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What would it take to make software more dependable? Until now, most approaches 
have been indirect: some practices – processes, tools or techniques – are used that are 
believed to yield dependable software, and the argument for dependability rests on the 
extent to which the developers have adhered to them. This article argues instead that 
developers should produce direct evidence that the software satisfies its dependability 
claims. The potential advantages of this approach are greater credibility (since the ar-
gument is not contingent on the effectiveness of the practices) and reduced cost (since 
development resources can be focused where they have the most impact).

1 Why We Need Better Evidence
Is a system that never fails dependable? Not necessarily. A dependable system is one 
you can depend on – that is, in which you can place your reliance or trust. A rational 
person or organization only does this with evidence that the system’s benefits outweigh 
its risks. Without such evidence, a system cannot be depended upon, in the same way 
that a download from an unknown website cannot be said to be ‘safe’ just because it 
happens not to harbor a virus.

Perhaps in the future we will know enough about software development practices 
that the very use of a particular technique will constitute evidence of the quality of the 
resulting software. Today, however, we are far from that goal. Although individual com-
panies can predict defect rates within product families based on historical data, there is 
barely any industry-wide data collection and analysis.

Contrast software systems with cars, for example. In the US, the National Highway 
Traffic Safety Administration (NHTSA) maintains several databases that include re-
cords of all fatal accidents – approximately 40,000 a year – and data about how par-
ticular models fare in crashes. Researchers can use this data to correlate risk with de-
sign features; one study [55], for example, found that pickup trucks pose higher risks 
to drivers of other vehicles because of their chassis stiffness and height. NHTSA also 
receives data from auto companies regarding warranty claims, defects and customer 
complaints (and made it publicly available until a regulatory change in 2004 [8]). The 
National Transportation Safety Board, best known for its work in aviation, analyzes 
highway accidents too and issues reports on, amongst many other things, the efficacy of 
safety devices such as seatbelts and airbags.
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The software industry has no comparable mechanism, and as a society we have al-
most no data on the causes or effects of software failure. Producers of software cannot 
benefit from data about the industry as a whole that would improve their designs and 
development strategies, and consumers cannot use such data to make informed pur-
chasing decisions. Where data is collected, it is often suppressed; many companies, for 
example, withhold even basic information about the number and severity of defects 
when issuing patches that purport to resolve them. No government agency is charged 
with recording fatal accidents due to software or investigating software failures, and 
when an accident report does implicate software, it rarely includes enough information 
to allow any general lessons to be learnt.

Over the last few decades, we have developed approaches and technologies that can 
dramatically improve the quality of software – better platforms (safe programming lan-
guages, operating systems with address space separation, virtual machines), better in-
frastructure (configuration control, bug tracking, traceability), better processes (spiral 
and agile models, prototyping, etc), better tools (integrated environments, static analyz-
ers, model checkers) – and we have made progress in understanding fundamentals (in 
problem structuring, design modeling, software architecture, verification, testing, and 
so on). All of these advances can be misused, however, and none of them guarantees 
success. The field of empirical software development is attempting to fill the gap and 
provide scientific measures of efficacy. But there is still no evidence that is compelling 
enough that simply using a given approach establishes with confidence the quality of 
the resulting system.

Many certification standards were devised with the good intent of enforcing best 
practices but have the opposite effect. Instead of encouraging the selection of the best 
tool for the job, and directing attention to the most critical aspects of a system and its 
development, they impose burdensome demands to apply the same – often outdated – 
techniques uniformly, and result in voluminous documentation of questionable value. 
Microsoft, for example, spends a fortune to obtain Common Criteria security certifica-
tion for its operating systems, even though its internally-devised mitigations are known 
to be cheaper and more effective.

Government agencies are often in the unfortunate position of having to evaluate 
complex software systems solely on the basis of evidence that some process was ad-
hered to and some amount of testing was performed. Not surprisingly, certified systems 
sometimes fail catastrophically; a particularly tragic example is the failure of an FDA-
certified radiation therapy machine in Panama in 2001 [30], in which fatal overdoses re-
sulted from poorly engineered software in an incident reminiscent of the Therac failures 
of fifteen years before [41]. Even the most highly regarded standards demand expensive 
practices whose value is hard to determine. DO178B, for example, the safety standard 
used in the US for avionics systems, requires a level of test coverage known as MCDC 
that is extremely costly and whose benefits studies have yet to substantiate [22].

A very different approach, sometimes called ‘goal-based’ or ‘case-based’ certifica-
tion, is now gaining currency [5], in which no particular practices – processes, tools 
or techniques – are mandated, and there is no implicit reliance on (missing!) evidence 
that such practices are effective. Instead, the developer is called upon to provide direct 
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evidence that the particular system being delivered satisfies its claimed dependability 
goals. In the UK, the Ministry of Defence has dramatically simplified its procurement 
standards for software. Contractors provide ‘software reliability cases’ justifying the de-
livered system. Even in the tender stage, a reliability case is required to justify the pro-
posed architecture and to show that the contractor is capable of delivering a case for the 
development itself [47].

Certifiers and procurers in the US have been slower to adopt direct approaches. Re-
cently, however, a number of government agencies, spearheaded by the High Confi-
dence Software and Systems coordinating group [27], funded a National Academies 
study on software dependability to address widespread concerns about the costs and ef-
fectiveness of the approaches currently used for developing and certifying critical soft-
ware [32]. This article explains the key elements of a direct approach, drawing heavily 
on that study.

