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ABSTRACT

The representation of the mean tropospheric flow
by satellite -derived cloud-motion vectors is studied
for use in a barotropic hurricane prediction model.
The systematic use of these vectors is considered over
areas not covered by rawinsonde data to aid the initial
analysis of the flow pattern. Linear regression analysis
is used to develop equations for the pressure-averaged
tropospheric flow from data at only 1, 2, or 3 levels.
The equations are derived from a large sample of
rawinsonde observations, used as simulated cloud-motion
vectors, from the tropical and subtropical latitudes
of the Northern Hemisphere. The performance of the
regression equations on independent data is considered,
as is the loss of skill when satellite winds are used
in the equations instead of rawinsonde winds. The
satellite data is applied, ina pilot study, to two
operational SANBAR hurricane forecasts, with inconclusive
results.
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I. INTRODUCTION

SANBAR is a barotropic hurricane prediction model

that utilizes vorticity conservation in the mean trop-

ospheric flow to predict tracks of tropical cyclones.

The model was developed by Sanders and Burpee (1968)

and has been discussed by Sanders (1970) and by Sanders

et al (1975). SANBAR makes use of observed winds which

are averaged with respect to pressure through the depth

of the troposphere, defined as the layer between the

1000-mb and 100-mb surfaces. The averaged wind is

represented by the weighted average of the data at the

ten mandatory levels, as observed by rawinsonde.

A major factor limiting forecast accuracy in the

operational use of the model at the Natiohal Hurricane

Center (NHC) was the lack of data over the large oceanic

areas included in the SANBAR forecast grid area.

Sanders et al (1975) discussed specific cases. To

guide the analysis of the wind field over the vast

oceanic areas far from any rawinsonde observations,

the model relies on "bogus" wind observations at 44

selected geographical locations. These bogus points

are shown in Figure 1. The winds are obtained at

present from consideration of many factors, including

12-hour prognostic wind and height fields, surface

observations from ships, aircraft reports, and SMS

satellite-derived winds. This report explores the

increased and systematic use of such satellite winds

over the oceans to improve the initial analysis, by

determining how well the pressure-averaged flow is

represented by information at one, two, or three

levels.



500N

40oN

30oN

20 0 N

10 N

Figure 1--SANBAR Bogus Points
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II. SATELLITE-DERIVED WINDS

The use of satellite photographs to track cloud

motion as a means of determining wind velocity at

cloud level was discussed by Hubert and Whitney (1971).

They compared cloud movements from the geostationary

ATS satellite imagery with rawinsonde observations of

wind from nearby stations. Reasonable agreement was

found, if the motions of low level and high level

clouds were compared to winds in the layers from

3000 to 5000 feet and around 30,000 feet, respectively.

EOn rare occasions when mid-level clouds can be

identified, their wind vectors are assigned to the

500 mb level by the National Meteorological Center.

(NMC).] The median vector differences between these

estimated and rawinsonde observations at low and high

levels are approximately 6 knots and 12 knots, respec-

tively (Hubert, 1975). Further discussion of satellite

derived winds can be found in Appendix A.

Given good satellite coverage, it is thus possible

to obtain estimates of wind flow at low levels and high

levels over wide areas with possibly some idea of the

mid-level flow. This information should be extremely

valuable over oceanic regions for prediction of tracks

of tropical storms. In the context of the SANBAR model,

the question then arises how adequately one, two, or

three levels of wind data can represent the mean

tropospheric flow. Linear regression analysis will be

used to estimate the mean flow from rawinsonde obser-

vations (used as simulated cloud-motion vectors) at

one to three levels.

The idea of using satellite cloud-motion vectors

to improve the bogus data is not new. Pike (1975),

I__isgl______l__~______ ~jll~_C~_
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at NHC, developed a set of regression equations

utilizing data from the low level ATOLL (Atlantic

Tropical Oceanic Lower Layer) analysis and the 200 mb

analysis. The ATOLL analysis is essentially the level

at the top of the planetary boundary layer and utilizes

ship reports, low-level satellite winds, and available

2000-foot rawinsonde winds. The 200-mb analysis is

supplemented with aircraft observations and upper

level satellite winds. Pike's equations for June through

November are included in the section on results from

linear regression analysis. They are applied to a

small sample of data in the Western Atlantic,

Carribean Sea, and Gulf of Mexico.

The purpose of this report is to first develop

a statistically stable set of linear regression

equations from a substantially larger sample of data

over time and geographical location than used by Pike.

The results of the linear regression analysis will then

be applied to the initial data field in operational

SANBAR cases, in hopes of improving the forecasts.

Only satellite winds will be used at low levels while

the high-level data will consist of satellite winds

and aircraft reports.

~~I __1~D- ~--~I~L--
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III. DATA SAMPLE FOR REGRESSION ANALYSIS

The data for the linear regression analysis

consist of a sample of rawinsonde observations from

20 stations located between 00 and 35oN and 60oW

westward to 130 0E, as listed in Table 1. The data

sample is for the months of June through October

from 1971 through 1974 for each of the 20 stations.

The five-month period corresponds to the period of

maximum tropical storm activity in the data area.

The five-year time span was chosen to create a sample

of sufficient size to obtain statistically sound

results, even after considerable stratification.

The 20 stations were chosen to provide coverage of

different wind regimes and areas of tropical storm

activity. The stations are shown in Figures 2 and 3

relative to the long-term mean June-August streamline

pattern for the 850-mb and 200-mb levels respectively.

