the wave;forms and Spectra plotted for 9 = 900

Comparison of the wave forms for four cases SH-O, SH-1, SH-2

and SH-3 shows that the complexity of rupture process is well

reflected in the complexity of far-field wave form.

However, we note that for the bilateral, antiplane shear

crack, the corner frequency alone cannot always distinguish

between the case of simple and complex rupture. The length of

the crack inferred from these corner frequencies for a

rupture with obstacles Iby the use of a formula applicable to

a smooth ruptureJwas the total length of the rupture propagation

including the unbroken portions.
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Next, we consider unilateral propagation of an in-plane

shear crack in an infinite medium which is homogeneous and

linearly elastic everywhere off the crack plane. The crack

is initially of length L/10, L being the final crack length.

We shall consider the following six cases:

Case P-SV-O: Smooth propagation without obstacles

Case P-SV-l: One obstacle on fault plane, which never breaks

Case P-SV-2: Two obstacles on fault plane, which never breaks

Case P-SV-3: Two obstacles on the fault plane which break

eventually

Case P-SV-4: One obstacle on the fault plane which breaks

eventually

Case P-SV-5: An obstacle of four grids long in the center

of the crack which never breaks

Figures 4.18, 4.19, 4.20 and 4.21 show the distribution of

normalized critical stress jump (1 + S) assigned to the fault,

for the six cases under consideration. The corresponding

normalized parallel displacements, under the condition that the

slip stops when the particle velocity reverses sign, are shown

in the figure. The normalizing factor for the displacement is

L( o - Tf)/ , L being the total length of the fault. The

normalizing factor for the slip velocities is now d(TZ -. f)/

where o is the P-velocity. Figures 4.22, 4.23, 4.24, 4.25,

4.26 and 4.27 show contour plots of the amplitude spectrum

tlB(k, )/(T o - Zf) in the 1i- J space for the six cases under

study. The region k < 0/ and k < '/ indicate the region of

k-w space which determines the far-field spectra of

I_~ ~(/
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Figure 4.19. Same as Figure 4.7 but for cases P-SV-2 and P-SV-3.
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P-SV-O

W /27T

Figure 4.22. Same as Figure 4.10 but for case P-SV-O.
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1/27T

Figure 4. 23. Same as Figure 4.10 but for case P-SV-1.
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W/277

Figure 4.24. Same as Figure 4.1Q but for case P-SV-2.
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Figure 4.25. Same as Figure 4.1 but for case P-SV-3.
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Figure 4.26. Same as Figure 4.10. but for case P-SV-4.
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Figure 4.27. Same as Figure 4.10. but for case P-SV-5.
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P- and S- waves. The far-field spectrum at angle 0 is

proportional to B(k,W) along the line k: wSI (/e .

Figures 4.28, 4.29, 4.30, 4.31, 4.32, and 4.33 show

the normalized P-wave spectra B(w sin /c ,4)8(,4and far-field

wave-forms u(9,t) for the six cases at = -900, -30,

-14.50, 14.50, 300 and 900 and the S-wave spectra and pulse

shape at 8 = 0. Negative values of 9 indicate

observation points in a direction opposite to the direction of

propagation. Points at azimuths @= 00, + 14.50, + 300,

+ 900 at which the spectra and wave forms are plotted are

equidistant from the final end of the fault.

In figures showing cases P-SV-1, P-SV-2, P-SV-3, P-SV-4,

P-SV-5 we have also indicated by dotted lines the spectra for

P-SV-O for comparison. As in the antiplane case, we have

plotted the spectra up to wL/ = 10.0 which corresponds to

a-wavelength of 6d, d being the grid-length in our integral

equation (2.16) and is thus well within the limit of accuracy

of our numerical scheme.

We see that for small )&1 , the corner frequencies for the

five cases P-SV-O, P-SV-1, P-SV-2, P-SV-3, and P-SV-4 are

almost unchanged. For P-SV-5 the corner frequency for small

/elis effected more than the other five cases, but still the

change is small. For large J91 , the corner frequency is more

affected but still small for all cases except P-SV-5 where it

is significantly changed.

