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We give a generalization to an infinite tree geometry of Vidal’s infinite time-evolving block decimation
�iTEBD� algorithm �G. Vidal, Phys. Rev. Lett. 98, 070201 �2007�� for simulating an infinite line of quantum
spins. We numerically investigate the quantum Ising model in a transverse field on the Bethe lattice using the
matrix product state ansatz. We observe a second order phase transition, with certain key differences from the
transverse field Ising model on an infinite spin chain. We also investigate a transverse field Ising model with a
specific longitudinal field. When the transverse field is turned off, this model has a highly degenerate ground
state as opposed to the pure Ising model whose ground state is only doubly degenerate.
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I. INTRODUCTION

The matrix product state �MPS� description1 has brought a
new way of approaching many-body quantum systems. Sev-
eral methods of investigating spin systems have been devel-
oped recently combining state of the art many-body tech-
niques such as White’s density matrix renormalization
group2,3 �DMRG� with quantum information motivated in-
sights. Vidal’s time-evolving block decimation �TEBD�
algorithm4,5 uses MPS and emphasizes entanglement �as
measured by the Schmidt number�, directing the computa-
tional resources into that bottleneck of the simulation. It pro-
vides the ability to simulate time evolution, and it was shown
that MPS-inspired methods handle periodic boundary condi-
tions well in one dimension,6 areas where the previous use of
DMRG was limited. TEBD has been recast into the language
of DMRG in Ref. 7 and adapted to finite systems with tree
geometry in Ref. 8. DMRG is especially successful in de-
scribing the properties of quantum spin chains; the applica-
tion of basic DMRG-like methods is limited for quantum
systems with higher dimensional geometry. New methods
such as PEPS �Ref. 9� generalize MPS to higher dimensions,
opening ways to numerically investigate systems that were
previously inaccessible.

We are interested in investigating infinite translationally
invariant systems. Several numerical methods to investigate
these were developed recently. The infinite time-evolving
block decimation �iTEBD� algorithm10 �see also Sec. IV� is a
generalization of TEBD to infinite one-dimensional systems.
A combination of PEPS with iTEBD called iPEPS �Ref. 11�
provides a possibility of investigating infinite translationally
invariant systems in higher dimensions.

Our contribution is a method to investigate the ground
state properties of infinite translationally invariant quantum
systems on the Bethe lattice using imaginary time evolution
with MPS. The Bethe lattice is an infinite tree with each node
having three neighbors, as depicted in Fig. 1. It is transla-
tionally invariant in that it looks the same at every vertex.
This geometry is interesting because of the following con-
nection to large random graphs with fixed valence. Moving
out from any vertex in such a random graph, you need to go
a distance of order log n, where n is the number of vertices
in the graph, before you detect that you are not on the Bethe
lattice, that is, before you see a loop.

We choose to investigate the quantum transverse field
Ising model on the Bethe lattice. Note that we work directly
on the infinite system, never taking a limit. First we test the
iTEBD method on a system with a known exact solution, the
infinite line. Then we turn to the Bethe lattice with the new
method we provide. In both cases, the Hamiltonian is given
by

H =
J

2 �
�i,j�

�1 − �z
i�z

j� +
h

2�
i

�1 − �x
i � , �1�

where the sum over i is over all sites, and the sum over �i , j�
is over all bonds �nearest neighbors�. We show that imagi-
nary time evolution within the MPS ansatz provides a very
good approximation for the exact ground state on an infinite
line, giving us nearly correct critical exponents for the mag-
netization and correlation length as we approach the phase
transition. We obtain new results for the quantum Ising
model in transverse field on the infinite tree. Similarly to the
infinite line, we observe a second order phase transition and
obtain the critical exponent for the magnetization, �T
�0.41 �different than the mean-field result�. However, the
correlation length does not diverge at the phase transition for
this system, and we conjecture that it has the value 1/In 2.

We also investigate a model where, besides an antiferro-
magnetic interaction of spins, we add a specific longitudinal
field 1

4�z
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We choose the longitudinal field in such a way that the in-
teraction term in the computational basis takes a simple

FIG. 1. The Bethe lattice �infinite Cayley tree�.
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form, 	00� �00	ij, giving an energy penalty to the 	00� state of
neighboring spins. �We follow the usual convention that spin
up in the z direction is called 0.� We call it the NOT 00 model
accordingly. This model is interesting from a computational
viewpoint. The degeneracy of the ground state of Hnot00 at
h=0 is high for both infinite line and infinite tree geometry
of interactions. We are interested in how our numerical
method deals with this case, as opposed to the double degen-
eracy of the ground state of Eq. �1� at h=0. We do not see a
phase transition in this system as we vary J and h.

The paper is organized as follows. Section II is a review
of the MPS ansatz and contains its generalization to the tree
geometry. In Sec. III, we review the numerical procedure for
unitary updates and give a recipe for applying imaginary
time evolution within the MPS ansatz. In Sec. IV, we adapt
Vidal’s iTEBD method for simulating translationally invari-
ant one-dimensional systems to systems with tree geometry.
Section V contains our numerical results for the quantum
Ising model in a transverse field for translationally invariant
systems. In Sec. V A, we test our method for the infinite line,
and in Sec. V B we present new results for the infinite tree.
We turn to the NOT 00 model in Sec. VI and show that our
numerics work well for this system even when there is a high
ground state degeneracy. In Sec. VII we investigate the sta-
bility of our tree results and conjecture that they may be
good approximations to a local description far from the
boundary of a large finite tree system.

II. MATRIX PRODUCT STATES

If one’s goal is to numerically investigate a system gov-
erned by a local Hamiltonian, it is convenient to find a local
description and update rules for the system. A MPS descrip-
tion is particularly suited to spin systems for which the con-
nections do not form any loops. Given a state of this system,
we will first show how to obtain its MPS description, and
then how to utilize this description in a numerical method for
obtaining the time evolution and approximating the ground
state �using imaginary time evolution�. We begin with matrix
product states on a line �a spin chain�, and then generalize
the description to a tree geometry. In Sec. III, we give a
numerical method of updating the MPS description for both
real and imaginary time simulations.

A. MPS for a spin chain

Given a state 	�� of a chain of n spins

	�� = �
. . .sisi+1. . .

c. . .,si,si+1,. . .	s1�1 . . . 	si�i	si+1�i+1 . . . 	sn�n, �3�

we wish to rewrite the coefficients cs1,. . .,sn
as a matrix prod-

uct �see Ref. 12 for a review of MPS�

c. . .,si,si+1,. . . = �
. . .abc. . .