The streamline analyses are based on data from

Newell et al (1972) and others.
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TABLE 1

Stations For Linear Regression Analysis

Int.
Index No. Station Name Lat. Long,

1. 78016 Bermuda 32.2N 64.6W

2. 78526 San Juan, P.R. 18.3N 66.1W

3. 72304 Cape Hatteras, N.C. 35.3N 75.6W

4. 72202 Miami, Fla. 25.5N 80.1W

5. 72211 Tampa, Fla. 27.6N 82.3W

6. 72240 Lake Charles, La. 30.2N 93.1W

7. 72250 Brownsville, Tx. 25.6N 97.3W

8. 72295 Vandenberg, Cal. 33.9N 118.4W

9. 76644 Merida, Mex. 20.6N 89.4W

10. 91285 Hilo, Hi. 19.4N 155.3W

11. 91275 Johnston Is. 17.0N 168.3W

12. 91066 Midway 28.1N 177.2W

13. 91217 Taguac, Guam 13.3N 144.5E

14. 91245 Wake Is. 19.1N 166.3E

15. 91334 Truk 7.4N 151.8E

16. 91348 Ponape 7.0ON 158.2E

17. 91366 Kwajalein 8.7N 167.6E

18. 91376 Majuro 7.1N 177.4E

19. 91413 Yap 9.3N 138.1E

20. 91408 Koror 7.2N 134.3E



LONG-TERM MEAN 850-mb FLOW. DATA FROM NEWELL(1972), LUFTHANSA(1967), SADLER(1970),nd SCHWARTZKOPF(1970). -ISOTACHS IN M SEC - '

JUNE - AUGUST

Figure 2--Locations of Regression Analysia Data Stations
R6Ielative To 850-mb Average Flow

SANDERS (1975)
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LONG-TERM MEAN 200-mb FLOW. DATA FROM NEWELL (1972), LUFTHANSA (1967). SADLER (1970) and SCHWARTZKOPF (1970). ISOTACHS IN M SEC-'
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Figure 3--Locations of Regression Analysis Data Stations
Relative to 200-mb Average Flow
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IV. LINEAR REGRESSION ANALYSIS

The regression equations are formed from the

rawinsonde observations at the ten mandatory pressure

levels. These data are used to calculate a mean wind

based on the assumption that the wind vector varies

linearly with pressure between levels. (Appendix B)

Standard linear regression techniques are used to

obtain separate regression equations for the zonal

and meridional components of the mean wind. The pre-

dictors are the zonal and meridional components of the

winds, respectively, at the specified number of data

levels. (The term, "prediction" as used in the linear

regression analysis, means the specification of the

mean wind by one, two, or three levels of wind data

used as "predictors.")

The forms of the prediction equations are

y = a o + alx1
A
y = a + a 3 x3  (1)
A

y = a + alx 3 + a3x 3

y = a + alx1 + a 2 x 2 + a 3 x 3

where y is the predicted mean wind, xi are the predic-

tors, and ai are the coefficients. The subscripts

0, 1, 2, and 3 refer to, respectively, the constant

term, 850-mb, 500-mb, and 250-mb predictors. Further

discussion of the linear regression analysis can be

found in Appendix D.
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V. RESULTS OF LINEAR REGRESSION ANALYSIS

The 20-station data sample produced a total of

27,421 soundings. The size and character of the sample

suggested the possibility of data stratification both

by location and by time. Six geographical and three

time stratifications were considered and are shown in

Table 2. (Appendix C)

The regression analysis determines the coefficients

of the predictors, as well as the constant, ao, in

equations 1. These data are listed in Tables 3, 4,

and 5 by u- and v-component and by stratification set.

The ability of the resulting equations to predict the

mean wind in the dependent data sample is indicated by

the reduction of variance, mean-square error, and

root-mean-square error (rms error). These quantities

are also shown in Tables 3, 4, and 5. (Appendix D)

For comparison, Pike's equations for June through

November are:
A 000100mb = -0.512 + 0.561 u ATOLL + 0.399 u200mb

1000-100mb "* ATOLL 200mb

v 000_100mb = 0.574 + 0.269 UATOLL + 0.265 u200mb

where all wind speeds are in knots. Pike's data sample

most closely corresponds to geographical set 1 covering

the Western Atlantic, Caribbean, and the Gulf of Mexico.

The difference between the u-component equations is

small, generally much less than two knots, but the

v-component equations exhibit larger differences that

can be as high as four knots. While Pike's meridional

equation gives smaller magnitudes than set 1i, the zonal

equation generally enhances northerly winds. Set 1 is

drawn from a substantially larger data sample than Pike's

equations.
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The regression equation results, as tabulated, are

for the rawinsonde data. The use of satellite-derived

winds operationally will cause some loss of skill and

correspondingly larger rms errors due to differences

in the data sources. The increase in rms error can be

relatively large, but the equations still provide signif-

icant skill when compared to climatology even for dif-

ferences or "errors" in the data as large as the wind

itself. Further discussion of this problem can be

found in the next section and in Appendix G.

Consideration of the rawinsonde-derived results

provides useful information on the accuracy of the various

predictor sets and stratifications. The three-predictor

geographically-stratified equation sets show very high

reductions of variance and, consequently, low rms errors,

indicating close approximation of the mean tropospheric

flow. The two-predictor equations also exhibit high

reductions of variance, even though some skill is lost

with the omission of the mid-level predictor. The rms

errors are still acceptable as compared with the standard

deviations of the mean wind shown in Table 6. The reduc-

tion of variance of the one-predictor equations shows

wide variability with some values being quite low. The

rms errors still indicate some skill as compared to

climatology with the 250-mb set showing lower errors than

the 850-mb set. (Appendix E)

The use of satellite-derived winds in the operational

context suggests that particular importance attaches to

the two-predictor equations, hence only these were consid-

ered for time stratification. This stratification inves-

tigates the possible influence of seasonal variation of

the flow pattern, but the results in Table 5 indicate that

little is to be gained.

Stratification of the data by location or by time

__II__I__~IUI_____IUll__lillllL__II- 111~
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did not produce any significant results. The coefficients,

reductions of variance, and rms errors are very similar

within each predictor set. This similarity, coupled

with the observation that the combination stratifications

are approximately the average of their constituent sets,

indicates that stratification provides little additional

information when compared to the sample taken as a whole.

Operationally, the total sample equations (set 6) are

the most useful when a single set of equations is desired.

The size of the total sample, however, is so large that

even after stratification, the individual sets are

statistically sound. The use of the stratifications

would give somewhat better data resolution than the gener-

al set if more accuracy were needed.

It is of interest to note that set 4, the South-

western Pacific, has, in general, the smallest coeffi-

cients, reductions of variance, and rms errors in each

predictor set for both u- and v-components. This is due

to the location of the 8 stations south of 20 N and the

small day-to-day variability of the mean wind in the

tropics. As expected, the time stratification for this

set shows only minor seasonal variation.

The decrease in skill of the regression equations

when applied to independent data will be small because

of the large sample size and the small number of predic-

tors. A sample calculation for the Southwestern Pacific

with a dependent sample size of 840 statistically-inde-

pendent observations shows a drop in the reduction of

variance from 77.0% to 76.9% which is almost negligible.