The high-frequency decay is, in most cases, proportional
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Figure 4. 28. Same as Figure 4.14 but for case P-SV-O.
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Figure 4.30. Same as Figure 4.14 but for case P-SV-2.
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Figure 4.32. Same as Figure 4.11 but for case P-SV-4.
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Figure 4.33. Same as Figure 4.14 but for case P-SV-5.
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-2 -1 -3/2
to W but segments of c or t0 can be recognized sometimes,

especially foroiJ 90 0 . The general features of the spectra are

similar to the corresponding cases of bilateral antiplane

crack studied before. The unilateral propagation, however,

has the effect of sharpening the pulse shape in the direction

of propagation and widening it in the opposite direction.

This is due to the later arrival of the stopping phase at

negative 0 from the moving tip. These times are shown by

arrows in the figures for the far-field pulse shapes. The

pulse is thus narrowest at 6= 900 and widest at & = -900

So we see that for unilateral propagation of in-plane

shear crack, the corner frequency is not significantly

different for small l01 between cases with and without

obstacles. For large I& , an intermediate range of frequencies
-1

where the spectrum decays proportionally to 0 is found, but

for small 19l, no such behavior is seen. We shall now compare

these theoretical results with some observational results

associated with rock bursts in a deep mine.

Spottiswoode and McGarr(1975) studied the far-field

displacements and amplitude spectra for many tremors

originating in a mining area near Johannesburg, South Africa,

using a network of stations on the surface and underground.

McGarr (1971) showed that these tremors were due to shear

failure due to normal faults. The tremors occurred at depths

of about 3.2 km below the stations and had magnitudes ranging

___IILII__ ~~I~I1LYL_--C__YI~--^I~L.~I I
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from 0 to 3. The medium was assumed to be homogeneous and

isotropic. Attenuation effects were neglected. The free

surface was accounted for by dividing the measured ground

displacement by 2.

After corrections for instrumental response and average

radiation pattern, Figure 4.34 shows the ground

displacements and corresponding spectra at a surface station

for selected events. For most cases, the high frequency
-3

portion of the spectra decay as w but a few cases where

it decays as t-2 or W-3/2 are also found. Using the corner

frequencies determined from these spectra, they found the

fault-length for many events. They used Brune's (1970)

relation between the corner frequency of the S-wave spectra

and the fault radius for a circular fault, and Trifunac's

(1972) relation for the corner frequency and fault radius for

the P-spectra to determine the fault radius. The relation

between corner frequencies and radius determined by Brune

and by Trifunac differ from those determined by Madariaga

(1976) by a factor of 2. (We find that our relation (Table

IV) between corner frequency and fault-length is in agreement

with Madariaga's). Thus, the fault-lengths determined by

Spottiswoode and McGarr will differ from those determined

using Madariaga's relations by a factor of 2. From underground

in-situ observations in the mines, they actually measure the

total extent of the damaged zone for some of the events. In

particular, for the event of February 4, 1972 at 22h50m
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(South African Standard Time), it was found that there were

four sections, each 5-20 meters long, where damage occurred

in widely separated regions between which no damage occurred.

They appear as if the rupture propagated through the entire

length leaving a fracture only in weak regions and no scar

in strong parts (just as predicted by our cases SH-1, -2,

P-SV-l, -2, -5). The total extent of the damaged region was

observed from the field measurements to be about 1/2 km.

Using Brune's formula and the S-wave corner frequency,

Spottiswoode and McGarr determined the fault radius to be

310 meters and using Trifunac's formula and the P-corner

frequency, they found the fault radius to be 350 meters.

If we use Madariaga's relation, we would get the fault

radius to be about 150-180 meters long.

Madariaga's relation between corner frequency and fault

radius is for bilateral propagation of an in-plane shear crack

with rupture velocity .9/. From figure 4.28 we can find the

relation between corner frequency and fault length for smooth

unilateral propagation of an in-plane shear crack with

rupture velocity . This relation is found to be approximately

L

where P = P-corner frequency, L = total length of fault.

