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Abstract—We study the detection performance of large scale
sensor networks, configured as trees with bounded height, in
which information is progressively compressed as it moves
towards the root of the tree. We show that, under a Bayesian
formulation, the error probability decays exponentially fast, and
we provide bounds for the error exponent. We then focus on
the case where the tree has certain symmetry properties. We
derive the form of the optimal exponent within a restricted class
of easily implementable strategies, as well as optimal strategies
within that class. We also find conditions under which (suitably
defined) majority rules are optimal. Finally, we provide evidence
that in designing a network it is preferable to keep the branching
factor small for nodes other than the neighbors of the leaves.

Index Terms—Decentralized detection, error exponent, tree
network, sensor networks.

I. I NTRODUCTION

We consider a sensor network, configured as a directed
tree, with a fusion center at its root. The objective of the
network is to make a decision between two given hypotheses
H0 and H1. Observations are obtained at the nodes of the
tree, and information is propagated from the leaves towards
the root. However, because of resource constraints, e.g., a
restriction to single-bit messages, every node is requiredto
compress or quantize its information (its observation and the
messages it has received) before forming its own message.
Based on the received information, the root or fusion center
makes a decision about the true hypothesis. Our objective is
to understand the scaling of the error probability at the fusion
center, as the number of nodes increases, and its dependence
on qualitative properties of the tree.

In the well studied parallel configuration (see e.g. [1]–[10]),
each node sends its compressed information directly to the
fusion center. A tree, on the other hand, allows for shorter-
range communications, thus making better use of communi-
cation resources. Tree networks have been studied in several
references, such as [11]–[18]. It is known that under the
assumptions to be made in this paper (conditioned on either
hypothesis, the observations at the different nodes are i.i.d.),
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optimal quantization strategies take the form of likelihood-
ratio quantizers, and one can obtain “person-by-person opti-
mality” conditions that need to be satisfied by the optimal
quantizers. Nevertheless, finding the optimal quantizers,and
hence characterizing the detection performance, is a rather
intractable problem even for a moderate number of nodes. For
this reason, in the spirit of [19], we focus on the exponential
rate of decay of error probabilities.

In [20], we studied the Neyman-Pearson variant of the
problem considered in this paper. We showed that the error
probability decays exponentially fast with the number of nodes
(this is apparently not the case when the height is unbounded,
e.g., in a tandem configuration [21]–[24]); furthermore, in
some cases the error exponent associated with a tree configura-
tion turned out to be the same as for the parallel configuration.
In this paper, we continue this investigation by focusing onthe
Bayesian formulation. Similar to the Neyman-Pearson case,
we will see that for bounded height trees error probabilities
decay exponentially fast. However, the optimal error exponent
is generically worse than the one associated with a parallel
configuration (cf. Proposition 2), and is also harder to char-
acterize exactly. In order to make further progress, we place
some additional restrictions on the trees to be considered,as
well as on the allowed quantization strategies. The following
example serves to motivate some of our assumptions.

Example 1 (Random Nodes in the Unit Square). Suppose that
we distributen nodes randomly in the unit square and place a
fusion center at the center of the square. We are interested in
configuring the nodes so that every node is at most two hops
away from the fusion center.

One possibility (to be referred to as Design I) is to fix
somem, and divide the square intom sub-squares, each
with side of length1/

√
m (see Figure 1). For largen, there

are approximatelyn/m nodes in each of these sub-squares.
We let all nodes within a sub-square transmit their messages
to an “aggregator” node in that sub-square. In this way, we
get a “symmetric” tree network, in which every aggregator
is connected to roughly the same number of nodes, with
high probability. Suppose now that the communication cost is
proportional to the Euclidean distance between two communi-
cating nodes. Since the numberm is fixed, the communication
cost in this strategy isΘ(n).

An alternative possibility (to be referred to as Design II)
is to reduce the overall communication cost by using a 2-hop
spanning tree. As before, we place an aggregator in each of the
m sub-squares, and let the rest of the nodes in the sub-square
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Fig. 1. Random nodes in a unit square. The hollow circles represent the
local aggregators. The dotted lines represent communication links. Only one
sub-square is shown with its communication links.

send their messages to this aggregator. However, we allowm
to be chosen optimally. The overall expected communication
cost is

O(n/m) +O(m)

which we minimize by settingm = m(n) = Θ(n2/3), and
thus reducing theΘ(n) cost of Design I toΘ(n2/3). On the
other hand, one suspects that the detection performance of
Design II will be inferior to that of Design I. The results
in Lemma 3 and Proposition 3 provide evidence that this is
indeed the case. �

Motivated by the two designs introduced in Example 1,
we will consider the detection performance of two different
classes of tree networks. The first one consists of symmetric
trees with a fixed number of aggregators or intermediate nodes,
while the second consists of trees in which the number of
intermediate nodes increases at a certain rate (we call these
the rapidly branching tree sequences; cf. Section V). We
characterize and compare the detection performance of these
two classes, optimized over a restricted set of strategies that
are easy to implement. In particular, we show in Proposition
3 that the second class performs worse than any of the tree
networks in the first class.

The rest of this paper is organized as follows. In Section
II, we introduce the problem formulation and some related
concepts. In Section III, we show that for general tree net-
works, the error probability decays exponentially fast with
the number of nodes in the network, and provide bounds for
the rate of decay. In Sections IV and V, we consider specific
classes of tree networks, characterize their performance,and
provide simple (but suboptimal) strategies. Finally in Section
VI, we summarize and conclude.

II. PROBLEM FORMULATION

In this section, we introduce the Bayesian version of the
model in [20], describe the basic assumptions and notation,
and recall a useful result from [20]. We are given two
hypothesesH0 andH1, each with prior probabilityπj > 0,

corresponding probability measuresPj , and associated expec-
tation operatorsEj , j = 0, 1. We model the sensor network as
a directed rooted treeTn, in which a node sends messages to
another if there is a directed arc from the first to the second
node. The root of the treeTn is the fusion center, and will
be denoted byf . The nodes that send messages directly to
v are called its immediatepredecessors, while v is called an
immediatesuccessorof each of these nodes. Let the set of
immediate predecessors of a nodev beCn(v).