. . .�a
�i−1��a,b

�i�,si�b
�i��b,c

�i+1�,si+1�c
�i+1�. . . �4�

using n tensors ��i� and n−1 vectors ��i�. The range of the
indices a ,b , . . . will be addressed later. After decomposing
the chain into two subsystems, one can rewrite the state of
the whole system in terms of orthonormal bases of the sub-

systems. ��i� is the vector of Schmidt coefficients for the
decomposition of the state of the chain onto the subsystems
1. . . i and i+1. . .n.

In order to obtain the �’s and the �’s for a given state 	��,
one has to perform the following steps. First, perform the
Schmidt decomposition of the chain between sites i−1 and i
as

	�� = �
a=1

�i−1

		a�1,. . .,i−1�a
�i−1�		a�i,. . .,n, �5�

where the states on the left and on the right of the division
form orthonormal bases required to describe the respective
subsystems of the state 	��. The number �i−1 �the Schmidt
number� is the minimum number of terms required in this
decomposition.

The Schmidt decomposition for a split between sites i and
i+1 gives

	�� = �
b=1

�i

	
b�1,. . .,i�b
�i�	
b�i+1,. . .,n. �6�

These two decompositions �see Fig. 2� describe the same
state, allowing us to combine them to express the basis of the
subsystem i , . . . ,n using the spin at site i and the basis of the
subsystem i+1, . . . ,n as

		a�i,. . .,n = �
s=0,1

�
b=1

�i

�a,b
�i�,s�b

�i�	s�i	
b�i + 1, . . . ,n , �7�

where we inserted the �b
�i� for convenience. This gives us the

tensor ��i�. It carries an index s corresponding to the state 	s�
of the ith spin, and indices a and b, corresponding to the two
consecutive divisions of the system �see Fig. 2�. Because
		a� �and 	
b�� are orthonormal states, the vectors � and ten-
sors � obey the following normalization conditions. From
Eq. �6� we have

�
b=1

�i

�b
�i�2 = 1, �8�

while Eq. �7� implies

�	a�		a�i,. . .,n = �
s=0,1

�
b=1

�i

�a�,b
�i�,s�

�b
�i��a,b

�i�,s�b
�i� = �a,a� �9�

and

�
b�	
b�1,. . .,i = �
s=0,1

�
a=1

�i−1

�a
�i−1��a,b�

�i�,s�
�a

�i−1��a,b
�i�,s = �b,b�.

�10�

FIG. 2. Two successive Schmidt decompositions on a line allow
us to find the � tensor for the marked site and the two � vectors for
the bonds coming out of it.

NAGAJ et al. PHYSICAL REVIEW B 77, 214431 �2008�

214431-2



B. MPS on trees

MPSs are natural not just on chains, but also on trees
because these can also be split into two subsystems by cut-
ting a single bond, allowing for the Schmidt-decomposition
interpretation as described in the previous section. The MPS
description of a state of a spin system on a tree, i.e., such that
the bonds do not form loops, is a generalization of the above
procedure. Tree-tensor-network descriptions such as ours
have been previously described in Ref. 8.

Specifically, for the Bethe lattice with three neighbors per
spin, we introduce a vector �ak

�k� for each bond k and a four-
index �one for spin, three for bonds� tensor �ak,al,am

�i�,si for each
site i. We can then rewrite the state 	�� analogously to Eqs.
�3� and �4� as

	�� = 
 �
k�bonds

�
ak=1

�k

�ak

�k��
 �
i�sites

�
si

�al,am,an

�i�,si �	 . . . �	si�	 . . . � ,

�11�

where al ,am ,an are indices corresponding to the three bonds
l ,m and n coming out of site i. Each index al appears in two
� tensors and one � vector. To obtain this description, one
needs to perform a Schmidt decomposition across each bond.
This produces the vectors ��l�.

To obtain the tensor ��i� for site i, one needs to combine
the three decompositions corresponding to the bonds of site i
as depicted in Fig. 3. Analogously to Eq. �7�, expressing the
orthonormal basis for the first subsystem marked in Fig. 3 in
terms of the state of the spin 	si� and the orthonormal bases
for the latter two subsystems in Fig. 3, one obtains the tensor
�al,am,an

�i�,s for site i.
The normalization conditions for a MPS description of a

state on a tree are analogous to Eqs. �8�–�10�. We have

�
ak

�ak

�k�2 = 1, �12�

�
s=0,1

�
ak=1

�k

�
al=1

�l

�ak,al,am�

�i�,s� �ak

�k�2�al

�l�2�ak,al,am

�i�,s = �am,am�
, �13�

and two other variations of Eq. �13� with k , l and m inter-
changed.

III. SIMULATING QUANTUM SYSTEMS WITH MPS

We choose to first describe the numerical procedures for a
chain of spins. Then, at the end of the respective subsections,
we note how to generalize these to tree geometry.

A. Unitary update rules

The strength of the MPS description of the state lies in the
efficient application of local unitary update rules such as U
=e−iA�t �where A is an operator acting only on a few qubits�.
First, we describe the numerical procedure in some detail,
and then, in the next section, discuss how to modify the
procedure to also implement imaginary time evolution.

Given a state 	�� as a MPS, we want to know what hap-
pens after an application of a local unitary. In particular, for
a one-local U acting on the ith spin, it suffices to update the
local tensor

�a,b
�i�,s→

U

Us�
s

�a,b
�i�,s�. �14�

The update rule for an application of a two-local unitary V
acting on neighboring spins i and i+1, requires several steps.
First, using a larger tensor

a,c
s,t = �a

�i−1��
b

��a,b
�i�,s�b

�i��b,c
�i+1�,t��c

�i+1�, �15�

we rewrite the state 	�� as

	�� = �
a,c

�
s,t

a,c
s,t 		a�1. . .i−1	s�i	t�i+1		c�i+1. . .n. �16�

After the application of V, the tensor  in the description of
	�� changes as

a,c
s,t →

V

�
s�t�

Vs�,t�
s,t

a,c
s�,t�. �17�

One now needs to decompose the updated tensor  to obtain
the updated tensors ��i�, ��i+1�, and the vector ��i�. We use the
indices a ,s and c , t of  to introduce combined indices �as�
and �ct�, and form a matrix T�as�,�ct� with dimensions 2�i−1
�2�i+1 as

T�as�,�ct� = a,c
s,t . �18�

Using the singular value decomposition �SVD�, this matrix
can be decomposed into T=Q�W, where Q and W are uni-
tary, and � is a diagonal matrix. In terms of matrix elements,
this reads

T�as�,�ct� = �
b

Q�as�,bDb,bWb,�ct�. �19�

The diagonal matrix D=diag���i�� gives us the updated
Schmidt vector ��i�. The updated tensors ��i� and ��i+1� can
be obtained from the matrices Q ,W and the definition of 
Eq. �15� using the old vectors ��i−1� and ��i+1�, which do not
change with the application of the local unitary V. After these
update procedures, the conditions �8�–�10� are maintained.