Using this we would get the same result for the fault length

as found by Madariaga's relation. However, if the rupture
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propagation for the rockburst was bilateral, and had the speed

o(, then we would get the fault length to be the same as that

found by Brune's formula and by Trifunac's formula. Since in

that case the corner frequency-fault length relation would

be the same as that found by Trifunac. Spottiswoode and

McGarr concluded that the total extent of the underground

damaged zone was found to be about the same as that deduced

from the corner frequencies. If the rockbursts are regarded

as bilaterally propagating in-plane shear crack with rupture

velocity d, then this conclusion is justified.
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The fault-plane solutions for rockbursts were not given

by Spottiswoode and McGarr so we cannot find /Oat the station

for the events. Comparison of the shapes of the P-pulses in

Figure 4.34 with that for the case P-SV-5 which most closely

resembles the event of 4 February at 22h50m indicates that

I01 could not have been very large for this event, at the

station under consideration. (Also, note that due to the

double-couple radiation pattern, no P-wave is seen at

e = 00, +900, which reinforces the argument that

cannot be too close to +900 or -900.

Spottiswoode and McGarr have pointed out that they did

not find any intermediate segment, in the far-field spectra,

with U-l decay as Brune (1970) suggested for complex ruptures

(multiple events). Our computed results agrees with this

observation. We have noted earlier that except for large 191 ,

the segments with )-1 decay are not seen in any case.

Thus, we find that two important conclusions of our

theoretical results are in harmony with the observations

of Spottiswoode and McGarr.

(i) When rupture propagates through a region of variable

strength, it propagates through the entire region, leaving a

fracture in the weak zones and no scar in the strong zones.

(ii) No segment of spectral curve with a- decay is seen

except for the 101 near 900.
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From our theoretical results, we conclude that corner

frequency alone cannot distinguish between a rupture with

and without obstacles that never break. However, the

far-field wave forms can easily distinguish them. Examination

of the P wave form for several events including that of

February 4 at 2250 (Figure 4.34) show a marked resemblance

with the wave-form calculated for & = +14.50 in the cases

P-SV-1, P-SV-2 and P-SV-5. We also conclude that the corner

frequency is related to the length of time required for

rupture rather than fault length.
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4.3 Arrest Mechanism for Rupture Propagation

A very important problem in seismology is the understanding

of how rupture propagation stops. Husseini et al. (1975)

have suggested two mechanisms by which a semi-infinite

antiplane shear crack can stop. In one of them, a crack-tip

stops propagating by encountering a region of higher fracture

energy. This is called the "fracture energy barrier" arrest

mechanism. The other is called "seismic gap" arrest mechanism

and is that the initial stress is confined in a finite region,

and once the tip propagates into regions where the pre-stress

doesn't exist, it will slow down and eventually stop. For a

semi-infinite antiplane shear crack, Husseini et al. found

the stopping position of the crack-tip for various cases. We

shall study the same cases for finite, shear cracks and

compare our results with those of Husseini et al.

Let us first discuss in more detail, the "seismic gap"

arrest mechanism. Husseini et al. have considered a two-

dimensional, semi-infinite antiplane shear crack, as shown

in Figure 4.35. The tip of the crack is at x', say, at

time t. The specific surface energy r, along the crack plane

is taken as a constant. To simulate the finiteness of the

available strain energy, they limit the region of stress drop

T(x1 ) to the region (-a,b). The regions outside this interval

are not able to supply any stress drop to the crack-tip as

the tip moves through it. Husseini et al. have shown that
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the tip will pass the point xl=b and continue to propagate

for some distance through the region free of stress-drop

before it eventually stops. The stopping position of the tip

depends on the distribution of the stress drop T(xl). Husseini

et al. have considered the following three forms of T(x I ).

(i) Uniform box-car loading "U".

T(xl) = T o , -a(xl(b

= 0 outside this interval,

To being a constant.