A sequence of trees(Tn)n≥1 represents the evolution of the
network. We focus on tree sequences with bounded height,
defined as the length of a longest directed path. For a tree
with heighth, a node is said to be atlevelk if it is connected
to the fusion center via a path withh − k hops. Hence the
fusion centerf is a levelh node.

We assume that under each hypothesisHj , wherej = 0, 1,
every nodev makes an i.i.d. observationXv, with marginal
distribution PX

j
. If v is a leaf node, it sends a summary

Yv = γv(Xv) of its observation to its immediate successor,
whereγv is constrained to belong to a given setΓ of allowed
quantization functions. (For example,Γ can be the set of all
binary functions ofXv.) If v is a non-leaf node, it summarizes
its own observation and the messages it has received using
a transmission functionγv, to produce a messageYv. This
message is then sent to its immediate successor. Finally, the
fusion centerf uses afusion ruleto decide between the two
hypotheses. LetYf be a random variable that represents the
decision of the fusion center. A collection of quantizationand
transmission functions, one for each node, and a fusion rule
will be called astrategy. A tree in which every non-leaf node
ignores its own observation, and simply forwards a summary
of its received messages, will be called arelay tree; in that
case, non-leaf nodes will also be referred to asrelay nodes.
Let ln(v) be the number of leaves in the sub-tree rooted at
nodev. In particular,ln(f) is the total number of leaves of
the treeTn.

Given a tree networkTn, our objective is to minimize the
probability of errorPe(Tn) = π0P0(Yf = 1)+π1P1(Yf = 0),
over all strategies. LetP ∗

e
(Tn) be the minimum probability

of error (over all strategies) at the fusion center. From an
asymptotic perspective, we are given a sequence of trees
(Tn)n≥1, and seek to characterize the optimal error exponent,

E∗ = lim sup
n→∞

1

n
logP ∗

e
(Tn)

For a relay tree, we consider instead the optimal error
exponent,

E∗

R
= lim sup

n→∞

1

ln(f)
logP ∗

e
(Tn),

where we have normalized the log-error probability byln(f),
so thatE∗

R
is the error exponent per observation.

Recall thatPX

j
is the distribution of an observation made

by a node under hypothesisHj . For anyγ ∈ Γ, let P
γ

j
be the

distribution ofγ(X), whenX has distributionPX

j
. We make

the following assumptions, which are standard in the literature
(see e.g. [5], [8], [19]). The Kullback-Leibler (KL) divergence



3

between two probability measuresP andQ is denoted by

D(P ‖Q) = E

[
log

dP

dQ

]
,

where the expectation is taken with respect to (w.r.t.) the
measureP.

Assumption 1. The measuresPX

0 andPX

1 are equivalent, i.e.,
they are absolutely continuous w.r.t. each other. Furthermore,
there exists someγ ∈ Γ such that−D(Pγ

0 ‖P
γ

1) < 0 <
D(Pγ

1 ‖P
γ

0).

To develop insights into how the error probabilities scale
with the number of nodes, we will use an upper bound for
the error probabilities at each node in the network. The next
proposition allows us to recursively propagate error probabil-
ities along a tree in whichall leaves have paths withh hops
to the fusion center. Such a tree is called ah-uniform tree.

Let t(k) = (t1, t2, . . . , tk), for k ≥ 1, and t(0) = ∅. For
j = 0, 1, k ≥ 1, andλ ∈ R, we define recursively [20]

Λj,0(γ;λ) = Λj,0(γ, t
(0);λ) = log Ej

[(dP
γ

1

dP
γ

0

)
λ
]
,

Λ∗

j,k
(γ, t(k)) = sup

λ∈R

{
λtk − Λj,k−1(γ, t

(k−1);λ)
}
, (1)

Λj,k(γ, t(k);λ) = max
{
− Λ∗

1,k
(γ, t(k))(j + λ),

Λ∗

0,k
(γ, t(k))(j − 1 + λ)

}
. (2)

We make the following assumption. A prime denotes dif-
ferentiation w.r.t.λ, and a double prime indicates the second
derivative w.r.t.λ.

Assumption 2. Both D(PX

0 ‖PX

1 ) and D(PX

1 ‖PX

0 )} are
finite, and there exists someb ∈ (0,∞), such that for all
γ ∈ Γ, we haveΛ′′

0,0(γ;λ) ≤ b for all λ ∈ (0, 1), and
Λ′′

1,0(γ;λ) ≤ b for all λ ∈ (−1, 0).

The following result is proved as Proposition 1 in [20].
Let Sn(v) be the log-likelihood ratio (or more formally, the
logarithm of the associated Radon-Nikodym derivative) of the
received messages at nodev. A (one-bit) Log Likelihood Ratio
Quantizer (LLRQ) with thresholdt for a non-leaf nodev is a
quantizer that takes the form

Yv =

{
0, Sn(v)/ln(v) ≤ t,
1, otherwise.

Proposition 1. Consider a sequence ofh-uniform relay trees.
Suppose that Assumptions 1-2 hold. Suppose that the following
strategy is used: every leaf employs the same quantization
functionγ ∈ Γ, and every levelk node (k ≥ 1) uses a LLRQ
with thresholdtk, satisfying

− D(Pγ

0 ‖P
γ

1) < 0 < D(Pγ

1 ‖P
γ

0), (3)

− D(Pγ

0 ‖P
γ

1) < t1 < D(Pγ

1 ‖P
γ

0), (4)

− Λ∗

1,k−1(γ, t
(k−1)) < tk < Λ∗

0,k−1(γ, t
(k−1)),

for 1 < k ≤ h. (5)

Then,

1

ln(f)
log P0

(
Yf = 1

)
≤ −Λ∗

0,h
(γ, t(h)) +

n

ln(f)
− 1,

1

ln(f)
log P1

(
Yf = 0

)
≤ −Λ∗

1,h
(γ, t(h)) +

n

ln(f)
− 1,

Proposition 1 shows that the Type I and II error expo-
nents ofh-uniform trees using the strategy described in the
proposition are essentially upper bounded by−Λ∗

0,h
(γ, t(h))

and −Λ∗

1,h
(γ, t(h)) respectively. In Section V, we present a

class of tree networks whose error exponents are precisely
−Λ∗

j,h
(γ, t(h)), for j = 0, 1.