The usefulness/succinctness of this description depends
crucially on the amount of entanglement across the bipartite
divisions of the system as measured by the Schmidt numbers
�i. To exactly describe a general quantum state 	�� of a chain
of n spins, the Schmidt number for the split through the
middle of the chain is necessarily �n/2=2n/2. Suppose we
start our numerical simulation in a state that is exactly de-
scribed by a MPS with only low �i’s. The update step de-

FIG. 3. The three Schmidt decompositions on a tree required to
obtain the � tensor for the marked site and the three � vectors for
the bonds emanating from it.
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scribed above involves an interaction of two sites, and thus
could generate more entanglement across the i , i+1 division.
After the update, the index b in �b

�i� would need to run from
1 to 2�i to keep the description exact �unless �i already is at
its maximum required value �i=2mini,n−i��. This makes the
number of parameters in the MPS description grow exponen-
tially with the number of update steps.

So far, this description and update rules have been exact.
Let us now make the description an approximate one �use a
block-decimation step� instead. First, introduce the param-
eter �, which is the maximum number of Schmidt terms we
keep after each update step. If the amount of entanglement in
the system is low, the Schmidt coefficients �b

�i� decrease rap-
idly with b �we always take the elements of � sorted in
decreasing order�. A MPS ansatz with restricted �i=� will
hopefully be a good approximation to the exact state 	��.
However, we also need to keep the restricted � throughout
the simulation. After a two-local unitary update step, the vec-
tor ��i� can have 2� entries. However, if the b�� entries in
�b

�i� after the update are small, we are justified to truncate ��i�

to have only � entries and multiply it by a number so that it
satisfies Eq. �8�. We also truncate the � tensors so that they
keep dimensions 2����. The normalization condition �10�
for ��i� will be still satisfied exactly, while the error in the
normalization condition �9� will be small. This normalization
error can be corrected as discussed in the next section. This
procedure keeps us within the MPS ansatz with restricted �.

The procedure described above allows us to efficiently
approximately implement local unitary evolution. To simu-
late time evolution

	��t�� = e−iHt	��0�� , �20�

with a local Hamiltonian such as Eq. �1�, we first divide the
time t into small slices �t and split the Hamiltonian into two
groups of commuting terms Hk

�x� and Hm
�z�. Each time-

evolution step e−iH�t can then be implemented as a product
of local unitaries using the second order Trotter-Suzuki for-
mula

U2 = ��
k

e−iHk
�x��t/2���

m

e−iHm
�z��t���

k

e−iHk
�x��t/2� . �21�

The application of the product of the local unitaries within
each group can be done almost in parallel �in two steps, as
described in Sec. IV�, as they commute with each other.

These update rules allow us to efficiently approximately
simulate the real time evolution �Eq. �20�� with a local
Hamiltonian H for a state 	�� within the MPS ansatz with
parameter �. The number of parameters in this MPS descrip-
tion with restricted � is then n�2�2� for the tensors ��i� and
�n−1�� for the vectors ��i�. The simulation cost of each local
update step scales like O��3�, coming from the SVD decom-
position of the matrix . For a system of n spins, we thus
need to store O�2n�2+n�� numbers and each update will
take O�n�3� steps.

The update procedure generalizes to tree geometry by tak-
ing the tensors � with dimensions 2������ as in Sec.
II B. For a local update �on two neighboring spins i and i
+1 with bonds labeled by l ,m ,n and n ,o , p�, we rewrite the
state 	�� analogously to Eq. �16� as

	�� = �
ak,al,ao,ap

�
s,t

�akal�,�aoap�
s,t 		ak

�		al
�	s�i	t�i+1		ao

�		ap
� .

�22�

using the tensor

�akal�,�aoap�
s,t = �ak

�k��al

�l��
am

��ak,al,am

�A�,s �am

�m��am,ao,ap

�i+1�,t ��ao

�o��ap

�p�,

�23�

with combined indices �akal� and �aoap�. One then needs to
update the tensor  as described above �Eqs. �17�–�19��. The
decomposition procedure to get the updated vector ��m� and
the new tensors ��i� and ��i+1� now requires O��4� computa-
tional steps. The cost of a simulation on n spins thus scales
like O�n�4�.

B. Imaginary time evolution

Using the MPS ansatz, we can also use imaginary time
evolution with e−Ht instead of Eq. �20� to look for the ground
state of systems governed by local Hamiltonians. One needs
to replace each unitary term e−iA�t in the Trotter expansion
�Eq. �21�� of the time evolution with e−A�t followed by a
normalization procedure. However, the usual normalization
procedure for imaginary time evolution �multiplying the state
by a number to keep �� 	��=1� is now not enough to satisfy
the MPS normalization conditions �8�–�10� for the tensors �
and vectors � we use to describe the state 	��.

The unitarity of the real time evolution automatically im-
plied that the normalization conditions �8� and �10� were
satisfied after an exact unitary update. While there already
was an error in Eq. �9� introduced by the truncation of the
�+1. . .2� entries in ��i�, the nonunitarity of imaginary time-
evolution update steps introduces further normalization er-
rors. It is thus important to properly normalize the state after
every application of terms like e−A�t to keep it within the
MPS ansatz.

In Ref. 10, Vidal dealt with this problem by taking pro-
gressively shorter and shorter steps �t during the imaginary
time evolution. This procedure results in a properly normal-
ized state only at the end of the evolution, after the time step
decreases to zero �and not necessarily during the evolution�.
We propose a different scheme in which we follow each
local update e−A�t by a normalization procedure �based on
Vidal’s observation� to bring the state back to the MPS an-
satz at all times. The simulation we run �evolution for time t�
thus consists of many short time step updates e−H�t, each of
which is implemented using a Trotter expansion as a product
of local updates e−A�t. Each of these local updates is fol-
lowed by our normalization procedure.