(Appendix F)
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TABLE 2

DATA STRATIFICATIONS

Geographical

8 Stations

Bermuda

San Juan, P.R.

Cape Hatteras, N.C.

Miami, Fla.

Tampa, Fla.

Lake Charles, La.

Brownsville, Tx.

Merida, Mex.

4 Stations

Vandenberg, Cal.

Hilo, Hi.

Johnston Island

Midway

11682 Observations

5594 Observations

Set 1:
1)

2)

3)

4)

5)

6)

7)

8)

Set 2:

1)

2)

3)

4)

Set 3:
1)

2)

Set 4:

1)

2)

3)

4)

5)

6)

7)

8)

8 Stations

Taguac, Guam

Wake Island

Truk

Ponape

Kwajalein

Majuro

Yap

Koror

10145 Observations

12 Stations 17276 Observations

Set 1

Set 2
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TABLE 2 (cont'd)

15739 Observations12 Stations

Set 2

Set 4

20 Stations

Set 1

Set 2

Set 4

27421 Observations

Time

Geographical Set 1

June, July, August

September, October

Geographical Set 4

June, July, August

September, October

Geographical Set 6

June, July, August

September, October

7045 Observations

4637 Observations

6151 Observations

3994 Observations

16573 Observations

10848 Observations

Set 5:

1)

2)

Set 6:

1)

2)

3)

Set 1:

A)

B)

Set 4:

A)

B)

Set 6:

A)

B)

I~I~YII~-Y-PI -- L^--Y---il~-----~I*XYI*~ -ILlil_- -IICIIIIII~U~
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TABLE 3

REGRESSION EQUATIONS RESULTS

Geographical Stratifications

u Component

Set

1

2

3

4

5

6

850 mb 500 mb 250 mb
a,

0.3087

0.2889

0.3013

0.2848

0.2852

0.2954

a,

0.3591

0.3762

0.3653

0.3230

0.3506

0,3561

a.

0.2611

0.2488

0.2577

0.2543

0.2611

0.2621

Constant
a.

-0.1106

0.1453

-0.0524

-0.8016

-0.3728

-0.2237

0.3944

0.1805

0.3504

-2.1777

-1.1955

-0.4306

4.7984

7.6402

5.7109

-4.4933

-0.2741

2.3709

-2.0123

-3.8766

-2.5778

-5.9377

-4.6409

-3.4631

0.4332

0.3843

0.4073

0.2216

0.3416

0.3913

Red

Var

0.

0.

0.

0.

0.

0.

Mean
Luction Square
of Error
iance (knots)
r e2

9739 3.5713

9647 4.1554

9714 3.7425

9240 3.5899

9588 3.9345

9684 3.8105

0.9174

0.8723

0.9043

0.7701

0,8613

0.8929

0.4301

0.2658

0,3625

0.2422

0.1837

0.3053

0.6911

0.6824

0.6757

0.2774

0,5864

0,6325

11.3023

15.0325

12.5207

10.8596

13.2319

12.9088

77.9803

86.4278

83.4060

35.7955

77.8973

83.7696

42.2673

37.3869

42.4291

34.1328

39.4687

44.3146

0.5299

0.5216

0.5314

0.4280

0.4685

0.5049

0.7105

0.6140

0.6608

0.2837

0.3802

0.5457

rms
Error
(knots)

1.8898

2.0385

1.9346

1,8947

1.9836

1.9521

3.3619

3.8772

3.5385

3.2954

3.6376

3.5929

8.8306

9.2967

9.1327

5.9829

8.8259

9.1526

6.5013

6.1145

6.5138

5.8423

6.2824

6,6569

0.3740

S-0.3641

------ 0.3694

-..... 

0.3233

-

0.3699

-

0.3777



-21-
TABLE 4

REGRESSION EQUATIONS RESULTS

Geographical Stratifications

v Component

Constant
a

-0.3469

0.0331

-0.2057

-0.3600

-0.2141

-0.2683

-0.5127

0.0918

-0.2756

-0.3575

-0.1158

-0.2933

-1.5262

0.9196

-0.7875

-0.7632

-0.3055

-0.8001

0.8994

-0.2884

0.5521

0.2241

0.1543

850 mb 500 mb 250 mb
a, a, a,

0.3024 0.3472 0.2380

0.2963 0.3495 0.2420

0.2949 0.3522 0.2396

0.3005 0.3061 0.2356

0.2945 0.3291 0.2445

0.3008 0.3373 0.2419

0.4500 ------ 0.3273

0.4600 ------ 0.3596

0.4456 ------ 0.3422

0.4035 ------ 0.2643

0.4291 ------ 0.3266

0.4383 ------ 0.3277

0.5146 ------ -----

0.6820------ ------

0.5232------ ------

0.3976 --- ------

0.4884 ------ ------

0.4932------ ------

------ ------ 0.3507

------ ------ 0.3899

------ ------ 0.3632

------ ------ 0.2618

------ ------ 0.3403

Reduction
of

Variance
rX

0.9528

0.9604

0.9562

0.8855

0.9337

0.9445

0.8508

0.8781

0.8591

0.6967

0.8047

0.8478

0.3377

0.2511

0.2826

0.2367

0.2270

0.2777

0.5952

0.7680

0.6564

0.4179

0.6306

0.60986 0.4651 ------ ------ 0.3439

Set

1

2

3

4

5

6

Mean
Square
Error
(knots)

I

3.1279

3.4615

3.2041

2.7327

3.0857

3.0495

9.8870

10.6554

10.3073

7.2387

9.0897

8.3628

43.8900

65,4622

52.4803

18.2173

35.9770

39.6877

26.8257

20.2794

25.1355

13.8927

17.1926

rms
Error

(kno)
4 e

1.7686

1.8605

1.7900

1.6531

1.7566

1.7463

3.1444

3.2643

3.2105

2.6905

3.0149

2.8919

6.6250

8.0909

7.2443

4.2682

5.9981

6.2998

5.1794

4.5033

5.0135

3.7273

4.1464

21.4400 4.6303
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TABLE 5

REGRESSION EQUATION RESULTS

Time Stratification

u Component

Constant
an

0.2679

-2.1727

-0.5044

0.5810

-2.1915

-0.3485

850 mb
a,

0.5375

0.4169

0.4975

0.5211

0.4457

0.5148

250 mb
as

0.3552

0.3247

0.3666

0.3860

0.3208

0.3881

Red

Var

0.