2 Why Testing Isn’t Good Enough
Testing is a crucial tool in the software developer’s repertoire, and the use of automated 
tests – especially ‘regression tests’ for catching defects introduced (or reintroduced!) 
by modifications – is a mark of competence. An awareness of the effectiveness (and 
relatively low cost) of unit testing has led, in the last few years, to better support in de-
velopment environments and to a renewed focus on testing in the development process 
itself.

More extensive and more automated testing can only improve the quality of soft-
ware, and many researchers are recognizing the potential for harnessing computational 
resources to increase the power of testing. At the same time, however, despite the fa-
mous pronouncement of Edsger Dijkstra that testing can be used to show the presence 
of errors but not their absence [13], there is a widespread folk belief that extensive test-
ing is sufficient evidence for dependability.

Everything we know about testing indicates that this belief is false. Although some 
small components can be tested exhaustively, the state space of an entire system is usu-
ally so huge that the proportion of scenarios that can be tested is vanishingly small. 
Software is not continuous, so a successful test for one input says nothing about the sys-
tem’s response to a distinct but similar input. In practice, it is very hard even to achieve 
full code coverage – meaning that every statement of the code is executed. Important 
advances are being made in techniques for generating test suites automatically, and it 
is possible to subject a program to millions of cases, far more than could ever be con-
structed by hand. But even the best techniques still fall short; a recent study of a tech-
nique that uses constraint solving to force execution down unexecuted branches (and 
which has proved effective in exposing bugs) was able to cover only 43% of the blocks 
and 36% of the branches of a .NET component [59].

An alternative approach is to generate tests in a distribution that matches the expect-
ed usage profile, adjusted for risk so that most of the testing effort is spent in the most 
critical areas of functionality. But the number of tests required to obtain high confidence 
(even with some dubious statistical assumptions) is far larger than one might imagine. 
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For example, to claim a failure rate of one input in a thousand to a 99% confidence, 
about 5,000 test cases are needed, assuming no bugs are found [44]. If testing revealed 
10 bugs, nearer 20,000 subsequent tests without failure would be needed. Contrary to 
the intuition of many programmers, finding bugs should not increase confidence that 
fewer bugs remain but is evidence that there are more bugs to be found.

In summary, while testing may provide adequate confidence that a program is good 
for a non-critical application, it becomes more and more difficult and expensive as 
higher and higher levels of assurance are demanded, and cannot deliver the confidence 
required at a reasonable cost. Most systems will be tested more thoroughly by their 
users than by their developers, and will often be executing in uncharted territory, ex-
ploring combinations of state components that were not tested and perhaps not even 
considered during design.

There is a particular optimism in the software industry that testing, in the context of 
a well-structured process, can ensure quality. Perhaps this comes from observing the 
success of testing in other fields. Many of the dramatic quality improvements in manu-
facturing that have been achieved in the last century are due in large part to process 
innovation. Statistical quality control has given us a range of products that fail at low 
rates and with extraordinary predictability. But unfortunately statistical quality control 
doesn’t work for software. Even within a single company, data about one product may 
not apply to another (especially a new one), and because software is used in so many 
ways in so many different environments, even data about a single product may not carry 
over from one installation to another.

Despite this, most certification regimes still rely primarily on process and test-
ing. Certifiers and developers sometimes talk confidently about achieving ‘five nines’ 
of dependability, meaning that the system is expected to survive a hundred thousand 
commands or hours before failing. The mismatch between such claims and the reality 
of software failures led one procurer to quip that ‘it’s amazing how quickly 105 hours 
comes around’.

3 A Direct Approach
The direct approach is straightforward. The desired dependability goal is explicitly ar-
ticulated as a collection of claims that the system has some critical properties. An argu-
ment, or dependability case, is constructed that substantiates the claims. The remainder 
of this article explains these notions in some more detail, and outlines some of their 
implications. First we turn to the fundamental question of what constitutes a system, 
and what it means for it to be dependable.

3.1 What is a System?

The system is the engineered product that was introduced to solve a particular problem, 
consisting of software, the hardware platform on which it runs, the peripheral devices 
through which it interacts with the environment, and any other components that con-
tribute to achieving its goals – including human operators and users. In many cases, the 
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system’s designers must assume that its operators behave in a certain way. An air-traffic 
management system, for example, cannot prevent a mid-air collision if a pilot is deter-
mined to hit an aircraft travelling in the opposite direction on a flight path at an adja-
cent altitude; eliminating this assumption would require a separation of aircraft that is 
not economically feasible. When a system’s dependability is contingent on assumptions 
about its operators, they should be viewed as a component of the system, and the design 
of operating procedures regarded as an essential part of the design effort as a whole.

3.2 What Does ‘Dependable’ Mean?

A system is dependable if can be depended upon – that is trusted or relied upon – to 
perform a particular task. As I noted early on, such trust or reliance is only rational 
when evidence of the system’s ability to act without producing certain failures has been 
evaluated. So a system cannot be dependable without evidence, and dependability is 
thus not merely the absence of defects or the failures that may result from them, but the 
presence of concrete information suggesting that such failures will not occur.