III. E XPONENTIAL DECAY

In this section, we state a result that shows that the optimal
error probability in a sequence of trees with bounded heighth
decays exponentially fast with the number of nodesn. (This
is in contrast to general trees, where the decay can be sub-
exponential [24].) The proof of Theorem 1 below is similar to
that for the Neyman-Pearson case [20], and can be found in
[25].

When h = 1, we have the classical parallel configuration
considered in [19], and the optimal error exponent is given by

E∗

P
= − sup

γ∈Γ
Λ∗

0,1(γ, 0) = inf
γ∈Γ

min
λ∈[0,1]

Λ0,0(γ;λ) < 0. (6)

Theorem 1. Suppose that Assumptions 1 and 2 hold. Consider
any sequence of trees of heighth. Let z = lim inf

n→∞

ln(f)/n be

the asymptotic proportion of nodes that are leaves. Then,

E∗

P
≤ E∗

R
< 0, (7)

and

min
λ∈[0,1]

log E0

[(dPX

1

dPX

0

)
λ
]
≤ E∗ ≤ zE∗

R
< 0. (8)

Furthermore, ifz = 1, we have

E∗

P
≤ E∗ ≤ E∗

R
≤ 1

2h−1
E∗

P
. (9)

The exact error exponent depends on several factors, such
as the probability distributions and the architecture of the
network. For example, in architectures that are essentially
the same as the parallel configuration or can be reduced to
the parallel configuration, the error exponent isE∗

P
. However,

in most other cases, the error exponent is in general strictly
inferior to E∗

P
(cf. Proposition 2). To obtain some insights into

the optimal error exponent, we consider specific classes ofh-
uniform tree networks in the next two sections. It turns out
that finding optimal strategies is in general difficult, so we
will instead analyze simple, but suboptimal strategies.

IV. SYMMETRIC TREE SEQUENCES

In this section, we consider the asymptotic performance of
a special class ofh-uniform tree networks, which we callr-
symmetric. These are relay trees, with a bounded number of
relay nodes, as in Design I in Example 1. We first characterize
the optimal error exponent under a restrictive class of strate-
gies. Then, we study the effect of the number of relay nodes
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on the optimal error exponent, and provide conditions under
which the majority decision rule is optimal. Throughout this
section, we assume that nodes can only send binary messages,
taking values{0, 1}. An r-symmetric tree network is defined
as follows.

Definition 1 (r-symmetric tree). For h, r ≥ 1, a h-uniform
tree sequence(Tn)n≥1 is said to ber-symmetric if:

(i) for all level k nodesv, wherek > 1, |Cn(v)| = r, and
(ii) for all level 1 nodesv, ln(v)/ln(f) → 1/rh−1 as n →

∞.

The second condition in this definition requires that when
n is large, all therh−1 level 1 nodes have approximately the
same number of immediate predecessors.

We define acounting quantizer (CQ)with thresholds for
a levelk nodev, wherek ≥ 1, as a transmission function of
the form

Yv =

{
0,

∑
u∈Cn(v) Yu ≤ s,

1, otherwise,

where
∑

u∈Cn(v) Yu is the total number of 1s thatv receives
from its immediate predecessors. A counting quantizer has
arguably the simplest possible structure. Furthermore, itis
equivalent to a LLRQ with an appropriate threshold if all
the messages ofv’s immediate predecessors are identically
distributed. For tractability and to ensure that our strategies
are easily implementable, we will now restrict all non-leaf
nodes to using counting quantizers. We call such a strategy
a counting strategy. LetE∗

S
(r) denote the optimal (over all

counting strategies) error exponent (in the worst-case over
all r-symmetric tree sequences). We will show that with the
restriction to a counting strategy, using the same transmission
function at the leaves results in no loss of optimality.

For any given strategy, and for each nodev, let the Type I
and II error exponents be1

ψ(v) = lim
n→∞

1

ln(v)
log P0(Yv = 1),

ϕ(v) = lim
n→∞

1

ln(v)
log P1(Yv = 0).

Consider minimizing the following objective function,

max{λ1ψ(f), λ2ϕ(f)}, (10)

whereλ1 andλ2 are fixed positive constants. In the case of
minimizing the error exponent,λ1 = λ2 = 1 [26]. We use this
more general formulation because it proves to be useful later.
We start with two preliminary lemmas, the first of which is
proved in [19] for the caseλ1 = λ2; the proof for the general
case is entirely similar.

Lemma 1. Suppose that Assumptions 1-2 hold. Consider
minimizing the objective function(10) at the fusion center of
a parallel configuration. Then, there is no loss in optimality
if we restrict all nodes to use the same transmission function,
and the fusion rule to use a counting quantizer.

1We use the notationlim here, without first showing that the limit exists.
The subsequent arguments can be made completely rigorous byconsidering
a subsequence of the tree sequence, in which limits of the Type I and II error
exponents exist at each non-leaf node.

Consider a symmetric tree, and let the set of immediate
predecessors of the fusion centerf beCn(f) = {v1, . . . , vr}.
From Definition 1, the subtrees rooted at the different prede-
cessors off are asymptotically the same. We also note that
under an optimal strategy there is a tradeoff between the Type
I and II error probabilities. It follows that without loss of
generality, we can assume that

0 ≥ ψ(v1) ≥ ψ(v2) ≥ · · · ≥ ψ(vr) > −∞, (11)

−∞ < ϕ(v1) ≤ ϕ(v2) ≤ · · · ≤ ϕ(vr) ≤ 0. (12)

Furthermore, ifψ(vi) > ψ(vj), thenϕ(vi) < ϕ(vj), and vice
versa, for alli, j.