We now describe the iterative normalization procedure in
detail for the case of an infinite chain, where it can be ap-
plied efficiently, as the description of the state 	�� requires
only two different tensors � �see Sec. IV A�. One needs to
apply the following steps over and over, until the normaliza-
tion conditions are met with chosen accuracy.

First, for each nearest neighbor pair i , i+1 with even i, we
combine the MPS description of these two spins �Eqs. �15�
and �16��, forming the matrix T �Eq. �18��. We do a SVD
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�decomposition of T �Eq. �19�� to obtain a new vector ��i�.
The decomposition does not increase the number of nonzero
elements of ��i�, as the rank of the 2��2� matrix T �Eq.
�19�� was only � �coming from Eq. �15��. We thus take only
the first � values of ��i� and rescale the vector to obey
�a=1

� �a
�i�2=1. Using this new ��i�, we obtain tensors ��i�, ��i+1�

from Eq. �19�, and truncate them to have dimensions ���
�2. Second, we repeat the previous steps for all nearest
neighbor pairs of spins i , i+1 with i odd.

We observe that repeating the above steps over and over
results in exponential decrease in the error in the normaliza-
tion of the � tensors. We note though, that the rate of de-
crease in normalization errors becomes much slower near the
phase transition for the transverse field Ising model on an
infinite line �see Sec. V A�.

In practice, we apply this normalization procedure by us-
ing the same subroutine for the local updates e−A�t, except
that we skip step �17�, which is equivalent to applying the
local update with �t=0. The normalization procedure is thus
equivalent to evolving the state repeatedly with zero-time
step �composing two tensors � and decomposing them again�
and imposing the normalization condition on the vectors �.
Note though, following from the definition of the SVD, that
each decomposition assures us that one of the conditions, �9�
or �10�, is retained exactly for the updated tensors �. The
errors in the other normalization condition for the � tensors
are decreased in each iteration step.

The numerical update rules for a system with tree geom-
etry are a simple analog of the update rules for MPS on spin
chains. Every interaction couples two sites, with tensors
�a,b,c

�A�,s and �c,d,e
�B�,t, with the three lower indices corresponding

to the bonds emanating from the sites. One only needs to
reshape the tensors into ��ab�,c

�A�,s and c,�de�
�B�,t and proceed as

described in Eq. �15� and below.

IV. MPS AND TRANSLATIONALLY INVARIANT SYSTEMS

A. An infinite line

For systems with translational symmetry such as an infi-
nite line, all the sites are equivalent. We assume that the
ground state is translationally invariant, and furthermore pick
the tensors ��i� and vectors ��i� to be site independent. For
fixed � the number of complex parameters in the translation-
ally invariant MPS ansatz on the infinite line scales as 2�2.

When using imaginary time evolution to look for the
ground state of this system, within this ansatz, it is techni-
cally hard to keep the translational symmetry and the nor-
malization conditions after each update. Numerical instabili-
ties plagued our efforts to impose the symmetry in the
procedures described above. In Ref. 10, Vidal devised a
method to deal with this problem. Let us break the transla-
tional symmetry of the ansatz by labeling the sites A and B as
in Fig. 4. This doubles the number of parameters in the an-
satz.

The state update now proceeds in two steps. Let the site
pairs AB interact and update the tensors ��A�, ��B�, and the
vector ��AB�. Then let the neighbor pairs BA interact, after
which we update the tensors ��B�, ��A�, and the vector ��BA�.
What we observe is that after many state updates, the ele-

ments of the resulting ��A� and the ��B� tensors differ at a
level which is way below our numerical accuracy �governed
by the normalization errors�, and we indeed obtained a trans-
lationally invariant description of the system.

One of the systems easily investigated with this method
�iTEBD� is the Ising model in a transverse field �Eq. �37�� on
an infinite line. Vidal’s numerical results for the real time
evolution and imaginary time evolution10 of this system
show remarkable agreement with the exact solution. We take
a step further and also numerically obtain the critical expo-
nents for this system. Further details can be found in Sec. V,
where we compare these results for the infinite line to the
results we obtain for the Ising model in transverse field on
the Bethe lattice.

B. An infinite tree

For the infinite Bethe lattice, our approach is a modifica-
tion of the above procedure introduced by Vidal. In order to
avoid the numerical instabilities associated with imposing
site-independent � and � after the update steps, we break the
translational symmetry by labeling the “layers” of the tree A
and B �denoted by half circles and triangles�, as in Fig. 5.

The Bethe lattice is also symmetric under the permutation
of directions. Tensors � with full directional symmetry obey
�a,b,c=�b,c,a=�c,a,b=�c,b,a=�b,a,c=�a,c,b. However, for the
purpose of simple organization of interactions, we will also
partially break this symmetry by consistently labeling an
“inward” bond for each node, as denoted by the flat sides of
the semicircles and the longer edges of the triangles in Fig. 5.
This makes the first of the three indices of �a,b,c special.
However, we keep the residual symmetry �a,b,c=�a,c,b. This

FIG. 4. The parametrization and update rules for the infinite
line.

FIG. 5. �Color online� The two-layer, directed labeling of the
tree.
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we can enforce by interacting a spin with both of the spins
from the next layer at the same time. The update procedure
for the interaction between the spins now splits into two
steps, interacting the layers in the AB order first, and then in
the BA order as in Fig. 6.

Similarly to what we discovered for the line, the differ-
ences in the elements of the final ��A� and ��B� are well below
the numerical accuracy of our procedure.

The scaling of this procedure is more demanding than the
O��3� simulation for a line. The number of entries in the
matrix  used in each update step is 2�2�4�4, therefore the
SVD decomposition requires O��8� steps. The scaling of our
numerical method is thus O��8� for each update step. Note
that to keep reflection symmetry in the branches of the tree,
we make three-site �see Fig. 6�, instead of the usual two-site
updates. This is the reason why our method also scales worse
than the basic O��4� method for a tree network in Ref. 8.

C. Expectation values

A nice property of the MPS state description is that it
allows efficient computation of expectation values of local
operators. First, for a translationally invariant system on a
line �with only one tensor � and one vector ��, we have for
an operator O�i� acting only on the ith spin

��	O�i�	�� = �
si,si�=0,1

Osi,si�
�i� �

a=1

�

�
b=1

�

��a�a,b
si���b���a�a,b

si �b� ,

�24�

where Osi,si�
�i� = �si�	O

�i�	si�. Similarly, for the expectation values

of O�i�O�j� �assuming j� i�,

��	O�i�O�j�	�� = �
si,si�,. . .,sj,sj�

�
a,e

�
b,b�,. . .