0.

0.

Mean
uction Square
of Error
iance (knots)
r 2  e-
9079 12.6022

7682 10.9493

8834 14.0601

0.9260

0.7750

0.9018

10.1256

10.6281

11.8413

v Component

a,

0.4372

0.3867

0.4117

0.4674

0.4253

0.4691

a

0.3218

0.2644

0.3217

r

0.8331

0.7005

0.8034

0.3325 0.8668

0.2630 0.6918

0.3322 0.8514

11.0603 3.3257

7.1480 2.6736

10.8024 3.2867

8.8270 2.9910

7.3557 2.7120

8.1650 2.8574

A=June, July, August
B=September, October

Set

lA

4A

6A

IB

4B

6B

rms
Error
(knots)

3.5500

3.3090

3.7497

3.1821

3.2601

3.4411

Set

lA

4A

6A

1B

4B

6B

ao

-0.5148

-0.3167

-0.1783

-0.4512

-0.4268

-0.3987

I

IIIIII
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TABLE 6

Standard Deviations Of The Mean Wind

u Component(knots)

11.6975

'0.8497

11.4382

6.8729

9.7687

10.9811

10.4429

13.0745

6.7491

7.0450

10.0390

12.1500

v Component(knots)

8.1406

9.3494

8.5530

4.8853

6.8222

7.4126

7.3171

9.1752

4.7720

5.0459

6.6519

8.3833

Set

1

2

3

4

5
6

IA

!B

4A

4B

6A

6B
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VI. COMPARABILITY OF SATELLITE DATA TO RAWINSONDE DATA

Operational use of the rawinsonde-derived regres-

sion equations presents a problem, since the predictors

are now satellite-derived winds while the regression

coefficients are tailored to rawinsonde data. The

operational use of satellite winds will decrease the

accuracy of the equations because of differences between

the data sources.

To consider the effects of this difference, the

satellite wind can be considered to be the sum of the

rawinsonde wind and an effective error. The "true"

mean wind, y, is not affected so that the only source

of error will be the satellite data. The two-predictor

equation will be used to investigate the effects of

this error. The satellite winds at the low- and

high-level are then:

X1  xI + el

X3 = x3 + e3

where xl and x3 are the rawinsonde winds and el and e3

are their respective errors.

The errors are assumed to be uncorrelated with the

wind itself at each level and with each other. In the

development of new regression equations, these assump-

tions will make all covariance quantities involving the

errors equal to zero. Only the variances of the satellite

winds will be affected by the error which will appear as

a variance itself as shown in equations 2.

X2  e2 2
x 2= (x + e1

(2)

x = (x + e3 )

The results of the revised regression analysis would

be new coefficients whose value would depend upon the

---------~------------~---- ----; -------~-~
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magnitude of the error variances.

The reduction of variance for the two-predictor

equation can be defined as

2 alxly + a3x3Y

'2

where the variances and covariances are standard statis-

tical quantities. Under the previous assumptions, the

coefficients, ai, will be the only quantities to

change. The reduction of variance can thus be written

as:
(/:YI)Z(,/IZ )+ W(i 77 E) 2( ')( (X))

r = (3)YY

- 2 2 *2 '2
where the quantities (x + e ) and (x3  + e3 ) are

the variances of simulated satellite-derived winds for

the upper and lower levels, respectively.

'2 '2The values of e and e3 are not known and can

only be estimated. No matter what their value, they

can be considered to be some percentage of x'2 and,
therefore, some measure of the effect of this error can

be gained by assuming e'2 over a range of such percen-

tages. Table 7 shows the effects of this error on the

reduction of variance and the rms error for the total

sample if the same percentage of error is assumed at

both levels. This assumption is for simplicity and

should not be considered as a correlation between the

errors at the two levels.

The effect of the satellite "error" is considerable

since even a 10% difference can increase the rms error

by approximately 30%. It is interesting to note,
however, that an error of 100%, which increases the rms

------~-~ ---- ---L-_~sr~*lf-ilg;lrUIIJ$Y )~~
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error by 125%, is still better than climatology. Although

the e'2 are unknown, I believe them to be between 10 and

25% of the variance of the wind itself. The actual rms

error when satellite winds are used in the two-predictor

regression equations is, therefore, about 30 to 60%

higher for the rawinsonde data. The equations, however,

still exhibit reasonable skill in predicting the mean

wind. Similar calculations for the one-predictor equa-

tions show increases in the rms errors of about 5 to

20% for e'2 equal to 25% of the wind variance. These

increases indicate further loss of predictability as

compared to climatology, but the equations still exhibit

some skill. Operational testing of the one-predictor

equations is needed to adequately evaluate their use-

fulness.

Improved methods of measurement should decrease the

error and possibly aid in determining its true value.

The details of the revised regression analysis can be

found in Appendix G.
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TABLE 7

Effects Of Satellite Data Error

Total sample (set 6)

Two-predictor equation

u Component
X2

x = 123.60

x3 = 498.16

y = 120.58

Y = 10.98

(knots) 2

(knots)2

(knots) 2

(knots) (climatological standard deviation)

e1 (%x1 Ve(knots)

0* 0* 0.893 3.59

10 10 0.8.5 4.72

25 25 0.721 5.80

50 50 0.605 6.90

100 100 0.457 8.09

*Original rawinsonde data values

2 12
e3 (3 x3 )
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TABLE 7

(cont'd)

Total sample (set 6)

Two-predictor equation

v Component
'2

x1 = 62.71

x3 = 283.23

y = 54.9

yr = 7.4

e (%x)1 1

3 (knots) 2

5 (knots)
2

5 (knots) 2

1 (knots) (climatological standard deviation)

e (knots)'2 (%e (%x 
3 3

0 0 0.848 2.89

10 10 0.757 3.65

25 25 0.671 4.25

50 50 0.564 4.89

100 100 0.428 5.61

*Original rawinsonde data values

------~ Ic--r-~-ry~i*~ --l-------- rr~- ---- rrrnl I -ixlr--r--i- b- l~~~
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VII. SELECTION OF OPERATIONAL CASES FOR STUDY

The 1974 hurricane season was chosen for study

since it was the most recent. NHC had retained the

rawinsonde data base necessary to re-run some opera-

tional SANBAR forecasts with revised bogus wind data.