Lemma 2. To minimize the objective function (10) at the
fusion center using a counting quantizer as the fusion rule,
there is no loss of optimality if we restrict all immediate
predecessors off to satisfyψ(vi) = ψ(vj), andϕ(vi) = ϕ(vj)
for all i, j.

Proof: Suppose the fusion center uses a counting quan-
tizer with thresholds. Then, we have

lim
n→∞

1

ln(f)
log P0(Yf = 1)

= lim
n→∞

1

ln(f)
log P0

( r∑

i=1

Yvi
> s

)

= lim
n→∞

1

ln(f)
log P0(Yvi

= 1, i = 1, 2, . . . , s+ 1)

=

s+1∑

i=1

lim
n→∞

1

ln(f)
log P0(Yvi

= 1)

=
1

r

s+1∑

i=1

ψ(vi), (13)

where the second equality follows because{Yvi
= 1, i =

1, 2, . . . , s + 1} is the dominating error event, and the third
equality follows from independence. Similarly, we obtain

lim
n→∞

1

ln(f)
log P1(Yf = 0) =

1

r

r∑

i=s+1

ϕ(vi). (14)

Then, the objective function (10) is equal to

1

r
max

{
λ1

s+1∑

j=1

ψ(vj), λ2

r∑

j=s+1

ϕ(vj)
}

≥ 1

r
max{λ1(s+ 1)ψ(vs+1), λ2(r − s)ϕ(vs+1)},

where equality holds if we setψ(vi) = ψ(vs+1) andϕ(vi) =
ϕ(vs+1) for all i. Hence, it is optimal to use the same strategy
for each of the sub-trees rooted at the nodesv1, . . . , vr.

Theorem 2. Consider anr-symmetric tree sequence(Tn)n≥1,
and suppose that Assumptions 1-2 hold. Within the set of
counting strategies, there is no loss in optimality if we impose
the following restrictions:

(i) all leaves use the same transmission function;
(ii) for eachk ≥ 1, all levelk nodes use counting quantizers

with the same threshold.
Furthermore, the optimal error exponent at the fusion center
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is given by2

E∗

S
(r) = lim

n→∞

1

n
logP ∗

e
(Tn)

= − sup
{sk},t

{[( h∏

k=2

sk + 1

r

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

k=2

r − sk

r

)
Λ∗

1,1(γ, t)
]

:

sk ∈ {0, . . . , r − 1}, for k = 2, . . . , h; γ ∈ Γ;

− D(Pγ

0 ‖P
γ

1) < t < D(Pγ

1 ‖P
γ

0)
}
. (15)

Proof: (Outline3 ) From Lemma 2, we can restrict at-
tention to counting strategies that use the same strategy at
every sub-tree rooted at eachv ∈ Cn(f). Suppose that the
fusion center uses, as its fusion rule, a counting quantizer
with thresholdsh. Then, the objective at eachv ∈ Cn(f)
is to minimize

1

r
max {(sh + 1)ψ(v), (r − sh)ϕ(v)} .

We apply Lemma 2 onv, and repeat the same argument forh−
2 steps. Therefore, we conclude that for eachk ≥ 2, there is no
loss in optimality if all nodes at the same levelk, use counting
quantizers with the same thresholdsk. Moreover, by the same
argument, there is no loss in optimality if each level 1 node has
the same Type I and II error exponents. Lemma 1, applied to
each level 1 node, implies that it is asymptotically optimalfor
all leaves to use the same transmission functionγ, and all level
1 nodes to use LLRQs with the same thresholdt. (Note that
these LLRQs must be equivalent to counting quantizers, since
the leaves use the same transmission function.) Finally, the
form of the optimal error exponent is obtained by optimizing
over the thresholdssk (for k = 2, . . . , h), the thresholdt, and
the transmission functionγ. The theorem is now proved.

Suppose that the transmission functionγ in (15) has been
fixed, and suppose thath > 1 andr > 1. Then, we have

1

rh−1

h∏

i=2

(si + 1) ≤ 1,

1

rh−1

h∏

i=2

(r − si) ≤ 1,

and equality cannot hold simultaneously in both expressions
above. Since for eachγ ∈ Γ, Λ∗

0,1(γ, t) and Λ∗

1,1(γ, t) are
continuous int, the error exponent in (15) is achieved by
setting

( h∏

i=2

si + 1

r

)
Λ∗

0,1(γ, t) =
( h∏

i=2

r − si

r

)
Λ∗

1,1(γ, t). (16)

Hence, the error exponent isstrictly smaller than that for the
parallel configuration. This shows that using ar-symmetric

2The products are taken to be 1 whenh = 1. We also use the notation
x ∧ y = min{x, y}.

3For any given counting strategy, a more rigorous proof will involve taking
a subsequence of(Tn)

n≥1 along which the vector of thresholds that defines
the counting strategy converges to a limit; see the proof of Theorem 3, for a
similar argument.

tree results in a loss of efficiency as compared to the parallel
configuration, if we restrict to counting strategies. In fact, a
stronger result is possible. The detection performance of a
2-symmetric tree is strictly worse than that of a parallel con-
figuration, even without the restriction to counting strategies.

Proposition 2. A 2-symmetric tree has strictly worse detection
performance than a parallel configuration. Moreover, thereis
no loss in optimality restricting to counting strategies.

Proof: Consider a 2-symmetric tree with nodesv1 andv2
sending messages directly to the fusion center. It is not hard to
see that the only choices for the fusion rule are: (i) declareH0

iff both v1 andv2 send 0; (ii) declareH0 iff either v1 or v2 send
a 0; (iii) declareH0 iff v1 sends a 0; and (iv) declareH0 iff v2
sends a 0. The latter two rules can achieve an error exponent
at most half that of the parallel configuration since half of the
leaves are ignored. Rules 1 and 2 are counting rules. It follows
by the same argument as in the proof of Theorem 2, that
there is no loss in optimality restricting the 2-symmetric tree
to counting strategies. The lemma then follows immediately
from our discussion after (16).