Osi,si�
�i� Osj,sj�

�j�

� ��a�a,b�
si��

�b��b�,c�
si+1�

�c� ¯ �d��d�,e
sj��

�e�

� ��a�a,b
si �b�b,c

si+1�c ¯ �d�d,e
sj �e� . �25�

Defining a �2��2 matrix B �where one should think of �bb��
as one combined index ranging from 1 to �2� as

B�bb��,�cc�� = �
s

�b,c
s �b�,c�

s�
�c�c� �26�

and vectors v and w with elements again denoted by a com-
bined index �bb��=1. . .�2 as

v�bb�� = �
si,si�

Osi,si�
�i� �

a

��a�2�a,b
si �a,b�

si��
�b�b�, �27�

w�dd�� = �
sj,sj�

Osj,sj�
�j� �

e

�d,e
sj �d�,e

sj�� ��e�2, �28�

we can rewrite Eq. �25� as

���O�i�O�j���� = vTBB ¯ B
j−i−1

w . �29�

There is a relationship between the eigenvalues of the
matrix B and the correlation function �O�i�O�j��− �O�i���O�j��.
One of the eigenvalues of B is �1=1, with the corresponding
right eigenvector

��cc��
�1R� = �

s
�

c

�b,c
s �b�,c

s� ��c�2, �30�

and left eigenvector

��bb��
�1L� = �b,b��b

2, �31�

which can be verified using the normalization conditions �9�
and �10�. We numerically observe that �1=1 is also the larg-
est eigenvalue. �Note that 	�k	�1 would result in correla-
tions unphysically growing with distance.� We denote the
second largest eigenvalue of B as �2. Using the eigenvectors
of B, we can express Bj−i−1 in Eq. �29�, as

Bj−i−1 = ��1L���1R�T + �2
j−i−1��2L���2R�T + . . . �32�

When computing the correlation function, the term that gets
subtracted exactly cancels the leading term involving �1=1.
Therefore, if 	�2	 is less than 1, Eq. �32� implies

�O�i�O�j�� − �O�i���O�j�� � �2
	j−i	. �33�

The correlation function necessarily falls of exponentially in
this case, and the correlation length � is related to �2 as �
=−1 / ln �2.

The computation of expectation values for a MPS state on
a system with a tree geometry can be again done efficiently.
For single-site operators O�i�, the formula is an analog of Eq.
�24� with three � vectors for each � tensors, which now have
three lower indices. For two-site operators, the terms in Eq.
�29� now become

B�cc��,�dd�� = �
s

�
e

�c,e,d
s �c�,e,d�

s� ��e�2�d�d�, �34�

v�cc�� = �
si,si�

Osi,si�
�i� �

a,b
��a�2��b�2�a,b,c

si �a,b,c�
si��

�c�c�, �35�

w�dd�� = �
sj,sj�

Osj,sj�
�j� �

e,f
�d,e,f

sj �d�,e,f
sj�� ��e�2�� f�2. �36�

The correlation length is again related to the second eigen-
value of the B matrix as in Eq. �33�.

FIG. 6. �Color online� The two-step interactions for the infinite
tree.
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V. QUANTUM TRANSVERSE FIELD ISING MODEL

Our goal is to investigate the phase transition for the Ising
model in transverse magnetic field �Eq. �1�� on the infinite
line and on the Bethe lattice. We choose to parametrize the
Hamiltonian as

H =
s

2 �
�i,j�

�1 − �z
i�z

j� +
b�1 − s�

2 �
i

�1 − �x
i � , �37�

where 0�s�1, and b is the number of bonds for each site
�b=2 for the line, b=3 for the tree�. We will investigate the
ground state properties of Eq. �37� as we vary s. The point
s=0 corresponds to a spin system in transverse magnetic
field, while s=1 corresponds to a purely ferromagnetic inter-
action between the spins.

A. The infinite line

We present the results for the case of an infinite line and
compare them to exact results obtained via fermionization
�see, e.g., Ref. 13, Ch. 4�. Vidal10 has shown that imaginary
time evolution within the MPS ansatz is capable of providing
a very accurate approximation for the ground state energy
and correlation function. We show that even using � smaller
than used in Ref. 10, we obtain the essential information
about the nature of the phase transition in the infinite one-
dimensional system. We also obtain the critical exponents for
the magnetization and the correlation length.

In Fig. 7, we show how the ground state energy obtained
using imaginary time evolution with MPS converges to the
exact energy as � increases.

The exact solution for a line has a second order phase
transition at the critical value of s, sL= 2

3 , and the ground
state energy and its first derivative are continuous, while the
second derivative diverges at s=sL. We plot the first and
second derivative of E with respect to s obtained numerically
and compare them to the exact values in Fig. 8, observing the
expected behavior already for low �.

The derivative of the exact magnetization M = ��z� is dis-
continuous at sL, with the magnetization starting to rise
steeply from zero as

M � �x − xL��, �38�

with the critical exponent �L= 1
8 . Here x is the ratio of the

ferromagnetic interaction strength to the transverse field
strength in Eq. �37� and is

x =
s

2�1 − s�
, �39�

with the value x=xL=1 at the phase transition �sL= 2
3 �. We

plot the magnetization obtained with our method in Fig. 9.

FIG. 7. �Color online� Transverse Ising model on an infinite
line. Fractional difference of the ground state energy obtained using
MPS and the exact ground state, near the phase transition at sL= 2

3 .
The energy scale is logarithmic.

FIG. 8. �Color online� Transverse Ising model on an infinite line. The first and second derivative with respect to s of the ground state
energy obtained via MPS compared with the exact result.
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To obtain the magnetization depicted in the plot, we used a
small symmetry breaking longitudinal field with magnitude
Bz=10−8.

In Fig. 10, we plot M vs x−xL on a log-log scale. We also
plot a line with slope 0.125. Observe that as � increases, the
data is better represented by a line down to smaller values of
x−xL. For the largest � we display, a straight line fit of the
data between 4�10−3�x−xL�10−1 gives us a slope of
0.120. Note that the mean-field value of the critical exponent
for magnetization is 0.5.