Dependability is not a binary notion. For greater assurance, better and thus more 
expensive evidence will be needed. As in all engineering enterprises, dependability is a 
tradeoff between benefits and risks, with the level of assurance being chosen to match 
the risk at hand. Our society is not willing to tolerate the failure of a nuclear power sta-
tion controller, air traffic control center, or energy distribution network, so for such sys-
tems we will be willing to absorb larger development and certification costs. Criticality 
depends, of course, on the context of use. A spreadsheet program becomes critical if it 
is used for calculating radiotherapy doses. And there are systems – such as GPS satel-
lites and cell phone networks – on which so many applications depend that widespread 
failure could be catastrophic.

Dependability is not a metric that can be measured on a simple numeric scale, be-
cause different kinds of failures have very different consequences. The cost of prevent-
ing all failures will usually be prohibitive, so a dependable system will not offer uniform 
levels of confidence across all functions. On the contrary, a large variance is likely to be 
a characteristic of a dependable system. Thus a dependable radiotherapy system may 
become unavailable but cannot be allowed to overdose a patient or log the delivered 
dose incorrectly; a dependable e-commerce site may display advertisements incorrectly, 
give bad search results and may perhaps lose shopping cart items over time, but must 
never bill the wrong amount or leak customers’ credit card details; a dependable file 
synchronizer may report spurious conflicts but should never silently overwrite newer 
versions of files.

Together, these considerations imply that the first steps in developing a dependable 
system are to draw the boundary of the system – deciding which components in ad-
dition to the software, physical and human, will be relied upon; to identify the critical 
properties; and to determine what level of confidence is required.
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3.3 Properties And Where They Reside

I have talked loosely about a dependable system performing some functions or tasks. 
For articulating claims about a system’s desired behavior, however, even this level of 
granularity is too coarse. It is preferable instead to focus on critical properties. Some 
will be associated with individual functions, but more often a property will cross-cut 
several functions.

For dependability, focusing on properties is generally better than focusing on func-
tions, because the properties are what matters. Moreover, they can usually be separated 
more cleanly from one another, and they retain their meaning as the set of functions 
offered by the system changes over its lifetime. A critical property of a crime database, 
for example, may be that every access to the database by a user is logged to some file. 
Identifying instead some critical subset of logging functions would be inferior, since 
the full correctness of these functions is likely to be neither necessary nor sufficient for 
establishing the logging property. Common Criteria, a certification scheme for security, 
makes this mistake, and focuses attention on the security functions alone, despite the 
fact that many attacks succeed precisely because they exploit loopholes in other func-
tions that were not thought to be security-related.

Some software systems provide an entirely virtual service but most interact with the 
physical world. When the purpose of a system is to produce, control or monitor some 
physical phenomena, these should form the vocabulary for expressing critical proper-
ties. This might seem obvious, but there is long tradition of writing requirements in 
terms of interfaces closer to the software, perhaps because it’s easier, or perhaps be-
cause of a division of labor that isolates software engineers from system-level concerns. 
In a radiotherapy application, for example, a critical property is that the patient does not 
receive an excessive dose, not that the emitted beam has a bounded intensity; nor that 
the right signal is conveyed to the beam-generating device; nor that the beam settings 
are computed correctly in the code; and so on.

There is a chain of phenomena connecting the ultimate physical effects of the sys-
tem at one end through the signals and messages at the peripherals in the middle to 
the instructions executed in the code at the other end. The more the critical property 
is formulated using phenomena closer to the software and further from the ultimate 
effects in the real world domain, the more its correlation to the real concerns of the us-
ers is weakened. An infamous accident illustrates the potentially dire consequences of 
this tendency. An Airbus A320 landing at Warsaw Airport in 1993 was equipped with 
an interlock that was intended to prevent the pilot from activating reverse thrust while 
airborne. Unfortunately, the software had been designed to meet a requirement that 
reverse thrust should be disabled unless wheel pulses were being received (indicating 
that the wheels were turning and thus in contact with the ground). Due to rain on the 
runway, the aircraft aquaplaned when it touched down, and the wheels did not turn, 
so the software dutifully disabled reverse thrust and the aircraft overran the runway. 
Had the critical property been expressed in terms of being on the ground rather than 
receiving wheel pulses, the invalid assumption that they were equivalent may have been 
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scrutinized more careful, and the flaw detected. (This account is simplified; for the full 
incident report see [39]).

This view of requirements is due to Michael Jackson [34] and has been adopted by 
Praxis in its REVEAL requirements engineering method [25]. More specialized variants 
of the idea have appeared before, most notably in David Parnas’s Four Variable Model 
[49].

3.4 The Dependability Case

The evidence for dependability takes the form of a dependability case. The case is an 
argument that the software, in concert with other components, establishes the criti-
cal properties. What exactly comprises the case – how detailed it will be, what mix of 
formal and informal arguments is appropriate, and so on – will vary between develop-
ments, but certain features are essential.

First, the case should be auditable so it can be evaluated by a third-party certifier, 
independent of both developer and customer. The effort required to check that the case 
is sound should be much less than the effort required to build the case in the first place. 
In this respect, a dependability case may be like a formal proof: hard to construct but 
easy to check. To evaluate a case, a certifier should not need any expert knowledge of 
the developed system or of the particular application, although it would be reasonable 
to assume familiarity with the domain area and expertise in software engineering.