A. On the Worst Case Error Exponent

When r = 1, the network is essentially the same, and
therefore achieves the same performance, as a parallel con-
figuration, which is the best possible. Our next result provides
evidence that performance degrades asr increases. In other
words, for a fixed number of nodes, it is preferable to have a
high branching factor at level 1, and a low branching factor,
say r = 2, at the other levels. Let(Tn(r))n≥1 be a r-
symmetric tree sequence, forr = 1, 2, . . ..

Lemma 3. Suppose that Assumptions 1-2 hold, and that the
network is restricted to counting strategies. Then, for anyr ≥
1, h > 1, and any positive integerm > 1, E∗

S
(r) < E∗

S
(mr).

Proof: Consider any sequence of integerski, wherei =
2, . . . , h, such that0 ≤ ki < mr for all i. For eachi, we can
find an integersi ∈ [0, r), such thatmsi ≤ ki < m(si + 1).
Sinceki is an integer, we obtain

ki + 1

mr
≤ m(si + 1)

mr
=
si + 1

r
, (17)

1 − ki

mr
≤ 1 − msi

mr
= 1 − si

r
. (18)

Then, we have

[( h∏

i=2

ki + 1

mr

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

i=2

(1 − ki

mr
)
)
Λ∗

1,1(γ, t)
]

<
[( h∏

i=2

si + 1

r

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

i=2

(1 − si

r
)
)
Λ∗

1,1(γ, t)
]

≤ −E∗

S
(r).

(The first strict inequality is because equality cannot hold
simultaneously in both (17) and (18).) Taking the supremum
over ki, γ and t, yields E∗

S
(mr) > E∗

S
(r). The proof is now

complete.
The above lemma shows that for anym > 1 and r ≥ 1,

(E∗

S
(mlr))l≥0 is an increasing sequence, which is bounded
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above by zero, hence it converges. We provide an upper bound
for this limit (cf. Proposition 6) below.

Proposition 3. Suppose that Assumptions 1-2 hold. For any
collection of symmetric tree sequences,{(Tn(r))n≥1 : r =
1, 2, . . .}, where(Tn(r))n≥1 is a r-symmetric tree sequence,
we have

lim sup
r→∞

E∗

S
(r) ≤ − sup

γ∈Γ
t∈R

( Λ∗

0,1(γ, t)
1

h−1 Λ∗

1,1(γ, t)
1

h−1

Λ∗

0,1(γ, t)
1

h−1 + Λ∗

1,1(γ, t)
1

h−1

)
h−1

.

Proof: Given γ ∈ Γ, andt that satisfies−D(Pγ

0 ‖P
γ

1) <
t < D(Pγ

1 ‖P
γ

0), let

δ =
Λ∗

1,1(γ, t)
1

h−1

Λ∗

0,1(γ, t)
1

h−1 + Λ∗

1,1(γ, t)
1

h−1

, (19)

ands = ⌊δr⌋. We have

E∗

S
(r) ≤ −

[(s+ 1

r

)
h−1

Λ∗

0,1(γ, t)
]
∧

[(r − s

r

)
h−1

Λ∗

1,1(γ, t)
]
.

Sinces/r → δ asr → ∞, we obtain

lim sup
r→∞

E∗

S
(r) ≤ −[δh−1Λ∗

0,1(γ, t)] ∧ [(1 − δ)h−1Λ∗

1,1(γ, t)]

= −
( Λ∗

0,1(γ, t)
1

h−1 Λ∗

1,1(γ, t)
1

h−1

Λ∗

0,1(γ, t)
1

h−1 + Λ∗

1,1(γ, t)
1

h−1

)
h−1

,

and taking the infimum overγ ∈ Γ andt ∈ R, the proposition
is proved.

Under some additional symmetry assumptions, the inequal-
ity in the above proposition becomes an equality. This is shown
in Proposition 6 in Section V.

B. Optimality of the Majority Decision Rule

Suppose that all leaves use the transmission functionγ ∈ Γ.
Finding an optimal counting strategy by solving the opti-
mization problem (15) requires us to search over a space
with rh−1 elements, and also optimizing overt. The search
can be daunting even for moderate values ofr and h. For
this reason, we now consider the case wherer is odd, and
the majority decision rule is used at every non-leaf node,
i.e., a node transmits a 1 iff the majority of its immediate
predecessors send a 1. For level 1 nodes, the majority decision
rule corresponds to a LLRQ with threshold 0, while for nodes
of level greater than 1, it corresponds to a counting quantizer
with threshold(r−1)/2. In the proposition below, we develop
a sufficient condition under which this strategy is optimal.

Proposition 4. Consider a r-symmetric tree network with
h > 1, where r is an odd integer. Suppose that that all
leaves use the same transmission functionγ. Let t0 and t1
be such thatΛ∗

0,1(γ, t0) = rh−1Λ∗

1,1(γ, t0) and Λ∗

1,1(γ, t1) =
rh−1Λ∗

0,1(γ, t1). Under Assumptions 1-2, and the restriction
to counting strategies, if

max
{
Λ∗

0,1(γ, t0),Λ
∗

1,1(γ, t1)
}
≤ 2rh−1(r + 1)Λ∗

0,1(γ, 0)

rh−1(r − 1) + r + 3
,

(20)

bp(0)

cq(0)

t0

aq(t) ap(t) bp(t)cq(t)

t

0
0

(t0, bp(t0))

(t0, cq(t0))

Fig. 2. A typical plot of the rate functions.

the optimal error exponent is

E∗

S
(r) = −

(r + 1

2r

)
h−1

Λ∗

0,1(γ, 0),

and is achieved by using the majority decision rule at all relay
nodes.