The correlation function ��z
�i��z

�j��− ��z
�i����z

�j�� can be
computed efficiently using Eq. �25�. Away from criticality, it
falls off exponentially as e−	i−j	/�. The falloff of the correla-
tion function is necessarily exponential as long as �2, the
second eigenvalue of B, is less than 1. The exact solution for
the correlation length � near the critical point has the form

� � 	x − xL	−1 �40�

as x approaches xL. Already at low � the iTEBD method
captures the divergence of the correlation length. In Fig. 11,
we plot � vs 	x−xL	 on a log-log plot, together with a line
with a slope of −1. Again, as � increases, the data is better
represented by a line closer to the phase transition. For the
highest � we display, a straight line fit of the data between
2�10−2�xL−x�4�10−1 gives us a slope of −0.92. Note
that the mean-field value of the critical exponent for the cor-
relation length is 0.5 �corresponding to slope −0.5 in the
graph�.

B. The infinite tree (Bethe lattice)

The computational cost of the tree simulation is more ex-
pensive with growing � than the line simulation, so we give
our results only up to �=8. We run the imaginary time evo-
lution with 10 000 iterations �each iteration followed by sev-
eral normalization steps� for each point s, taking a lower �
result as the starting point for the procedure. We also add a
small symmetry-breaking longitudinal field with magnitude
Bz=10−8.

We see that the energy and its first derivative with respect
to s are continuous. However, we now observe a finite dis-
continuity in the second derivative of the ground state energy
�see Fig. 12�, as opposed to the divergence on the infinite
line. This happens near s=sT�0.5733.

Similarly to the one-dimensional case, the magnetization
quickly grows for s�sT, while it has �nearly� zero value for
s�sT �see Fig. 13�. In Fig. 14, we plot the magnetization vs
x−xT on a log-log scale, where x is

x =
s

3�1 − s�
, �41�

with the value x=xT�0.451 at the phase transition �where
s=sT�0.5733�. We want to test whether the magnetization
behaves like

M � �x − xT�� �42�

for x close to xT, which would appear as a line on the log-log
plot. As � grows, the data is better represented by a straight
line closer to the phase transition. If we fit the �=8 data for
4�10−4�x−xL4� �10−3, we get �=0.41. We add a line
with this slope to our plot. Note that the mean-field value for
the exponent � is 0.5, just as it is for the infinite line.

We observe that the correlation length now rises up only
to a finite value �see Fig. 15�. As we increase �, the second
eigenvalue of the B matrix, �2, approaches a maximum value
close to 1

2 . We conjecture that the limiting value of �2 is
indeed 1

2 , which corresponds to a finite correlation length
with value �ln 2�−1. Note that for the infinite line, the second
eigenvalue of B approaches 1, and so the correlation length is
seen to diverge at the phase transition.

VI. THE NOT 00 MODEL

We now look at a model with a different interaction term.
Starting with an antiferromagnetic interaction, we add a spe-

FIG. 9. �Color online� Transverse Ising model on an infinite
line. Magnetization obtained using MPS vs s, with Bz=10−8.

FIG. 10. �Color online� Transverse Ising model on an infinite
line. Log-log plot of magnetization vs x−xL. We also plot a line
with slope �L=0.125.
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cific longitudinal field at each site. As in the previous sec-
tion, we parametrize our Hamiltonian �Eq. �2�� with a single
parameter s:

Hnot00 = s�
�i,j�

1

4
�1 + �z

i + �z
j + �z

i�z
j�

Hij

+
b�1 − s�

2 �
i

�1 − �x
i � ,

�43�

with b=2 on the line and b=3 on the tree. We choose the
longitudinal field in such a way that the nearest-neighbor

interaction term Hij becomes a projector, expressed in the
computational basis as

Hij = 	00��00	ij , �44�

thus penalizing only the 	00� configuration of neighboring
spins. Accordingly, we call this model NOT 00. The ground
state of the transverse Ising model �Eq. �37�� at s=1 has
degeneracy 2. For Eq. �43� on the infinite line or the Bethe
lattice, the degeneracy of the ground state at s=1 is infinite,

FIG. 11. �Color online� Transverse Ising model on an infinite line. Log-log plot of the correlation length vs 	x−xL	. We also plot a line
with slope −�L=−1. For each � in the plot, we choose a numerical value of the critical point sL as the point at which the correlation length
is maximal.

FIG. 12. �Color online� Transverse Ising model on an infinite tree. The first and second derivative with respect to s of the ground state
energy obtained via MPS.
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as any state that does not have two neighboring spins in state
	0� has zero energy.

A. Infinite line

We use our numerics to investigate the properties of Eq.
�43� on the infinite line as a function of s.

Our numerical results show continuous first and second
derivatives of the energy with respect to s �see Fig. 16�. The
magnetization M = ��z� decreases continuously and mono-
tonically from 0 at s=0 to a final value of −0.606 at s=1 �see
Fig. 17�. The second eigenvalue of the B matrix �Eq. �33��
rises continuously from 0 at s=0, approaching 0.603 at s
=1 �see Fig. 17�. Because �2�1, the correlation length � is
finite for all values of s in this case. These results imply that
there is no phase transition for this model as we vary s.

As a test of our results, we compute the magnetization at
s=1 exactly for this model on a finite chain �and ring� of up

to n=17 spins. We maximize the expectation value of HB
=�i�x

i within the subspace of all allowed states at s=1 �with
no two zeros on neighboring spins�, thus minimizing the ex-
pectation value of the second term in Eq. �43� for s ap-
proaching 1. We compute the magnetization M = ��z

i� for the
middle i= �n /2� spin for the ground state of the NOT 00 model
exactly for a finite chain and ring of up to 17 spins at s=1.
As we increase n, the value of M converges to −0.603 �much
faster for the ring, as the values of M for n=14,17 differ by
less than 10−4�. Recall that we obtained M =−0.606 from our
MPS numerics with �=16 for the NOT 00 model on an infi-
nite line. We also compare the values of the Schmidt coeffi-
cients across the central division of the finite chain �n=16� to
the elements of the � vector obtained using our MPS numer-
ics with �=32. We observe very good agreement for the 11
largest values of �k, with the difference that our MPS values
keep decreasing �exponentially�, while the finite-chain values
flatten out at around �k�14�10−9 �see Fig. 18�. The behavior
of the components of � from MPS doesn’t change with in-
creasing �.