Seven named storms occurred during 1974, providing 53

SANBAR forecasts.

The position errors between the forecast and the

actual storm track were determined for these predic-

tions. Originally 12 cases were chosen for study, 6

good and 6 bad. The criteria for a good or bad

forecast is discussed by Sanders et al (1975). The

rationale for choosing bad cases is obvious, since

these should, hopefully, show improvement. Good

cases are chosen as a check to determine if they are

adversely affected by the new data.

Satellite cloud-motion vectors and commercial and

reconnaissance aircraft reports for the 12 cases were

obtained from the NMC data files as provided by the

National Center for Atmospheric Research. Of the

original 12 cases, however, 5 were discarded due to

the complete absence of satellite data and replaced.

The data for each case was then plotted and analyzed

to obtain low- and high-level wind flow patterns.

The analysis of the data uncovered some operational

problems with the satellite data that proved to be quite

formidable. The most obvious and most significant

problem was the poor coverage in almost every case.

Some large areas of the grid were completely devoid of

data while other areas lacked coverage at one of the

levels. The aircraft reports and continuity helped

in some cases, but large areas were still left with



-30-

very insufficient coverage. Even in areas of good

coverage, the satellite and aircraft data in the same

region were sometimes contradictory.

The data coverage problem can be attributed to two

causes, one that is inherent in satellite data and one

that is unique to 1974. The basis of satellite cloud-

motion vectors is, of course, tracking identifiable

cloud elements. If no clouds are present over an area,

then no vectors can be obtained. Tropical cumulus are

very prevalent in the areas of tropical storm activity

and are easily tracked even throughout the subtropical

anticyclone. Cirrus clouds are less prevalent and

offer fewer persistent identifiable elements. Overcast

or broken layers of cloud at any level mask all lower

clouds. Even when clouds are discernable at more than

one level over the same area, only one level may

provide suitable targets. Current editing procedure

at the National Environmental Satellite Service throws

out low-level clouds in the presence of high-level and

discards high-level clouds whose motion do not agree

with the synoptic situation (Hubert, 1975). Hubert

and Whitney (1971) discuss other problems of this type.

The second problem is that the SMS-l satellite

in use during 1974 was moved to longitude 450W to aid

the Global Atmospheric Research Project Atlantic

Tropical Experiment (GATE). The satellite was not

available for data collection at all times and was

unable to adequately cover the SANBAR area. Better

coverage should be expected in the future with the

increased utilization of more satellites.

These problems were so severe that of the 12 test

cases, only 4 were judged useable and even they lacked

sufficient coverage to revise all 44 bogus points. In

two of the instances, two storms were simultaneously

)~I.-L~4~PY-Y-~ -~iill
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present in the SAITBAR area so that 6 storm cases were

sent to NHC for recalculation. Because of technical

problems at NHC, neither of the "double storm" instances

could be used. The two remaining cases were re-run.

Further discussion of the selection process can be

found in Appendix H.
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VIII. RESULTS OF TEST CASES

The two forecasts were for tropical storm Elaine,

from initial data on September 10 and 11, 1974, at

1200 GMT. As previously noted, even these two cases

still suffered from inadequate data coverage. On

September 10, new bogus data could be determined for

only 14 points, while the September 11 case provided

revised data at only 9 points. The former case was

considered a good forecast and the latter was considered

bad, at least at 48 hours. The original SANBAR forecast

results as well as the revised forecast results are

listed in Table 8, and shown in Figures 4 and 5.

The September 10 case exhibits some improvement at

24 and 48 hours, but poorer results at 72 hours. The

September 11 case shows virtually no change at any

time. Elaine was a weak tropical storm that moved

generally ENE until September 12 at 00GMT when it abruptly

moved almost northward for approximately 24 hours and

then returned to the ENE direction. Neither the

original nor the revised forecast was able to predict

the northward turn causing the large errors.

The results of the Elaine cases are inconclusive

regarding the value of the satellite winds in the

initial analysis. The lack of data coverage is very

evidently a prime factor. More work with better

documented cases is necessary to reliably evaluate the

satellite data.

i_~LU-~_~---- _ILi~ i~. -. -~
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TABLE 8

Forecast Results For Tropical Storm Elaine

Forecast (Date/Time)

September 10, 1974/1200GMT

Original Bogus

Revised Bogus

September 11, 1974/1200GMT

Original Bogus

Revised Bogus

Position Error (NM)

24 Hr 48 Hr 72 Hr

105

100

67 237

36 299

105 265

106 264

-----~+- ----~~
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700W 600W 500W
45N

13/1200MMT 40N

12/1200GMT

35 N111__/1200GM35

300N

Figure 4--Elaine Forecasts From
September 10, 1974, 1200GMT

--- 4 -- Best Track of Actual Storm

---4o---Forecast With Original Bogus

---- --Forecast With Revised Bogus

For forecasts, closed symbols
indicate 24, 48, and 72 Hr
positions.
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70 W 60oW 50oW
45oN

13/1200GT 40

2/1200GMT

l/1200GMT
350N

10/1200GM

30N

Figure 5--Elaine Forecasts From
September 11, 1974,1200GMT

--- Best Track of Actual Storm

---- o--Forecast With Original Bogus

------Forecast With Revised Bogus

For forecasts, closed symbols
indicate 24, 48, and 72 Hr
positions.
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APPENDIX A

Determination Of Satellite Cloud-Motion Vectors

Satellite cloud-motion vectors are derived from

analysis of successive photographs of cloud patterns.

Individual cloud elements, or target clouds, are iden-

tified and tracked to determine their motion and esti-

mate the wind field in which they are embedded. More

than one level of cloud can often be detected and

identified to obtain wind estimates at that cloud level.

The height resolution can be determined from different

cloud motions over the same area, infrared measurements

of cloud top temperatures, and subjective observations

of cloud type, brightness and texture. The estimated

heights of the clouds are subject to some uncertainties

and are generally classified simply as low, middle, or

high cloud levels.