Proof: If r = 1, the network is equivalent to the parallel
configuration, and there are no relay nodes to consider. In
this case,t0 = t1 = 0 and the condition (20) holds with
equality. Also, the formula forE∗

S
(1) is the well known error

exponent for the parallel configuration. Henceforth, we assume
that r > 1.

For simplicity, letp(t) = Λ∗

0,1(γ, t) and q(t) = Λ∗

1,1(γ, t).
The sufficient condition (20) is obtained by approximating
the convex functionsp and q with appropriate straight line
segments as shown in Figure 2, and as we proceed to show.

Suppose that

b :=
h∏

k=2

(sk + 1) < a :=
(r + 1

2

)
h−1

< c :=
h∏

k=2

(r − sk).

(The argument in the case when the above inequalities hold in
the reverse direction will be similar.) We consider the solution
to the equations

y =
b(p(t0) − p(0))

t0
t+ bp(0),

y = −c(q(0) − q(t0))

t0
t+ cq(0),

which gives the intersection of the straight line approximations
shown in Figure 2. Solving the linear equations, and observing
that p(0) = q(0), we obtain

y =
bc(1 + d)

c+ bd
p(0),

whered = p(t0)−p(0)
q(0)−q(t0) . Sincep andq are convex functions,

sup
t

min{bp(t), cq(t)} ≤ y. (21)
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We first show thaty ≤ ap(0), for all pairs (b, c) such that
b < a < c. This is equivalent to checking that

d ≤ c(a− b)

b(c− a)
=
a

b

(
1 − b− a

c− a

)
− 1, (22)

for all (b, c) such thatb < a < c. Using the condition

Λ∗

0,1(γ, t0) ≤
2rh−1(r + 1)

rh−1(r − 1) + r + 3
Λ∗

0,1(γ, 0),

(which is a consequence of (20)), it can be shown (after some
algebra) that

d ≤ c∗(a− b∗)

b∗(c∗ − a)
,

where b∗ = (r + 1)h−2(r − 1)/2h−1 and c∗ = (r +
1)h−2(r+3)/2h−1. The right-hand side of (22) increases when
b decreases (andc increases), hence the minimum value is
achieved byb = b∗, and c = c∗. This shows that (22) holds
for all (b, c) such thatb < a < c, and thereforey ≤ ap(0).
From (21), we then have

sup
t

b,c: b≤a≤c

min{bp(t), cq(t)} ≤ ap(0).

A similar argument shows that

sup
t

b,c: c≤a≤b

min{bp(t), cq(t)} ≤ ap(0).

Therefore, from Theorem 2, we obtain

E∗

S
(r) ≥ − a

rh−1
p(0) = −

(r + 1

2r

)
h−1

Λ∗

0,1(γ, 0).

Finally, the proposition is proved by noting that the above
inequality becomes an equality when we set each of the
counting quantizer thresholds tosk = (r − 1)/2.

To show that our sufficient condition in Proposition 4 is
not vacuous, we provide an example in which the use of
the majority decision rule does not give an optimal counting
strategy.

Example 2. Consider ar-symmetric network, withr = 45
and h = 3. Suppose that each leaf sends the message 1
with probability p0 = 0.3 under hypothesisH0, and with
probability p1 = 0.9 under hypothesisH1. If all non-leaf
nodes use the majority decision rule (the counting quantizer
thresholds ares2 = s3 = 22), we get an error exponent
of −129.2460/452. If counting quantizers with thresholds
s2 = s3 = 23 are used, our error exponent is−129.5009/452,
which dominates (is more negative than) the one for the
majority decision rule. In fact, it can be checked numerically
thats2 = s3 = 23 is the optimal choice of counting quantizers.
�

The sufficient condition in (20) can be difficult to check if
one does not have access to the functionsΛ∗

j,1(γ, t), j = 0, 1.
A simpler but cruder sufficient condition is presented below;
the proof is the same as in Proposition 4, except that we let
D(Pγ

1 ‖P
γ

0) play the role oft0, and−D(Pγ

0 ‖P
γ

1) the role of
t1.

Corollary 1. Suppose thatr is an odd integer greater than

1, and that all leaves use the same transmission function
γ. Under Assumptions 1-2, and the restriction to counting
strategies, if

max{D(Pγ

0 ‖P
γ

1),D(Pγ

1 ‖P
γ

0)} ≤ −2(r + 1)

r − 1
inf

λ∈[0,1]
Λ0,0(γ;λ),

then using the majority decision rule at all non-leaf nodes
achieves the optimal error exponent.

V. RAPIDLY BRANCHING TREE SEQUENCES

In the previous section, we considered a symmetric tree
sequence in which the number of non-leaf nodes is bounded. In
this section, we consider tree sequences in which the number
of non-leaf nodes becomes large, in a certain sense, asn
increases. We will characterize the optimal error exponentof
such tree sequences under a restricted class of strategies,and
show that the performance of these tree sequences is inferior
to that of ther-symmetric tree sequences.

Motivated by Design II in Example 1, we define the
following.

Definition 2. A rapidly branching tree sequence is a sequence
of h-uniform trees(Tn)n≥1, such that:

(i) the number of immediate predecessors of each non-leaf
node grows to infinity asn increases;

(ii) there exists a sequence of positive reals(κn)n≥1 such
that κn decreases to 0 asn increases and such that for
each levelk nodev, with k ≥ 2, we have

max
u∈Cn(v) l

2
n
(u)

min
u∈Cn(v) l2n(u)

≤ κn|Cn(v)|.

A rapidly branching tree sequence is a sequence of trees
in which the number of immediate predecessors of each node
grows faster than the rate at which the tree becomes “unbal-
anced.” The definition of a rapidly branching tree sequence
implies that the number of immediate predecessors of every
level 1 node grows uniformly fast, in a certain sense.