(ii) Linearly decreasing load "L"

T(X 1) = O xl-a

=T -a<xl o

= T (1 - xl/b), o<xl4b

= x1)b

(iii) Parabolically decreasing load: "P"

Same as case (ii) except in the interval O<xl<b
2 2

where T(X 1 ) = T (1 - xl/b )

Consideration of a semi-infinite crack gives an approximation

to unilateral propagation of finite crack without taking into

account the multiple reflections from the crack tips. The

motion of the crack-tip is determined using the equation of

motion (3.11) together with (3.9) and (3.10). They use

Griffith's fracture criterion, i.e. r is assumed to be the
material constant, as their fracture criterion.
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For the case of uniform box-car loading, they find an

analytical expression for the stopping position given by

.where tA = modulus of rigidity. For the other two cases, they

are unable to find exact expressions for xR, but give an

approximate expression for the case when b>)a,

where C = 1/2 for uniform box-car loading

= 1/8 for linear loading

= 2/9 for parabolic loading.

In all cases, they find that the tip "overshoots" into

the unstressed region before it stops. This is a very

interesting property of the crack-tip which has no inertia

but is able to overshoot into regions free of prestress.

Let us study the "seismic gap" arrest mechanism for

bilateral propagation of finite anti-plane and in-plane shear

crack. We shall consider the case of uniform box car loading

"U" and linearly decreasing loading "L". The crack geometry

and the positions a and b are shown in Figure 4.36. Thus 2a

is the initial crack length and 2b is the length of the

prestressed region. Let us solve the problem for the case

S = 1.0, where S = *T 4.2 , Tu being the limiting rupture"r- f



-192-

stress,-tf = final stress on crack, and T = initial stress

on crack.

We shall use the method described in Chapter II and

Chapter III to solve the problem. Since we are studying

bilateral crack properties we do not expect to get the same

stopping position as they did for the antiplane crack.

However we would like to compare for both modes of crack

properties, the general features of the solution - in

particular, the overshoot of the crack-tip into the unstressed

region, the two cases, "U" and "L".

The initial crack length is taken as the critical crack

length required for the crack to start propagating for a

given S. Table III shows this critical crack-length as a

function of S for the in-plane shear crack. For S=1, 2Lc/d =

2.80. We take the closest higher integer for the number of

grids to represent critical crack length, so that 2Lc/d = 3.

For the antiplane case, we find also the same critical crack

length 2Lc/d = 3 for S=1. We take the total length of the

prestressed region (which by the principle of superposition

discussed in Chapter II, is the same as the region supplying

stress-drop to the crack-tip) 2b = 2L/d = 5. In Figure 4.36,

the form of T(xl), the normalized stress-drop, for the case

of uniform box-car loading (U) is shown by the solid line

and for the linearly decreasing load, (L) by the dashed

line. Figure 4.37 shows the position X,/O

of the right crack-tip (the left one moves in exactly the



-193-

ANTI-PLANE

X, 5.

d d- -- - - - - - -- - - - - - -L

I. 2. 3. 4.

9 t/d
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same way as the right one, in the opposite directions) as a

function of time ft/d, for the antiplane shear crack, for

the cases U and L. For both cases, the tips overshoots and

move into the unstressed region for some distance before they

come to a stop. For the case U, the tips travel farther into

the unstressed region than for the case L, in agreement with

Husseini et al. Figure 4.38 shows the same problem solved for

the finite, in-plane crack. The time-axis is now (dt/d).

Again the crack-tips exhibit overshoot and travel further into

the unstressed region for the form of stress-drop given by U

than that given by L.

Thus, the "seismic gap" arrest mechanism of Husseini

et al. holds for finite cracks as well and the tips exhibit

overshoot. However, their stopping positions are only very

approximate so that their "strong" relation between fracture

energy, stress-drop and fault-radius (which they take as

approximately equal to xR, and which is only valid for b>>)a)

is also a rough approximation. On the other hand, using our

method of solution we can find the stopping position of the

crack-tips for all values of a and b, without the, restrictive

condition b))a, for unilateral and bilateral propagation of

truly "finite" in-plane and antiplane shear cracks.