Hubert and Whitney (1971) determined the heights of

the lower and upper cloud layers from comparison of the

motion of the target clouds to hodographs of nearby

rawinsondes. The LBF or "level of best fit" was deter-

mined from the assumption that the minimum velocity

difference between the balloon wind the cloud-motion vec-

tor occurred at cloud level. They found that the low-

level clouds correspond best to the 3000 to 5000-ft.

layer and the high-level clouds correspond to the 30,000

ft. level.

Currently, the level of the cloud is obtained by

measuring the temperature of the cloud top with infrared

sensors and then comparing this temperature to the vertical

temperature profile obtained from the National Meteorologi-

cal Center (NMC) forecast model. Tropical cumulus are
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very prevalent in the forecast area and are easily

identified as low clouds. The low clouds are generally

assigned to the 900 mb level over the oceans although

the 850 mb level is also often used. The upper cloud

levels correspond well to 200 mb between 00 and 300 N

and to 300 mb north of 300 N. Middle level clouds are

sometimes identified and are generally representative

of the 500 mb level. (Hubert, 1975)

Satellite cloud-motion vectors are used operation-

ally in some forecast models. Under certain assumptions,
these winds are used at more than one level. For this

reason, NMC provides the low level winds at both the

850 and 700 mb levels, the mid-level at 500 mb, and

the high level at 300, 250, and 200 mb levels.
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APPENDIX B

Analysis Of Data

The rawinsonde winds are inputs to a computer

analysis that develops the mean wind and statistical

quantities necessary to form the equation sets. The

winds are first resolved into u and v components and

then each component is treated separately to develop

u and v regression equation sets. The 10 levels of

rawinsonde data determine the mean wind components.

The mean wind components and the components of the

850 500- and 250-mb winds are then used to compute

variances and covariances of the quatities needed to

solve for the coefficients of the regression equations.

The mean wind is formed in the computer analysis

subject to certain assumptions and constraints. The

flow in the troposphere is pressure averaged over the

10 mandatory levels. Lower and upper level mean winds

are formed from the lower four and upper six levels

respectively. The mean wind is then determined by

linear averaging of the two. The sounding is discarded

if certain conditions are met concerning missing data:

1) if more than two lower or three upper level winds

are missing, 2) if both 1000 and 850 mb winds are

missing, or 3) if any four consecutive winds are missing.

If the sounding is not discarded, missing winds are

linearly interpolated before any computations are

performed.
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APPENDIX C

Data Stratification

The 20 station sample produced a total of 27,421

soundings for computation after screening by the com-

puter analysis. Six geographical and three time

stratifications were considered as shown in Table 1.

The geographical stratifications were based

primarily on natural groupings of the 20 stations by

their locations. Set 1 covers the western Atlantic,

the Gulf of Mexico, and the Caribbean. Set 2 covers

the east central Pacific from the California coast to

Midway Island. Set 4 covers the southwestern Pacific

islands. Sets 3, 5, and 6 are combinations of sets 1, 2

and 4.

Originally, it was hoped that the data could be

stratified by latitude and by hemisphere to determine

if there was any justification for such groupings. The

availability of data, however, did not allow such

stratification. Sets 1 and 2 are in the western hemi-

sphere and north of 170N while Set 4 is in the eastern

hemisphere but south of 19oN with 6 of the 8 stations

between 00 and 100N. Stratification by geographical

location also stratifies by latitude and hemisphere

at the same time causing uncertainty as to what factors

might actually contribute to any difference in the

equation sets. Sets 3 and 5 were used to check if any

effects of location could be detected. Set 6, which

included all 20 stations as one data sample, combined

all of the possible geographical effects to produce a

set of equations for general use in the latitude zone

from which the stations were chosen. The selection

process used for the analysis would seem to restrict

the use of the equations to the oceanic regions of the
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data area as is intended for tropical storm prediction.

The effects of topography would have to be considered

over land areas and would require the use of inland

stations to include these effects in the development

of new regression equations.

Stratification according to time was considered

to investigate any seasonal variation between summer

and early fall. The five month period was divided

into June, July, August, and September, October to form

two sets of regression equations. The geographical

stratifications were maintained, and three sets were

considered for time stratification. Set 1 seemed to

be the most likely set to exhibit time dependence due

to the location of its stations.near mid latitudes.

Set 4 is located deep in the tropics and primarily

south of 10ON. This set should exhibit little, if any,

seasonal change. Set 6 was used to combine all the

geographic factors and consider time dependence on the

entire sample. Set 2 was not considered due to its

small size and location north of the preferred storm

areas.
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APPENDIX D

Details of Linear Regression Analysis

Let y be the predictand (the component of the mean

wind in either the u or v direction)

Let xi be the predictors (1, 2, or 3 predictors as

required)

Define xo = 1 for ease of notation

Let ai be the coefficients of the predictors xi with

ao being the constant term in the equation

Define e as the residual error after prediction
A A

Define y as the predicted value of y so that y= y + e

( ) denotes an average over the sample: x = 4;
N = sample size

Therefore: y = Zaixi + e
i=o

A-
so that y = aixi where k can = 1, 2, or 3.

I=0

The ai are chosen to minimize e2, the mean square

error, so that e e
= 0

_ ai

Now: ~2 2 ebe= 2 = +exi = 0ai b ai

Application of the above forms a set of k + 1 equations:

ao + xjla + ..0xkak = y

x l a o + xal + *..xlxkak = xlY

xkao + xkxla 1 + .. xak = xkY

The elimination of ao from the equations reduces the

set to k equations:

X-~~II~-_IIY~(-L-e-IIWIP~ --~. i__l_~ L-i- *-* PI ~- I~CI- lili-
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x' al + *... Xx k a k = xjly

xkxl al + ... xk ak = xkY

Where the prime ( )' denotes the departure from average,
(x i - T) x= X, x is the variance of xi, and xixk

is the covariance of xi and xk*
2 2 -2xi = (xi - i) (xi - Xi)

0 I

xlxk = (x - 3 )(xk -X) = (ixk - x xk)

The variances and covariances are evaluated from the

computer analysis of the rawinsonde data and are

used to determine the a 's.

a is determineg by:

a =y a .x

The equations for the 1, 2, and 3 predictor sets are

shown in Table D1

The reduction of variance, r2  is defined by:
k

2 e2  aixiYr =1- =Z t

y y

From this expression, e2 can be determined by:

e = (1 - r ) y

The reduction of variance equations used in this report

are shown in Table D2.