Second, the case should be complete. This means that the argument that the critical 
properties hold should contain no holes to be filled by the intuition or expertise of the 
certifier. Any assumptions that are not justified should be called out, so that it is clear 
to the certifier who will be responsible for discharging them. For example, the depend-
ability case may assume that a compiler generates code correctly, or that an operating 
system or middleware platform transports messages reliably, relying on representations 
by the producers of these components that they provide the required properties; or it 
might assume that users obey some protocol, relying on the organization that fields the 
system to train them appropriately. For a product that is not designed with a particular 
customer in mind, the assumptions become disclaimers: for example, that an infusion 
pump may fail underwater, or that a file synchronizer will work only if applications do 
not subvert file modification dates. Assumptions that were made to simplify the case, 
and which are no more easily substantiated by others, are suspect. Suppose an analysis 
of a program written in C, for example, declares an assumption that array accesses are 
within bounds. If this assumption cannot readily be checked, the results of the analysis 
are suspect and cannot be trusted.

Third, the case should be sound. It should not, for example, claim full correctness 
of a procedure on the basis of non-exhaustive testing; or make unwarranted assump-
tions that certain components fail independently; or reason, in a program written in a 
language with a weak memory model, that the value read from a shared variable is the 
value that was last written to it.
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4 Implications
On the face of it, these recommendations – that developers express the critical proper-
ties and make an explicit argument that the system satisfies them – are hardly remark-
able. If followed, however, they would have profound implications for how software is 
procured, developed and certified.

4.1 Dependability Case as Product

In theory, one could construct a dependability case ex post facto, when the entire de-
velopment has been completed. In practice, however, this would be near impossible. 
Constructing the case will be easier and more effective if done hand-in-hand with other 
development activities, when the rationale for development decisions is fresh and read-
ily available. But there is a far more important reason to consider the dependability case 
from the very outset of development. By focusing on the case, the developer can make 
decisions that ease its construction, most notably by designing the system so that criti-
cal properties are easier to establish. Decoupling and simplicity, discussed below, offer 
perhaps the greatest opportunities here.

This is the key respect in which the direct approach to dependability demands a sea 
change in attitude. Rather than just setting in place some practices or disciplines that 
are intended to improve dependability, the developers are called upon to consider their 
decisions in the light of the system’s dependability every step of the way, and to view the 
evidence produced as a work product as integral to the final system as the code itself.

4.2 Procurement

A change to a direct approach affects not only developers but procurers too. The goals 
set at the start must be realistic – not only for their achievement but also for their 
demonstration. The FAA specified 3 seconds of downtime per year for the infamous 
Advanced Automation System, an air-traffic control development that was finally can-
celled after several billion dollars was wasted, even though it would have taken 10 years 
even to obtain the data to substantiate such a claim [9]. The requirement was later re-
vised to 5 minutes.

More fundamentally, however, our society as a whole needs to recognize that the 
enormous benefits of software inevitably bring risks, and that functionality and de-
pendability are inherently in conflict. If we want more dependable software, we will 
need to stop evaluating software on the basis of its feature set alone. At the same time, 
we should be more demanding, and less tolerant of poor quality software. Too often, 
the users of software have been taught to blame themselves for its failures [48] and to 
absorb the costs of workarounds themselves.

After the failure of the USS Yorktown’s onboard computer system, in which the ship’s 
entire control and navigation network went down after an officer calibrating a fuel valve 
entered a zero into a database application (in an attempt to overwrite a bad value that 
the system had produced), blame was initially placed on software [58]. After an inves-
tigation, however, the Navy pronounced that human error was in fact the cause. The 
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ship’s commanding officer reported that ‘Managers are now aware of the problem of en-
tering zero into database fields and are trained to bypass a bad data field and change the 
value if such a problem were to occur again’. In response to an earlier report that the ship 
had been towed back to port he noted that the local area network had been restored in 
two hours. ‘It’s not something that we desire, but ships do go dead in the water,’ he said. 
‘People sometimes make mistakes and systems break. The trick is we have trained our 
crew to react to those situations’ [57].

With the indirect approach to certification, procurers often give detailed prescrip-
tions for how the software should and should not be developed and which technolo-
gies should be used. The direct approach frees the developer to use the best available 
means to achieve the desired goal; constraints on the development are evaluated by 
the objective measure of whether they improve dependability or not. Military procur-
ers, for example, have sometimes been wary of object-oriented technology, and have 
discouraged its use. Viewed from the perspective of constructing a dependability case, 
a more informed decision can be made, dissecting the elements of object-orientation 
and their benefits and liabilities. Automatic memory management, for example, might 
make it easier to reason in a modular way but make establishing time bounds harder; 
the type system might make it easier, through the use of interfaces, to justify the safety 
of plugins, but inheritance might compromise encapsulation.

4.3 Structuring Requirements

How requirements are approached sets the tone of the development that follows. A cur-
sory nod to analyzing the problem can result in functionality so unrelated to the users’ 
needs that the developers become mired in endless cycles of refactoring and modifica-
tion. On the other hand, a massive and windy document can overwhelm the designers 
with irrelevant details and tie their hands with premature design decisions. Ironically, 
what a document says can do as much damage as what it fails to say.

In the context of dependability, requirements are even more fundamental. The stan-
dard criteria apply: that the developers listen carefully to the stakeholders to understand 
not merely the functions they say they want, but more deeply the purpose they believe 
these functions will enable them to accomplish; that the requirements be expressed 
precisely and succinctly (using, for example, the notions of designations and definitions 
[33] to clarify terminology); and that great care be taken to avoid making irrevocable 
decisions when they could be postponed and made later on the basis of much fuller 
information.