In the ground state of Eq. �43� at s=1, the overlap with
the 	00� state of any two neighboring spins is exactly 0. If the
� tensors are the same at every site, the component of the
state 	�� that has overlap with the state 	00� on nearest neigh-
bors can be expressed as

�
a,b,c

��a�ab
0 �b�bc

0 �c�		a�	00�		c� . �45�

Furthermore, when the � tensors are symmetric, the elements
of the � vectors must be allowed to take negative values to
make this expression equal to zero. Note that until now, we
used only positive � vectors, knowing that they come from
Schmidt decompositions, which give us the freedom to
choose the components of � to be positive and decreasing.

The negative signs in the � vector can be absorbed into
every other � tensor, resulting in a state with two different �
�for the even and odd-numbered sites� and only positive �’s.
In fact, this is what we observe in our numerics, which
assume positive �, but allow two different � tensors �see

FIG. 13. �Color online� Transverse Ising model on an infinite
tree. Magnetization vs s, with Bz=10−8.

FIG. 14. �Color online� Transverse Ising model on an infinite
tree. Log-log plot of magnetization vs x−xT, with Bz=10−8. We also
plot a line with slope 0.41.

FIG. 15. �Color online� Transverse Ising model on an infinite
tree. A linear plot of the correlation length vs s.
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Sec. IV A�. If we allow the elements of � to take negative
values, our numerically obtained � tensors are identical.

B. Infinite tree

Here, we numerically investigate the NOT 00 model �Eq.
�43�� on the Bethe lattice. As on the line, the numerics show
continuous first and second derivatives of the energy with
respect to s �see Fig. 19� and a continuous decrease in the
magnetization from 0 at s=0 to −0.671 at s=1 �see Fig. 20�.
The correlation length behaves similarly as on the line, in-
creasing with s, but it reaches a maximum at s=0.96 for �
=8. The maximum value of � is apparently lower than 1/In 2,
�see Fig. 20�, meaning that on the tree, the correlation func-

tion ��z
�i��z

�j��− ��z
�i����z

�j�� falls off with distance faster than
2−	i−j	 for all s.

VII. STABILITY AND CORRELATION LENGTHS
ON THE BETHE LATTICE

We have found that on the Bethe lattice, for both our
models the second eigenvalue �2 of the matrix B �Eq. �33��,
which determines the correlation length, apparently is never
greater than 1

2 . In this section we argue that this is a model
independent and calculation method independent, conse-
quence of assuming that a translation-invariant ground state
is the stable limit of a sequence of ground states of finite
Cayley trees as the size of the tree grows. For a related

FIG. 16. �Color online� The NOT 00 model on an infinite line. The ground state energy and its first two derivatives with respect to s.

FIG. 17. �Color online� The NOT 00 model on an infinite line. Magnetization as a function of s and correlation length as a function
of s.
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problem, the stability of recursions for valence bond states
on Cayley trees has been investigated by Fannes et al. in Ref.
14.

Hamiltonians �1� and �2� each consist of sums of terms
Hk

�x�, Hm
�z�, as in Eq. �21�, where each term Hk

�x� depends on a
single �x and each Hm

�z� on a neighboring pair of �z. We
calculate the quantum partition function

Z��� = tr e−�H �46�

as the limit of

Z�N,�t� = tr��
k

e−�tHk
�x��

m

e−�tHm
�z��N

�47�

as �t→0, N→� with N�t=�. To find the properties of the
ground state, we take �→� so that we need Z�N ,�t� as
�t→0, N→� with N�t→� and N��t�3→0 �to make the
error in using the Trotter-Suzuki formula go to zero�. We
interpret Eq. �47� as giving the classical partition function of

a system of Ising spins �s= �1� on a lattice consisting of N
horizontal layers, each of which is a Cayley tree of radius M
�i.e., with a central node and concentric rings of 3 ,3�2,3
�22 , . . . ,3�2M−1 nodes�. We can write Eq. �47� as

Z�N,�t� = �
s�

� A � B , �48�

where the sum is over all configurations of N� �3�2M −2�
spins s= �1, and the products are of a Boltzmann factor A
for each horizontal link in the Cayley trees, and a Boltzmann
factor B for each vertical link between corresponding nodes
in neighboring layers �see Fig. 21� �layer N is linked to layer
1 to give the trace�.

Factor A for the link between nodes i , j in the same hori-
zontal layer is given by

A�si,sj� = e−�tH�ij�
�z� �si,sj�. �49�

Factor B for the link between nodes i , i� in the same vertical
column is given by

B�si,si�� = ��z = si�	e
−�tH�i�

�x�
	�z = si� . �50�

When all the terms H�ij�
�z� are of the same form, as are all the

terms H�i�
�x�, the form of factors A and B does not depend on

which particular links they belong to.
Each term in the sum, divided by Z, can be thought of as

the probability of a configuration s�. In what follows we will
keep N and �t fixed and consider the limit M→�, i.e., finite
Cayley tree→Bethe lattice. We will then suppose that our
results, which are independent of the form of A and B �pro-
vided A ,B�0� will also hold after the N→� limit is taken,
i.e., for the quantum ground state.

We will think of our lattice as a single tree, with each
node being a vertical column of N spins. �A recent use of this
technique to investigate the quantum spin glass on the Bethe
lattice is in Ref. 15�. We denote by s� the vector of N values
of s along a column. Let K�s�� be the product of the N factors
B�s ,s�� along a column and let L�s� ,s��� be the product of N

FIG. 18. �Color online� Ground state of the NOT 00 model on a
line at s=1. Comparison of the exact Schmidt coefficients for a
division across the middle of a finite chain and of the MPS values
��=32� for an infinite line.

FIG. 19. �Color online� The NOT 00 model on an infinite tree. The ground state energy and its first two derivatives with respect to s.
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factors A�s ,s�� on the horizontal links between nearest
neighbor columns. Let ZM be the partition function for a tree
of radius M. We can calculate ZM by a recursion on M as
follows:

ZM = �
s�

K�s���FM�s���3, �51�

FM�s�� = �
s��

L�s�,s���K�s����FM−1�s����2, �52�

F0�s�� = 1. �53�

It is easy to see that this recursion gives the correct ZM �the
case M =2 is shown in Fig. 22�. We also see that

PM�s�� =
1

ZM
K�s���FM�s���3 �54�

is the probability of the configuration s� along the central
column. For the case N=1, i.e., classical statistical mechan-

ics on a tree, this is the well-known method to find an exact
solution.16

In order to have a well-defined translationally invariant
limit as M→�, we would like recursion �52� for FM to have
an attractive fixed point F, which FM approaches as M→�.
“Attractive” means that if we start the recursion with a dif-
ferent F0�s��, sufficiently close to F0�s��=1, the limiting value
of FM�s�� will be the same fixed point. This in turn implies
that on a Cayley tree with large M, small changes in the
Hamiltonian on the outer edge will have small effects on the
properties of the central region.