The standard deviation is defined as the square root of the

variance:

S= 2

The root mean square error is the square root of e2.

rms error =V

(After Lorenz, 1975)
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TABLE Dl

3 Predictor

- 2  + *, , , ,
X1 al + XlX 2 a2 + XlX 3 a3 = xlY

XlX 2 al + x2a 2 + x2x 3 a3 = x2Y

xlx 3 a1 + x2x 3 a 2 + x 3 a 3 = x3

a = y - alx1 - a2x 2  a3x 3

y = a + alx1 + a2x2 + a3x 3

2 Predictor

12  ,
x1 al + X1 x3 a3 = xlY

S3'2 '
XlX 3 al + x3  a3 = x3Y

a = y - alx I - a3x 3

y= a + al 1 +

1 Predictor

a) 850 mb----

xlY
a 1

x1

a = y - alx1
A
y = a + alx1

b) 250 mb
S 3

x3y
a3 =

x3

a = y - a3x 3A
y = a0 + a3x3

(850 mb, 500 mb, 250 mb)

(850 mb, 250 mb)

a3x3

x = 850 mb wind component

x2  500 mb wind component

x 3 = 250 mb wind component
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TABLE D2

3 Predictor

2r =

(850 mb, 500 mb, 250 mb)

I I I I I I

alxly + a2x2y + a3x3Y

'2
y

2 Predictor

alxly + a3x3Y

'2
y

(850 mb, 250 mb)

1 Predictor

a) 850 mb

1 3

2 alxlY
r-

1 '2
y

b) 250 mb

2 a3x 3Yr3  2
'2Y

~ (.___ I__ULI_~~I~
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APPENDIX E

Evaluation of The Prediction Sets

The three-predictor equation closely approximates

the mean tropospheric flow as discussed in Section 5.

Unfortunately, the operational usefulness of this

equation is limited since the mid-level satellite wind

is rarely available. The most operationally useful

equation is the two-predictor, since two levels of

data are routinely available. Given good data coverage

at these levels, the two-predictor equation can provide

reasonable values of the mean flow.

The one-predictor equation can be operationally

useful in cases of good coverage at one level but little

or no coverage at the other. The accuracy of the single-

predictor equation is less than for the two-predictor,

but still somewhat better than climatology. The rms

errors from the one-predictor equation can be compared

to the standard deviations of the mean wind in Table 6.

The 250-mb equation sets show lower rms errors than the

850-mb sets and, therefore, provide more prediction

skill. The increase in rms error due to the use of

satellite data in the rawinsonde-derived equations is

discussed in Appendix G.

_I__I____~LYL______a__I_~~~ i.i._ . -LEL-~I~L.
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APPENDIX F

Effects of Sampling On The Regression Analysis

The regression equations have shown reasonable

skill in predicting the wind in the dependent data

sample from which they were derived. The question then

arises as to the ability of the equations to predict

the mean wind in a new independent data sample. The

equations must be evaluated to determine their reliability.

As previously defined, the reduction of variance in

the dependent sample is

r2 =1- 1)
y2

The reduction of variance will decrease in a new data

sample due to the process of sampling. The amount of

this decrease can be characterized by a new quantity

called the expected reduction of variance,p . The

expected reduction of variance is an estimate of how

well the equations will perform on a new data sample.

is dependent on the number of predictors in the

equations, the original reduction of variance, and the

number of independent observations in the dependent

sample. The expected reduction of variance is then:

S 2 2MN 22)= r - (1 - r ) 2)
1 3

(N + 1)(N - M -1)

where r2 is the original reduction of variance, M is the

number of predictors, and N is the adjusted sample size.

The quantity N can be equal to N, the original

sample size, but in many cases it is less than N. This

is due to the fact that N is the number of independent

observations in the sample while N is simply the total

~I~~ I*i~ IQLI- - IIl )-i-YLII~ --I~-----1~-~-.
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number of observations. If the observations are chosen

completely at random such that all are independent of the

others, N = N. In this study, however, the observations

are chosen as consecutive rawinsonde soundings on 153

consecutive days for 5 consecutive years. This formu-

lation suggests that there is a dependency of one obser-

vation on another implying that N is less than N. The

amount that N is less than N is not an exact figure,

but can be estimated.

The initial assumption for determining N is that

the winds in one year will not be dependent on any other

year so that each year can be considered to be independent.

The five month time span per year is 153 days. Since

two soundings are generally made per day, the initial

one year sample is 306 observations per station. However,

the two (or more) daily soundings must be assumed to be

dependent causing a reduction of the sample size by

one-half leaving 153 potential observations.

Burpee (1972) determined that African waves in the

lower troposphere have periods of 3-5 days. Based on

this and other considerations of tropical flow patterns,

it seems reasonable to assume that an independent obser-

vation should be obtained at least in every 5-7 days.

Assuming the time scale to be 7 days gives 21 independent

observations per year per station. Therefore, the value

of N will be 105 observations per station for the 5

year sample. The values of N and are tabulated in

Table F1 for each of the geographical stratifications.

The expected loss in skill of prediction is

negligible due to the small number of predictors and

the large number of independent observations.
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TABLE F1

Expected Reduction of Variance

A)
Set No. of Stns. N N

1 8 11682 840

2 4 5594 420

3 12 17276 1260

4 8 10145 840

5 12 15739 1260

6 20 27421 2100

B)
Set Il r2

u v u v

1 3 0.9739 0.9528 0.9737 0.9525

2 3 0.9647 0.9601 0.9642 0.9598

3 3 0.9714 0.9562 0.9713 0.9560

4 3 0.9240 0.8855 0.9235 0.8845

5 3 0.9588 0.9337 0.9586 0.9334

6 3 0.9684 0.9445 0.9683 0.9443

1 2 0.9144 0.8508 0.9140 0.8501

2 2 0.8723 0.8781 0.8711 0.8769

3 2 0.9043 0.8591 0.9040 0.8587

4 2 0.7701 0.6967 0.7690 0.6953

5 2 0.8613 0.8047 0.8609 0.8041

6 2 0.8929 0.8478 0.8927 0.8475

1 1/850 0.4301 0.3377 0.4287 0.3361

2 1 0.2658 0.2511 0.2623 0.2475

3 1 0.3625 0.2826 0.3615 0.2815

4 1 0.2422 0.2367 0.2404 0.2349

5 1 0.1837 0.2270 0.1824 0.2258

6 1 0.3053 0.2777 0.3046 0.2770
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TABLE F1 B) (cont'd)