Two criteria take on greater significance, however. First, while prioritizing require-
ments is important in any system, it matters especially for a critical system. Deciding 
which requirements are critical (and how critical they are) is the first and most vital 
design step, determining in large part the cost of the system and the contexts in which 
it will usable. The architecture of the system will likely be based on these requirements, 
since (as explained below) the most feasible way to offer high dependability at reason-
able cost is to exploit modularity to establish critical properties locally.
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Second, in a critical development, it is especially important to record clearly any 
assumptions that are made about the environment in which the software will operate 
(including the behavior of human operators). These assumptions will be an integral part 
of the dependability case, will influence the design, and will become criteria for evaluat-
ing in which contexts the software can be deployed.

These two criteria are hardly new but are not always followed. Perhaps under pres-
sure from customers to focus on extensive feature lists, analysts often express require-
ments as a long catalog of functions. Sometimes the structure follows the sequence of 
actions performed by a typical user. Functions may be broken into use cases [35], which 
can be good for describing short, one-off transactions, but which don’t address the in-
teractions of multiple parties or end-to-end properties. In a radiotherapy application, 
for example, the analyst – aware of the risk of delivering incorrect doses, or the risk of 
unauthorized access – might include sections describing the various functions or use 
cases associated with logging in, selecting doses, and so on, but might neglect the more 
important task of describing the critical properties explicitly: that the dose entered by 
the oncologist should correspond to the dose delivered with the help of the therapist, 
that access be restricted to certain staff, and so on.

Sometimes developers appreciate the value of prioritization but have been shy to 
make the bold decisions necessary in downgrading (or eliminating) non-critical re-
quirements. Rather than asking ‘what are the critical properties?,’ we might ask ‘what 
properties are not critical?’ If we have trouble answering this latter question, the proper-
ties that are critical have probably not been identified correctly.

4.4 Decoupling and Simplicity

Building a software system even to relatively low levels of dependability is hard enough, 
and many large developments collapse under their own weight. How much the cost of a 
developing a system will increase if some critical properties are to be assured depends 
on how much of the system is involved. If the critical property is not localized, the en-
tire codebase must be examined to determine whether or not it holds – in short, all the 
code becomes critical. But if the property can be localized to a single component, then 
attention can be focused on that component alone, and the rest of the codebase can be 
treated as non-critical. Put another way, the cost of making a system dependable should 
vary not with the size of the system as a whole but with the extent and complexity of the 
properties that are assured.

Decoupling is the key to achieving locality. One component is decoupled from anoth-
er if its behaviour is unaffected by the behaviour of the other. Maximizing decoupling is 
a guiding principle for software design in general and is fundamental to dependability. 
It is addressed first during requirements analysis by defining functions and services so 
that they are self-contained and independent of one another. Then, during design, it is 
addressed by allocating functionality to components to allow key invariants to be main-
tained within components and to minimize communication, and by crafting interfaces 
that do not expose the internals of a service to its clients, or couple clients together 
unnecessarily. Finally, the decoupling introduced in the design must be realized in the 
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code by using appropriate language features to protect against errors that might com-
promise it. The USS Yorktown incident discussed above was a failure of decoupling: 
blame should have been placed not on the operator who entered the bad value but on 
the designer who made it possible for a single bad entry to bring down an entire net-
worked system.

Amazon’s system gives a nice illustration of decoupling. Apparently, the design en-
forces a rigorous separation between billing and other subsystems, so that more com-
plex (and less dependable) code can be written for less critical features (such as product 
search) without compromising essential financial properties. Decoupling at the design 
level will usually require compromises in requirements. Apple’s OS X operating system, 
for example, allows an administrator to change the privileges only of users not currently 
logged in, and thereby eliminates from the requirements the possibility of privileges be-
ing revoked during use, and the complexity and coupling that would follow from it.

Decoupling is one example of the benefits of simplicity in system design. As Tony 
Hoare famously stated (talking about the design of Ada during his Turing award lecture 
[28]): ‘[T]here are two ways of constructing a software design: One way is to make it 
so simple there are obviously no deficiencies and the other way is to make it so com-
plicated that there are no obvious deficiencies.’ Many practitioners are resistant to the 
claim that simplicity is possible (and some even to the claim that it is desirable). Their 
doubts are often based on a misunderstanding, either that the advocates of simplicity 
do not recognize the inherent complexity of the problems solved by computer systems, 
or that they imagine that simplicity is easily achieved.

Simplicity is not easy to achieve, and – as Alan Perlis noted in one of his famous aph-
orisms – it tends to follow complexity rather than precede it. The designer of a system 
that will work in a complex and critical domain faces complex problems. The question 
is not whether that complexity can be eliminated but whether it can be tamed, so that 
the resulting system can be as simple as possible under the circumstances. The cost of 
simplicity may be high, but the cost of lowering the floodgates to complexity is higher. 
Edsger Dijkstra explained [14]: ‘The opportunity for simplification is very encouraging, 
because in all examples that come to mind the simple and elegant systems tend to be 
easier and faster to design and get right, more efficient in execution, and much more 
reliable than the contrived contraptions that have to be debugged into some degree of 
acceptability.’