In Design II of Example 1, whenn is large, with high
probability, we haveln(u) ≃ ln(v) for all level 1 nodesu and
v. Therefore, this tree network fits our definition of a rapidly
branching network with heighth = 2. For a generalh, a
similar design can be used to approximate ah-hop MST [27].
In all of these designs, with high probability we get a rapidly
branching tree network.

Since using LLRQs for every node is known to be optimal
(see e.g. [5]), we assume that every node (including leaves)is
allowed to use LLRQs. The number of nodes at each levelk
in a rapidly branching tree network grows withn. Similar
to Section IV, the problem of finding optimal LLRQs for
each node in a rapidly branching tree network is, in general,
intractable. Therefore, we make the following simplifying
assumption.

Assumption 3. Every node is allowed to use LLRQs, and
every node at the same levelk uses a LLRQ with the same
thresholdtk.

For notational simplicity, if each leaf uses a transmission
functionγ which is a LLRQ, we identifyγ with the threshold
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of the LLRQ, i.e.,γ = t0 ∈ R. We will first state a limit
theorem for a rapidly branching tree network. This result
essentially shows that the bounds in Proposition 1 are tight,
and is similar in spirit to tightness results for Chernoff bounds.
As the proof is rather long and tedious, we refer the reader to
[25].

Proposition 5. Suppose that Assumptions 1-2 hold. Given
a rapidly branching tree sequence(Tn)n≥1, suppose each
leaf sends its observation to its immediate successor using
a transmission functionγ ∈ Γ, and each levelk node, where
k ≥ 1, uses a LLRQ with a common thresholdtk. Suppose
that {γ, t1, . . . , th} satisfy (3)-(5). Then,

lim
n→∞

1

ln(f)
log P1

(
Yf = 0

)
= −Λ∗

1,h
(γ, t(h)),

lim
n→∞

1

ln(f)
log P0

(
Yf = 1

)
= −Λ∗

0,h
(γ, t(h)).

We now consider the Bayesian detection problem in a
rapidly branching tree sequence, in which all nodes are con-
strained to sending binary messages.

Theorem 3. Consider a rapidly branching tree sequence
(Tn)n≥1. Suppose that Assumptions 1-3 hold. Then, the opti-
mal error exponent is

E∗

RB
= − sup

γ∈Γ
t1∈R

( Λ∗

0,1(γ, t1)
1

h−1 Λ∗

1,1(γ, t1)
1

h−1

Λ∗

0,1(γ, t1)
1

h−1 + Λ∗

1,1(γ, t1)
1

h−1

)
h−1

. (23)

Furthermore, if the supremum is achieved byγ ∈ Γ, and t1 ∈
(−D(Pγ

0 ‖P
γ

1),D(Pγ

1 ‖P
γ

0)), then the optimal threshold for the
fusion center isth = 0, and the optimal thresholdtk for level
k nodes, wherek = 2, . . . , h− 1, is

tk =
(
Λ∗

0,k−1(γ, t
(k−1))Λ∗

1,k−1(γ, t
(k−1))

1
h−k+1−

Λ∗

0,k−1(γ, t
(k−1))

1
h−k+1 Λ∗

1,k−1(γ, t
(k−1))

)/

(
Λ∗

0,k−1(γ, t
(k−1))

1
h−k+1 + Λ∗

1,k−1(γ, t
(k−1))

1
h−k+1

)
.

We first state two lemmas that we will not prove. The proof
of these two lemmas are easily obtained using simple algebra.

Lemma 4. Givenk ≥ 1 and a, b > 0, we have

min
−b<x<a

(( a+ b

a(b+ x)

) 1
k

+
( a+ b

b(a− x)

) 1
k

)
k

=
((1

a

) 1
k+1

+
(1

b

) 1
k+1

)
k+1

,

and the minimizer is given by

x∗ =
ab

1
k+1 − a

1
k+1 b

a
1

k+1 + b
1

k+1

.

Lemma 5. For k ≥ 2, and t(k) satisfying (4)-(5), we have

inf
λ∈[0,1]

Λ0,k(γ, t(k);λ) = −
Λ∗

0,k
(γ, t(k))Λ∗

1,k
(γ, t(k))

Λ∗

0,k
(γ, t(k)) + Λ∗

1,k
(γ, t(k))

,

and

Λ∗

1,k
(γ, t(k)) =

Λ∗

1,k−1(γ, t
(k−1))(Λ∗

0,k−1(γ, t
(k−1)) − tk)

Λ∗

0,k−1(γ, t
(k−1)) + Λ∗

1,k−1(γ, t
(k−1))

,

Λ∗

0,k
(γ, t(k)) =

Λ∗

0,k−1(γ, t
(k−1))(Λ∗

1,k−1(γ, t
(k−1)) + tk)

Λ∗

0,k−1(γ, t
(k−1)) + Λ∗

1,k−1(γ, t
(k−1))

.

Proof of Theorem 3: Suppose that under Assumptions 1-3, an
optimal strategy is for each leaf to use a LLRQ with threshold
γn, and for each levelk node, wherek ≥ 1, to use a LLRQ
with thresholdtn,k. Let (nl)l≥1 be a subsequence such that

lim
l→∞

1

lnl
(f)

logPe(Tnl
) = E∗

RB
.

Sinceγn is bounded (|γn| cannot diverge to infinity, otherwise
every leaf reports either 1 or 0 with probability one asymp-
totically, under either hypothesis), there exists a subsequence
(ul)l≥1 of (nl)l≥1 such thatγul

→ γ ∈ R as l → ∞. Then,
from Assumption 2, sinceD(Pγ

0 ‖P
γ

1) and D(Pγ

1 ‖P
γ

0) are
bounded, the thresholdstul,k

must satisfy−D(Pγ

0 ‖P
γ

1)−1 <
tul,k

< D(Pγ

1 ‖P
γ

0) + 1, for l sufficiently large; otherwise, it
can be shown that either the Type I or Type II error exponent
at the fusion center is zero.