Set M rV
u v u v

1 1/250 0.6911 0.5952 0.6904 0.5942

2 1 0.6824 0.7680 0.6809 0.7669

3 1 0.6757 0.6564 0.6752 0.6559

4 1 0.2774 0.4179 0.2157 0.4165

5 1 0.5864 0.6306 0.5857 0.6300

6 1 0.,6325 0.6098 0.6321 0.6094

LYYII__YI_~Jy~ ____*___YIII I1I
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APPENDIX G

Analysis Of Satellite Data Error

Inherent in the determination of satellite

cloud-motion vectors is the possibility of "error"

when they are compared to the actual flow at the

level as defined by rawinsonde data. This error is

more accurately a difference between the data sources

and is possibly due to a difference in the scale of

observed motion. The satellite winds are determined

from cloud motions over broad areas and generally

represent the large scale flow. They do, however,

suffer from errors in measurement and from height

uncertainty as detailed by Hubert and Whitney (1971).

The rawinsonde data, as a whole, represent the large

scale flow, but individual stations can often be

indluenced by small scale fluctuations.

This difference or error is not simply a question

of accuracy, but is a question of the applicability of

the rawinsonde-derived equation to satellite data. As

discussed in Section 6, the satellite wind can be

considered as the sum of the rawinsonde wind and some

effective error as:

X. = (x. i + ei )

The variances and covariances for satellite data are

then:

'2 '2 1 ' '2
X.i  xi + 2xie i + ei

1 1 1 1 1

X.X. = xix j + xie j + xje i + eie j  (1)

XiY = xiy + eiy

where y is the actual mean wind. Since the errors have

~LIYLI~-(I~- -~C^C~~ ^__ ~^^~~_
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been assumed to be uncorrelated with the wind and with

each other, the covariances involving the errors will

be equal to zero and equations 1 reduce to:

x 2 X'2 +12X = x. +e.

X. = x x. (2)

Xiy = xiy

Revised regression equation analysis for the satellite

data produces new coefficients ai for the two-predictor

equations as shown:

(x.y )(x. + e. ) (xx .)(x3y

.'2 '2 '2 '2 ' 3 2(xi + e )(x + e ) - (x

2 '2 '2 '2where (x. + e. ) and (x. + e. ) are sirmulated sat-

ellite winds at the two levels. The new reduction

of variance is defined by equation 3 in Section 6. The

effects of the satellite error on the two-predictor

equation are shown in Section 6, Table 7.

Analysis of the one-predictor equations produces

similar results. Table G1 shows the effect of the

satellite error for set 1 (Western Atlantic, Caribbean,

Gulf of Mexico) and set 4 (Southwestern Pacific) and

for their individual stations. The increase in the rms

error varies from about 1% to about 20% for assumed

realistic values of the error and can be compared to

the standard deviation of the mean wind. Some varia-

bility can be seen in the rms errors within each

stratification set. The stations are arranged in the

table by decreasing latitude with the most northerly

first within each set. Less variability is seen in
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low latitudes as is to be expected. The single-pre-

dictor equations show little improvement over clima-

tology in most cases, but the 250-mb sets do exhibit

modest skill at the higher latitudes. Operational

testing of the one-predictor equations is necessary

to actually determine their prediction skill.
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TABbL G1

Effects of Satellite Error on One-Predictor Equations

u Component

'2 '2
e. = 0.25x2
i i

850 mb

Rawinsonde Satellite

250 mb

Rawinsonde Satellite

Int.
Index. No.

72304

78016

72240

72211

72250

72202

76644

78526

Set 1

91245

91217

91413

91366

91334

91408

91376

91348

Set 4

ITr2 ()
40

42

28

34

22

34

22

34

43

35

49

39

20

30

46

18

15

24

9.8

8.7

9.7

9.1

9.4

8.4

6,1

6.2

8.8

7.3

5.5

4.7

5.5

5.1

4.8

5.2

5.1

6.0

10.4

9.2

10.1

9.6

9.7

8.8

6.3

6.5

9.5

7.7

6.0

5.0

5.7

5.3

5.2

5.3

5.2

6.2

T2

12.7

11.3

11.4

11.2

10,7

10.4

6.9

7.6

11.7

9.1

7.7

6.1

6.2

6.1

6.6

5.8

5.5

6.9

70

63

77

73

82

72

65

55

69

58

23

18

26

21

17

24

28

28

7.0

6.9

5.5

5.8

4.6

5.5

4.1

5.1

6.5

5.9

6.8

5.5

5.3

5.4

6.0

5.0

4.7

5.8

8.4

8.0

7.1

7.2

6.3

6.7

4.8

5.7

7.8

6.6

7.0

5.6

5.5

5.6

6.1

5.2

4.9

6.1

r2 (
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APPENDIX H

Selection And Analysis of Study Cases

The 53 SANBAR forecasts were evaluated for position

errors at 24, 48, and 72 hours with the "best track"

storm locations as supplied by NHC. The best track is

the official track of the storm as determined from all

observations. The position error was simply calculated

as the vector difference between the SANTBAR forecast

position and the best track position at the same time.

Good and bad SANBAR forecasts were initially identified

for study. The criteria for judging good from bad is

that a good forecast should have a position error of

less than 75, 150, and 300 NM at 24, 48, and 72 hours

respectively, as discussed by Sanders et al (1975).

Every "good" forecast does not meet every one of these

position error values, but these criteria are generally

useful for evaluation.

The analysis procedure first involved plotting the

data on low-level and high-level charts. Streamline

analysis was used to determine the flow patterns where

possible at each level. From these patterns, two levels

of data could be obtained for a bogus point and the mean

wind calculated from the regression equations. The data

for each bogus point had to be interpolated and was,
therefore, subject to errors whose magnitudes depended

largely on the quality of the data coverage. The error

could be almost zero in areas of good coverage and quite

large in poor coverage areas. The value of the inter-

polation error is difficult to evaluate, but it must

be considered, in some manner.
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