4.5 Process and Culture

While process may not be sufficient for dependability, it is certainly necessary. A rigor-
ous process will be needed to ensure that attention is paid to the dependability case, 
and to preserve the chain of evidence as it is constructed. In the extreme case, if there 
is no credible process, a certifier has no reason to believe that the deployed software 
even corresponds to the software that was certified. In a well-known incident in 2003, 
an electronic voting system was certified for use in an election but a different version of 
the system was installed in voting booths [62].
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A rigorous process need not be a burdensome one. Every engineer involved in a proj-
ect should be familiar with the process, so it must be described by a brief and easily un-
derstood handbook, tailored if necessary to the project at hand. Rather than interfering 
with the technical work, the process should eliminate a mass of small decisions about 
how documents are organized, referenced and reviewed, freeing the engineers to con-
centrate on the more creative aspects of the project. Standards for machine-processable 
artifacts – especially code – should be designed to maximize opportunities for automa-
tion. For example, a coding standard that mandates how variables are named and how 
specification comments are laid out can make it possible to extract all kinds of cross-
referencing and summarization information with lexical tools alone. Bill Griswold has 
observed that the more the programmer embeds semantic information in the naming 
conventions of the code, the more readily it can be exploited [23].

One of the paradoxes of software certification is that burdensome processes (such 
as requiring MCDC test coverage) do seem to be correlated with more dependable 
software, even though there is little compelling evidence that the processes themselves 
achieve their stated aims. This may be explained by a social effect. The companies that 
adhere to the strictest processes tend to attract and reward employees who are meticu-
lous and risk-averse. In the safety critical arena, having a strong ‘safety culture’ can be 
the major factor in determining how safe the products are. One study of formal meth-
ods found that their success may be more due to the culture surrounding them than to 
anything more direct [53]. Efforts to build and maintain a strong safety culture can pay 
dividends. Richard Feynman, in his dissenting report following the Challenger enquiry 
[17], was effusive in his praise of the constructively adversarial attitude amongst NASA’s 
software engineers, to which he ascribed the high dependability of their software.

Advances in software verification technology may tempt us to imagine (in a Leibniz-
ian fantasy) that one day we will be able to check the dependability of software simply 
by running it through a machine. But dependability cases will always contain informal 
elements that cannot be verified mechanically, and whose truth will have to be evalu-
ated not only by an impartial review of the case itself but also by an assessment of the 
credibility of the organization that produced it. An entirely product-based certification 
approach thus makes no more sense than one based entirely on process. The organiza-
tion that produces the software and the software itself are intertwined, and attempts at 
improving dependability, and efforts to measure it, must take both into account.

4.6 Robust Foundations

A skyscraper cannot be easily built on sand, and likewise a robust software system can-
not be built on a foundation of weak tools and platforms. Fifty years after the invention 
of static typing and automatic memory management, the decision to use an unsafe pro-
gramming language such as C or C++ (that provide neither) requires serious justifica-
tion, and for a critical system the benefits that are obtained in compensation for the loss 
of safety will have to be extraordinarily compelling. Arguments against safety based on 
performance are usually overstated. And with Java and C# now widely known and avail-
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able, and equipped with impressive libraries, there is no longer a reason to consider safe 
languages as boutique technologies.

The value of static typing is often misunderstood. It is not that type errors don’t oc-
cur during execution. They do – because most statically typed languages are sufficiently 
complex that some checks are inevitably postponed to runtime. Similarly, the value of 
strong typing is not that runtime type errors are more acceptable than other kinds of 
failure. An unanticipated failure is never good news. Moreover, runtime type checking 
can make things worse: the Ariane 5 rocket might not have been lost had an arithmetic 
overflow in an irrelevant module not been propagated to the top level.

Strong typing has two primary benefits. First, it prevents a module from writing to re-
gions of memory that it cannot name (through local and global variables and sequences 
of field accesses). This means that a syntactic dependence analysis can determine the 
potential couplings between modules, and can be used to establish that one module is 
decoupled from another, thus making it possible to ignore the latter when analyzing the 
behaviour of the former. Second, strong typing makes runtime failures happen earlier, 
as soon as a type error occurs, rather than later when the failure is likely to be harder 
to diagnose and may have done more damage. Static typing provides the important ad-
ditional advantage of catching many type errors at compile time. This is extremely valu-
able, because type errors are often symptoms of serious errors and structural flaws.

Complexity in a programming language can compromise dependability, because it 
increases the chance of misunderstandings in which the program does not have the 
behavior that the programmer envisaged. It is important to avoid obscure mechanisms, 
especially those that have a platform-dependent interpretation. Coding standards can 
be very helpful in taming dangerous language features [26, 29].

Progress in language design has produced major improvements but old lessons are 
easily forgotten. The original design of Java, for example, lacked iterators (as a control 
construct) and generics, and did not unify primitive types and objects – all features of 
CLU in 1975 [43]. When it was realized that these features were essential, it was too late 
to incorporate them cleanly. Others have argued that the design of Java’s concurrency 
constructs ignored 25 years of research in parallel programming [7].

It may be curmudgeonly to complain about Java, especially since it brings so many 
good ideas to mainstream programming – especially strong typing – that might oth-
erwise have languished in obscurity. And, to be fair, Java incorporates features of older 
languages in a more complex setting; subtyping, in particular, makes it much harder to 
incorporate other features (such as generics). Nevertheless, it does seem sad that the 
languages adopted by industry often lack the robustness and clarity of their academic 
predecessors.