Therefore, there exists a further subsequence(ml)l≥1 of
(ul)l≥1 such that for allk, liml→∞

tml,k
= tk, for some

boundedtk. Then, for allǫ > 0, from Proposition 5, we obtain

E∗

RB
≥ −min{Λ∗

0,h
(γ + ǫ, t1 + ǫ, . . . , tk + ǫ),

Λ∗

1,h
(γ − ǫ, t1 − ǫ, . . . , tk − ǫ)}.

Taking ǫ → 0, and noting thatΛ∗

0,h
andΛ∗

1,h
are continuous

in all their arguments, we get

E∗

RB
≥ −min{Λ∗

0,h
(γ, t(h)),Λ∗

1,h
(γ, t(h))}.

This shows that there is no loss in optimality if we restrict the
transmission functions to be the same for alln. Therefore, it
remains to optimize overγ ∈ Γ and overt(h). In this case, it is
well known (using the same argument as in Corollary 3.4.6 of
[26]) that the optimal fusion rule at the fusion center consists
of a LLRQ with thresholdth = 0. To simplify the notation in
the following, we writeΛ∗

j,k
(γ, t(k)) asΛ∗

j,k
. Then, we have

E∗

RB
= inf

λ∈[0,1]

γ,t
(h−1)

Λ0,h−1(γ, t
(h−1);λ)

= − sup
γ,t

(h−1)

Λ∗

0,h−1Λ
∗

1,h−1

Λ∗

0,h−1 + Λ∗

1,h−1

(24)

= −
[

inf
γ,t

(h−2)
inf
th−1

{ 1

Λ∗

0,h−1

+
1

Λ∗

1,h−1

}]
−1

= −
[

inf
γ,t

(h−2)
inf
th−1

{ Λ∗

0,h−2 + Λ∗

1,h−2

Λ∗

0,h−2(Λ
∗

1,h−2 + th−1)

+
Λ∗

0,h−2 + Λ∗

1,h−2

Λ∗

1,h−2(Λ
∗

0,h−2 − th−1)

}]
−1

, (25)

where (24) and (25) follow from Lemma 5. We takea =
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Λ∗

0,h−2 andb = Λ∗

1,h−2 in Lemma 4 to obtain

E∗

RB
= −

[
inf

γ,t
(h−2)

{( 1

Λ∗

0,h−2

)1/2

+
( 1

Λ∗

1,h−2

)1/2}2]−1

.

The optimal error exponent and the optimal thresholds for
the LLRQs then follow by repeating the above same argument
for anotherh− 2 steps. The proof is now complete. �

By taking t1 = 0 in (23), we obtain a lower bound that
matches the upper bound in (9). Hence one does no worse
than by a factor of1/2h−1 from the optimal error exponent
of a parallel configuration.

For completeness, our next result shows that the bound
in Proposition 3 is an equality if leaves can use LLRQs as
transmission functions. In some sense, it is also a consistency
result: trees with a fixed branching factorr, in the limit of
larger, perform the same as rapidly branching trees.

Proposition 6. Suppose that the setΓ of allowable trans-
mission functions for the leaves includes LLRQs. Then, under
Assumptions 1 and 2, we have

lim
r→∞

E∗

S
(r) = E∗

RB
.

Proof: Consider a collection of tree sequences
{(T (n, r))n≥1 : r ≥ 1} such that (a) each(T (n, r))n≥1 is a
r-symmetric tree sequence; and (b) for eachr and for each
n, every level 1 node inT (n, r) has the same number of
leaves attached to it. Then, from Theorem 2, the optimal
error exponent for each tree sequence(T (n, r))n≥1 is E∗

S
(r).

Suppose that there exists a subsequence(rm)m≥1 such that
g = limm→∞

E∗

S
(rm) < E∗

RB
. Suppose that each tree se-

quence(T (n, rm))n≥1 uses the asymptotically optimal count-
ing strategy proposed in Theorem 2. Note that this strategy also
satisfies Assumption 3. We shall construct a rapidly branching
tree sequence from{(T (n, rm))n≥1 : m ≥ 1}. Fix a positive
ǫ < E∗

RB
− g, and let(nm)m≥1 be an increasing sequence of

positive integers such that

1

lnm
(f)

logPe(T (nm, rm)) ≤ E∗

S
(rm) + ǫ.

Let T̃m = T (nm, rm). Then, it is an easy exercise to verify
that (T̃m)m≥1 satisfies Definition 2 withκm = 1/rm (which
goes to 0, asm→ ∞). We then have

1

lnm
(f)

logPe(T̃m) =
1

lnm
(f)

logPe(T (nm, rm))

≤ E∗

S
(rm) + ǫ.

Takingm→ ∞, we obtain

lim sup
m→∞

1

lnm
(f)

logPe(T̃m) ≤ g + ǫ < E∗

RB
,

a contradiction to Theorem 3. Therefore, we must have
lim infr→∞

E∗

S
(r) ≥ E∗

RB
. Finally, from Proposition 3, we

obtain the desired conclusion.

VI. CONCLUSION

In this paper, we studied the detection performance of large
scale tree networks with bounded height, under a Bayesian
formulation. We showed that the error probability decays

exponentially fast with the number of nodes in the network,
and provided bounds for the rate of decay. We also considered
specific classes of tree networks to quantify the detection
performance. In particular, we considered simple counting
strategies in symmetric tree networks, and characterized the
optimal detection performance over this class of strategies.
We showed that the detection performance of symmetric tree
networks (with a fixed number of relay nodes) is superior to
that of rapidly branching tree networks, although the latter
is, in general, more energy efficient. We also showed that for
these classes of tree networks and transmission strategies, the
Bayesian detection performance deteriorates with the height of
the tree architecture, in contrast to the results for the Neyman-
Pearson formulation [20].

Throughout this paper, we have assumed that every node
makes a (conditionally) i.i.d. observation. A topic for further
research is the case of correlated observations, which remains
a relatively unexplored area, with work mainly limited to the
parallel configuration [10], [28]–[32].
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