Let us now consider the "fracture energy barrier" arrest

mechanism. Husseini et al. have shown that for a semi-infinite

antiplane crack if the fracture energy Tincreases in the form

of a step-function, the initial stress distribution being
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uniform over the crack-plane, then either the crack tip

velocity immediately becomes zero at that point, or continues

to propagate indefinitely. Figure 4.39 shows the crack, the

region of stress drop T(xl) = T0 fi(xl + a) and the point

xI = b at which there is a jump in T equal to '+Ar. If the

condition

is satisfied, the tip will stop immediately at b. Otherwise,

it will never stop.

For fixed a and b, the jump AZwill determine if the

tip stops immediately or goes for ever. If AT is very large,

the tip will stop. (Note that the reason why the crack-tip is

able to stop immediately is because it has no inertia. This

is in contrast to a moving dislocation which has an "effective

mass") .

We shall study the "fracture energy barrier" arrest

mechanism for bilateral, propagation of finite, in-plane shear

crack, the initial stress distribution being uniform. Andrews

(1976) gives the relation for the Griffith critical length Lc

required for a crack to start propagating for a given r.

In Table III (section 3.5) we determined the values of 2Lc/d

for different S. This relation gives the static critical

length, i.e. the loading is applied quasi-statically. For the

case when the loading is applied in a finite time (dynamically)
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0 " " X,
-a b

Figure 4.39. Fracture energy barrier arrest mechanism. The
initial stress distribution is uniform and there
is a jump in T to Y+ 4 at xl=b.
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e.g. when a stress wave is made to impinge on the crack, we find

dynamic critical length by making trial runs on the computer,

using Hamano's criterion which is equivalent to Irwin's

criterion as well as to Griffith's for zero rupture velocity

(Chapter III). This dynamic critical length is shown in

Table V for various values of S.

Table V

S 2Lc/d

1 3

2 6

3 13

We find a good agreement between 2Lc/d found in Table III

(section 3.5) and Table V. Figure 4.40shows the value of

Lc/d against S for the dynamic case. The curve joining these

points give the criterion for a crack to stop or continue

propagating, from the consideration of whether or not the

stress-intensity factor is high enough to cause rupture. Let

us consider that S changes along the fault-plane. We plot

this value of S as a function of distance from the crack-tip

in Figure 4.40. Then if this curve lies above the Lc/d vs.

S curve, the crack will stop and if it lies below, the crack

will propagate. As a test of this criterion, we ran three

cases A, B, C shown in Figure 4.40, As expected, for case A

the crack does not stop while for cases B and C it stops.



Figure 4.40. Plot showing L /d versus S.
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It is found that when the crack stops, (case B and C), it

stops immediately. Qualitatively, our result agrees with

that of Husseini et al. For a given initial crack length and

position at which there is a jump in S, the magnitude of the

increase in S determines whether the crack stops or not. Since

our criterion is for a finite (in-plane shear) crack, we

believe it to be more useful in actual application to stopping

of faults in the earth, than that of Husseini et al.

In order to study the effect of two stopping mechanisms

discussed above on the slip functions, we compare the

following two cases:

Case (a): bilateral propagation of in-plane shear crack along

the fault in which the parameter S = 1. The appropriate

initial crack length 2Lc is 3d (Table III), d being the

grid length. The initial stress distribution is taken

as shown by the dotted line (case L) in Figure 4.36,

i.e. the stress decreases linearly.

Case (b): The crack is made to stop abruptly by making the

strength parameter S very large, when the crack reaches

the same length as the final crack length of case (a),

the initial stress distribution being uniform over the

fault-plane. For both cases, we implement the frictional

arrest of sliding, so that slip stops when the particle

velocity reverses sign. The parallel component of

displacement at the tip is shown in Figure 4.41 for the
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Figure 4.41. Parallel component of displacement as a function
of time at the crack tip for the case of when
the crack-tip stops abruptly (solid line) and
when it stops gradually (dotted line).
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Figure 4.42. Position of the crack tip as a function of time
when the tip stops abruptly (solid line) and
when it stops gradually (dotted line).
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two cases. For the case of abrupt stopping, the parallel