First however we need to fix the overall normalization of
FM�s��, since if FM�s�� satisfies Eq. �52�, so does a2M

FM�s��,
which rules out an attractive fixed point.

Let

FM�s�� = ZM
1/3F̂M�s�� , �55�

so that

FIG. 20. �Color online� The NOT 00 model on an infinite tree. Magnetization as a function of s and correlation length as a function of
s.

FIG. 21. A system of classical spins on a lattice whose layers are
Cayley trees. A and B denote the Boltzmann factors. FIG. 22. The M =2 Cayley tree.
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�
s�

K�s���F̂M�s���3 = 1, �56�

and

PM�s�� = K�s���F̂M�s���3. �57�

The recursion relation becomes

F̂M�s�� = �M�
s��

L�s�,s���K�s����F̂M−1�s����2, �58�

with �M determined by normalization condition �56�. We can
now suppose that

F̂M�s�� → F̂�s�� as M → � , �59�

with

F̂�s�� = ��
s��

L�s�,s���K�s����F̂�s����2, �60�

and

�
s�

K�s���F̂�s���3 = 1. �61�

To determine whether F̂ is an attractive fixed point, let

F̂M�s�� = F̂�s�� + fM�s�� , �62�

�M = ��1 + �M� , �63�

with fM →0 and �M →0 as M→�. To first order in fM, �M,
Eqs. �56� and �58� become

fM�s�� = �MF̂�s�� + 2�
s��

T�s�,s���fM−1�s��� , �64�

�
s�

K�s���F̂�s���2fM�s�� = 0, �65�

where

T�s�,s��� = �L�s�,s���K�s���F̂�s��� . �66�

From Eq. �60�,

�
s��

T�s�,s���F̂�s��� = F̂�s�� , �67�

and since L�s� ,s���=L�s�� ,s��,

�
s��

K�s����F̂�s����2T�s��,s�� = K�s���F̂�s���2, �68�

i.e., the linear operator T has an eigenvalue 1, with right

eigenvector F̂ and left eigenvector KF̂2 �which from Eq. �61�
have scalar product 1�. Equation �64� now gives

�
s�

K�s���F̂�s���2fM�s�� = �M + 2�
s�

K�s���F̂�s���2fM−1�s�� ,

�69�

so from Eq. �65�, �M =0. Let

T��s�,s��� = T�s�,s��� − F̂�s��K�s����F̂�s����2, �70�

so that

�
s��

T��s�,s���F̂�s��� = 0, �71�

and

�
s��

K�s����F̂�s����2T��s��,s�� = 0. �72�

Equation �64� now becomes

fM�s�� = 2�
s��

T��s�,s���fM−1�s��� . �73�

Equation �73� shows that F̂�s�� is an attractive fixed point if
and only if

�T�� �
1

2
�74�

�for a tree with valence p+1 at each vertex, 1
2 is replaced by

1 / p�.
We can in fact prove that there does exist an F̂�s�� satisfy-

ing Eqs. �60� and �61�, for which the corresponding T� has a
maximum eigenvalue less than 1

2 . We define a function � of

F̂�s�� by

��F̂� = �
s�,s��

�F̂�s���2K�s��L�s�,s���K�s����F̂�s����2. �75�

We look for a maximum of � with F̂�s�� restricted to the
region

�
s�

K�s���F̂�s���3 = 1, �76�

F̂�s�� � 0. �77�

A maximum must exist, but it might be on the boundary of

the region, i.e., it might have F̂�s��=0 for some values of s�.
Elementary calculations �omitted here� establish that station-
ary values of � on the boundary cannot be maxima. At sta-

tionary points in the interior of the region, i.e., with F̂�s��
�0 for all s�, Eqs. �60� and �61� must be satisfied. If such a
stationary point is a maximum, all the eigenvalues of 1
−2T� are �0, i.e., all the eigenvalues of T� are �

1
2 . This is

weaker than the attractive fixed point condition, which also
requires that no eigenvalue is less than − 1

2 , but does corre-
spond to our observed property of �2.

We now examine the joint probability distribution of s�0
and s�d, where 0 denotes the central column and d a column
distance d from the center.

From Fig. 23 we see that
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PM�s�0,s�d� =
1

ZM
�

s�1,¯,sd−1

�FM�s�0��2K�s�0�L�s�0,s�1�FM−1�s�1�

. . . . . . L�s�d−1,s�d�K�s�d��FM−d�s�d��2. �78�

As M→� �with d fixed� this becomes �using Eq. �66��

P�s�0,s�d� = C�F̂�s�0��2K�s�0�Td�s�0,s�d�F̂�s�d� , �79�

where the normalization C is determined by

�
s�0,s�d

P�s�0,s�d� = 1. �80�

Using Eq. �67� we find

P�s�0� = �
s�d

P�s�0,s�d� = CK�s�0��F̂�s�0��3, �81�

so from Eq. �61�, C=1 �and P�s�0� agrees with the limit of
Eq. �57��. Expressing Eq. �79� in terms of T� using Eqs.
�70�–�72�,

P�s�0,s�d� − P�s�0�P�s�d� = K�s�0��F̂�s�0��2�T��d�s�0,s�d�F̂�s�d� .

�82�

Thus the correlation between s�0 and s�d falls off as �d, where
� is the eigenvalue of T� with maximum modulus, and so
from Eq. �74�, faster than 1 /2d.

If this conclusion is correct �and clearly the argument is
less than rigorous�, it establishes more than our experimental
observation that �2�

1
2 . The quantum limit of P�s�0 ,s�d� en-

codes not only the static correlation ��0	s0sd	�0� in the
ground state, but also the imaginary time-dependent correla-
tion ��0	eHts0e−Htsd	�0�, which in turn determines the linear
response as measured by sd to a time-dependent perturbation
proportional to s0. If this indeed falls off faster than 1 /2d,
then we can have some hope that the Bethe lattice can be
used as a starting point for investigation of fixed valence
random lattices.
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