It is important to recognize that dependability was not the primary goal in the design 
of most programming languages. Java was designed for platform independence, and its 
virtual machines include a class loader that absorbs much of the complexity of instal-
lation variability. As a result, however, a simple call to a constructor in the source code 
sets in motion a formidable amount of machinery that could compromise the system’s 
dependability.
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The choice of computing platform – operating system, middleware, database, etc – 
must also be carefully considered. A platform that has been widely adopted for general 
applications usually has the advantage of lower cost and a larger pool of candidate de-
velopers. But commodity platforms are not usually designed for critical applications, so 
when high dependability is required, enthusiasm for their use should be tempered with 
the risks involved.

4.7 The (In)Significance of Code

A dependability argument is a chain with multiple links. One link may argue that a 
software component has some property; another that a peripheral behaves in a certain 
way; yet another that a human operator obeys some protocol; and together, these might 
establish the end-to-end dependability requirement.

The argument is only as strong as the weakest link in the chain. Many software engi-
neers and researchers are surprised to learn that the correctness of the code is rarely the 
weakest link. In an analysis of fatal accidents that were attributed to software problems, 
Donald MacKenzie found that coding errors were cited as causes only 3% of the time 
[45]. Problems with requirements and usability dwarf the problems of bugs in code, sug-
gesting that the emphasis on coding practices and tools in both research and industry 
may be mistaken. Exploiting tools to check arguments at the design and requirements 
level may be more important, and is often more feasible since artifacts at the higher 
level are much smaller [31].

Nevertheless, the correctness of code is a vital link in the dependability chain. Even if 
the low incidence of failures due to bugs reflects success in improving code quality, the 
cost is still unacceptable [19], especially when very high assurance is required. And in 
the arena of security rather than safety, code vulnerabilities are responsible for a much 
higher proportion of failures.

4.8 Testing and Analysis

Testing is a crucial part of any software development process, and its effectiveness can 
be amplified by liberal use of runtime assertions (especially those checking complex in-
variants), by formulating tests early on, by creating tests in response to bug reports, and 
by integrating testing into the build so that tests are run frequently and automatically. 
But, as discussed above, testing cannot generally deliver the high levels of confidence 
that are required for critical systems, and analysis is needed to fill the gap.

Analysis might involve any of a variety of tools and techniques, according to the kind 
of property being checked and the level of confidence required. In the last decade, dra-
matic advances have been made in a variety of analyses that establish properties of code 
fully automatically, using theorem proving [eg, 18], static analysis [eg, 40], model check-
ing [eg, 61] and model finding [eg, 12].

How well these techniques will work, and how widely they will be adopted, remains 
to be seen. But a number of industrial successes demonstrate that the approaches are 
at least feasible and effective in the right context. Microsoft, for example, now includes 
a sophisticated verification component in its driver development toolkit [3]; Praxis has 
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achieved extraordinarily low defect rates using a variety of formal methods [24]; and 
Airbus has used static analysis to show the absence of low-level runtime errors in the 
A340 and A380 flight control software [11].

Until these approaches are more widely adopted, many development teams will 
choose to rely instead on manual code review. It is important to realize that arguments 
that are not mechanically checked are likely to be flawed, so their credibility must suf-
fer, and the confidence of any dependability claims that rely on them must be reduced 
accordingly.

4.9 The Credibility of Tools

Tools are enormously valuable, but the glamour of automation can sometimes over-
whelm our better judgment. A symptom of this is our tendency to invest terms used to 
describe tools with more significance than their simple meaning. From early on, for ex-
ample, program analyses have been classified by their inventors as ‘sound’ or ‘unsound’. 
A sound analysis establishes a property with perfect reliability. That is, if the analysis 
does not report a bug, then there is no possible execution that can violate the property. 
This notion helpfully distinguishes verifiers from bug finders [eg, 15] – a class of tools 
that are very effective at catching defects, especially in low quality software, but which 
usually cannot contribute evidence of dependability, since they tend to be heuristic and 
therefore unsound.

But the assumption that sound tools are inherently more credible is dangerous. Alex 
Aiken found that an unsound tool uncovered errors in a codebase that a prior analysis, 
using a sound tool, had failed to catch. The much higher volume of false alarms pro-
duced by the sound tool overwhelmed its users and made the real defects harder to 
identify [1]. In recent years, developers of analysis tools have come to realize that the 
inclusion of false positives is just as problematic as the exclusion of true positives and 
that more sophisticated measures are needed – such as the notions of precision and ac-
curacy from the field of information retrieval.

Even if an analysis establishes a property with complete assurance, the question still 
remains of whether the property itself is sufficient. Eliminating arithmetic overflows 
and array bounds errors from a program, for example, is certainly progress, but know-
ing that such faults are absent may not help the dependability case unless there is either 
a chain of reasoning connecting this knowledge to assertions about end-to-end prop-
erties, or some strong statistical evidence that the absence of these faults is correlated 
with the absence of other faults.

Amongst analysis tools, mathematical proof is generally believed to offer the highest 
level of confidence. A proof can usually be checked relatively easily, so that an analysis 
substantiated with a proof can be certified independently by examining the proof in 
isolation, mitigating the concern that the tool that produced the proof might have been 
faulty.

Proof is not foolproof, however. Joshua Bloch found [6] that the binary search algo-
rithm that Jon Bentley had proven correct in his column on program verification [4] 
harbored a subtle flaw, and that the very same bug appeared in Bloch’s own implemen-
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tation of the algorithm in the Sun Java library. The problem arose when the sum of the 
low and high bounds exceeded the largest representable integer. Of course the proof 
wasn’t wrong in a technical sense; there was an implicit assumption that no integer 
overflow would occur (which was reasonable when Bentley wrote his article, since com-
puter memories back then were not large enough to hold such a large array). In practice, 
such assumptions will always pose a risk, since they are hidden in the very tools we use 
to reason about systems, and we may not be aware of them until they are exposed.