displacement at the tip rises steeply and then stops. For

the case when the tip decelerates and stops, the parallel

displacement at the tip rises gradually and levels off

slowly to its final value. The final value of the parallel

displacement for abrupt stopping of the crack is higher than

that when the tip decelerates and stops. Near the center of

the crack, the two different stopping mechanisms do not affect

the parallel displacement significantly. Figure 4.42 shows

the position of the crack-tip as a function of time for the

two cases . We find that in the case (a) i.e. when the initial

stressed region is finite (dotted line in figure) the fault

propagation tends to become irregular before it stops, as

compared to the case of abrupt stopping (solid line in figure)

where it propagates smoothly before suddenly stopping,

Figure 4.43 shows the far-field spectra for the two cases,

the solid line being for the case of abrupt stopping and the

dotted line for the case of gradual stopping. Since the

final value of the slip is different for the two cases, the

normalizing factor for the amplitude spectra are different.

The high frequency asymptote of the spectra for the case of

abrupt stopping falls off as Cj- 2 . For the case of gradual
-i

stopping, the spectra fall off as )1 . We find that the same

amount of high frequencies are generated in both cases, but the

source of the high frequencies for the two cases are different.

When the crack propagation is smooth with abrupt stopping, the
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stopping phase is the source of the high frequencies. On the

other hand, when the crack tip decelerates and repeatedly stops
goes

and / before coming to a final stop, the irregular rupture

propagation generates more high frequencies. It is also

found that in the case of gradual stopping, the corner

frequency is 16wered since the rupture process takes a

longer time. The lowering of corner frequency and increased

high frequency contents give rise to a wide frequency range

over which the spectrum decays as W-1 .
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CHAPTER V

Conclusions

In this thesis, we have described a numerical technique

to study the displacement and stress-field due to unilateral

and bilateral propagation of two-dimensional in-plane and

antiplane shear cracks in an infinite medium, which is

homogeneous and linearly elastic everywhere off the crack

plane. We have shown agreement of our results with available

solutions. We incorporated the use of fracture criterion into

the method and showed that our "finite stress" fracture

criterion is equivalent to Irwin's fracture criterion. For

the in-plane shear crack starting from the Griffith critical

length, we determined the terminal crack velocity as being

sub-Rayleigh or super-shear depending on the strength of the

material along the fault. From the sub-shear rupture velocity

observed for large earthquakes, we found the value of the

apparent surface energy for large earthquakes to be of the

order of 1010 ergs/cm 2 .

We applied our method to the study of the spontaneous

propagation of finite unilateral in-plane shear cracks. We

found that the displacement field for the unilateral case is

more complex than that for the bilateral case. We compared

our results with experimental results of unilateral shear

crack propagation in foam-rubber and found good agreement.

We also applied our method to study the effect of

obstacles on the fault plane. We found that with the corner
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frequency alone we could not distinguish between rupture

propagation with and without obstacles. However, using the

far-field wave-forms for different distribution of obstacles

on the fault plane we can distinguish easily between rupture

propagation with and without obstacles. For small angle 9

between the normal to the fault plane and the direction of wave

radiation the fault length deduced from the observed corner

frequencies gives the total fault length, including the

unbroken parts. The high-frequency asymptote of the

-2
displacement spectrum, in most cases, has a 6) decay, but

-1 -3/2
segments of 6) or CO sometimes exist, especially for

1 o900

Finally, we use our method to study the arrest mechanism

of faults for finite, shear cracks. We determine a criterion

for stopping of rupture propagation when the strength of the

material varies along the crack-plane. For the case where

the prestressed region is limited, we find that the crack-tip

"overshoots" into the unstressed region for some distance.

The stopping is, however, immediate when the greater strength

of material acts as a barrier.

It is found that when the rupture propagation stops

-2
abruptly, the high frequency spectra falls off as &o while

when the crack-tip decelerates and slowly stops, there are a
-i

wide range of frequencies in which spectra decay as -1.

The corner frequency is lowered in the latter case simply

because the rupture process takes a longer time.
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From our studies of the effect of obstacles on the fault

plane and of the arrest mechanism of faults, we found that

corner frequency is related to the length of time required for

the rupture process rather than to the fault length.