Assumptions create another problem for proofs. An inadvertent contradiction 
amongst the assumptions makes the proof worthless, since anything can be inferred 
from it – including the property the user was hoping to establish. Code verification 
tools typically feed to the theorem prover not only the formulas extracted from the 
program but additionally a library of axioms. Any unintentional overconstraint in these 
axioms may cause properties to be inferred from the code that do not in fact hold. The 
same problem arises in software design analysis and model checking, where coverage 
techniques have been developed to highlight portions of the design that were unused in 
establishing the result [see, eg, 60, 38].

5 Closing Thoughts
Software plays a fundamental role in our society, bringing enormous benefits in all 
fields. Because the power of software is irresistible, we depend on it increasingly. Many 
of our current systems are highly centralized and tightly coupled [50] and are thus vul-
nerable to massive, coordinated failure.

A Chicago hospital lost its entire pharmacy database one night, and was only able to 
reconstruct medication records for its patients by collecting paper printouts from nurs-
es’ stations. In their report on this incident [10], Richard Cook and Michael O’Connor 
concluded: ‘Accidents are signals sent from deep within the system about the sorts of 
vulnerability and potential for disaster that lie within.’ Similar signals have been sent by 
electronic voting [36], air traffic control [21], nuclear power [37] and energy distribu-
tion [51] systems.

The growing tendency to embed software in powerful and invasive physical devices 
brings greater risk, especially in medicine where software can save lives but also kill [54]. 
Software problems led to the recall of 200,000 implanted pacemakers and defibrillators 
between 1990 and 2000 [46]. In the 20 years prior to 2005 the FDA recorded 30,000 
deaths and 600,000 injuries from medical device failures [16]. How many of these can be 
attributed to software is unclear, although separate studies have found that about 8 per-
cent of medical device recalls are software related. Moreover, few of the device failures 
that occur – perhaps only 1 in 40 – are actually reported [20], so the actual incidence of 
injuries may be higher.

As software becomes a more and more critical component of our civic infrastructure, 
the question of its dependability will demand an answer. Currently we have little data 
on how often our software fails, so as a society we are unable to make rational decisions 
about how to balance the risks of new systems against the benefits they bring, and about 
how to allocate resources to development and certification. Our society could benefit 
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greatly from a systematic effort to collect and analyze software failure data – perhaps 
even a kind of NTSB for software.

Our assumptions about the dependability of existing systems are often not based 
on hard evidence. Many in the certification community are already skeptical of the as-
sumed link between certification at particular ‘safety integrity levels’ and failure rates. 
Level 3 of IEC-61508, for example, supposedly offers 107-108 hours of continuous mode 
operation without error, even though there is little evidence that systems accredited 
to that level ever achieve such low failure rates. One consequence of adopting a more 
scientific approach to dependability will undoubtedly be a reduction in the claims made 
for existing systems, and perhaps a recognition that lower levels of dependability suf-
fice. On the other hand, we may find that some systems – GPS navigation devices, for 
example – do not warrant the reliance that many users place on them.

The message of this article has been this: that it is not rational to believe that a soft-
ware system is dependable without good reason. Any approach that promises to de-
velop dependable software must produce such reason. A clear and explicit articulation 
is needed of what ‘dependable’ means for the system at hand, and an argument needs to 
be given that takes into account not only the correctness of the code, but also the behav-
iour of all the other components of the system, including human operators.

Is this approach practical? The cost of constructing a dependability case may be high. 
On the other hand, an awareness, from the very start of the development, of the goal 
of constructing the dependability case, should focus resources where they bring the 
greatest return, and the effort invested in obtaining a decoupled design may reduce the 
cost of maintenance later. The experience of Praxis shows that many of the approaches 
that the industry regards as too costly (such as formal specification and static analysis 
of code) can actually reduce overall cost [2].

Augmenting testing with more ambitious analysis tools will require greater expertise 
than is available to many teams today but may not increase the cost. When low levels of 
confidence suffice, testing may be the most cost-effective way to establish dependability. 
As the level of confidence rises, though, testing soon becomes prohibitively expensive, 
and techniques that make better use of computational resources are likely to be more 
economical. Invariants may be harder to write than test cases, but a single invariant 
defines an infinite number of test cases, so a decision to write one (and use a tool that 
checks all the cases it defines) will pay off very soon.

Efforts to make software more dependable or secure are inherently conservative and 
therefore risk retarding progress, and many practitioners understandably see certifica-
tion schemes and standards as a millstone around their neck. A direct approach based 
on dependability cases gives developers an incentive to use whatever development 
methods and tools are most economic and effective, and therefore rewards innovation.

If we had reason to believe that our systems should not fail, then, when they did, we 
would be able to analyze their failures and learn from the experience [52]. Accounts of 
failures in civil engineering make edifying reading in part because they often refute in 
subtle respects the theories on which the designs were based. Mario Salvadori preceded 
Why Buildings Fall Down [42] with Why Buildings Stand Up  [56]. With a flaw in a de-
pendability argument to point to, such a book might one day be written about software, 
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and instead of constantly complaining about the fragility and unpredictability of soft-
ware, we will marvel at how dependable it is, and how rare and subtle are its failures.
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