This thesis can be extended by solving the problem of a

spontaneous rupture propagation for a three-dimensional shear

crack and incoporating in the solution the effects of a free

surface near or in the path of the propagating crack. Since

the computation of Green function for a point source is not

a complex problem, the extension to a three-dimensional problem

would be straight-forward although time-consuming on computer.
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APPENDIX I

Derivation of equation for balance of rates

of energies at the tip of a crack.

We shall derive Equation (3.8) following Achenbach's

(1973) derivation. Let us consider brittle fracture of a

homogeneous, isotropic, elastic solid. Let V be a region

of this solid which contains a crack, the tip of which

is extending. The volume V is bounded by the external

surface S , the crack surface S and the fracture

surface Sf. Sf varies with time but Se and Sc are

fixed. The surface Sc is assumed to be far enough

from Sf for all time under consideration, so that the

fracture surface Sf does not penetrate Se .

The displacement and velocity components at a point

P in (or on the boundary of) V at time t is given by

ui(P,t) and ui.(P,t). The kinetic energy K(t) at time t

in V is then

K(t) = 1 pui(P,t) ui(P,t) dV,
V

where p is the density, and summation extends over the

repeated indices. The internal energy U (assuming

adiabatic change) at time t is
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1U(t) = 2 Tij (P,t) .ij (P,t) dV ,

where Tij and cij are the components of the stress and

strain respectively. Let Pe be the rate of work of the

surface tractions on Se and PV the rate of work of the body

forces in V, so that the rate of work of the external

forces is given by (Pe + P V)

During the fracture process, energy is extracted from

the body. This is due to the fact that there exist internal

(cohesive) tractions across the two sides of the crack and

when the crack breaks, these cohesive tractions are

released. Since the released cohesive tractions are

opposite in direction to the relative displacements of the

newly formed crack surfaces, their work is negative, and

this accounts for the fact that the body loses mechanical

energy. Then, the principle of conservation of energy

states that the rate F at which mechanical energy is

extracted from the region V by the fracture process is

equal to the rate of work of the external forces minus the

rate of increase of the total energy of V, i.e.

dK dVF P + P (Al)e V -t dt

Let all the energy extracted from the body in this

manner be assigned to surface energy of the newly formed

free surface. Let yF denote the "specific fracture energy",
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which is the amount of energy needed to create a unit area

of free surface. The time rate of change of the surface

energy can be written as

dD _ d
dt dt YFSf

Then, balance of rates of energies states that

F dD (A2)
dt

This condition has to be satisfied at the start of and

during rupture. It can be shown that F is the negative of

the rate of work of the cohesive tractions acting on the

medium in the plane of the crack as the crack propagates.

Then,

x(t-tf)+:

F = - I 2j (Xl'O't) [j (xl'0 ,t)
x(t-tf)+E

- u (xl,0O,t)] dx1  (A3)

where xl is the direction of crack propagation and x2 is

the direction perpendicular to it (Figure 2.1). u (xl,0 ,t)

and u (x1,0O ,t) are the particle velocities of the fracture

surfaces for x 2 = 0-and x2 = 0+ respectively, xl

x(t - tf) defines the position of the crack-tip as a function

of time and c is a small, positive number. The stresses

are zero inside the crack, i.e. for xl < x(t - tf) and the

difference between the particle velocities is zero outside
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the crack i.e. for xI > x(t - tf). In spite of this the

integral in (A3) does have a value due to the appearance

of square-root singularities in the velocity and stress at

x I = x(t - tf).

For a plane two-dimensional crack, the general form

of the stress and velocity are

T

T2 j (xl,0,t) = 2j
x - x(t - tf)
1 f

and
0+
U:

Uj(xl0 't) --
x(t - tf) - x

respectively, where T2j is called the stress-intensity

function and Uj the velocity-intensity function. Substi-

tuting the relation,

H(v) H(-v) (v)* - 6(v)

where H(v) is the Heaviside step function and 6(v) is the

Dirac delta function, in (A3), we get

ST(U - ]  (A4)2 2j ( j

The above relation has also been obtained by Atkinson

and Eshelby (1968) and Freund (1972). In the notation of

Atkinson and Eshelby, F = vG, where v is the instantaneous

velocity of the tip and G is the energy release rate.


